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Abstract— We analyze the vectorial network model, a
stochastic protocol that describes the collective dynamics of
groups of self-propelled agents that randomly mix in a planar
space. Motivated by biological and technical applications, we
focus on a heterogeneous form of the model, where agents have
different propensities to interact with others. By linearizing
the dynamics about a synchronous state and leveraging an
eigenvalue perturbation argument, we establish a closed-form
expression for the mean-square convergence rate to the syn-
chronous state in the absence of additive noise. These closed-
form findings are extended to study the effect of added noise
on the agents’ coordination, captured by the polarization of the
group. Our results reveal that heterogeneity has a detrimental
effect on both the convergence rate and the polarization, which
is nonlinearly moderated by the average number of connections
in the group. Numerical simulations are provided to support
our theoretical findings.

I. INTRODUCTION

Collective motion is a widely studied phenomenon across
biology, physics, and engineering [1], [2], [3]. The emer-
gence of collective motion is often observed in animal
groups, such as bird flocks, fish schools, and sheep herds.
Social animals have been shown to use locally controlled
interactions for decision-making that ultimately regulate their
motion and coordination [1]. To mimic these dynamics and
better understand the emergence of coordination, the physics
community has established a wide range of mathematical
models of collective motion for groups of self-propelled
particles [2]. In the engineering community, the observations
on the spontaneous emergence of coordination in biological
systems and the mathematical models developed in the
physics community have inspired the design and analysis
of decentralized control schemes for groups of autonomous
robots [3].

The vectorial network model (VNM), originally proposed
by [4], [5], has emerged as a valuable paradigm to describe
collective motion for its mathematical tractability and ability
to reproduce important features of more complex models.
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In the VNM, each agent is characterized by its orientation
on a planar space. Agents interact through a stochastically
switching network, through which they dynamically update
their orientation to synchronize with their neighbors. Such a
dynamic updating is affected by intrinsic noise. The VNM
has been initially proposed as a proxy of the classical
Vicsek model [6], whose complexity restricted its analysis
to numerical simulations [7], [8], [9], [10] or case-specific
theoretical results [11], [12], [13], [14], [15].

The first analyses of the VNM were performed in the
thermodynamic limit of large-scale systems, through ex-
tensive numerical simulations [4] and semi-analytical ap-
proaches [5]. These studies demonstrated the existence of
a continuous order-disorder phase transition, similar to the
Vicsek model in the case of rapidly moving particles that
randomly mix at every time step [6]. For small values
of added noise, the agents are successful in coordinating
their motion. The extent of such a coordination smoothly
decreases as the noise increases, until reaching completely
disordered states when the level of noise is above a critical
value. Further insight into the nature of the phase transition
and its dependence on system parameters can be found
in [16], where a mean-field theory of the VNM is developed
and analytically investigated.

In [17], the VNM is analyzed without relying on the
thermodynamic limit, via a linearization process that allows
the VNM to be studied through the lens of consensus
protocols [18], [19], specifically, stochastic protocols with
additive noise [20]. This linear analysis begot an array of
closed-form results for homogeneous groups of agents, that
is, where agents are indistinguishable in their ability to form
connections with other group members. These results helped
elucidate the effect of the population size, the number of
connections of each agent, and noise on the coordination of
the VNM. Further studies on the linearized VNM have shed
light on various aspects of the collective dynamics, such as
the effect of leader-follower interactions [21] and of specific
choices of the noise inspired by biological applications [22].

All these analyses are based on the assumption that all the
agents interact with the same number of individuals. Such
an assumption is not reflective on many real-life complex
systems. For instance, heterogeneity between the members
of a group is a typical feature of animal groups [23] and
complex coordination schemes between autonomous robots
often involve the cooperation of different models or gen-
erations of robots [24]. Heterogeneity, indeed, has been
shown to play a key, nontrivial role in many coordination
processes. On the one hand, heterogeneous distribution of



network connectivity hinders network synchronization in
small-world networks [25] and convergence of stochastic
consensus protocols [26]. On the other hand, the emergence
of ordered states in complex networks may be favored by
heterogeneous coupling [27] and convergence of stochastic
consensus protocols, in the presence of leader-follower inter-
actions, may instead be helped by heterogeneity [28]. To the
best of our knowledge, there is still a gap in the theoretical
understanding of the role of heterogeneity in the VNM.
Filling this gap is expected to bring insight into collective
motion of more complex models, thereby informing the
design of coordination strategies for engineering systems and
the understanding of real-life complex systems.

