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Abstract—Identifying influential nodes in network dynamical
systems requires the manipulation of tolopogical and dynamic
characteristics within ideal experiments. However, seldom do we
have access to experimental settings that could afford targeted
interventions or to calibrated mathematical models that could
support faithful what/if analyses. Our knowledge of the network
dynamical system is often limited to the time-series of indi-
vidual nodes in some real experiment. Using these time-series,
it is possible to undertake a number of inference tasks, from
reconstructing the topology of the network to discovering hidden
nodes. Whether or not time-series of real experiments could help
pinpoint causal influence within the network is an open question.
Here, we address this question in the context of synchronization
problems, where the influence of a node is defined as the
extent to which adding noise at that particular node affects the
overall synchronization of the entire network. For linear time-
invariant dynamics and undirected topologies, we demonstrate
the possibility of exactly detecting the most influential nodes in
the network without a calibrated mathematical model, using only
time-series of a real experiment where all nodes are plagued by
noise. Beyond illustrating our results on classical and second-
order consensus protocols, we consider two real-world datasets:
firearm prevalence in the U.S. and players’ movements in a
soccer game. Just as our conclusions support the emergence of
influential States which have a less stringent legal environment,
they hint at the instrumental role of players who are critical to
the offense strategy of the team.

Index Terms—Consensus, synchronization, stochastic systems,
vulnerability.

[. INTRODUCTION

Social networks [1], animal groups [2], power grids [3],
brain structural and functional systems [4], and climate net-
works [5] are all instances of network dynamical systems,
where the interaction within an ensemble of coupled units
could promote the emergence of collective behavior. Through
the lens of network dynamical systems, researchers have
studied a wide range of phenomena that are ubiquitous in
science and technology. For example, several studies have
investigated diffusion problems over networks, shedding light
on the conditions that will beget localized versus cascading
dynamics [6], [7]. Likewise, extensive efforts have been placed
toward the analysis of complete or partial synchronization [8],
where the network dynamical system will evolve along one
synchronous manifold or multiple, coexisting manifolds.
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A fundamental question in the study of network dynamical
systems pertains to the quantification of the role of each of
its units on the response of the entire system. For example,
in the context of power grids, it is of critical importance
to identify the nodes from which a targeted attack could
trigger the failure of the entire network [9]. Likewise, an
open question in neuroscience entails the prediction of the
effect of specific brain lesions on clinical outcomes [4]. The
scientific interest toward an objective assessment of the role
of specific nodes on the network dynamics extends beyond
the analysis of targeted attacks, touching on a wide range of
control problems [10]. From the study of pinning control in
technological networks to leadership in animal groups [11],
there is growing interest toward the identification of the nodes
in the network from which it could be possible to effectively
steer the dynamics of the entire system. In general, all these
problems relate to the notion of causal influence, which, as
specifically acknowledged by Lizier and Prokopenko, ‘refers
to the extent to which the source variable has a direct influence
or drive on the next state of a destination variable, i.e. “if 1
change the state of the source, to what extent does that alter
the state of the destination?” [12].

The traits of influential nodes are far from trivial. Recent
research has brought to light a complex interplay between dy-
namics and topology through numerical and analytical studies
on a wide array of network dynamical systems. In addition to
examining vulnerability of power grids [13]-[15] and general
chaotic systems [16], [17], recent efforts have focused on
leadership and optimal collective response to disturbances
in consensus problems over networks [18], [19] and, more
generally, networks of networks [20]. Overall, findings from
these studies point at a number of counter-intuitive results,
which a mere topological analysis of influence might not be
able to uncover, despite its level of sophistication [21].

For example, studies on vulnerability of network dynamical
systems suggest that peripheral nodes could have a key role on
the overall network dynamics in power grids, but might play
a secondary role in consensus protocols. Specifically, Tyloo
et al. [13] demonstrated an inverse correlation between the
nodes’ resistance centrality and their influence on the transient
stability of the European power grid. The more the node
was peripheral, the more an applied disturbance would be
effective in eliciting large excursion from synchronous power
generation. On the contrary, for a class of consensus problems,
applying a similar perturbation was found to have an opposite
effect [17]. The network was found to be more vulnerable to
targeted attacks at central nodes, which caused large steady-
state variations among the nodes.

Let alone the choice of the specific performance metric



for the network dynamical system, which could vary from
transient [13] to steady-state [17] features, studying causal
influence requires a series of ideal experiments where the
researcher can evaluate how specific manipulations at the
node-level translate into network-level performance. These
ideal experiments are typically based on an available mathe-
matical model that captures the interactions between the units
and their individual dynamics. However, seldom, do we have
complete knowledge about the network dynamical system,
whereby neither the dynamics of each individual unit nor the
topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that
is often unfeasible. Is it possible to identify key players
in the network from real experimental observations, without
either a calibrated mathematical model or the possibility to
perform tailored experiments to support any manipulation of
the dynamics and topology?

A tenable answer to this question can be obtained by
undertaking the reconstruction of the entire network topology
and the dynamics of its individual nodes. From knowledge of
all the links and individual dynamics, we could construct a
faithful mathematical model whose analysis will beget insight
into the structure of the network, from which to embark on the
identification of key players. The typical line of approach to
address these issues is to formulate hypotheses on the network
topology or on the individual dynamics and then pursue model
identification. For example, [22] proposed a methodology to
identify the dynamics of the units upon knowledge about the
underlying topology; [23], [24] demonstrated the possibility of
inferring the network dynamical system from the input-output
transfer function; [25], [26], and [27] established effective
identification procedures based on time-series for networks
described by a tree and consensus-like protocols, respectively;
and [28] formulated criteria and hypotheses for solving the
identification problem that were the starting point for [29]
to introduce an ARMAX model for heterogeneous data that
involve multiple replicates.

