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Abstract

Transfer learning has become the de facto practice to
reuse a deep neural network (DNN) that is pre-trained with
abundant training data in a source task to improve the
model training on target tasks with smaller-scale training
data. In this paper, we first investigate the correlation be-
tween the DNN's pre-training performance in the source
task and their transfer results in the downstream tasks. We
find that high performance of a pre-trained model does not
necessarily imply high transferability. We then propose a
metric, named Fréchet Pre-train Distance, to estimate the
transferability of a deep neural network. By applying the
proposed Fréchet Pre-train Distance, we are able to identify
the optimal pre-trained checkpoint, and then achieve high
transferability on downstream tasks. Finally, we investigate
several factors impacting DNN's transferability including
normalization, different networks and learning rates. The
results consistently support our conclusions.

1. Introduction

This paper is concerned with the transferability of deep
neural networks (DNNs), which are pre-trained in a source
task with abundant training data, to downstream tasks
whose training sets are small-scale or medium-sized. The
transferability of DNNs has been studied from various per-
spectives. Since DNNs have hierarchical architectures, the
layers represent different feature granularities and result in
distinct transferabilities [28, 15, 4]. The pre-training meth-
ods also play a key role in DNNs’ transferabilities [25, 9].

All the studies mentioned above fine-tune the DNNs that
have converged on the source task. However, we find that
the converged models do not always lead to better transfer
results to the downstream tasks than those stopped early.
Moreover, if we pick up a checkpoint from the early pre-
training stage, we could possibly get a transfer result worse
than train-from-scratch. Transfer results is referred to the
highest-performing model after fine-tuning over the target
task.

Hence, a new question is raised about DNN’s transfer-
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ability. Suppose the pre-training method and the source task
do not change, and that we save multiple checkpoints dur-
ing the course of the pre-training (e.g., after each learning
rate decay). How can we identify the best checkpoint for a
given target task? Here, the best checkpoint is referred to
the one that yields the best transfer results.

To address the above question, we propose to a spe-
cific metric to measure transferability, named Fréchet Pre-
train Distance (FPD), derived from Fréchet Distance [6], a
widely-used metric to measure the distance between two
distributions. We compute Fréchet Pre-train Distance be-
tween the source and target datasets through all the pre-
trained checkpoints. Our extensive experiments demon-
strate that Fréchet Pre-train Distance is well correlated with
the checkpoints’ transferability for target tasks under differ-
ent experimental settings.

Equipped with the Fréchet Pre-train Distance, we extend
our study to investigate multiple impact factors in trans-
fer learning, including fine-tuneing learning rates, DNNs’
depths, and Spectral Normalization [16] to DNNs’ weights.
An interesting finding is that the over-parameterized fully-
connected layer hurts the transferability of AlexNet [14],
and yet the Spectral Normalization [16] can alleviate it.

To conclude, our work makes three major contributions:

e We investigate how the transfer performance varies
along with the pre-training process.We find that pre-
training would not necessarily improve transfer per-
formance, but, on the contrary, sometimes the transfer
performance decreases when the pre-training perfor-
mance increase.

e We propose to use Fréchet Pre-train Distance to es-
timate the transferability of a pre-trained network be-
tween source and target datasets. Our extensive experi-
ments show that Fréchet Pre-train Distance is well cor-
related with the checkpoints’ transferability to target
tasks. With the proposed Fréchet Pre-train Distance,
we are able to pick up an optimal pre-trained check-
point for given target tasks without actually conducting
transfer learning experiments.

e We further investigate multiple impact factors on the
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transfer performance of neural networks. We find
that over-parameterization hurts deep neural networks’
transferability in the early training stage and the Spec-
tral Normalization helps recover it. Our experiments
with different learning rates and networks also sup-
port our previous claims that networks’ transferabil-
ity and Fréchet Pre-train Distance are consistent corre-
lated across different settings.

The rest of this paper is organized as follows. Section 2
discusses related areas to our method. In Section 3, we dis-
cuss the pre-train/transfer performance correlation and pro-
pose Fréchet Pre-train Distance to quantify the transferabil-
ity of pre-trained networks. Section 4 shows our extensive
experimental results. Finally, we conclude our paper in Sec-
tion 5.

