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Detection of Influential Nodes in Network

Dynamical Systems from Time-Series

Pietro De Lellis1⋆ and Maurizio Porfiri2,3⋆

Abstract—Identifying influential nodes in network dynamical
systems requires the manipulation of tolopogical and dynamic
characteristics within ideal experiments. However, seldom do we
have access to experimental settings that could afford targeted
interventions or to calibrated mathematical models that could
support faithful what/if analyses. Our knowledge of the network
dynamical system is often limited to the time-series of indi-
vidual nodes in some real experiment. Using these time-series,
it is possible to undertake a number of inference tasks, from
reconstructing the topology of the network to discovering hidden
nodes. Whether or not time-series of real experiments could help
pinpoint causal influence within the network is an open question.
Here, we address this question in the context of synchronization
problems, where the influence of a node is defined as the
extent to which adding noise at that particular node affects the
overall synchronization of the entire network. For linear time-
invariant dynamics and undirected topologies, we demonstrate
the possibility of exactly detecting the most influential nodes in
the network without a calibrated mathematical model, using only
time-series of a real experiment where all nodes are plagued by
noise. Beyond illustrating our results on classical and second-
order consensus protocols, we consider two real-world datasets:
firearm prevalence in the U.S. and players’ movements in a
soccer game. Just as our conclusions support the emergence of
influential States which have a less stringent legal environment,
they hint at the instrumental role of players who are critical to
the offense strategy of the team.

Index Terms—Consensus, synchronization, stochastic systems,
vulnerability.

I. INTRODUCTION

Social networks [1], animal groups [2], power grids [3],

brain structural and functional systems [4], and climate net-

works [5] are all instances of network dynamical systems,

where the interaction within an ensemble of coupled units

could promote the emergence of collective behavior. Through

the lens of network dynamical systems, researchers have

studied a wide range of phenomena that are ubiquitous in

science and technology. For example, several studies have

investigated diffusion problems over networks, shedding light

on the conditions that will beget localized versus cascading

dynamics [6], [7]. Likewise, extensive efforts have been placed

toward the analysis of complete or partial synchronization [8],

where the network dynamical system will evolve along one

synchronous manifold or multiple, coexisting manifolds.
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A fundamental question in the study of network dynamical

systems pertains to the quantification of the role of each of

its units on the response of the entire system. For example,

in the context of power grids, it is of critical importance

to identify the nodes from which a targeted attack could

trigger the failure of the entire network [9]. Likewise, an

open question in neuroscience entails the prediction of the

effect of specific brain lesions on clinical outcomes [4]. The

scientific interest toward an objective assessment of the role

of specific nodes on the network dynamics extends beyond

the analysis of targeted attacks, touching on a wide range of

control problems [10]. From the study of pinning control in

technological networks to leadership in animal groups [11],

there is growing interest toward the identification of the nodes

in the network from which it could be possible to effectively

steer the dynamics of the entire system. In general, all these

problems relate to the notion of causal influence, which, as

specifically acknowledged by Lizier and Prokopenko, ‘refers

to the extent to which the source variable has a direct influence

or drive on the next state of a destination variable, i.e. “if I

change the state of the source, to what extent does that alter

the state of the destination?” [12].’

The traits of influential nodes are far from trivial. Recent

research has brought to light a complex interplay between dy-

namics and topology through numerical and analytical studies

on a wide array of network dynamical systems. In addition to

examining vulnerability of power grids [13]–[15] and general

chaotic systems [16], [17], recent efforts have focused on

leadership and optimal collective response to disturbances

in consensus problems over networks [18], [19] and, more

generally, networks of networks [20]. Overall, findings from

these studies point at a number of counter-intuitive results,

which a mere topological analysis of influence might not be

able to uncover, despite its level of sophistication [21].

For example, studies on vulnerability of network dynamical

systems suggest that peripheral nodes could have a key role on

the overall network dynamics in power grids, but might play

a secondary role in consensus protocols. Specifically, Tyloo

et al. [13] demonstrated an inverse correlation between the

nodes’ resistance centrality and their influence on the transient

stability of the European power grid. The more the node

was peripheral, the more an applied disturbance would be

effective in eliciting large excursion from synchronous power

generation. On the contrary, for a class of consensus problems,

applying a similar perturbation was found to have an opposite

effect [17]. The network was found to be more vulnerable to

targeted attacks at central nodes, which caused large steady-

state variations among the nodes.

Let alone the choice of the specific performance metric
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for the network dynamical system, which could vary from

transient [13] to steady-state [17] features, studying causal

influence requires a series of ideal experiments where the

researcher can evaluate how specific manipulations at the

node-level translate into network-level performance. These

ideal experiments are typically based on an available mathe-

matical model that captures the interactions between the units

and their individual dynamics. However, seldom, do we have

complete knowledge about the network dynamical system,

whereby neither the dynamics of each individual unit nor the

topology of the interconnecting network are exactly known

to the researcher. In principle, a potential way around the

lack of a predictive mathematical model is to experimentally

probe the system through targeted interventions, but that

would require fine control over experimental variables that

is often unfeasible. Is it possible to identify key players

in the network from real experimental observations, without

either a calibrated mathematical model or the possibility to

perform tailored experiments to support any manipulation of

the dynamics and topology?