Here, we present an alternative approach to detect key play-
ers, without the need of identifying topology and individual
dynamics. Our approach does not promise insight into the
network dynamical system, but, at the same time, it requires
minimal hypotheses on the network topology and individual
dynamics, that is, we require undirected, potentially weighted,
topologies and linear dynamics. We focus on network synchro-
nization, for which we successfully pinpoint influential nodes
from time-series of real experimental observations where each
node is plagued by noise, without a calibrated mathematical
model or targeted experimental manipulations.

In the context of synchronization, the influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-
bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery
of a reciprocity principle for network dynamical systems,
which extends to this field of investigation a classical tool
in mechanics and electromagnetics [30], [31].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our inference approach is applicable. In Section III, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VI, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of the study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of /N identical, diffusively coupled,
linear dynamical systems in a discrete-time setting. The dy-
namics of the i-th unit can be written as

N .
ry ., = Faj, — Zlijl"gcf€ + ¢; Bny,, (1)
j=1
where xi € R™ is the state of the i-the unit at time k; F €
R™*™ is a matrix that specifies the individual dynamics; /;;
is the ¢j-th element of the Laplacian matrix of the network
L € RV*N which completely encodes the network topology
[32]; ' € R™*™ is the inner coupling matrix constraining the
interaction between neighboring nodes; 73, . . . ,n,JCV € R™ are
independent identically distributed noise with zero mean and
covariance matrix ¥,; ¢; is a positive scalar modulating the
intensity of the noise acting on node 7, with ¢; = 0 implying
that node ¢ is not affected by noise;

Using Kronecker algebra [33], (1) can be rewritten in

compact matrix form as

Tpy1 = (IN@F - L)z, + (Q ® B)ny, 2



where Iy is the identity matrix in RY, z, =
(@) @ e = (@) m)T], and
Q = diag{qi,...,qn} € R¥*N_ The state of each unit may
not be fully measurable, such that we have limited access to
only the output y; = (Iy ® C)xy, where C' € RP*™,

By introducing the average state T, = vazl zt /N, we
define the disagreement vector & :=z — Iy @ T, = (R®
I,)xy, where 1y is the vector of all ones in RY and R =
Iy — 1n1% /N is the projector from RY to 1%. Hence, the
disagreement dynamics is

§er1 = (R F — L) + RQ @ Bny. 3)

We assume that the network topology is undirected so that L
is a positive semi-definite symmetric matrix, whose elements
on the diagonal are non-negative and those off the diagonal are
non-positive [32]. We order the eigenvalues of L in an increas-
ing order, such that \; = 0 is the eigenvalue corresponding
to the eigenvector v; = ]l]N/\/]V and 0 < Ay < ... Ayn. In
general, the network can be weighted so that the value of the
elements off-the diagonal do not need to be zero or minus one.
We do not impose that F' is stable, thereby encompassing the
classical consensus problems, where F' is scalar and equal to
one [34]. Instead, we hypothesize that F', L, and I" are such that
the spectral radius of (R® F'— L®T) is less than one, thereby
leading to an asymptotically stable disagreement dynamics in
the absence of noise. This will, in turn, lead to a covariance
matrix = _k = E[¢x&]] that will converge to a finite steady-state
matrix 2, [35], where E[] is used to denote expectation with
respect to the o-algebra associated with the added noise to an
otherwise deterministic system.

To compute closed-form expressions for the steady-state
covariance, we apply the similarity transformation (VT ®1I,,),
where V' is assembled by juxtaposing column-wise the or-
thonormal eigenvectors of L. The modal dynamics (; =
(VT ® I,,)& has the following block-diagonal form:

Gey1 = (VIRV®F - A®T)G + (VIRQ @ B)ng, (4)
where A = VITLV = diag{\1,...,An}. Note that VTRV
is the identity matrix with the first element set to zero and
that VTR collates the eigenvectors of L row-wise, except
for the first row that is null. Utilizing (-); to isolate the i-
th n-dimensional block of a vector in R™V, we have that (4)
becomes

(Ck41); =0 (5a)
N
(Cer1)y = (F = AD) (Ch), + D gevrs B (5b)
s=1
for r =2,..., N, where v, be the s-th component of the r-

th eigenvector of L, associated with eigenvalue \,. Equation
(5a) indicates that, irrespective of the added noise, the modal
dynamics along the first modal coordinate is identically equal
to zero, while the others in (5b) are modulated by the spectral
properties of L (through both the eigenvalues and eigenvec-
tors) and the internal dynamics.

ITI. VULNERABILITY OF THE NETWORK DYNAMICAL
SYSTEM TO TARGETED ATTACKS

To pinpoint the most influential or key nodes in the network,
we consider an ideal experiment where noise is only injected
at one unit, such that Q = @iae;r; @; 1s the ¢-th unit vector of
the natural basis of R, specifying that the noise is selectively
injected only at the ¢-th node. We evaluate the impact of the

added noise on the network output by computing the steady-
state covariance of the entire disagreement dynamics =5 il
limg 400 E [gkfk } .