2. Related Work

Transfer learning [17, 5] is a widely used technique in vi-
sual perception algorithms, where a deep neural network is
first trained on the source dataset then fine-tuned on another
downstream dataset. Through transfer learning, knowledge
learned from the source task is transferred to the target task.
However, a questions is raised here: how to efficiently trans-
fer the knowledge learned from the source dataset and avoid
the negative impact from the discrepancy between source
and target domains? Previous studies propose different ap-
proaches to answer the question.

A straightforward idea is to visualize and understand
the knowledge learned by neural networks. Along with
this direction, a few approaches were proposed to interpret
neural networks through visualization techniques. Yosin-
ski et al. [29] propose two tools to visualize live activa-
tions and features. Simonyan et al. propose an approach
to visualize the notion of classes and saliency maps [19].
More recent studies include interpreting through explana-
tory graph [31] and decision trees [32]. Moreover, to under-
stand neural networks more precisely, quantitative methods
are also proposed for interpretation purposes. Bau et al.
align hidden units with human-interpretable concepts to in-
terpret deep visual representations and quantify their inter-
pretability [4]. Achille er al. introduce the notion of “In-
formation in the Weights” to measure generalizability of
DNNSs [2]. Yosinski et al. study the layer-wise transferabil-
ity in transfer learning tasks by freezing a different number
of pre-trained layers and observing the change of transfer
performance [28], which experimentally quantifies the gen-
erality versus specificity in deep neural networks.

Besides knowledge or information measurement, learn-
ing process is also investigated. Achille et al. [1] measure
Fisher Information of weights in each training phase and
conclude that there are “memorization phase” and “forget-
ting phase” in the learning process. Kirkpatrick et al. inves-

tigate how to avoid information forgetting in transfer learn-
ing [13]. Moreover, the “break-even” point is proposed on
the optimization trajectory of learning, and the curvature of
the loss surface and noise in the gradient are implicitly reg-
ularized by SGD [12]. A similar work studying dynamic
stability of learning process is proposed by [24].

Initialization affects the transferability in many ways.
Ash et al. [3] compares the performance between warm-
starting and fresh random initialization. Regularization may
also lead to a better initialization and sometimes help im-
prove the transferability [27, 26]. Miyato et al. use spectral
norm to evaluate the generalizability in Generative Adver-
sarial Networks [8] and propose the Spectral Normalization
to improve the performance of neural networks [16]. Li et
al. propose Lo-S P penalty with the pre-trained model be-
ing referred as the baseline of penalty for transfer learning
tasks [26]. As a domain adaptation approach, a param-
eter regularization scheme is introduced to encourage the
representation similarity between the source and target do-
mains [18].

3. Transferability of Neural Networks

3.1. Pre-training performance VS transfer perfor-
mance

Transfer learning is a research problem that focuses on
storing knowledge gained in solving the source problem and
applying it to a different but related target downstream prob-
lem [23]. The ultimate goal is to improve the performance
on the target problem. To achieve that, most previous work
starts from the checkpoint which gains the best performance
on source task [9, 25, 30]. While, a problem remaining less
explored: does a better model on the source problem nec-
essarily imply a better initialization for the target problem?
We conduct an experiment in which we first learn a base
network on the source task [7] and keep all checkpoints
during the learning. Then we initialize the target network
with these pre-trained checkpoints and conduct the same
transfer experiments one by one. Finally, best test perfor-
mance achieved during the fine-tuning is recorded for each
pre-trained checkpoint.

