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Abstract18

Sea level rise could have catastrophic consequences worldwide. More than 600 million19

people currently living in coastal areas may see their livelihood at risk and choose to mi-20

grate in the near future. Predicting when, how, and where people could migrate under21

environmental change is critical to devise effective policy initiatives and improve our pre-22

paredness. Here, we propose a modeling framework to predict the effect of sea level rise23

on migration patterns from easily-accessible geographic and demographic data. The frame-24

work adapts the radiation model to capture unwillingness or inability to migrate of af-25

fected residents, as well as return migration and cascading effects in migration patterns.26

We apply the mathematical model to study internal migration in Bangladesh, predict-27

ing a complex and counterintuitive landscape of migration patterns between districts.28

Our predictions indicate that the impact of sea level rise on 816 thousand people by 205029

will trigger cascading effects in migration patterns throughout the entire country. The30

population of each of the 64 districts will change, leading to a total variation of 1.3 mil-31

lion people. Migration from inundated regions in the center will trigger non-trivial pat-32

terns, including a reduction in the population of the district of the capital Dhaka.33

Plain language summary34

Droughts, desertification, floods, earthquakes, and wildfire threaten livelihood world-35

wide, triggering more and more often human unrest. From wealthy to developing economies,36

every country is vulnerable to environmental change. Mathematical models can assist37

in providing reliable predictions of environmental migration, which are critical for de-38

vising effective policy initiatives and improving our preparedness for future migration39

patterns. Here, we establish a modeling framework to predict environmental migration40

from knowledge of the number of individuals who will be placed on the move due to en-41

vironmental change. We specialize the model to the study of the catastrophic consequences42

of sea level rise in Bangladesh. Our results indicate that the geography and demograph-43

ics of Bangladesh could magnify the threat posed by sea level rise on internal migration.44

Although seal level rise will affect only a fraction of the districts, these district have a45

critical role on migration patterns and local inundations therein will ultimately trigger46

human unrest in the entire country.47

1 Introduction48

Sea level rise (SLR) is expected to be one of the “most expensive and irreversible49

future consequences of global climate change, costing up to 4.5% of global gross domes-50

tic product” – as recently summarized by Hauer et al., 2019. A population of more than51

600 million who is currently living close to the coast could be displaced by SLR. Over52

forty years ago, Mercer, 1978, identified the disintegration of the West Antarctic Ice Sheet53

as a potential driver of human migration in coastal regions. Since then, the technical lit-54

erature has made strides in elucidating the complex range of drivers of human migra-55

tion that are related to SLR (Hauer et al., 2019). While the most evident consequence56

of SLR is the ultimate inundation of low-elevation areas, a number of related hazards57

might cause human unrest before these regions become uninhabitable. From flooding by58

tropical cyclones (Woodruff et al., 2013) to saltwater intrusions in coastal aquifers (Ketabchi59

et al., 2016), SLR-induced hazards may damage coastal biodiversity and human health60

(Mahmuduzzaman et al., 2014), reduce property values (Keenan et al., 2018), and de-61

stroy infrastructure (Fussell et al., 2017). More and more households will become vul-62

nerable to SLR-induced hazards and forced to migrate.63

Although there is a deep uncertainty in future sea level projections, due, for instance,64

to the uncertainty in anthropogenic emissions, there is consensus on the potentially catas-65

trophic worldwide impact of SLR (Kopp et al., 2019). Coastal regions in the US might66

experience migrations “of a magnitude similar to the twentieth century Great Migration67
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of southern African-Americans” (Hauer et al., 2016). Likewise, developing countries, like68

Bangladesh, may see the majority of their population experience SLR-related impact by69

the middle of the century, potentially triggering massive migrations (Neumann et al., 2015).70

Not only is formulating reliable predictions of environmental migration critical for de-71

vising effective policy initiatives around the implications of SLR, but also it plays a fun-72

damental role in improving our preparedness for future migration patterns.73

Several mathematical models have been proposed to predict the impact of SLR on74

migration patterns (Hauer et al., 2019). For example, Hassani-Mahmooei & Parris, 201275

established an agent-based model to examine environmental migration in Bangladesh.76