A tenable answer to this question can be obtained by

undertaking the reconstruction of the entire network topology

and the dynamics of its individual nodes. From knowledge of

all the links and individual dynamics, we could construct a

faithful mathematical model whose analysis will beget insight

into the structure of the network, from which to embark on the

identification of key players. The typical line of approach to

address these issues is to formulate hypotheses on the network

topology or on the individual dynamics and then pursue model

identification. For example, [22] proposed a methodology to

identify the dynamics of the units upon knowledge about the

underlying topology; [23], [24] demonstrated the possibility of

inferring the network dynamical system from the input-output

transfer function; [25], [26], and [27] established effective

identification procedures based on time-series for networks

described by a tree and consensus-like protocols, respectively;

and [28] formulated criteria and hypotheses for solving the

identification problem that were the starting point for [29]

to introduce an ARMAX model for heterogeneous data that

involve multiple replicates.

Here, we present an alternative approach to detect key play-

ers, without the need of identifying topology and individual

dynamics. Our approach does not promise insight into the

network dynamical system, but, at the same time, it requires

minimal hypotheses on the network topology and individual

dynamics, that is, we require undirected, potentially weighted,

topologies and linear dynamics. We focus on network synchro-

nization, for which we successfully pinpoint influential nodes

from time-series of real experimental observations where each

node is plagued by noise, without a calibrated mathematical

model or targeted experimental manipulations.

In the context of synchronization, the influence of a node is

defined as the extent to which adding noise at that particular

node affects the overall synchronization of the entire network,

that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network

synchronization, we establish a closed-form expression for the

vulnerability, in terms of topological and dynamic features of

the network system. In agreement with one’s expectation, a

Ideal experiment Real experiment

Ideal experiment

Ideal experiment Real experiment

Real experiment

Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

disturbance added to any of the nodes affects the dynamics

of all the other nodes in the network. However, the extent

of this interaction can be retrieved from real experimental

observations, in which noise is acting on all nodes of the

network, thereby affording the inference of causal influence

without either a calibrated model or tailored experimental

manipulations. Such a claim is anchored in the discovery

of a reciprocity principle for network dynamical systems,

which extends to this field of investigation a classical tool

in mechanics and electromagnetics [30], [31].

The rest of the paper is organized as follows. In Section II,

we present the class of synchronization problems for which

our inference approach is applicable. In Section III, we study

the noisy dynamics of the network system and introduce

our notion of causal influence, establishing a closed-form

expression for the vulnerability of the system to noise injected

at a specific node. In Section IV, we prove our main claim

regarding the inference of causal influence from raw time-

series. In Section V, we illustrate the validity of our approach

on scalar and second-order dynamics. In Section VI, we

examine two real-world applications: firearm prevalence in the

United States of America and players’ coordination in a soccer

match. Finally, Section VII summarizes the main conclusions

of the study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N identical, diffusively coupled,

linear dynamical systems in a discrete-time setting. The dy-

namics of the i-th unit can be written as

xi
k+1 = Fxi

k −
N∑

j=1

lijΓx
j
k + qiBηik, (1)

where xi
k ∈ R

n is the state of the i-the unit at time k; F ∈
R

n×n is a matrix that specifies the individual dynamics; lij
is the ij-th element of the Laplacian matrix of the network

L ∈ R
N×N , which completely encodes the network topology

[32]; Γ ∈ R
n×n is the inner coupling matrix constraining the

interaction between neighboring nodes; η1k, . . . , η
N
k ∈ R

m are

independent identically distributed noise with zero mean and

covariance matrix Ση; qi is a positive scalar modulating the

intensity of the noise acting on node i, with qi = 0 implying

that node i is not affected by noise;

Using Kronecker algebra [33], (1) can be rewritten in

compact matrix form as

xk+1 = (IN ⊗ F − L⊗ Γ)xk + (Q⊗B)ηk, (2)
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where IN is the identity matrix in R
N , xk =[

(x1
k)

T, . . . , (xN
k )T

]T
, ηk =

[
(η1k)

T . . . , (ηnk )
T
]T

, and

Q = diag {q1, . . . , qN} ∈ R
N×N . The state of each unit may

not be fully measurable, such that we have limited access to

only the output yk = (IN ⊗ C)xk, where C ∈ R
p×n.