We conduct transfer learning experiments on
AlexNet [14], VGG-16 [20] and ResNet-18 [10]. We
use CIFAR-100 and SVHN as the source datasets and
CIFAR-10 and MNIST as the target datasets, respectively.
Since both CIFAR-10 and MNIST are simple datasets, to
obtain recognizable differences, we choose 10% of CI-
FAR10 and 1% of MNIST training data for the target tasks’
training. But the testing data in CIFARI0 and MNIST
remain the same. We follow the experiment settings in
[7] to conduct both pre-training and transfer learning. For
both source and target tasks, SGD is used for training with
batch size 128, momentum 0.9 and weight decay 5e — 4.
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Figure 1: Transfer performance

For the source task, we use an initial learning rate of 0.1
for AlexNet and ResNet-18, 0.01 for VGG-16 and the
learning rate is dropped by a factor of 5 after epochs 60,
120, and 160 for a total of 200 epochs. In the target task,
100 epochs are trained with the learning rate dropped after
30,60 and 80 epochs by the same factor of 5. The initial
learning rate of the pre-trained layers is divided by a factor
of 2 compared with the pre-training. Since the results
change rapidly in the early stage of the pre-training and
become more consistent in the finishing stage, we test the
pre-trained checkpoints every 30 iterations in the first 2
epochs, and then every 5 epochs for rest epochs. We also
use a log scale for the x-axis in Figure 1 to better visualize
the results. All transfer performance refer to the best test
performance achieved in the 100 training epochs.

Not surprisingly, Figure 1 shows that better pre-training
accuracy (orange lines) does not necessarily lead to better
transfer performance (blue lines). On the contrary, in most
cases, while the pre-training accuracy is still increasing in
the later epochs, the transfer performance starts decreas-
ing. The transfer performance could even drop as many as 5
points on AlexNet using CIFAR100-CIFAR10 setting. Be-
sides, the transfer performance variation is more dramatic
in the earlier pre-training stages compared with the later
stages, which is also reasonable since a large learning rate

vs pre-training performance.

is used at the beginning of the pre-training.

We also notice that for AlexNet, some pre-trained check-
points from the early training stage would result in a worse
transfer learning performance compared with train-from-
scratch (blue dotted line), which indicates that picking a
wrong pre-trained checkpoint is likely to deviate us from
the best performance on the target task, or even leads us
to a wrong direction. Compared with AlexNet, VGG and
ResNet perform more consistently, as almost all pre-trained
checkpoints lead to a better accuracy compared with train-
ing from scratch. The only difference is that the transfer-
ability decreasing is less severe for VGG in the late stage
compared with ResNet.

3.2. Measuring Transferability with Fréchet Pre-
train Distance

Fréchet distance Fréchet distance [6] is a measure of
similarity between distributions. Specifically, Fréchet dis-
tance d between a Gaussian distribution with mean and co-
variance (mq,C7) and another Gaussian distribution with
mean and co-variance (mg, C2) is known as Wasserstein-2
distance [22], which is defined as:



AlexNet s0 VGG-16 s0 ResNet-18 10
78 7 f f —— Transfer performance 3 —— Transfer performance
Tra_nsfer per or:ﬁ.:‘nce 10.0 70 { ---- Train from scratch 75 { ===+ Train from scratch 8
--=-- Train from scratc
76
7.5 60 /'W 5 7o 6
74
5.0 4
s 5 % 3 go 3
[ R A | TP A 25 & 5 1 = 5 Wi 2 =
3 S Sao 2 Heo [ g
& 70 \ oo & ® =@ | 0 *
0
o8 25 30 55 .
66 5.0 20 71 50 _a
FPD FPD FPD
64 -7 10 a5 -6
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
iteration{log) iteration(log) iteration(log)
(a) CIFAR100-CIFAR10
AlexNet s 00 VGG-16 . 100 ResNet-18 b
961 — Tra!wsfer performance —— Transfer performance —— Transfer performance
o ==+ Train from scratch 901 ___. Train from scratch " gg | === Train from scratch 10
10 80 8
2y /Ny S 7 5 80 /\\ 6
> ~
% 5 @ 5 O =
g™ s g o0 o 8 E T 4 8
=1 = = =
3 a 3 a g a
2 88 & g 50 & E 60 2 T
36 0 10 -2 0
30 50 2
84 s _q
82 FPD 207 _ FPD 10 D [ H
B e T R -6 -6
0 2 4 6 8 10 12 o 2 4 6 8 10 12 o 2 4 6 8 10 12
iteration{log) iteration(log) iteration(log)

(b) SVHN-MNIST

Figure 2: Transfer Performance vs Fréchet Pre-train Distance.
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Where T'r denotes the Trace of matrix.