To this aim, we examine the modal dynamics in (5), which
has a simpler block-diagonal structure. Specifically, we start
by computing the steady-state covariance matrix :22;9 =
limg 100 B [Ck(k] of the modal dynamics. Denoting with
vec and vec~! the vectorization operator and its inverse',

respectively, we can show that :“;Ce admits the following

block-form solution in terms of the individual node dynamics
and of the network topology:

Lemma 1. Let vy, be the r-th component of the s-th eigen-
vector of L, associated with elgenvalue As. The steady-state

of the N? blocks of size n x n ofu eiel is given by

(B2), = (E) =0 s=1..N @

1s sl

(Egée?) = ’L}MUSI'VGC71 I:GTSVGC [BEWBTH ’
rs=2.. N, (6b)

where

Grs = (I — (F =\ D)@ (F=AD) L ()

is a function of the Laplacian eigenvalues, the individual
dynamics F, and the inner coupling matrix T

Proof. Equation (6a) follows from (5a). Likewise, (6b) is
derived by setting s = 0 for all s # 4 and ¢; = 1 in (5b), so
that ((x+1), = (F — AI') (Ck),. + vri Bmi, Hence, the generic
rs-th block is governed by the following dynamics:

(Cet1)y (Ger1)y = (F = A T) (G), (Go)y (F A It

+ VriVsi By F BT+ Vs (F - /\TF) (Ck)r 77k- 3

+oni B (G (F = A)T

By taking the expectation of both sides of the equation, noting
that noise has zero mean, and recalling that the state at time
k is independent of noise at time k, we establish
= (F - \D) ("‘E e ) (F —A\I)T
s

(E),
k1)
+ vm-vsiBZnB , 1,s=2,...,N,

Equation (9) can be transformed into a linear system by
matrix vectorization, whose solution for £k — +o00 is equal to

—E;e;
veo (22

where each of these equations identifies the effect of noise
injected at the ¢-th node on the covariance of the r-th and s-th
modal coordinates. The thesis then follows. O

9

)} = 005 Grevec [BE,BT],  (10)

IThe inverse of the vectorization operator vec : R®*b — R js the
operator vec ™1 : R — RaXb guch that vec™!(vec(W)) = W for all
W € R%*® and vec(vec™lw) = w for all w € Re®,



Remark 1. A similar decomposition for the covariance of the
error dynamics in the continuous-time case is presented in
equations (23) and (24) in [17].

The overall effect of noise added at node 7 can be quantified
by computing the steady-state covariance matrix =;° associ-
ated with the disagreement vector, similar to [17]-[19]. Such
a matrix is given block-wise in terms of the modal matrices
in Lemma 1, as

(:‘eiei )
— 00

We propose to study causal influence in terms of the vulner-
ability of the entire system to noise injected at the i-th node.
Specifically, we introduce a vulnerability index to quantify the
overall effect of adding noise to a specific node on a weighted
combination of the disagreement of the units’ outputs.

In quantitative terms, the vulnerability index is

szmvm (Jio )TS

=2 s5=2

Y

Val(i, M) = Tr [(MT @ )% (M CT)], (2)

where M = diag{my,...,my} € R¥*N is a diagonal
matrix that is used to weight the relevance of each network
node. For example, M can be chosen with larger diagonal
entries corresponding to nodes which are deemed to be more
critical in the network, so that their covariance must be
contained, potentially at the expense of the other nodes. If
M = Iy, all nodes are equally treated in the definition
of the vulnerability index; this choice is typically employed
in the formulation of performance matrices for the study of
leadership and robustness in network control systems [17]-
[19].

We establish the following result, highlighting the interplay
between the individual dynamics and the Laplacian eigenval-
ues and eigenvectors on vulnerability:

Proposition 1. The vulnerability index for node i in equation
(12) can be expressed as

Vul(i, M) Z m? Z Z UrjUsjVsiUrs

r=2 s=2

Tr (Cvec [Grsvec [BEWBTH CT) ,

13)

where the spectral properties of L enter matrix G, in (7).

Proof. To obtain the vulnerability index, we need to compute
the trace of

T (i) =

which is the sum of the traces of its [N blocks along the
diagonal (Yas(i)),,,-- -, (Tar(i)) y - The generic j-th block
takes the form

(Yur(0)),, = m3C (:ioe ),- o7,

(MT @ C)=5% el (M ®CT), (14)

15)

From Lemma 1 and equation (11), we establish

;—(E (B
Up Vs Vs Ui VEC

r=2s=2

! [Grsvec [BE,BT]] .
(16)

Combining (15) and (16) yields

a2 E 2
m UrjUsjUsiUri

r=2s=2
Cvec™! [G,4vec [BE,BT]] CT.

Applying the trace operator and summing for j that goes from
1 to N yields the claim. O

(Yar () (17)

Remark 2. Equation (16) confirms the intuition that injecting
noise at one node influences the steady-state covariance of any
other node. The extent of this effect depends on the network
topology and the individual dynamics, similar to observations
for a wide range of perturbations in biological networks [36].
In particular, the effect of noise injected at node ¢ on node j is
controlled by the i- and j-th components of all the Laplacian
eigenvectors (except of the first ones), the entire Laplacian
spectrum, and internal dynamics.

Remark 3. When all the nodes are equivalently weighted in
the vulnerability index (M = Iy), equation (13) reduces to

N
= Z v?, Tr (Cvec™

r=2

Vul(4, Iy) ' [Grpvee [BS,BT]]| CT),

(18)
where we leveraged the fact that the eigenvectors are orthonor-
mal. This equation shows that the effect of noise injected
at node ¢ is modulated by all the Laplacian eigenvalues
(entering the equation through G,,), each weighted by the
i-th component of the corresponding eigenvector.

I'V. INFERENCE OF CAUSAL INFLUENCE FROM REAL
EXPERIMENTAL OBSERVATIONS

In a real experiment, it is impossible to manipulate the
pattern of the added noise, as required by the ideal experiments
underlying the computation of the vulnerability index (12). In
general, noise in a real experiment will affect all the nodes in
the network, rather than a single one. Likewise, the researcher
has no knowledge about the network topology and the individ-
ual dynamics, thereby hindering any attempt to estimate the
vulnerability index in (12). The researcher has only access to
the time-series of the individual units, from which he/she could
compute the covariance matrix EkQ = limy— 4o E [yryi | of
the network output y;. Here, we demonstrate that such a
matrix could suffice to infer salient information about network
vulnerability, that is, to pinpoint the nodes from which a
targeted attack would produce the largest effect on the overall
system dynamics.