To this end, we examine the VNM in the general case
where each agent is characterized by a different propensity to
form connections with other group members. Similar to [17],
we rely on a linearization of the VNM about a synchronous
state, and we present a toolbox of analytical results that
capture the effect of heterogeneity on the asymptotic be-
havior of the VNM. First, through stochastic stability theory
and eigenvalue perturbation methods, we establish closed-
form results for the asymptotic convergence factor, which
determines the convergence rate in the absence of noise.
Our findings suggest that convergence to synchronous states
is hindered by the heterogeneity of the agents’ attitude to
interact with others, at least for moderate levels of hetero-
geneity. In agreement with our intuition, this detrimental
effect is moderated by the number of connections, where
synchronization in denser networks is more robust to the
effect of heterogeneity. Second, we study the polarization of
the system [4], which is a global observable that quantifies
the level of coordination between the agents. Following [17]
and leveraging a perturbation argument, we derive a closed-
form approximation for the polarization, which is exact in
the small noise limit. Such an expression corroborates our
previous finding, confirming that heterogeneity is detrimental
for the emergence of ordered states, not only by slowing
down the convergence, but also by decreasing the level of
coordination of the system. Monte Carlo numerical simula-
tions are provided to validate our analytical findings.

II. PROBLEM STATEMENT

A. Notation

The set of real numbers and nonnegative integers are
represented by R and Z*, respectively. Given a vector x,
we denote its transpose by = | . The N-dimensional all-1 (or
0) vector is denoted as 1 (or 0), and the N-dimensional
identity matrix by I. The Euclidean norm of a vector is
indicated by ||-||, the vectorization of a matrix by vec(-), the
argument of a complex number by Angle{-}, the expectation
and the variance of a random variable by E[| and var[-] ,
respectively. Matrix operations denoted by ® and © are the
Kronecker product and the Hadamard division, respectively.
The spectral radius of a matrix is indicated by p(-).

B. Heterogeneous VNM

We consider a system of N agents. Agent i € {1,...,N}
is associated with the two-dimensional, unit-length vector
v; = e with ¢ being the imaginary unit. With reference
to the Vicsek model [6], the vector represents the heading
direction of the self-propelled particle. Each vector v; up-
dates its orientation ; according to a discrete-time process,
as a consequence of interactions with other vectors. Agents
are heterogeneous in their attitude to interact with others.
Specifically, each agent ¢ is characterized by a constant
a; € Z*1 that measures the number of interactions that §
establishes at each time-step. These constants are gathered
in the interaction vector a. Similar to [26], we express the
interaction vector as a = K1 + ch, where

N N
1
K = N;al and g = Nz(ai _K)27 (1)

i=1

are the average number of interactions and its standard de-
viation, respectively. Vector h € RV captures the deviations
from the average number of connections and is such that
1"h = 0, and ||h|| = V/N. In the original formulation of
the VNM [4], [5], agents have homogeneous propensities of

interaction, that is, for a; = K, fori=1,..., N.
At each time-step k € Z™, agent i is connected with a;
agents, {i1,...,7a;}, whose average vector is
1 &
Ui(k) = — > vip(k). 2)
3
p=1

This vector is used as input to update the orientation of agent
1 according the the following stochastic dynamics:

0i(k + 1) = Angle{U;(k)} + nGi(k) , (3)

where the constant 7 € [0,1] is the noise intensity and
¢i(k) is a sequence of independent and identically distributed
(ii.d.) random variables drawn from a uniform distribution
in [—m, .

III. PRELIMINARIES

A. Linearization of the VNM

We begin our analysis by linearizing Eq. (3) with respect to
the orientation around a synchronous state, 6y, where 6; (k) =
0o + z;(k), to obtain

z(k+1) = W(k)x(k) + nGi(k), 4)

where z(k) = [z1(k) -+ z,(k)]T € R is the state vector,
C(k) = [C1(K) -+ Cu(k)]T € RY is the additive noise, and
W (k) € R¥*N is the state matrix. Matrices W (k)’s are
a sequence of i.i.d. random variables with common random
variables W. The matrix W is defined row-wise as follows.
Row ¢ of W is the sum of a; i.i.d. vectors V;q, ..., Vi,,, with
all entries equal to 0, except one entry equal to a%’ selected



uniformly at random. That is,

. T
>
p=1

W = : . 5)

a;
>V

L p=1

Hence, it is straightforward to check that: i) E[WV,

1
for all 4,5 € {1,...,N}, and ii) W is row-stochastic, that
is, W1 =1.