Fréchet Inception Distance (FID) Since Fréchet Dis-
tance could be used to measure the similarity of two Gaus-
sian distributions. Heusel et al. propose to measure the sim-
ilarity between GAN [8] generated images and real ones
with Fréchet Inception Distance (FID) [11]. The FID is
measured between the real images, the GAN generated
images, and the ImageNet [14] pre-trained Inception net-
work [21]. In which two Gaussians are fitted on the Incep-
tion outputs while the real images and GAN generated im-
ages are the inputs, respectively. The value of FID is used to
identify if the GAN generated images are as real and diverse
as real ones.

Fréchet Pre-train Distance (FPD) Inspired by Fréchet
Inception Distance, we find Fréchet distance can also be
used to measure the distances between the source dataset
and the target dataset on a given pre-trained network in

transfer learning. More specifically, in FID, when the Incep-
tion network is fixed, the variation of the Fréchet distance
represents the similarity of two group of images. On the
contrary, when we fix the two groups of images but change
the pre-trained networks, would Fréchet distance also be
able to represent the transferability of the pre-trained neu-
ral network which connects the source and target task? It
provides a potential solution to our previously raised ques-
tion i.e., how to select a best pre-trained checkpoint based
on the target performance. Usually the pre-trained network
with the best performance on the source dataset and task
would be used. But we propose to measure the transferabil-
ity of a given pre-trained network with Fréchet distance,
which proves a quantitative metric to help select a check-
point which might don’t have the best performance on the
source task but the best performance on the target task. The
Fréchet Pre-train Distance is defined as follows.

FPD = \/d2 ((ms, Cs), (my, Ct))

ms = E(fo(Xs)), my = E(fo(Xt))
Cs = Cov(fp(Xs)), Cr = Cov(fo(Xy))

2

where fy denotes the source network, X and X; denote the
source and target datasets, respectively. mg and m, are the
sample means and C and C; are the sample covariances for
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Figure 3: Transfer Performance Recovered by Spectral Normalization (SN: Spectral Normalization, Trans: transfer perfor-
mance, TFS: train-from-scratch, rmFC: remove 2 inner FC layers, 1024/128FC: change the size of 2 inner FC layers).

Algorithm 1 Find the optimal pre-training checkpoint with Fréchet Pre-train Distance

Input: Source network f,, source training dataset X, target network f;, target training dataset X,
Output: Optimal transfer performance on target task A?

Initialize the source network f=f;, initialize the minimal FPD F
for every epoch do
fi <= Training fi~1 with X,
Evaluate Fréchet Pre-train Distance of the current ¢th pre-training epoch

By = /Il = mi|l3 + Tr(Ci + Cf = ACiCi) )
mi, = E(f1(X,)).mi = B(fi(X)
€1 = Cov(fi(X,)),C} = Cov(fi(X,)

if F; < F then
Record the best epoch ipest = %
Record the best FPD F' = F;
end if
end for
Initialize the target network f; with the weights of source network f;best from the 7.5t epoch.
Fine-tunning the target network f; with X and return the best transfer accuracy on target task At

3936
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Figure 4: Transfer Performance vs Different Learning Rate (Trans: transfer performance, TFS: train-from-scratch).

the source domain and target domain. In our experiments,
we evaluate Fréchet Pre-train Distance between the source
and target test datasets on each pre-trained checkpoint. Fig-
ure 2 shows the correlation between the value of FPD and
the best test performance achieved on target task.

In Figure 2, the left y labels show the best performance
achieved in the target task (among 100 epochs) while the
bottom layers of the network are initialized with the weights
learned on the ¢ — th iteration of the pretraining. The right
y labels show the value of FPD. Since the transfer perfor-
mance changes more dramatically in the early pre-training
stages than in the finishing stages. We plot the iterations as
the x-axis in a log scale.