The reason why the real and the ideal experiments can
be reconciled is due to the two classical principles in circuit
theory [37] that carry over to the context of network dynamical
systems. First, due to the linearity of the model, the response
of the system to noise injected at all nodes can be obtained
as the sum of the responses to noise individually injected at
each of the nodes. Hence, the real experiment can be regarded
as the superposition of IV ideal experiments, in which noise
is selectively injected at a different node:

19)
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Fig. 2. Illustration of the approach on scalar dynamics. Network topology from [18] (left panel). Comparison between the estimation of the vulnerability
index through (21) in Proposition 3 and the exact value in (30) for each node, with Q = M = I: classical consensus (top-right panel) and stable dynamics
(bottom-right panel). Mean sample covariances are computed using 7" = 1,000 time-steps and error bars show one standard deviation with respect to 100

realizations.

Second, the principle of reciprocity extends to network dy-
namical systems, whereby the effect of noise injected at node
i on node j is equivalent to the effect of noise injected at node
J on node 1.

Proposition 2 (Reciprocity principle). Foralli,j=1,..., N,

T T
—@i®] o .:‘BJ €,
—00 . — | =0

73 i

Proof. The claim follows by simply noting that swapping
subscripts ¢ and j in (16) does not change the result. (]

(20)

By applying the linearity and the reciprocity principles,
we can exactly infer the vulnerability index when matrix M,
weighting the relevance of each node, coincides with matrix
@, measuring the strength of the noise added to the network
nodes. In this case, the vulnerability index for each node can
be assessed from the covariances associated with the network
output yg, as demonstrated in the following proposition:

Proposition 3. If M = Q, then, for all i = 1,..., N, the

vulnerability index defined in (12) can be computed as

Vul(i, M) = Tr (R® I,)S% (R ® 1)) (1)

Proof. We start by observing that, from the superposition
principle expressed in (19), the i-th diagonal block of =2

can be written as
2 :e]’e'f
qj | =o0
i

N
(Ego)n‘ - Z
j=1
Using the reciprocity principle in Proposition 2, for all j, we
eje;

—_ jej

replace the i-th diagonal block of =+

(22)

with the j-th diagonal

el .
block of 2% to obtain

Jj=1
N N N
= Z qu Z Z Vy Vs UsiVpivec * [Grsvec [BZ,,BTH ,
j=1 r=2 s=2
(23)
foralli=1,...,N.
Next, note that
(RO L)EL(R@ ) = (In®C)ZL (N CT) (24
and, therefore,
(RRI,)LE(R®1,); =C (D), CT. (25)
Combining (23) and (25) yields
(R ® ]p)ono(R ® [p)ii
N N N
= Z q? Z Z V-V Usi 0 Cvec ™ [Grsvec [BE,]BTH cT.
j=1 r=2s=2
(26)
Since M = @, applying the trace operator and using Propo-
sition 1, one obtains that, for all ¢ = 1,..., N,
Tr (R® L)L (R® 1)), = Vul(i, M). (27
O

Remark 4. The claim of Proposition 3 can be generalized
to the case when () and M are full matrices, with elements
outside the diagonal. Equation (27) would carry over in this
more general case, provided that Q = M. The technical
proof is rather different, whereby the elegant application of
the reciprocity principle would not be sufficient; the proof of
this claim is in the Appendix.

Remark 5. The case considered in Remark 4 of @) and M

non-diagonal matrices can be elaborated further by examining
the instance in which @ commutes with the Laplacian matrix
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Fig. 3.
between the estimation of the vulnerability index through (21) in Proposition

7

Tllustration of the approach on scalar dynamics. Network topology constituted by two cliques separated by a cut vertex (left panel). Comparison

3 and the exact value in (30) for each node, with Q = M = Iy classical

consensus (top-right panel) and stable dynamics (bottom-right panel). Mean sample covariances are computed using 7" = 1,000 time-steps and error bars

show one standard deviation with respect to 100 realizations.

of the network (that is, [@, L] = 0). Under this assumption, it
is possible to construct lower and upper bounds for Vul(z, Iy)
in terms of the spectral properties of @,

Tr (RO I,)SL(R® I”))u
02 ’
Tr (R® )5 (R ® 1))
92

max

Vul(i, IN) S
(28)

i

Vul(i, IN) Z

where 0, and 0, are the smallest non-zero and largest
eigenvalues of ). For Q@ = M Iy, the two bounds
coincide and they match (21). The proof of this claim is in
the Appendix.

V. ILLUSTRATION OF THE APPROACH ON SYNTHETIC DATA

We consider the cases of scalar and second-order dynamics
to demonstrate the applicability of the approach for different
individual dynamics. For scalar dynamics, we further detail
the validity of the approach against parameter variations and
across different network topologies. Toward real applications,
we simply rely on the time-series of the nodes, which we
assume evolve under the influence of standard white Gaussian
noise (¥, = 1).

Throughout the analysis, we assume to have access to
T = 1,000 time-steps for the output of each node, from which
we calculate the disagreement with respect to the average.
We repeat the analysis 100 times from randomly generated
initial conditions. From these time-series, we compute the
covariances of the disagreement dynamics, which are required
to estimate the vulnerability metric through (21) in Proposition
3 or to establish conservative bounds via (28). Specifically, for
each realization, we compute sample means for all quantities
and we then use these quantities to quantify variability across
realizations through standard deviation. For clarity, we use a
superimposed bar to indicate the estimation of the covariances
from time-series, and the consequent inferences on vulnerabil-

ity.