By introducing the average state x̄k =
∑N

i=1
xi
k/N , we

define the disagreement vector ξk := xk − ✶N ⊗ x̄k = (R ⊗
In)xk, where ✶N is the vector of all ones in R

N and R =
IN − ✶◆✶

T
N/N is the projector from R

N to ✶
⊥

N . Hence, the

disagreement dynamics is

ξk+1 = (R⊗ F − L⊗ Γ)ξk +RQ⊗Bηk. (3)

We assume that the network topology is undirected so that L
is a positive semi-definite symmetric matrix, whose elements

on the diagonal are non-negative and those off the diagonal are

non-positive [32]. We order the eigenvalues of L in an increas-

ing order, such that λ1 = 0 is the eigenvalue corresponding

to the eigenvector v1 = ✶◆/
√
N and 0 ≤ λ2 ≤ . . . λN . In

general, the network can be weighted so that the value of the

elements off-the diagonal do not need to be zero or minus one.

We do not impose that F is stable, thereby encompassing the

classical consensus problems, where F is scalar and equal to

one [34]. Instead, we hypothesize that F,L, and Γ are such that

the spectral radius of (R⊗F−L⊗Γ) is less than one, thereby

leading to an asymptotically stable disagreement dynamics in

the absence of noise. This will, in turn, lead to a covariance

matrix ΞQ
k = E[ξkξ

T
k ] that will converge to a finite steady-state

matrix ΞQ
∞ [35], where E[·] is used to denote expectation with

respect to the σ-algebra associated with the added noise to an

otherwise deterministic system.

To compute closed-form expressions for the steady-state

covariance, we apply the similarity transformation (V T⊗ In),
where V is assembled by juxtaposing column-wise the or-

thonormal eigenvectors of L. The modal dynamics ζk =
(V T ⊗ In)ξk has the following block-diagonal form:

ζk+1 = (V TRV ⊗ F − Λ⊗ Γ)ζk + (V TRQ⊗B)ηk, (4)

where Λ = V TLV = diag{λ1, . . . , λN}. Note that V TRV
is the identity matrix with the first element set to zero and

that V TR collates the eigenvectors of L row-wise, except

for the first row that is null. Utilizing (·)i to isolate the i-
th n-dimensional block of a vector in R

nN , we have that (4)

becomes

(ζk+1)1 = 0 (5a)

(ζk+1)r = (F − λrΓ) (ζk)r +

N∑

s=1

qsvrsBηk (5b)

for r = 2, . . . , N , where vrs be the s-th component of the r-

th eigenvector of L, associated with eigenvalue λr. Equation

(5a) indicates that, irrespective of the added noise, the modal

dynamics along the first modal coordinate is identically equal

to zero, while the others in (5b) are modulated by the spectral

properties of L (through both the eigenvalues and eigenvec-

tors) and the internal dynamics.

III. VULNERABILITY OF THE NETWORK DYNAMICAL

SYSTEM TO TARGETED ATTACKS

To pinpoint the most influential or key nodes in the network,

we consider an ideal experiment where noise is only injected

at one unit, such that Q = ❡i❡
T
i ; ❡i is the i-th unit vector of

the natural basis of RN , specifying that the noise is selectively

injected only at the i-th node. We evaluate the impact of the

added noise on the network output by computing the steady-

state covariance of the entire disagreement dynamics Ξ
❡i❡

T

i
∞ =

limk→+∞ E
[
ξkξ

T
k

]
.

To this aim, we examine the modal dynamics in (5), which

has a simpler block-diagonal structure. Specifically, we start

by computing the steady-state covariance matrix Ξ̃
❡i❡

T

i
∞ =

limk→+∞ E
[
ζkζ

T
k

]
of the modal dynamics. Denoting with

vec and vec−1 the vectorization operator and its inverse1,

respectively, we can show that Ξ̃
❡i❡

T

i
∞ admits the following

block-form solution in terms of the individual node dynamics

and of the network topology:

Lemma 1. Let vsr be the r-th component of the s-th eigen-

vector of L, associated with eigenvalue λs. The steady-state

of the N2 blocks of size n× n of Ξ̃
❡i❡

T

i
∞ is given by

(
Ξ̃
❡i❡

T

i
∞

)

1s
=
(
Ξ̃
❡i❡

T

i
∞

)

s1
= 0, s = 1, . . . , N, (6a)

(
Ξ̃
❡i❡

T

i
∞

)

rs
= vrivsivec

−1
[
Grsvec

[
BΣηB

T
]]

,

r, s = 2, . . . , N, (6b)

where
Grs = (In2 − (F − λsΓ)⊗ (F − λrΓ))

−1
(7)

is a function of the Laplacian eigenvalues, the individual

dynamics F , and the inner coupling matrix Γ.

Proof. Equation (6a) follows from (5a). Likewise, (6b) is

derived by setting qs = 0 for all s 6= i and qi = 1 in (5b), so

that (ζk+1)r = (F − λrΓ) (ζk)r + vriBηk Hence, the generic

rs-th block is governed by the following dynamics:

(ζk+1)r (ζk+1)
T

s = (F − λrΓ) (ζk)r (ζk)
T

s (F − λsΓ)
T

+ vrivsiBηkη
T
k B

T + vsi(F − λrΓ) (ζk)r η
T
k B

T

+ vriBηk (ζk)
T

s (F − λs)
T.