Their results suggest a migration in 2050 toward east and northeast districts, along with77

a continuous absorption of migrants in current urban areas. Through a linear probabil-78

ity model, Chen & Mueller, 2018, determined that gradual increases in soil salinity due79

to coastal flooding could be a stronger factor for environmental migration in Bangladesh80

than inundation alone. Agent-based modeling was also utilized by Karanci, Berglund,81

& Overton, 2017 to predict housing decisions in the coastal town of Nags Head in North82

Carolina, US. While having considerable technical merit, these modeling approaches are83

relatively complex to implement, with several parameters to be empirically calibrated84

toward accurate predictions.85

The work of Davis, Bhattachan, D’Odorico, & Suweis, 2018, makes an important86

contribution to the literature, by proposing a universal model of human migration un-87

der environmental change. The model constitutes a valuable trade-off between complex-88

ity and accuracy to predict the influence of SLR on migration fluxes. The approach adapts89

the radiation model by Simini, González, Maritan, & Barabási, 2012, which has been shown90

to accurately describe mobility patterns as a function of population distribution. Specif-91

ically, the radiation model predicts that the flux between two regions is controlled by their92

populations and those of all the neighboring regions. The adaptation by Davis et al., 2018,93

reduces the value of the populations in the expression of the fluxes to account for hu-94

man migration triggered by SLR. The model is parameter-free, whereby it only takes as95

input the population distribution and the population in inundated regions for the pre-96

diction of migration fluxes. The approach was illustrated through the study of future en-97

vironmental migration driven by SLR in Bangladesh.98

Albeit offering the first parameter-free approach for elucidating environmental mi-99

gration, the original approach presented by Davis et al., 2018, has a number of limita-100

tions that are, in fact, discussed by the authors in their manuscript. In its present in-101

carnation, the model does not allow for considering unwillingness and inability to mi-102

grate, which is widely documented in the technical literature (Hauer et al., 2019). For103

example, previous studies on Bangladesh have indicated that residents of affected regions104

display a complex coping response to hazard, which may not trigger migration (Hutton105

& Haque, 2003; Barman et al., 2012). Should one be willing to migrate, the route to mi-106

gration is still hampered by socioeconomic factors, where the poorest and least mobile107

will be “trapped populations” (Black, Bennett, et al., 2011).108

In addition, the model neither accounts for cascading effects in environmental mi-109

gration nor for return migration (Hauer et al., 2019). As large populations are displaced110

due to environmental change to a new region, they may conflict with existing residents111

who may see their economic resource base threatened (Reuveny, 2007). Such a conflict112

may, in turn, trigger consequent migrations in a cascading effect. Displaced people may113

also express a desire to return to their homes, as seen for example among New Orleans’114

residents who returned to New Orleans after Hurricane Katrina for a sense of place (Chamlee-115

Wright & Storr, 2009). Both cascading effects and return migration will ultimately con-116

tribute to a richer landscape of migration patterns, in which local effects of environmen-117

tal change in any region will have global consequences.118
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Here, we propose a mathematical model to study migration patterns due to envi-119

ronmental change that seeks to overcome these limitations. Each region is treated as a120

node in a weighted network (Estrada, 2012), whose directed links represent migrations121

between regions. We encapsulate demographic and geographic data in each node through122

the population and position of the corresponding region. The population of a region may123

increase or decrease due to incoming or outgoing links, respectively. The migration rate124

along each link is controlled by the population of the endpoints, as well as the popula-125

tion of any other regions that is geographically closer to the origin than the destination,126

following the radiation model (Simini et al., 2012). The migration flux is then computed127

by multiplying the corresponding rate by the population of the origin that is willing and128

able to migrate under the effect of environmental change.129

Different from the approach of Davis et al., 2018, the model contains one param-130

eter that captures baseline migration between regions, in terms of the fraction of lifetime131