B. Asymptotic behavior

The linearized heterogeneous VNM is studied through the
disagreement dynamics of Eq. (4), that is, £(k) = z(k) —
z(k)1, where z(k) = +1"z(k) is the average state. The
evolution of the disagreement dynamics is given by

§(k +1) = RW(k)S(R) +nRG(k) (6)

where R = I — %117 projects RN onto the subspace
orthogonal to 1.

Based on previous work [17], [29], [30], we study the
evolution of the disagreement dynamics in a mean-square
sense. Specifically, we examine the time evolution of the
autocorrelation matrix Z(k) = E[¢(k)¢(k) T]. Recalling that
¢ and W are i.i.d. random variables, that E[¢] = 0, and that

E[¢¢T] = %ZI, we compute
vec (E(k+1)) =
k—1
= G*vec (€(0)£(0)T) + 72 < Z Gi> R ® Rvec (E[¢CT))
1:0
GFvec (£(0)€(0)T) +n* = ( Z Gl>vec
(7
with
G =R®RE[W @ W]. ®)

From Eq. (7), we observe that the time evolution of
the autocorrelation is fully determined by matrix G. In the
absence of noise (that is, 7 = 0), the mean-square asymptotic
behavior of Eq. (6) is determined by the spectral radius of
G, which is called the asymprtotic convergence factor r [31],
[32]. If » < 1, then the autocorrelation in Eq. (7) converges
to a finite value as k — oo, yielding

=n?’(I®1—G) 'vec(R). 9

The trace of 2, is called the mean-square deviation and it
corresponds to the limit of E[||¢(k)||?], which is equal to

5o = nPvec (R)(I @ T — G) 'vec(R) . (10)

C. Order parameter

vec (oo )

The coordination of the agents is quantified by means of

a global observable called polarization [4], [5], which is
defined as

] ; (11)

Pol := lim E
k—oo

1 N
v ;exp (10;(k))

whereby Pol = 0 indicates a completely disordered state,
while Pol = 1 indicates full alignment of the agents’
orientations.

We use the mean-square steady state deviation to approx-
imate the polarization for small levels of noise n < 1,
following the analysis of the homogeneous VNM in [17]. To
this end, we introduce a linear approximation of the heading,
0;(k) =09 + x;(k), for i = 1,..., N, and expand up to the
second order to find

1

Pol ~1— —§...
© IN

IV. MAIN RESULTS

12)

Here, we analyze the linarized heterogeneous VNM, estab-
lishing closed-form expressions for the spectral radius p(G)
and the mean-square deviation d.,, which determine the
convergence rate and the degree of coordination, respectively.
We begin by deriving the closed-form expression of matrix
G in Eq. (8) as a function of the interaction vector a. Our
result is summarized in the following proposition.

Proposition 1. The matrix G in Eq. (8) associated with the
linearized heterogeneous VNM in Eq. (4) with interaction
vector a is equal to

1
G = R@RE[W @ W] = vec (Rdiag (10 a)R)vec (R)T.

13)

Proof. We use a counting argument, similar to [17]. Due to
the structure of the Kronecker product, the matrix E[IV ®
W] has a block structure and its entries are in the form
E[W;;Ws], for i, j, s, t =1,..., N. Using Eq. (5), we ob-
serve that these entries can have three different expressions,
depending on their indexes: i) for s = s and j =%,

a;

a; 2
E[ij] = (Z(‘/ip)j> = var Z(Vip)j
p=1 p=1
. 2
& N-1 1 N+ag—1
E V = JE— .
;( N2 N2 N2a;
ii) for i = s and j # ¢, we compute
a; a;
B[Wy Wil = > > El(Vip) (Via)d
p=1qg=1
a; i 1
=Y > El(Vap)lE[(Vig)d] = N2 ;
;
p=1q=1,q#p

and, iii) for ¢ # s, we use the independence between the
rows of W to conclude

1
E[Wi;Wa] = E[Wy]E[Wy] = .
Thus, we find
1
EW @ W] = NVGC (diag (1 @ a))vec (R)

T T
+ﬁ11 ®11

Finally, the premultiplication by R ® R yields Eq. (13). [



A. Convergence rate in the absence of noise

The nontrivial structure of matrix G for the heterogeneous
VNM in Eq. (13) hinders the direct computation of its
spectral radius. To overcome this issue, we pursue a per-
turbation argument with respect to o. Using the expression
a; = K + oh;, we write the matrix G in Eq. (13) as

G = Gy + oGy + 0*Gy + O(c) (14)
where
Go = ﬁvec (R)vec (R) ", (15a)
Gy = — N vee (Rdiag (h)R)vec (R)", and  (15b)
Gy = 7o Ve (Rdiag (h*)R)vec (R) ", (15¢)

where h? is meant entry-wise. For 0 = 0, the VNM reduces
to the homogeneous scenario with G = G studied in [17],
in which all agents establish K interactions at each time-
step. The simple structure of Gy (which is a symmetric
rank-1 matrix) allows to fully determine its spectrum, as
summarized in the following.