(8)

By taking the expectation of both sides of the equation, noting

that noise has zero mean, and recalling that the state at time

k is independent of noise at time k, we establish
(
Ξ̃
❡i❡

T

i

k+1

)

rs
= (F − λrΓ)

(
Ξ̃
❡i❡

T

i
∞

)

rs
(F − λsΓ)

T

+ vrivsiBΣηB
T, r, s = 2, . . . , N,

(9)

Equation (9) can be transformed into a linear system by

matrix vectorization, whose solution for k → +∞ is equal to

vec
[(

Ξ̃
❡i❡

T

i
∞

)

rs

]
= vrivsiGrsvec

[
BΣηB

T
]
, (10)

where each of these equations identifies the effect of noise

injected at the i-th node on the covariance of the r-th and s-th

modal coordinates. The thesis then follows.

1The inverse of the vectorization operator vec : R
a×b

→ R
ab is the

operator vec−1 : R
ab

→ R
a×b such that vec−1(vec(W )) = W for all

W ∈ R
a×b and vec(vec−1w) = w for all w ∈ R

ab.



4

Remark 1. A similar decomposition for the covariance of the

error dynamics in the continuous-time case is presented in

equations (23) and (24) in [17].

The overall effect of noise added at node i can be quantified

by computing the steady-state covariance matrix Ξ∞

k associ-

ated with the disagreement vector, similar to [17]–[19]. Such

a matrix is given block-wise in terms of the modal matrices

in Lemma 1, as

(
Ξ
❡i❡

T

i
∞

)

hj
=

N∑

r=2

N∑

s=2

vlhvrj

(
Ξ̃
❡i❡

T

i
∞

)

rs
. (11)

We propose to study causal influence in terms of the vulner-

ability of the entire system to noise injected at the i-th node.

Specifically, we introduce a vulnerability index to quantify the

overall effect of adding noise to a specific node on a weighted

combination of the disagreement of the units’ outputs.

In quantitative terms, the vulnerability index is

Vul(i,M) = Tr
[
(MT ⊗ C)Ξ

❡i❡
T

i
∞ (M ⊗ CT)

]
, (12)

where M = diag {m1, . . . ,mN} ∈ R
N×N is a diagonal

matrix that is used to weight the relevance of each network

node. For example, M can be chosen with larger diagonal

entries corresponding to nodes which are deemed to be more

critical in the network, so that their covariance must be

contained, potentially at the expense of the other nodes. If

M = IN , all nodes are equally treated in the definition

of the vulnerability index; this choice is typically employed

in the formulation of performance matrices for the study of

leadership and robustness in network control systems [17]–

[19].

We establish the following result, highlighting the interplay

between the individual dynamics and the Laplacian eigenval-

ues and eigenvectors on vulnerability:

Proposition 1. The vulnerability index for node i in equation

(12) can be expressed as

Vul(i,M) =

N∑

j=1

m2
j

N∑

r=2

N∑

s=2

vrjvsjvsivri

Tr
(
Cvec−1

[
Grsvec

[
BΣηB

T
]]
CT
)
,

(13)

where the spectral properties of L enter matrix Grs in (7).

Proof. To obtain the vulnerability index, we need to compute

the trace of

ΥM (i) = (MT ⊗ C)Ξ
❡i❡

T

i
∞ (M ⊗ CT), (14)

which is the sum of the traces of its N blocks along the

diagonal
(
ΥM (i)

)
11
, . . . ,

(
ΥM (i)

)
NN

. The generic j-th block

takes the form

(
ΥM (i)

)
jj

= m2
jC
(
Ξ
❡i❡

T

i
∞

)

jj
CT. (15)

From Lemma 1 and equation (11), we establish

(
Ξ
❡i❡

T

i
∞

)

jj
=

N∑

r=2

N∑

s=2

vrjvsjvsivrivec
−1
[
Grsvec

[
BΣηB

T
]]
.

(16)

Combining (15) and (16) yields

(
ΥM (i)

)
jj

= m2
j

N∑

r=2

N∑

s=2

vrjvsjvsivri

Cvec−1
[
Grsvec

[
BΣηB

T
]]
CT.

(17)

Applying the trace operator and summing for j that goes from

1 to N yields the claim.

Remark 2. Equation (16) confirms the intuition that injecting

noise at one node influences the steady-state covariance of any

other node. The extent of this effect depends on the network

topology and the individual dynamics, similar to observations

for a wide range of perturbations in biological networks [36].

In particular, the effect of noise injected at node i on node j is

controlled by the i- and j-th components of all the Laplacian

eigenvectors (except of the first ones), the entire Laplacian

spectrum, and internal dynamics.

Remark 3. When all the nodes are equivalently weighted in

the vulnerability index (M = IN ), equation (13) reduces to

Vul(i, IN ) =

N∑

r=2

v2ri Tr
(
Cvec−1

[
Grrvec

[
BΣηB

T
]]
CT
)
,

(18)

where we leveraged the fact that the eigenvectors are orthonor-

mal. This equation shows that the effect of noise injected

at node i is modulated by all the Laplacian eigenvalues

(entering the equation through Grr), each weighted by the

i-th component of the corresponding eigenvector.