migrants who are born in a region and live their lives in another region. The presence132

of environmental change is modelled through a localized shock onto this baseline param-133

eter. The more severe is the shock, the larger is the fraction of people that could be dis-134

placed in a region, thereby changing the global landscape of migration patterns. Adapt-135

ing techniques from the study of vulnerability and leadership in network dynamical sys-136

tems (Fitch & Leonard, 2015; Porfiri & Frasca, 2018; Pagnier & Jacquod, 2019), we pro-137

pose a sensitivity analysis to examine the specific effect of a local shock on global mi-138

gration patterns. In this context, we apply a perturbation at a given node (that is, an139

increase in the number of individuals who are willing and able to migrate) and study its140

cascading effects in any other node. We introduce a resilience index to measure the ex-141

tent by which a localized perturbation induces migration everywhere in the network.142

By linking the results of the resilience analysis with predictions about the spatial143

distribution of environmental change, we quantify the extent of the potential threat on144

migration patterns and offer long-term predictions. For example, the same average SLR145

for a given country may trigger widely different migration patterns, depending on how146

the population is distributed between coastal and inland regions and between rural and147

densely-populated urban areas. We focus the analysis on the effect of SLR on internal148

migrations in Bangladesh, demonstrating complex inter-dependencies between SLR dis-149

tribution and migration patterns between different regions.150

2 Data and methods151

2.1 Formulation of the migration model152

Our modeling approach begins by partitioning the overall geographical area where
environmental change and the resulting migration take place into N regions, correspond-
ing to the network nodes. At each node, we measure the population at discrete time in-
stants separated by a unitary time step; the population in the i-th region at time k is
denoted as ni(k). By assuming that birth and death rate balance each other and that
there is not an influx from or outflux toward other areas, we can write the following con-
tinuity equation to predict the time-evolution of the population in the network:

ni(k + 1)− ni(k) =

N∑

j=1

J(j → i, k)−
N∑

j=1

J(i → j, k), (1)

where J(i → j, k) is the migration flux from origin i to destination j in the time inter-153

val [k, k + 1).154

To complete the system of equations and afford predictions of environmental mi-
grations, we must relate the migration fluxes to the populations and some salient param-
eter of environmental change through constitutive equations. We propose the following
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constitutive equation of the generic flux:

J(i → j, k) = nm
i (k)rij(n(k)). (2)

Here, nm
i (k) ≤ ni(k) is the number of people living in region i at time k that could mi-155

grate in the time interval [k, k+1) (superscript “m” stands for “mobile”); n(k) is a vec-156

tor that aggregates all the populations at time k; and rij(n(k)) ∈ [0, 1] is the fraction157

of the mobile population of origin i which chooses j as the destination, which we name158

the migration rate.159

We measure the mobile population in each of the N regions with respect to the ini-
tial population at time 0, that is, we introduce N parameters α1, . . . , αN ∈ (0, 1), such
that

nm
i (k) = ni(k)− αini(0). (3)

The parameters α1, . . . , αN ∈ (0, 1) are used to capture the effect of environmental change,160

whereby affected regions will register an increase in the fraction of inhabitants that will161

try to move, that is, a reduction in the corresponding parameter values. In our model-162

ing approach, environmental change causes an increase in the number of people who are163

willing and able to move: whether or not the migration will take place depends on de-164

mographic and geographic data that involved the entire network. To minimize the num-165

ber of fitting parameters, we hypothesize that in the absence of environmental change166

α1 = · · · = αN =: α0, where α0 is the baseline value.167

Demographic and geographic data contribute to the value of all the rij(n(k))-s for
i, j = 1, . . . , N . We take rij(n(k)) to be equal to the probability of migration obtained
from the radiation model (Simini et al., 2012), which relates migration tendency from
an origin to a destination to the populations of both these regions as well as the pop-
ulation of any neighboring region. Specifically, we set

rij(n(k)) =





ni(k)nj(k)(
ni(k)+nj(k)+

∑
l∈Nij

nl(k)
)(

ni(k)+
∑

l∈Nij
nl(k)