. . N—1 .
Lemma 1. The spectral radius of Gy is p(l) = SN With
associated .umt-length eigenvector U0 = j=gVec (R). All
the other eigenvalues are zero, that is, Ao = --- = An2 = 0.

This implies that the rate of convergence in the homo-
geneous VNMs improves monotonically as the number of
interactions K grows. To elucidate the effect of heterogene-
ity, we recall a classical result on second-order perturbation
theory of simple eigenvalues, which is used to derive our
second-order approximation of the spectral radius p(G).

Proposition 2 ([33], Chapter 6). Given a matrix G in the
Sform Eq. (14), if the spectral radius po = p(Gyo) is a simple
eigenvalue of Gy, then the spectral radius of G can be
expressed as

p(G) = po +op1+0°p2 + O(0?). (16)
The perturbation terms are equal to
p1 = uOTGluo and py = uOTGlul + uOTGguo, (17)
with ug = ﬁvec (R) and
N2
Uy = L:ZQ mW, (18)
where Mg, ..., A2 are the N? — 1 eigenvalues of matrix G

different from pg, and vs, ..
unit-norm eigenvectors.

., UNz2 are their corresponding

Theorem 1. The spectral radius of the matrix G in Eq. (13)
of a VNM with interaction vector a is equal to

N-1 ,LN-1
g

PG =N T N

Proof. We observe that the following equalities hold: i)
vec (R)TGy = 0, and ii) vec(R)vec (Rdiag (h?)R) =

+0(0?).

19)
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Fig. 1: Variation of the spectral radius of G with respect to
the one for the homogeneous VNM, Ar = p(G) — py, for
different levels of heterogeneity o. The blue solid curves are
the analytical predictions, computed according to the second-
order perturbation in Eq. (17); the red circles are Monte
Carlo numerical estimation of the spectral radius of Eq. (8)
over 100 independent realizations of the vector h, generated
randomly such that 1" h = 0 and ||h|| = v/N. In both panels
N =10;in (a) K =4, in (b) K = 8.

N — 1. From i), we conclude that the first-order perturbation
p1 = uOTGluo = 0, and the first summand of p, in Eq. (17)
ug Gru = 0. Using ii), we compute the second summand in
the expression of ps in Eq. (17), which yields the claim. [

Remark 1. For 0 = 0, the expression in Eq. (19) reduces
to p(G) = I=E, as observed in [17]. In the presence of
heterogeneity, the asymptotic convergence factor increases,
hindering mean-square convergence. Specifically, we find
that the increase in the spectral radius of G caused by
heterogeneity increases proportionally to the square of the
standard deviation of the interaction vector o, while it
decreases as the average number of interactions K increases,
being inversely proportional to the cube of K.

The comparison between our analytical approximation and
numerical computations of the spectral radius illustrated
in Fig. 1 supports the theoretical findings in Theorem 1
and suggests that the second-order approximation derived
in Eq. (19) provides an accurate estimate of the spectral
radius of the matrix GG up to moderate levels of heterogeneity
0. The accuracy of the approximation seems to increase with
the average number of interactions K.

B. Coordination in the presence of noise

Here, we put forward a similar perturbation argument on
the matrix G to derive a second-order approximation of
the mean-square deviation d, in Eq. (10), which allows to
approximate the polarization as in Eq. (12). The results of
our analysis are summarized in the following theorem.

Theorem 2. The mean-square deviation d, in Eq. (10) of
the heterogeneous VNM with interaction vector a in Eq. (12)



is equal to
_,n? KN(N -1
> T ENE 1) +1
2 N(N —1)?
+ o2n2 ( ) .
3 K(N(K —1)+1)
Proof. We write the term (I ® I — G)~! in Eq. (10) as a
power series and we expand G using Eq. (14), obtaining

)
(20)

O(c?).