Surprisingly, the value of Fréchet Pre-train Distance evi-
dently negatively correlates with the variation of the transfer
performance, both in the early training stage and late train-
ing stage. It shows a similar trend for all three representa-
tive networks (Alexnet, VGG-16, and Resnet-18) and two
dataset settings (CIFAR100-CIFAR10, SVHN-MNIST). At
the turning point when Fréchet Pre-train Distance begins to
decrease, the transfer performance begins to increase. At
the late stages, the transfer performance decreases on both
AlexNet and ResNet18 while the Fréchet Pre-train Distance

also increase slightly. On VGG, both the transfer perfor-
mance and Fréchet Pre-train Distance are more even in the
late stages. The experiments verify that Fréchet Pre-train
Distance measures the transferability of the tested networks
well, which are nowadays very popular in most of ma-
chine learning tasks. Specifically, for the most widely used
ResNet, we also test how Fréchet Pre-train Distance works
on ResNet-50 and ResNet-101. The comparison is shown
in Section 4.3.

With the help of Fréchet Pre-train Distance, we are able
to find an optimal pre-trained checkpoint in the pre-training
stage before conducting actual fine-tuning experiments. Al-
gorithm 1 shows how the process works.

4. Investigating Factors Affecting Neural Net-
works’ Transferability

Equipped with Fréchet Pre-train Distance, we inves-
tigate more factors that affect the transferability of neu-
ral networks.  Specifically, we investigate the over-
parameterization problem that might cause the degradation
of transferability, and propose to recover it with Spectral
Normalization. We also explore the influence of learning
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Figure 5: Transfer performance vs Different ResNets (Trans: transfer performance, TFS: train-from-scratch).

rates and neural network depth on the transfer results.

4.1. Improving the Transferability of AlexNet with
Spectral Normalization

Spectral Norm Section 3.1 shows that in the early per-
training stage, for AlexNet only, pre-trained checkpoints
bring a negative effect to the target task. In other words,
the pre-trained weights become worse initialization than
random for the target network and fine-tuning cannot re-
cover from it. To prevent the degraded weights, inspired by
[16], we propose to use Spectral Normalization (SN), which
was introduced to improve the generalization of neural net-
works by reducing the sensitivity to test data perturbation .
Specifically, the spectral norm of weight matrix A € R™*"
is defined as

_ gl
ecRm 20 [[€]]2

o(A) (3)
which corresponds to the largest singular value of A. It has
been proven [27] that for each weight matrix W' of layer [
in fy, in order to bound the spectral norm of Wy ., it suffices
to bound the spectral norm of W' foreach ! € {1,...L}.

o(Wos) < o(Df,)o(WH)o (D, o (W)
1 1 - L (4)
o(Dh)o (W) < [[o(W)
=1

where D denotes the activation function and o(Dj ) < 1
for every | € {1,...L}. This suggests to use the spectral
norm as a regularizer to improve the generalizability of deep
neural networks [27].

Spectral Normalization While Spectral Norm Regular-
ization bounds the spectral norm of the entire neural net-
work. Miyato et al. propose to apply Spectral Normaliza-
tion to each specific layer which requires the spectral norm
of each layer satisfies the Lipschitz constraint o (1)
1 [16], which is defined as:

Wan(W)) := W/a(W) )

Where W is the weight matrix and W denotes the nor-
malized W.
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In Spectral Normalization, when each layer is normal-
ized, the Lipschitz of the entire network || f|| ;p is bounded
from above by 1 (check [16] for more details). While in
our experiments, we find when applying Spectral Normal-
ization on different layers in AlexNet, the transfer perfor-
mance varies on both CIFAR100-CIFAR10 (sub-figure 3a)
and SVHN-MNIST (Sub-figure 3b) settings. The left col-
umn of Figure 3 shows how the transfer performance varies
when we apply Spectral Normalization on the five convo-
lution layers, the two 4096 x 4096 middle fully-connected
layers, and the last classification layer. When the classi-
fication layer is normalized by Spectral Norm, the trans-
ferability is better recovered. To investigate the reason be-
hind, we test the value of Fréchet Pre-train Distance before
each layer. If we look into the finishing stages in the layer-
wide FPDs (sub-figures in the middle column of 3), we find
that only the fully-connected layers show the same trend as
the entire network. We wonder whether it is the two over-
parameterized 4096 x 4096 layers that cause the transfer-
ability degradation since it is easier to over-fit a layer with
more parameters. We then modify the number of channels
in the two fully-connected layers and show the results in
the right column of 3. It turns out when we choose smaller
channel sizes (1024 x 1024 or 128 x 128), the transferability
of the network is improved immediately. That supports our
claim that over-parameterization hurts transferability.