) , if i 6= j,

ni(k)∑
N
l=1

nl(k)
, otherwise,

(4)

where Nij = {l 6= i : dil < dij} is the set of all the regions which are closer to the ori-168

gin than the destination, with dij being the distance between the centroids of districts169

i and j. In the original radiation model, (4) is derived under the premises that an in-170

dividual will select its migration destination on the basis of better life opportunities, while171

seeking to remain close to the origin. In this vein, the summation in the denominator172

of (4) over the neighbors accounts for intervening opportunities that should be weighted173

during the decision process.174

The structure of the model equations leads to the following three properties, which175

are easy to verify:176

1. The total population is constant, that is,

N∑

i=1

ni(k) =

N∑

i=1

ni(0), for all k. (5)

This property follows directly from the continuity equation in (1) by summing over177

i.178

2. For all i = 1, . . . , N , and for all times k,

ni(k) ≥ αini(0). (6)

This property follows from the fact that the outflux at time k can never exceed179

nm
i (k).180
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3. The probability of not migrating at time k can be computed from the radiation

model as rii(n(k)) = ni(k)/
(∑N

l=1 nl(k)
)
, thereby yielding

N∑

j=1

j 6=i

rij(n(k)) =

∑N

l=1 nl(k)− ni(k)∑N

l=1 nl(k)
, for all i, k. (7)

We utilize the migration model to predict the populations in a network at the steady-181

state, starting from given initial conditions for the populations n1(0), . . . , nN (0), a cho-182

sen distribution of α1, . . . , αN (encompassing changes with respect to the baseline value183

α0), and prescribed geographical distances between each pair of nodes dij with i, j =184

1, . . . , N . This step is simply executed by running the recursion (1) with constitutive equa-185

tions (2), specified through (3) and (4). By comparing the steady-state populations with186

the original populations, we assess the extent of net migration within the network.187

We note that rij(n(k)) depends on demographic and geographic data, without ex-188

plicitly accounting for the size of the time step, whether it is one year or five years, for189

example. The derivation by Simini et al., 2012, does not explicitly include time, such that190

probability of migration is intended with respect to the time scale of the migration pro-191

cess itself. Should the decision process by an individual unfold on the time scale of five192

years, this number should be intended as the probability of migrating within five years193

and a simulation conducted with a resolution of one year should artificially reduce the194

probability of migration by a factor of five. In our simulations, this aspect has a limited195

role, whereby we always focus on the equilibrium where influxes and outfluxes are com-196

pletely balanced, that is, k → +∞. The same predictions would be obtained by directly197

solving (1) with n(k+ 1) = n(k) =: n and considering (5), that is, by setting the left-198

hand-side to zero.199

2.2 Analysis of the migration model200

To facilitate the study of the proposed mathematical model of migration, we in-
troduce the matrix function Q(·) with zero-column sum, whose ij-th element is

Qij(a) =

{
rji(a), if i 6= j,
ai−

∑N
l=1

al∑
N
l=1

al
, otherwise,

(8)

where a is an arbitrary vector, with components a1, . . . , aN . By accounting for (7), we
write the model equations as

n(k + 1) = (IN +Q(n(k)))n(k)−Q(n(k))diag(α)n(0), (9)

where IN is the identity matrix, diag(·) is the diagonal form of a vector, and α collates201

all the values α1, . . . , αN .202

As a first step in the analysis of migration patterns, we perform a sensitivity anal-203

ysis by increasing the number of mobile individuals in the generic region i by one with204

respect to the baseline value α0, such that, nm(k) = n(k)−α0n(0)+ei where ei is the205

vector of all zeros except of a one at position i. The perturbation will modify the equi-206

librium n0 corresponding to α1 = · · · = αN =: α0 into n0 + ν(i), where ν(i) collates207

the (zero-sum) changes in the population at the equilibrium for all the nodes in the net-208

work due to the perturbation at node i.209

By linearizing (9), we establish

ν(i)(k + 1) =
(
IN +Q(n0) + Q̃(n0, n0 − α0n(0))