Iel-G)'=Ial+) G

00 0o nznl—l
=IQI+Y Gi+od Y GGGyt
- nn_zll n=1 ¢=0
+0? Y > GGGy
n=1 (=0
oo n—2 n—~0—2
+o® > Ny G6G1GGLGy ™ ™% 4 0(0®).
n=2 (=0 m=0

2D
From the expressions of Gy, G1, and G5 in Eq. (15), we
observe that GoG1 = G1Goy = G2 = Oyxn. Hence, the
third and the fifth terms in Eq. (21) are equal to 0. We
substitute the remaining terms of Eq. (21) into Eq. (10),
obtaining three contributions to the expression of d.,, up
to the O(0®) term. Specifically, we have two zeroth-order
terms and one second-order term in o, coming from the
first, second, and fourth summands in Eq. (21), respectively.
The first two terms yield the mean-square deviations for an
homogeneous VNM with K interactions, which is equal to

772%2%, as computed in [17]. Finally, we compute

O

Remark 2. From Eq. (20), one can compute an approx-
imation of the polarization in Eq. (12) that is valid for
small added noise. For o = 0, this expression reduces to
the one computed by [17] for the homogeneous VNM; for
o > 0, the polarization decreases, such that the presence of
heterogeneity hinders coordination.

We compare the closed-form expression for the polar-
ization based on Eq. (12) and Eq. (20), with Monte Carlo
estimations of Eq. (11), computed by numerically simulating
the nonlinear VNM. Simulations are conducted for N = 80
agents, initialized at 6,(0) = 0, for ¢ = 1,...,N. For

0 020406 08 1 0 0 0204 06 08 1

[) O. J O-
1 —0.0005 "% —0.005 |
+—0.001 \\ —0.01 +
APol \\ APol
(@n=0.1 b n=0.3

Fig. 2: Variation of the polarization with respect to the
homogeneous VNM, APol = Pol —Pol g, where Pol  is the
polarization of the homogeneous VNM, for different levels
of heterogeneity o. The blue solid curves are the analytical
predictions of Polbased on Eq. (12) and Eq. (20), the red
circles are Monte Carlo estimations of Pol from Eq. (11) over
100 independent runs of the nonlinear VNM. Parameters are
N = 80, K = 3, with (a) » = 0.1 and (b) n = 0.3. The
interaction vectors a are constructed for given values of o
such that 1"h =0, ||h|| = V/N.

each simulation, the model is run for 5,000 time-steps
and the polarization is computed by averaging the quantity
in Eq. (11) over the last 4,000 steps.

In Fig. 2, we investigate the effect of heterogeneity on
the polarization by comparing the difference with respect to
the heterogeneous VNM. Besides confirming our intuition
that heterogeneity hampers coordination, our results suggest
that the second-order approximation of the effect of hetero-
geneity on the polarization is accurate for moderate levels of
heterogeneity, that is, up to o ~ 0.5.

In Fig. 3, we compare the numerical estimation of the
polarization from the simulations and the closed-form ap-
proximation, for different levels of the heterogeneity o, noise
7, and average number of interactions K. Our results suggest
that the closed-form solution is able to accurately capture
the coordination of the heterogeneous VNM up to moderate
values of i ~ 0.5, after which the nonlinear model reaches
the completely-discorded state that cannot be predicted by a
linear model. The heterogeneity has a secondary role on the
extent of the coordination, due to the fact that dependence
of the mean-square deviation Eq. (20) with o2 is moderated
by K(K —1)? for N > 1.

V. CONCLUSIONS

In this work, we investigated the effect of heterogeneity on
the vectorial network model, a stochastic protocol that is used
to examine collective motion of self-propelled particles. By
linearizing the dynamics about a synchronous state and lever-
aging techniques from stochastic consensus and eigenvalue
perturbation theories, we established closed-form results for
the asymptotic behavior of the model. First, we computed a
second-order approximation for the asymptotic convergence
factor, which governs the mean-square convergence of the
model in the absence of noise. Second, we derived an
expression for the polarization of the system, which measures
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Fig. 3: Polarization for different values of noise 1. We consider three different levels of heterogeneity: o = 0 (green), o = 0.5
(blue), and ¢ = 1 (red) and three different average number of interactions (a) K = 3, (b) K = 5, and (c¢) K = 8. The solid
curves are analytical predictions and circles are Monte Carlo estimations over 100 independent runs of the nonlinear VNM.
The interaction vectors a are constructed for given values of o such that 1"h = 0, ||h|| = V/N.

the level of coordination between the agents.
Our results support the intuition that heterogeneity has
a detrimental effect on collective motion, whereby both

the

convergence rate and the polarization are reduced as

heterogeneity increases. However, the extent of this effect is
nonlinearly moderated by the average number of connections
made by the agents. From a biological point of view, the
robustness of the system to heterogeneity might be a gateway

for

the emergence of differences in the individual traits

of the group that have been shown to beget advantages
to life in groups [23]. In linking the predictions of the
vectorial network model to more complex self-propelled
particle models, future efforts should explore the role of
state-dependent stochastic dynamics.
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