IV. INFERENCE OF CAUSAL INFLUENCE FROM REAL

EXPERIMENTAL OBSERVATIONS

In a real experiment, it is impossible to manipulate the

pattern of the added noise, as required by the ideal experiments

underlying the computation of the vulnerability index (12). In

general, noise in a real experiment will affect all the nodes in

the network, rather than a single one. Likewise, the researcher

has no knowledge about the network topology and the individ-

ual dynamics, thereby hindering any attempt to estimate the

vulnerability index in (12). The researcher has only access to

the time-series of the individual units, from which he/she could

compute the covariance matrix ΣQ
k = limt→+∞ E

[
yky

T
k

]
of

the network output yk. Here, we demonstrate that such a

matrix could suffice to infer salient information about network

vulnerability, that is, to pinpoint the nodes from which a

targeted attack would produce the largest effect on the overall

system dynamics.

The reason why the real and the ideal experiments can

be reconciled is due to the two classical principles in circuit

theory [37] that carry over to the context of network dynamical

systems. First, due to the linearity of the model, the response

of the system to noise injected at all nodes can be obtained

as the sum of the responses to noise individually injected at

each of the nodes. Hence, the real experiment can be regarded

as the superposition of N ideal experiments, in which noise

is selectively injected at a different node:

ΞQ
∞ =

N∑

j=1

q2jΞ
❡j❡

T

j

∞ . (19)
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Nodes

1 2 3 4 5 6 7 8 9

deg(i) 2 2 2 3 2 3 2 2 2

bc(i) 3.00 0.50 3.00 15.50 16.00 15.50 3.00 0.50 3.00

102 × cc(i) 4.55 3.70 4.55 5.88 6.25 5.88 4.55 3.70 4.55

10× cg(i) 0.73 0.66 0.73 1.02 1.86 1.02 0.73 0.66 0.73

e(i) 5 6 5 4 3 4 5 6 5

Vul(i, IN )⋆ 3.57 4.00 3.57 2.29 1.91 2.29 3.57 4.00 3.57

Vul(i, IN )⋆⋆ 1.03 1.02 1.03 1.15 1.02 1.15 1.03 1.02 1.03

TABLE II
CENTRALITY AND VULNERABILITY: TOPOLOGY FROM FIGURE 3, LEFT PANEL. ROWS FROM 3 TO 7 ROWS REPORTS, FOR EACH NODE i = 1, . . . , 16, THE

DEGREE CENTRALITY deg(i), BETWEENNESS CENTRALITY bc(i), CLOSENESS CENTRALITY cc(i), CENTRALITY cg(i) AS DEFINED IN [38],
RESPECTIVELY. THE LAST TWO ROWS REPORT THE VULNERABILITY INDEX FOR CLASSICAL CONSENSUS AND STABLE DYNAMICS, IDENTIFIED BY ONE

AND TWO STARS, RESPECTIVELY.

Fig. 7. Illustration of the approach on second-order dynamics. Network
topology from [18]. Comparison between the estimation of the vulnerability
index through bounds in (28) and the exact value for each node, with
Q = IN + 0.05L and M = IN . For each node, we report the vulnerability
ratio (32) and the mean of its estimation using the bounds in (28) from the
100 realizations. The error bars show one standard deviation with respect to
100 realizations.

The numerical estimation from a real experimental observation

can be used to faithfully reproduce the vulnerability node rank.

Next, we consider the case in which the noise affects the

system dynamics in a more complex manner, according to

Q = IN + 0.05L. Such a choice models combination of

disturbances that are added to both the nodes and the edges

of the network. In this case, M 6= Q, so that we cannot apply

Proposition 3 and we should resort to the bounds in (28). As

shown in Figure 5, these bounds offer a conservative estimate

of the vulnerability index, which could be heuristically utilized

to understand causal influence within the network dynamical

system. The wide range between the upper and lower bounds

are due to the spread in the spectrum of L, such that λ2 = 0.61
and λN = 8.03. However, the main goal of our analysis is to

identify the key nodes for network vulnerability, rather than

the exact estimate of the vulnerability index. Therefore, the

bounds should rather be used to estimate the vulnerability ratio

Vulr(i, IN ) =
Vul(i, IN )

maxi Vul(i, IN )
, (32)

and correctly rank the importance of the nodes in the network,

see Figure 7.

VI. ILLUSTRATION OF THE APPROACH ON REAL-WORLD

DATASETS

Upon validating the methodology on synthetic data, we

illustrate the use of our method on two examples of collective

dynamics, in which it is critical to identify influential nodes

from time-series. In both examples, we assume that noise

enters each unit in the same manner (Q = IN ) and that

each node is equally important in the network (M = IN ).

Accordingly, the vulnerability index will be computed from

Proposition 3.