)
ν(i)(k) +Q(n0)ei, (10)
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where Q̃(·, ·) is a matrix function with zero-column sum, whose generic element is com-
puted as

Q̃ij(a, b) =
N∑

l=1

∂Qil(n)

∂nj

∣∣∣∣
a

bl, (11)

for any pairs of vectors a and b. The expression of (11) can be explicitly obtained by car-210

rying out the derivatives.211

We can compute the steady-state value ν(i) of (10), either as the limit as k → +∞212

or simply solving for ν(k+1) = ν(k) with a zero-sum perturbation. By studying ν(i),213

we establish how a small increase in the mobile population of a region may trigger com-214

plex migration patterns throughout the network. As a result, one of the regions will see215

an increase in the number of incoming migrants and another may register a decrease in216

the population. We quantify the extent of these effects throughout the network by sum-217

ming the absolute values of all the variations in the population to obtain
∥∥ν(i)

∥∥
1
.218

By comparing the values of
∥∥ν(i)

∥∥
1
for different indices i, we can evaluate resilience

to a localized shock anywhere in the network. The higher this number is, the stronger
will be the global effect caused by a localized shock on migration patterns. To present
results in a normalized manner, we calculate “resilience” to environmental change at re-
gion i as

ρi =
max

{∥∥ν(i)
∥∥
1

}N

i=1
−
∥∥ν(i)

∥∥
1

max
{∥∥ν(i)

∥∥
1

}N

i=1
−min

{∥∥ν(i)
∥∥
1

}N

i=1

. (12)

Such a sensitivity analysis offers insight into the relative role of each network node219

on migration patterns, under the premise that only a small fraction of the population220

will be affected by a shock. To overcome this approximation, we should simulate the com-221

plete nonlinear model (9) with a large perturbation. Due to the nonlinearity of the prob-222

lem, the superposition principle does not apply and we should consider at once all the223

perturbations that are applied throughout the network. Hence, the nonlinear analysis224

requires to increase the number of mobile individuals as nm(k) = n(k)−α0n(0)+nm−ec,225

where the vector nm−ec collates the estimated number of people that could become en-226

vironmental migrants at each node (superscript “m-ec” identifies “mobile” population227

due to the “environmental change”). Finally, by subtracting n0 from the resulting steady-228

state solution n, we can estimate the (zero-sum) variations in the population due to en-229

vironmental migration.230

2.3 Demographic and inundation data in Bangladesh231

The administration of Bangladesh is organized in two main levels: divisions and232

districts. Based on the 2011 Census (Bangladesh Bureau of Statistics 2015, 2011 Pop-233

ulation and Housing Census, 2011), Bangladesh had seven divisions (Bengali: bibhag),234

each of them further divided into districts (Bengali: zila), for a total of 64. In the fol-235

lowing analysis, the censused population in 2011 for each division and district is used236

as the initial population n(0) in our model. The 2011 Census also contains data on life-237

time migration at division level. Specifically, for each ordered pair of divisions, we ex-238

tracted the number of individuals born in a division of origin that became resident in239

a division of destination.240

The impact of SLR on Bangladesh is potentially disruptive, since 41% of the to-241

tal population lives in areas where the elevation is lower than 10m (Neumann et al., 2015).242

To quantify the population in each district that could be affected by SLR in 2050, we243

use the estimations made by Davis et al., 2018. These estimations were obtained by first244

retrieving an inundation map which combined elevation data taken from the Shuttle Radar245

Topology Mission for Bangladesh (NASA Shuttle Radar Topography Mission (SRTM)246

Version 3.0 Global 1 arc second Data Released over Asia and Australia, 2008) with SLR247
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Figure 1. Tuning of the parameter α0 of model (1)−(3) using division-level lifetime migra-

tion data: plot of the R
2 value between the pairs predictions/data and the bisectrix (left panel).