A. Scalar dynamics

We start the analysis with scalar dynamics, with F' = «,
I'=p, B=1, C =1, for which the disagreement dynamics
is asymptotically stable if | « — B\; |[< 1 fori =2,...,N
and the matrix G, in (6) becomes

1
Grp = —————. (29)
1—(a+ fw,)
Hence, the vulnerability index (12) for M = Q = Iy is
N o2
Vul(i, In) = _ (30)
;_2 1—(a+ Bwr)2

We begin with the study of the 16-node network examined
in [18], whose nodes have degree varying from one to six
and 0.609 < \; < 8.03 for 1 2,...,N. We select
two possible combinations for (a, #), which beget the same
spectral radius of (R ® F — L ® T'): (1.000,0.159) and
(—0.100,0.100). The first configuration corresponds to the
classical consensus problem with marginally stable individual
dynamics, while the second one has a stable, yet oscillating,
individual dynamics. In Table I, we report the vulnerability
at each node (30) in the two cases, as a function of several
measures of centrality, including the degree, the betweenness
centrality, the closeness centrality, the centrality measure by
[38], and the eccentricity. For the case of consensus, the
degree centrality offers the best proxy of vulnerability (Pearson
correlation coefficient of —0.91), such that the nodes with the
lowest degree are the most influential. On the other hand, in the
other case of stable dynamics, the best proxy is the centrality
measure by [38] (Pearson correlation coefficient of 0.89), such
that nodes with higher centrality are more influential. These
findings echoe previous results on continuous-time systems
[13], [17], suggesting that dynamics play a critical role in
defining vulnerability to targeted attacks.

Figure 2 compares the estimation of the vulnerability index
for each node, from time-series through (21) in Proposition



Nodes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

deg(7) 4 5 4 1 3 4 2 4 6 4 4 1 1 4 4 3
be(i) 597 | 1230 | 21.07 0 2.63 | 490 | 1.87 | 833 | 30.83 | 20.07 | 18.37 0 0 9.13 | 1820 | 2.33
102 x cc(i) 3.13 3.33 323 222 | 313 | 278 | 2.63 | 3.13 4.00 3.33 3.13 2.17 | 227 | 3.23 3.45 2.56
10 x cg(7) 1.74 2.01 1.66 | 049 | 145 | 1.50 | 095 | 1.87 3.07 1.73 1.54 048 | 049 | 1.93 1.98 1.33

c(7) 4 4 4 5 3 4 4 4 3 3 3 4 4 4 3 5
Vul(z, In)* 1.36 1.26 1.40 | 404 | 156 | 1.50 | 2.20 | 1.31 1.09 1.37 1.47 | 4.11 | 400 | 1.28 1.27 1.65
Vul(z, In)*™* | 148 2.10 1.53 1.00 | 1.22 | 143 | 1.09 | 1.58 3.36 1.63 1.54 1.00 | 1.00 | 1.55 1.61 1.25

TABLE 1
CENTRALITY AND VULNERABILITY: TOPOLOGY FROM [18]. ROWS FROM 3 TO 7 ROWS REPORTS, FOR EACH NODE i = 1,...,16, THE DEGREE

CENTRALITY deg(), BETWEENNESS CENTRALITY bc(¢), CLOSENESS CENTRALITY cc(%), CENTRALITY cg(%) AS DEFINED IN [38], RESPECTIVELY. THE
LAST TWO ROWS REPORT THE VULNERABILITY INDEX FOR CLASSICAL CONSENSUS CASE AND STABLE DYNAMICS, IDENTIFIED BY ONE AND TWO
STARS, RESPECTIVELY.
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Fig. 4. Robustness of the approach to perturbation of nodal parameters. Scalar
consensus dynamics and network topology from [18]. Comparison between
the estimation of the vulnerability index through (21) in Proposition 3 and
the exact value for each node, with QQ = M = I;y. Mean sample covariances
are computed using 7" = 1, 000 time-steps, and error bars show one standard
deviation with respect to 100 realizations.

3, against the true value in (30) for the possible parameter
combinations. In both cases, we can accurately locate the most
influential nodes in the network from the time-series of real
experimental observations. Importantly, the variation across
observations is small with respect to the variation among the
values of the vulnerability index for different nodes, such that,
in principle, a single observation could suffice to correctly
infer the most influential nodes in the network.

To test the efficacy of the approach on other network
topologies, we also examine a topology composed of two
four-node cliques joint by one cut vertex. We confirm the
accuracy of the approach in detecting the most influential
nodes, as shown in Figure 3. Interestingly, the relationship
between vulnerability and degree centrality is consistent across
network topologies, but the best topological proxies to identify
key players are different, as reported in Table II. For the case
of consensus, betweenness centrality is the best proxy (Pearson
correlation coefficient of —0.99), while for the other case,
the degree centrality offers the best representation (Pearson
correlation coefficient of 1.00).

To delve into the robustness of the inference with respect to
parameter variations, we focus on consensus over the 16-node
network. For each node, we select the scalar parameters o
and B uniformly in the interval [0.995, 1.005]. Figure 4 con-
firms excellent matching between the vulnerability computed
according to equation (12), and our estimation performed using
(21). The observed robustness against parameter variation is
due to the continuous dependence of the states’ evolution on
the parameters of the network dynamical system.
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Fig. 5. [Illustration of the approach on second-order dynamics. Network

topology from [18]. Comparison between the estimation of the vulnerability
index through (21) in Proposition 3 and the exact value for each node, with
Q = M = In. Mean sample covariances are computed using 7" = 1,000
time-steps, and error bars show one standard deviation with respect to 100
realizations.

% - - * Vul(i, In)
” T Val(s, Iy)
15 : :
10
H]

5 g 2 @l !
AL LI IR

1 6 11 16

7
Fig. 6. [Illustration of the approach on second-order dynamics. Network
topology from [18]. Comparison between the estimation of the vulnerability
index through bounds in (28) and the exact value for each node, with
Q = In + 0.05L and M = Ip. For each node, we report the mean of
the numerator of (28) from the 100 realizations, and we use a bar to mark the
range of the bounds accounting for one standard deviation from the mean.