A. Firearm prevalence in the United States of America

We demonstrate the approach on the firearm prevalence

dataset by [40], which established information-theoretic tools

to examine the key drivers of firearm acquisition in the after-

math of mass shootings. In these efforts, firearm acquisition

is estimated from the time-series of background checks per

capita for each of the 50 states in the United States of America

at a monthly resolution from 1999 to 2017. The National

Instant Criminal Background Check System was implemented

in November 1998 and permits authorized sellers to assess

whether a prospective buyer is eligible for the purchase of

a firearm. Recent findings from [41] point at an underlying

network structure to firearm prevalence in the United States

of America, whereby firearm acquisitions in any State are

influenced by acquisition in other States.

Here, we seek to further delve into this collective dynamics

to identify the most influential States, whose firearm preva-

lence has a stronger impact in Nation-wide sales. The time-

series of background checks are characterized by strong ten-

dency and seasonal effects, whereby we are always witnessing

a continuous surge in firearm acquisition that has two peaks

toward the end of the year and in Spring. To mitigate these

non-stationary phenomena, the time-series can be seasonally

adjusted and detrended using ad-hoc econometric tools, as

detailed in [40].

We calculate the sample mean covariance matrix associ-

ated with these detrended and seasonally-adjusted time-series.

From the analysis, we exclude Connecticut and Hawaii, since

Connecticut did not report background checks for almost two

years of zero, and Hawaii always reported zero background

checks except of one month in nearly 20 years, and we

estimate the vulnerability index at the state in (21) from

Proposition 3. States with a high value of this metric should be

those at which an applied disturbance will cause the strongest

effect on the entire Country. As shown in Figure 8, the five

(top 10%) most influential states are South Dakota, Tennessee,

Alaska, Alabama, and Colorado.

A potential mechanism that could underpin the higher

influence of these States might be sought in the restrictiveness

of firearm regulation. As proposed in [40], this variable can

be quantified in terms of the fraction of firearm safety laws

in effect over a total of 133 possible laws between 1999
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Fig. 8. Estimated vulnerability index for each State for the dataset of
background checks in the United States of America from 1999 to 2017. Values
are computed from detrended and deseasonalized time-series in [40]. Data are
normalized between 0 and 1.

and 2017, ranging from 0.752 for Massachusetts (the most

restrictive State) to 0.052 for Vermont (the most permissive

State). It is tenable that States in which it is easier to purchase

a firearm might have a higher connectivity in the network,

whereby other States may use them as proxy of potential

changes in firearm regulations that could then reverberate

into stricter policies in the entire Country. Indeed, from a

k-means analysis with k = 2, we found the cluster of the

most influential states (South Dakota, Tennessee, Alaska, and

Alabama) to be a proper subset of that of the most permissive

states identified in [41].

B. Analysis of a soccer dataset

Next, we demonstrate the approach in the different context

of team sport. Specifically, we examine a dataset consisting

of the positions of nine (out of eleven) soccer players of a

Norwegian team in a soccer game [42]. The players’ motion

is scored in terms of their planar position on the soccer field

in pixels, sampled at 2 Hz. For each player, we focus on

the time-series of the speed from [43], as a movement metric

that could be used to capture coordination in the team. Then,

we estimate the vulnerability index using (21), to ascertain

the influence of the player on the group. In this context,

vulnerability is associated with the lack of coordination among

the team players.

Figure 9 shows that the two key players in the team are

number 4 and 8. From the heat maps of the position densities

displayed in Figure 10, we identify that player 4 acts behind

the strikers, while number 8 is one of the two strikers. This

analysis suggests that a reduction in the coordination of either

of these two players could hinder the coordination of the

whole team. These players likely constitute the critical offense

terminals of the team who catalyze the offense strategy for

the whole team and set the tempo for the attacks. It is tenable

that these players might have a high degree in the network

of interaction between the players, whereby teammates will

often seek for them during the game for finalizing an action

and circulate the ball. Notably, the key players are not those

who retain the ball, but rather they belong to the cluster of

players with the least ball possession. Indeed, player 4 and 8

handle the ball for the 0.57% and 0.67% of the total time,

respectively, against an average of 1.02% in the team, thus

pointing at the crucial role of the movements off the ball in

all modern dynamic sports [44].

Fig. 9. Estimated vulnerability index for each of the nine players of the soccer
team dataset in [42]. Values are normalized between 0 and 1.

Fig. 10. Heat maps for the position distribution of players 4 (left panel)
and 8 (right panel) on the soccer field of the soccer team dataset in [42].
The positional frequency of the players on the field increases as the color
changes from dark blue to light yellow, so that player 4 is a playmaker and
8 a striker. The team is attacking from right to left, such that their goal line
is at x = 105m and they should score by attacking the goal line of their
opponents at x = 0m.