Comparison between migration fluxes predicted by our model with α0 = 0.704, correspond-

ing to the maximum value of R2, and division-level lifetime migration data (right panel). Each

point corresponds to the pairwise log-transformed flux between divisions; given a flux x, we plot

log
10
(x+ 1).

projections (Intergovernmental Panel on Climate Change, 2013). Then, the inundation248

map was overlaid on the 2010 Gridded Population of the World (GPWv4) dataset (Center249

for International Earth Science Information Network - CIESIN - Columbia University,250

2016), adjusted according to the projected population of Bangladesh in 2050 (United Na-251

tions, Department of Economic and Social Affairs, Population Division, 2015), to finally252

gather the population that is expected to be inundated in each district. We collate these253

values in the vector nm−ec with N = 64 entries, of which 21 are different from zero in254

correspondence to potential environmental migration from inundated districts. From a255

modeling perspective, this vector consolidates the entire effect of environmental change,256

thereby serving as the sole input to predict migration patterns.257

2.4 Calibration of the migration model on 2011 division-level migration258

data259

As a baseline for studying the effect of environmental change, we calibrate the model260

with respect to division-level migration data from (Bangladesh Bureau of Statistics 2015,261

2011 Population and Housing Census, 2011) (N = 7). We hypothesize a common value262

for α1, . . . , αN equal to α0, which we identify from the data. We set the initial popula-263

tion in each of the seven divisions from the 2011 Census data and use geographic dis-264

tances between the centroids of divisions computed from Davis et al., 2018, to implement265

the model as a function of α0. Model output is the vector n of length equal to seven, from266

which we calculate the 49 values of migration fluxes (ni − α0ni(0))rij(n), with rij(n)267

given by (4).268

For each pair of origin and destination, data are log-transformed and compared with269

the actual flows between divisions taken from (Bangladesh Bureau of Statistics 2015, 2011270

Population and Housing Census, 2011). By varying α0 from 0 to 1, in steps of 0.001, we271

determine the value that maximizes the R2 value between the pairs predictions/data and272

the bisectrix (R2 = 0.739, p < 0.001), see Figure 1. While it might be preferable to273

calibrate at a finer spatial resolution and over a time window, data availability challenged274

pursuing a different approach. A similar analysis has been, in fact, reported by Davis275

et al., 2018, although with the different goal of validating the fluxes in the radiation model276

against lifetime migrants, prior to examining the effect of environmental change.277
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3 Results and discussion278

We articulate the assessment of the severity of the potential threat of SLR on Bangladesh279

in three sequential steps.280

First, we apply the sensitivity analysis to district level data from 2011 Census (N =281

64), thereby computing the resilience in (12). To delve into the mechanisms underlying282

a differential resilience of the country to environmental change, we perform a correla-283

tion analysis linking the resilience to a localized shock in a district with the population284

in its neighboring districts. Neighbors are defined to be those districts whose centroids285

are within a distance that is less than the average distance between any two districts (207 km).286

A positive correlation would indicate that highly populated regions could shield migra-287

tion from a neighboring district, whereas a negative correlation would reveal cascade ef-288

fects in migration patterns.289

Second, we correlate the values of the resilience indices with the corresponding af-290

fected populations nm−ec in the inundated districts (N = 21) by 2050 (estimated by291

Davis et al., 2018). Through this analysis, we seek to evaluate the overall resilience of292