B. Second-order dynamics

We now consider a second-order discrete-time consensus
protocol, with

1 T 0 0 0
N A S IR P

The characteristic time 7 = 0.2, and the parameters py = p; =
1 and py = 2 are selected according to [39], and c is selected
as 0.14 to ensure asymptotic stability of the disagreement
dynamics. Further, we consider that only the first state variable
is measured, that is, C = [1 0].

Figure 5 confirms the results of the classical consensus pro-
tocol, such that, when M = I, the system is most vulnerable
to noise added to the node with the lowest degree. This fact is
well captured by the estimation of the vulnerability index for
@ = M = Iy from time-series through (21) in Proposition 3.



Nodes

1 2 3 4 5 6 7 8 9

deg(2) 2 2 2 3 2 3 2 2 2
be(7) 3.00 | 0.50 | 3.00 | 15.50 | 16.00 | 15.50 | 3.00 | 0.50 | 3.00
102 x cc(4) 455 | 3.70 | 4.55 5.88 6.25 5.88 455 | 3770 | 4.55
10 x cg(7) 0.73 | 0.66 | 0.73 1.02 1.86 1.02 | 0.73 | 0.66 | 0.73

e(i) 5 [3 5 4 3 4 5 6 5
Vul(z, In)* 357 | 400 | 3.57 2.29 1.91 2.29 3.57 | 400 | 3.57
Vul(i, In)** | 1.03 | 1.02 | 1.03 1.15 1.02 1.15 1.03 | 1.02 | 1.03

TABLE II
CENTRALITY AND VULNERABILITY: TOPOLOGY FROM FIGURE 3, LEFT PANEL. ROWS FROM 3 TO 7 ROWS REPORTS, FOR EACH NODE i = 1,...,16, THE

DEGREE CENTRALITY deg(%), BETWEENNESS CENTRALITY bc(4), CLOSENESS CENTRALITY cc(%), CENTRALITY cg(Z) AS DEFINED IN [38],
RESPECTIVELY. THE LAST TWO ROWS REPORT THE VULNERABILITY INDEX FOR CLASSICAL CONSENSUS AND STABLE DYNAMICS, IDENTIFIED BY ONE
AND TWO STARS, RESPECTIVELY.
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Fig. 7. Tllustration of the approach on second-order dynamics. Network

topology from [18]. Comparison between the estimation of the vulnerability
index through bounds in (28) and the exact value for each node, with
Q = In 4+ 0.05L and M = I. For each node, we report the vulnerability
ratio (32) and the mean of its estimation using the bounds in (28) from the
100 realizations. The error bars show one standard deviation with respect to
100 realizations.

The numerical estimation from a real experimental observation
can be used to faithfully reproduce the vulnerability node rank.

Next, we consider the case in which the noise affects the
system dynamics in a more complex manner, according to
@ = Iy + 0.05L. Such a choice models combination of
disturbances that are added to both the nodes and the edges
of the network. In this case, M # (@, so that we cannot apply
Proposition 3 and we should resort to the bounds in (28). As
shown in Figure 5, these bounds offer a conservative estimate
of the vulnerability index, which could be heuristically utilized
to understand causal influence within the network dynamical
system. The wide range between the upper and lower bounds
are due to the spread in the spectrum of L, such that Ay = 0.61
and Ay = 8.03. However, the main goal of our analysis is to
identify the key nodes for network vulnerability, rather than
the exact estimate of the vulnerability index. Therefore, the
bounds should rather be used to estimate the vulnerability ratio

Vul(i, In)

L, IN) = ——7 57—
Vil (G, L) max; Vul(i, Iy)

) (32)
and correctly rank the importance of the nodes in the network,
see Figure 7.

VI. ILLUSTRATION OF THE APPROACH ON REAL-WORLD
DATASETS

Upon validating the methodology on synthetic data, we
illustrate the use of our method on two examples of collective
dynamics, in which it is critical to identify influential nodes
from time-series. In both examples, we assume that noise
enters each unit in the same manner () = Iy) and that

each node is equally important in the network (M = Iy).
Accordingly, the vulnerability index will be computed from
Proposition 3.

A. Firearm prevalence in the United States of America

We demonstrate the approach on the firearm prevalence
dataset by [40], which established information-theoretic tools
to examine the key drivers of firearm acquisition in the after-
math of mass shootings. In these efforts, firearm acquisition
is estimated from the time-series of background checks per
capita for each of the 50 states in the United States of America
at a monthly resolution from 1999 to 2017. The National
Instant Criminal Background Check System was implemented
in November 1998 and permits authorized sellers to assess
whether a prospective buyer is eligible for the purchase of
a firearm. Recent findings from [41] point at an underlying
network structure to firearm prevalence in the United States
of America, whereby firearm acquisitions in any State are
influenced by acquisition in other States.

Here, we seek to further delve into this collective dynamics
to identify the most influential States, whose firearm preva-
lence has a stronger impact in Nation-wide sales. The time-
series of background checks are characterized by strong ten-
dency and seasonal effects, whereby we are always witnessing
a continuous surge in firearm acquisition that has two peaks
toward the end of the year and in Spring. To mitigate these
non-stationary phenomena, the time-series can be seasonally
adjusted and detrended using ad-hoc econometric tools, as
detailed in [40].

We calculate the sample mean covariance matrix associ-
ated with these detrended and seasonally-adjusted time-series.
From the analysis, we exclude Connecticut and Hawaii, since
Connecticut did not report background checks for almost two
years of zero, and Hawaii always reported zero background
checks except of one month in nearly 20 years, and we
estimate the vulnerability index at the state in (21) from
Proposition 3. States with a high value of this metric should be
those at which an applied disturbance will cause the strongest
effect on the entire Country. As shown in Figure 8§, the five
(top 10%) most influential states are South Dakota, Tennessee,
Alaska, Alabama, and Colorado.