VII. CONCLUSIONS

A critical area of study in network dynamical systems

entails the identification of influential nodes, from which it

could be possible to modulate the response of the entire

system. Here, we establish a novel approach to identify these

key players in network dynamical systems from time-series

of real experiments. We focus on synchronization problems,

where a network of time-invariant, diffusively coupled linear

systems synchronize against added noise. In the absence of

added noise, the disagreement dynamics is assumed to be

asymptotically stable, so that the units converge to a syn-

chronous state; the presence of the added noise challenges

this process. For this class of problems, the influence of a

node is defined as the extent to which adding noise at that

particular node affects the steady-state covariance of the dis-

agreement dynamics, that is, the vulnerability of the network

to a targeted disturbance. We demonstrate that the influence

of each of the nodes can be effectively inferred without a

calibrated mathematical model. By computing the covariance

matrix of the disagreement dynamics from time-series of real

experimental observations, in which noise plagues each of the

units, we can pinpoint influential nodes, thereby reconciling

ideal and real experiments.

The chief reason for the correspondence between ideal

and real experiments lies in the reciprocity principle which

we have discovered. Reciprocity is ubiquitous in mechanics

and electromagnetics, in the form of the classical Maxwell-

Betti reciprocal theorem of deflections [30], [45], Rayleigh’s

reciprocity theorem in acoustics [31], and Lorentz theorem in

electromagnetics [46]. Not surprisingly, it extends to synchro-

nization of coupled linear units, whereby injecting noise at
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node A of a network and measuring its effect on the steady-

state covariance at node B is equivalent to injecting noise at B
and measuring at A. By virtue of the reciprocity theorem, each

node leaves a footprint on the overall dynamics that allows

for precisely deciphering its specific contribution in a causal

sense. These results could beget foundational advances in

both practical methodologies and theory of network dynamical

systems.

For scalar and second-order dynamics, we demonstrate the

accuracy of the approach in supporting the identification of

influential nodes from time-series of real experimental obser-

vations. Interestingly, influence is mediated by the interplay

between dynamics and topology, so that peripheral nodes may

be key players in some cases and have a secondary role in

others. Irrespective of the select dynamics, our approach can

detect influential nodes within even a single observation. Al-

though the correspondence between ideal and real experiments

is exact only when the vulnerability index weighs each node in

accordance with their corresponding added noise, we establish

conservative bounds that can be used for addressing more

general cases. Translating the approach to real-world appli-

cations, we examine two case problems: firearm prevalence

in the United Stated of America and coordination of soccer

players in a match. For both datasets, our approach highlights

interesting mechanisms underlying causal influence.

An alternative approach to infer the vulnerability index

Vul(i,M) would be to undertake the identification of the

network dynamical system from the available time-series and

then calculate the vulnerability using (12). A number of

strategies have been proposed to address this issue, offering

a comprehensive toolbox to infer topology and individual

dynamics from noisy time-series [24]–[29]. These strategies

should be pursued when one is interested in going beyond the

identification of the key players, in search of the mechanism

that underlie their differential role in the network dynamical

system. Undertaking this step will bring further computational

challenges and require additional hypotheses. For example,

the promising and elegant approach by [28] assumes the state

dynamics to be asymptotically stable, the network dynamical

system to be globally minimal, measurements to be a subset

of state variables, and the transfer function to be minimum

phase. None of these hypotheses is needed to determine key

players by using our approach, because we only require the

estimation of the steady state covariance.

There are several directions along which the work can be

extended. First, it should be important to devise methodolo-

gies for inferring influence from real experiments in which

nodes have heterogeneous nodal dynamics and additive noises.

Second, the entire methodology assumes that the network

is undirected, which allows for deriving modal equations

that would be not feasible in the case of directed networks.

Third, the mathematical treatment is presently limited to time-

invariant linear dynamics, thereby calling for further research

on temporal networks and nonsmooth dynamics.

APPENDIX

ANALYSIS OF NON-DIAGONAL Q AND M

In this more general case, the model equations are as in (2),

where Q specifies how noise enters the system dynamics, and

the vulnerability index is defined in (12), where M is chosen

to emphasize or deemphasize parts of the system.

Proposition 4. For arbitrary, non-diagonal M , the vulnera-

bility index for node i can be expressed as

Vul(i,M) =

N∑

j=1

N∑

r=2

N∑

s=2

vrivsi

(
N∑

t=1

vrtmtj

)(
N∑

w=1

vswmwj

)

Tr
(
Cvec−1

[
Grsvec

[
BΣηB

T
]]
CT
)
,

(33)

where the Laplacian eigenvalues modulate the elements of the

matrix Grs in (7).

Proof. The generic j-th diagonal block of ΥM (i) in (14) takes

the form

(
ΥM (i)

)
jj

=

N∑

t=1

N∑

w=1

mtjmwjC
(
Ξ
❡i❡

T

i
∞

)

tw
CT. (34)

From Lemma 1, and transforming back from the modal

coordinates to the original coordinates, we obtain

(
Ξ
❡i❡

T

i
∞

)

tw
=

N∑

r=2

N∑

s=2

vrtvswvsivrivec
−1
[
Grsvec

[
BΣηB

T
]]
.