Bangladesh to SLR. A positive correlation would indicate the more favorable scenario293

in which inundated regions have a more peripheral role on migration patterns, such that294

people who will be placed on the move will not trigger cascading migrations through-295

out the country. On the other hand, a negative correlation would point at a more dra-296

matic scenario, in which SLR will impact critical districts with respect to global migra-297

tion patterns.298

Third, we perform a full nonlinear analysis of migration patterns that accounts for299

the simultaneous SLR of the 21 inundated districts. Toward this aim, we estimate the300

steady-state population in all the 64 districts, using the 2050 projected populations as301

the initial condition. These values are compared with the population n0 that are pre-302

dicted from the same initial conditions, but in the absence of the potential environmen-303

tal migrants nm−ec.304

3.1 The location of environmental change will have a differential effect305

on migration patterns in Bangladesh306

We begin by examining the resilience of Bangladesh to localized shocks in each of307

the 64 district. The map in Figure 2 suggests that shocks in districts in the north, east,308

and south will have a lesser impact on migration patterns than central and western dis-309

tricts. However, we should acknowledge a rich spatial dependence, with some of the most310

critical districts that neighbor less influential regions. The highest value of resilience is311

registered in the capital district of Dhaka in the center of the country, while the lowest312

is in the central-western district of Narail. Notably, these rankings are robust with re-313

spect to a simplistic inclusion of external migration, in the form of an additional, vir-314

tual district that is equally accessible from all the 64 districts (see Supporting Informa-315

tion S1 and Figure S1).316

The correlation analysis in Figure 2 indicates that resilience to environmental change317

in a district is inversely related to the population of neighboring district (R2 = 0.340,318

p < 0.001). The more a district is surrounded by highly populated districts, the stronger319

are the resulting migration patterns within the country. This suggests the possibility to320

mathematically anticipate cascading effects, in which people affected by environmental321

change will first migrate to neighboring district, thereby triggering further migration to322

the rest of the country. These cascading effects have been documented in the literature323

(Hauer et al., 2019) and attributed to potential conflict between migrants and existing324

residents, who may experience lower quality of life due to the incoming migration.325
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Figure 2. Colormap of the resilience to a localized shock in each district in Bangladesh (left

panel), and correlation between the resilience in each district and the population living in neigh-

boring districts (right panel).

The correlation analysis in Figure 2 utilizes a common value α0, but equivalent pre-326

dictions would be obtained by accounting for small heterogeneity in the values of α1, . . . , αN327

with respect to α0, as discussed in Supporting Information S2 and Figure S2. In par-328

ticular, variations of up to 10% in α1, . . . , αN never confound the significance of the cor-329

relation and the resulting changes in the slope of the fit are within 5% of the nominal330

value for a common α0.331

3.2 The geography and demographics of Bangladesh could magnify the332

threat posed by sea level rise on internal migration333

The map in Figure 3 illustrates the number of people who will be impacted by SLR334

in 2050. Districts in the south will be mostly impacted by SLR, with the largest frac-335

tion in the central-southern districts of Shariatpur, Munshiganj, and Narayanganj, where336

over 335 thousand people will be affected.337

Although the districts that are expected to be impacted by SLR are not those that338

yield the lowest resilience from Figure 2, their effect is expected to be dramatic. From339

the correlation analysis in Figure 3, we evidence a negative correlation between resilience340

to localized shocks and the affected population (R2 = 0.223, p = 0.031). SLR is pre-341

dicted to affect large segments of the population living in critical districts, which will trig-342

ger global migration patterns throughout the country.343

The extent of the effect of SLR can be visualized in Figure 4. Therein, we demon-344

strate that a unitary increase in the mobile population of Shariatpur (the most affected345

district by SLR in 2050) will trigger mobility in three northern districts toward western346

districts. The capital of Dhaka should register an outflux of people due to the increased347

mobility of the population in Shariatpur. This possibility might appear counterintuitive,348

based on predictions of previous models (Davis et al., 2018; Hassani-Mahmooei & Par-349

ris, 2012; Chen & Mueller, 2018) and empirical evidence by Kartiki, 2011, suggesting that350

migrants prefer to migrate to urban areas.351
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Figure 3. Number of people n
m−ec affected by SLR in 2050, using data from Davis et al.,

2018 (left panel), and correlation between the resilience to a localized shock in each district and

n
m−ec (right panel).

Figure 4. Normalized net migration flux in each district caused by a unitary increase in the

mobile population in Shariatpur (left panel) and Cox’s Bazar (right panel) from the sensitivity

analysis.
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Figure 5. Variation in the population of each district in Bangladesh due to SLR in 2050 pre-

dicted by Davis et al., 2018, (left panel) and our proposed modeling framework (right panel).