A potential mechanism that could underpin the higher
influence of these States might be sought in the restrictiveness
of firearm regulation. As proposed in [40], this variable can
be quantified in terms of the fraction of firearm safety laws
in effect over a total of 133 possible laws between 1999
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Fig. 8. Estimated vulnerability index for each State for the dataset of
background checks in the United States of America from 1999 to 2017. Values
are computed from detrended and deseasonalized time-series in [40]. Data are
normalized between O and 1.

and 2017, ranging from 0.752 for Massachusetts (the most
restrictive State) to 0.052 for Vermont (the most permissive
State). It is tenable that States in which it is easier to purchase
a fircarm might have a higher connectivity in the network,
whereby other States may use them as proxy of potential
changes in firearm regulations that could then reverberate
into stricter policies in the entire Country. Indeed, from a
k-means analysis with k& = 2, we found the cluster of the
most influential states (South Dakota, Tennessee, Alaska, and
Alabama) to be a proper subset of that of the most permissive
states identified in [41].

B. Analysis of a soccer dataset

Next, we demonstrate the approach in the different context
of team sport. Specifically, we examine a dataset consisting
of the positions of nine (out of eleven) soccer players of a
Norwegian team in a soccer game [42]. The players’ motion
is scored in terms of their planar position on the soccer field
in pixels, sampled at 2 Hz. For each player, we focus on
the time-series of the speed from [43], as a movement metric
that could be used to capture coordination in the team. Then,
we estimate the vulnerability index using (21), to ascertain
the influence of the player on the group. In this context,
vulnerability is associated with the lack of coordination among
the team players.

Figure 9 shows that the two key players in the team are
number 4 and 8. From the heat maps of the position densities
displayed in Figure 10, we identify that player 4 acts behind
the strikers, while number 8 is one of the two strikers. This
analysis suggests that a reduction in the coordination of either
of these two players could hinder the coordination of the
whole team. These players likely constitute the critical offense
terminals of the team who catalyze the offense strategy for
the whole team and set the tempo for the attacks. It is tenable
that these players might have a high degree in the network
of interaction between the players, whereby teammates will
often seek for them during the game for finalizing an action
and circulate the ball. Notably, the key players are not those
who retain the ball, but rather they belong to the cluster of
players with the least ball possession. Indeed, player 4 and 8
handle the ball for the 0.57% and 0.67% of the total time,
respectively, against an average of 1.02% in the team, thus
pointing at the crucial role of the movements off the ball in
all modern dynamic sports [44].
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Fig. 9. Estimated vulnerability index for each of the nine players of the soccer
team dataset in [42]. Values are normalized between 0 and 1.
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Fig. 10. Heat maps for the position distribution of players 4 (left panel)
and 8 (right panel) on the soccer field of the soccer team dataset in [42].
The positional frequency of the players on the field increases as the color
changes from dark blue to light yellow, so that player 4 is a playmaker and
8 a striker. The team is attacking from right to left, such that their goal line
is at = 105m and they should score by attacking the goal line of their
opponents at z = 0 m.

VII. CONCLUSIONS

A critical area of study in network dynamical systems
entails the identification of influential nodes, from which it
could be possible to modulate the response of the entire
system. Here, we establish a novel approach to identify these
key players in network dynamical systems from time-series
of real experiments. We focus on synchronization problems,
where a network of time-invariant, diffusively coupled linear
systems synchronize against added noise. In the absence of
added noise, the disagreement dynamics is assumed to be
asymptotically stable, so that the units converge to a syn-
chronous state; the presence of the added noise challenges
this process. For this class of problems, the influence of a
node is defined as the extent to which adding noise at that
particular node affects the steady-state covariance of the dis-
agreement dynamics, that is, the vulnerability of the network
to a targeted disturbance. We demonstrate that the influence
of each of the nodes can be effectively inferred without a
calibrated mathematical model. By computing the covariance
matrix of the disagreement dynamics from time-series of real
experimental observations, in which noise plagues each of the
units, we can pinpoint influential nodes, thereby reconciling
ideal and real experiments.

The chief reason for the correspondence between ideal
and real experiments lies in the reciprocity principle which
we have discovered. Reciprocity is ubiquitous in mechanics
and electromagnetics, in the form of the classical Maxwell-
Betti reciprocal theorem of deflections [30], [45], Rayleigh’s
reciprocity theorem in acoustics [31], and Lorentz theorem in
electromagnetics [46]. Not surprisingly, it extends to synchro-
nization of coupled linear units, whereby injecting noise at



node A of a network and measuring its effect on the steady-
state covariance at node B is equivalent to injecting noise at B
and measuring at A. By virtue of the reciprocity theorem, each
node leaves a footprint on the overall dynamics that allows
for precisely deciphering its specific contribution in a causal
sense. These results could beget foundational advances in
both practical methodologies and theory of network dynamical
systems.

For scalar and second-order dynamics, we demonstrate the
accuracy of the approach in supporting the identification of
influential nodes from time-series of real experimental obser-
vations. Interestingly, influence is mediated by the interplay
between dynamics and topology, so that peripheral nodes may
be key players in some cases and have a secondary role in
others. Irrespective of the select dynamics, our approach can
detect influential nodes within even a single observation. Al-
though the correspondence between ideal and real experiments
is exact only when the vulnerability index weighs each node in
accordance with their corresponding added noise, we establish
conservative bounds that can be used for addressing more
general cases. Translating the approach to real-world appli-
cations, we examine two case problems: firearm prevalence
in the United Stated of America and coordination of soccer
players in a match. For both datasets, our approach highlights
interesting mechanisms underlying causal influence.