(35)

Combining (34) and (35) yields

(
ΥM (i)

)
jj

=

N∑

t=1

N∑

w=1

mtjmwj

N∑

r=2

N∑

s=2

vltvrwvsivri

Cvec−1
[
Grsvec

[
BΣηB

T
]]
CT

=
N∑

r=2

N∑

s=2

vrivsi

(
N∑

t=1

vrtmtj

)(
N∑

w=1

vswmwj

)

Cvec−1
[
Grsvec

[
BΣηB

T
]]
CT.

(36)

By applying the trace operator and summing for j that goes

from 1 to N , we prove the claim. Note that this equation

reduces to (18) for M = IN .

Proof of Remark 4. From equation (4), we can write the fol-

lowing relationship for the steady-state covariance matrix of

the modal dynamics:

Ξ̃Q
∞ = (V TRV ⊗ F + Λ⊗ Γ)Ξ̃Q

∞(V TRV ⊗ F + Λ⊗ Γ)T

+ (V TRQ⊗B)(IN ⊗ Ση)(V
TRQ⊗B)T.

(37)

Noting that

(V TRQ)rs =
N∑

j=1

(
N∑

t=1

vrtqtj

)(
N∑

w=1

vswqwj

)
, (38)

we obtain the following expression for the N2 blocks of size

n× n of Ξ̃Q
∞:

(
Ξ̃Q
∞

)

1s
=
(
Ξ̃Q
∞

)

s1
= 0, s = 1, . . . , N,

(
Ξ̃Q
∞

)

rs
= (F − λrΓ)

(
Ξ̃Q
∞

)

rs
(F − λsΓ)

T

+

N∑

j=1

(
N∑

t=1

vrtqtj

)(
N∑

w=1

vswqwj

)
BΣηB

T,

r, s = 2, . . . , N.

(39)
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Transforming back to the original coordinates yields that the

i-th diagonal block of ΞQ
∞ can be written as

(
ΞQ
∞

)
ii
=

N∑

r=2

vri

N∑

s=2

vsi

(
Ξ̃Q
∞

)

rs

=

N∑

r=2

N∑

s=2

vrivsi

N∑

j=1

(
N∑

t=1

vrtqtj

)(
N∑

w=1

vswqwj

)

vec−1
[
Grsvec

[
BΣηB

T
]]
,

(40)

for all i = 1, . . . , N . Combining (40) with (25) yields

(R⊗ Ip)Σ∞(R⊗ Ip)ii =

N∑

r=2

N∑

s=2


vrivsi

N∑

j=1

(
N∑

t=1

vrtqtj

)

(
N∑

w=1

vswqwj

)
Cvec−1

[
Grsvec

[
BΣηB

T
]]
CT

]
.

(41)

By recalling the hypothesis that M = Q, applying the trace

operator, and using Proposition 4, for all i = 1, . . . , N , we

determine that,

Tr
(
(R⊗ Ip)Σ

Q
∞(R⊗ Ip)

)
ii
= Vul(i,M). (42)

Proof of Remark 5. Since Q and L commute, they share the

same eigenvectors, which are collated in matrix V . Obviously,

for Q to commute with a symmetric matrix, it must also be

symmetric. We identify as θ1 the eigenvalue of Q associated

with ✶N (first column of V ), and we order the remaining (real)

eigenvalues θ2, . . . , θN in ascending order. Given that R is a

projector from R
N to ✶

⊥

N , we have

1) V TRQ = ΘV T

2) V TRQQTRV ⊗BΣηB
T = Θ2 ⊗BΣηB

T

We utilize these considerations in the recursion for Ξ̃Q
k , which

follows from (4):

Ξ̃Q
k+1

= (V TRV ⊗ F + Λ⊗ Γ)Ξ̃Q
k (V

TRV ⊗ F + Λ⊗ Γ)T

+ (V TRQQTRV )⊗BΣηB
T.

(43)

From equation (43), the N2 blocks of size n× n of Ξ̃Q
∞ can

be written as
(
Ξ̃Q
∞

)

rs
=
(
Ξ̃Q
∞

)

sr
= 0, r = 1 ∨ r 6= s, (44a)

(
Ξ̃Q
∞

)

rr
= (F − λrΓ)

(
Ξ̃Q
∞

)

rr
(F − λrΓ)

T + θ2rBΣηB
T,

r = 2, . . . , N. (44b)

Applying the vectorization operator to (44b) yields

vec
[(

Ξ̃Q
∞

)

rr

]
= θ2rGrrvec

[
BΣηB

T
]
. (45)

Transforming back to the original coordinates,

(
ΞQ
∞

)
ij
=

N∑

r=2

vri

N∑

s=2

vsj

(
Ξ̃Q
∞

)

rs

=

N∑

r=2

θ2rvrivrjvec
−1
[
Grrvec

[
BΣηB

T
]]
.

(46)

Finally, by using equation (24), we get

Tr
(
(R⊗ Ip)Σ

Q
∞(R⊗ Ip)

)
ii

=

N∑

r=2

θ2rv
2
ri Tr

(
Cvec−1

[
Grrvec

[
BΣηB

T
]]
CT
)
,

(47)

from which the claim follows.
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