4.2. The Effect of Learning Rates

For the experiments in Section 3, we use a consistent
hyper parameters settings such as learning rate for both
pre-training and transfer learning experiments. We follow
mostly setting from the previous study [7]. However, we
wonder whether the same conclusion can be achieved un-
der different learning rates. In this section, we modify
the learning rate in our experiments on AlexNet, VGG-16
and ResNet-18 on both CIFAR100-CIFAR10 and SVHN-
MNIST transfer learning. To verify our assumption, three
different initial learning rates are tested (with same decay
strategy) and the correlated results are shown in Figure 4.

From Figure 4 we find different networks and datasets
perform slightly differently. For AlexNet and ResNet-18,
the transfer performances in different pre-training stages
are consistent when different learning rates are used. But
for VGG-16, when learning rate equals to 0.5, the transfer
performance in the starting stage is much lower than other
learning rates but the performance in the finishing stage is
better than others. For ResNet-18, the transfer performance
changes less when we modify the learning rates. Addition-
ally, the results are more noisy when a large learning rate is
used. Besides, for three networks and two dataset settings,
the change trending of the transfer performance is consis-
tent across different networks and datasets but the degree
varies. This is also reasonable since learning rates affect

the speed of over-fitting, and the over-fitting speed further
affects the transferability.

4.3. The Effect of ResNet Depths

ResNet [10] is one of the most popular neural networks
that has been widely used nowadays among many different
tasks. In this section, we would like to investigate how pre-
training, transfer learning, and Fréchet Pre-train Distance
change across different ResNets. We choose ResNet-18,
ResNet-50, and ResNet-101 in our experiments. The ex-
periments are also conducted on both CIFAR100-CIFAR10
and SVHN-MNIST datasets. Figure 5 shows the results.
The left sub-figures show the comparison of pre-training ac-
curacy, the middle sub-figures show transfer accuracy, and
the right sub-figures show the results on Fréchet Pre-train
Distance.

It is interesting that all ResNets reach the similar pre-
training performance, transfer performance and Fréchet
Pre-train Distance in the finishing training stages. But in the
early stages, the pre-trainings of ResNet50 and ResNet101
are slower and nosier. It shows that ResNet-18 is parame-
terized enough for both CIFAR100-CIFAR10 and SVHN-
MNIST. Therefore, increasing the depth of ResNet would
not learn extra knowledge. On the contrary, when the net-
work is over-parameterized compared to the complexity of
the task. Not only the neural networks converge slower, but
also the training process becomes noisier. The is compatible
to the conclusion we achieve in Section 4.1, when AlexNet
experiences a transfer performance degradation in the start-
ing pre-training stage, which is also caused by the over-
parameterization of the fully-connected layers in AlexNet.

5. Conclusion

In this paper, we explore the transferability of deep neu-
ral networks. We find that a pre-trained checkpoint that
achieves the best performance on a source task would not
always lead to a better transfer performance on target tasks,
sometimes even cause a transfer degradation where pre-
training would be worse than train-from-scratch. It shows
the transferability of a pre-trained checkpoint is affected by
the pre-training on both the beneficial and harmful sides for
the downstream tasks. We propose a metric named Fréchet
Pre-train Distance to evaluate the transferability of a pre-
trained checkpoint by measuring the Fréchet distance of
feature distributions between the source and target datasets.
With the help of Fréchet Pre-train Distance, we would be
able to identify a proper pre-trained checkpoint as the ini-
tialization for the target tasks before conducting transfer
learning. Moreover, we investigate other factors that affect
transfer learning and discuss the causes of the transferabil-
ity degradation. In particular, we notice that over-fitting and
over-parameterization hurt the transferability.
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