An alternative approach to infer the vulnerability index
Vul(i, M) would be to undertake the identification of the
network dynamical system from the available time-series and
then calculate the vulnerability using (12). A number of
strategies have been proposed to address this issue, offering
a comprehensive toolbox to infer topology and individual
dynamics from noisy time-series [24]-[29]. These strategies
should be pursued when one is interested in going beyond the
identification of the key players, in search of the mechanism
that underlie their differential role in the network dynamical
system. Undertaking this step will bring further computational
challenges and require additional hypotheses. For example,
the promising and elegant approach by [28] assumes the state
dynamics to be asymptotically stable, the network dynamical
system to be globally minimal, measurements to be a subset
of state variables, and the transfer function to be minimum
phase. None of these hypotheses is needed to determine key
players by using our approach, because we only require the
estimation of the steady state covariance.

There are several directions along which the work can be
extended. First, it should be important to devise methodolo-
gies for inferring influence from real experiments in which
nodes have heterogeneous nodal dynamics and additive noises.
Second, the entire methodology assumes that the network
is undirected, which allows for deriving modal equations
that would be not feasible in the case of directed networks.
Third, the mathematical treatment is presently limited to time-
invariant linear dynamics, thereby calling for further research
on temporal networks and nonsmooth dynamics.

APPENDIX
ANALYSIS OF NON-DIAGONAL Q AND M

In this more general case, the model equations are as in (2),
where () specifies how noise enters the system dynamics, and

the vulnerability index is defined in (12), where M is chosen
to emphasize or deemphasize parts of the system.

Proposition 4. For arbitrary, non-diagonal M, the vulnera-
bility index for node i can be expressed as

N N N

Vul(i, M) Z S vy (Z 'Urtmtj> <§é vswmwj>

=1r=2s=2

Tr (Cvec™! [G,gvec [BE,BT]] CT),
(33)
where the Laplacian eigenvalues modulate the elements of the

matrix G, in (7).
Proof. The generic j-th diagonal block of T /(7) in (14) takes
the form

(T ( (34)

N N
2 :2 : —@; eT
t]mw] —00

t=1 w=1

>m o7,

From Lemma 1, and transforming back from the modal
coordinates to the original coordinates, we obtain

He e
UrtVUswVsi Uri VEC

r=2s=2

! [Grsvec [BE,BT]].

(35)
Combining (34) and (35) yields
N N N N
))JJ = Z Z Mt My 5 Z Z Vit UrwUsiUrq
t=1 w=1 r=2s=2
C’vec*1 [Grsvec [BE, BT]] CT
N
= Z Z UriUss (Z Urtmt]> (Z Uswmwj>
r=2s= 2 w=1
Cvec™! [Gygvec [BE,BT]] CT.
(36)

By applying the trace operator and summing for j that goes
from 1 to N, we prove the claim. Note that this equation
reduces to (18) for M = Iy. O

Proof of Remark 4. From equation (4), we can write the fol-

lowing relationship for the steady-state covariance matrix of

the modal dynamics:
—(VIRV@F+A@D)EQ(VIRV@ F+A@D)T

+(VTRQ® B)(Iy ® 3,)(VTRQ ® B)".
(37)

Jj=1 \t=1

Noting that
(VIRQ)s

we obtain the following expression for the N 2 blocks of size
nxn of Z¢:

(Ego)ls - (EOQO)sl - 07

(22) —@F-AD)(32) (F-ADT

N N N
+ Z (Z Uﬂgtj) <Z vsty;j) BEWBT’
j=1 \t=1

w=1

s=1,...,N,

(39)

r,s=2,...,N.



Transforming back to the original coordinates yields that the
i-th diagonal block of = can be written as

N N
= § Urqg E Usi (EOQO)
r=2 s=2 s

N N N
= § § VriUsi § § UrtQtj § Vswwj
= w=1

r=2s=2 j=1
vec ™! [Grsvec [BZ,,BT]] ,
(40)
for all : =1,..., N. Combining (40) with (25) yields
N
(R@I ) (R@I Z 7’17)57.2 Zvrtqtj
r=2 s=2 j=1 \t=1
N
Z VswGuwj Cvec™! [vaec [BZUBTH ct
v @1)

By recalling the hypothesis that M = @, applying the trace

operator, and using Proposition 4, for all ¢« = 1,..., N, we
determine that,

Tr (R® I,)SE (R ® 1)) ,, = Vul(i, M). 42)

O

Proof of Remark 5. Since () and L commute, they share the
same eigenvectors, which are collated in matrix V. Obviously,
for () to commute with a symmetric matrix, it must also be
symmetric. We identify as ; the eigenvalue of () associated
with 1 (first column of V'), and we order the remaining (real)
eigenvalues 6o, ..., 0y in ascending order. Given that R is a
projector from R to 14;, we have

1) VTRQ =0vT

2) VTRQQTRV ® B, BT = 62 @ B%, BT
We utilize these considerations in the recursion for EkQ, which
follows from (4):

22, = (VTRVe F+ A@D)ES(VTRV @ F+ Ao T)T
+ (VTRQQTRV) ® anBT.

43

From equation (43), the N2 blocks of size n x n of Ego can

be written as
r=1Vr#s, (44a)

(Eg@)w (F—\T) (29 ) (F =\ +62B%, BT,

r=2,...,N. (44b)
Applying the vectorization operator to (44b) yields
vee[(22) | =02Govee[BT,BT].  @3)
Transforming back to the original coordinates,
N N N
-3 (52),
r=2 s=2 (46)

' [Gyrvec [BE,B]].

N
2 —
= E 0, vyrivrjvec
r=2

Finally, by using equation (24), we get
Tr (R® L,)SE (R® 1)),

N 47
:Z 202 Tr (Cvec ™" [Gyrvec [BE, BT]] CT), @0

r=

from which the claim follows. O
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