The sum of the variations (in absolute value) for the left panel is 992 thousands and for the right

is 1,354 thousands.

The basis of this surprising result is related to the gradual effects of SLR, which352

drive the system to a new equilibrium. Specifically, our analysis focuses on steady-state353

migration patterns that will emerge in response to the increased tendency of people to354

move from inundated areas. While in a single time-step, highly populated districts will355

tend to attract more migrants, as time evolves this incoming population might tend to356

diffuse to neighboring regions, until reaching the new equilibrium. For example, a one357

time-step prediction in (1) about the effect of the shock in Shariatpur (corresponding358

to a unitary increase in the mobile population) will consist of an increase of 0.048 on Dhaka’s359

population, in contrast with the steady-state decrease of 0.224 shown in Figure 4.360

The same phenomenon is not observed in response to environmental change in the361

peripheral region of Cox’s Bazar shown in Figure 4, where more than 23 thousand peo-362

ple are estimated to be impacted by SLR. In this case, the neighboring districts are not363

expected to see their population change, while the central districts of Dhaka, Rajbari,364

and Narsingdi will register an increase in their population. This long-range phenomenon365

should be explained as a cascading effect, in which people from Cox’s Bazar will begin366

moving to other south-eastern districts, prompting migration of local residents toward367

neighboring districts and ultimately gravitate toward Dhaka, Rajbari, and Narsingdi.368

3.3 Sea level rise will trigger migration patterns involving the whole coun-369

try370

In Figure 5, we compare the results of the model by Davis et al., 2018, with our371

predictions, starting from the same initial populations in 2050 and accounting for the372

same values for the affected populations in the inundated districts (a total of 816 thou-373

sand people over 21 districts). The two models anticipate a comparable net change in374

the population of all the districts (992 versus 1,354 thousands) and are in agreement in375

the identification of the districts which will see their population reduce the most (Narayan-376

ganj, Shariatpur, and Munshiganj).377
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District Net flux
(Davis et al.,

2018)

Net flux
(proposed
model)

Rank (Davis
et al., 2018)

Rank
(proposed
model)

Dhaka* 207,373 −34, 060 1 11
Narayanganj −95,003 −126,694 2 1
Shariatpur −80,916 −124,444 3 3
Barisal −80,669 −64,252 4 6

Munshiganj −77,916 − 124,598 5 2
Madaripur 61,791 −937 6 60
Chandpur −37,711 −70,998 7 4
Jhalakati 35,546 9,198 8 36
Satkhira −32,287 −19,603 9 23
Khulna −28,148 −9,982 10 33

Cox’s Bazar −25,680 −16,366 11 24
Bagherat 24,860 12,263 12 28

Table 1. Net variations in the population due to SLR in 2050 in selected districts. Comparison

between predictions by Davis et al., 2018, and our proposed modeling framework; the rank is

based on the absolute value of the variation. An asterisk identifies a non-inundated district.

However, the predictions of the destination of the migrations are radically differ-378

ent. The model by Davis et al., 2018, predicts that SLR will cause a massive flux toward379

Dhaka, which will increase its population of more than 207 thousand people, and north-380

ern and south-eastern districts will be unaffected by the internal migration. In contrast,381

our mathematical model predicts that migration will involve the whole country, includ-382

ing the northern districts, and that no district will register an increase in population above383

67 thousand people. Our model also suggests that Dhaka will see its population reduce384

by about 34 thousand people. Differences between the two model predictions are further385

clarified in Table 1.386

With respect to the model by Davis et al., 2018, the proposed approach presents387

the following differences. First, the model by Davis et al., 2018, assumes that environ-388

mental change will cause the migration of every individual in an affected region, with-389

out considering unwillingness and inability to move by many people. In our model, we390

take as input the fraction of people that could migrate in an affected region and predict391

the ultimate migration. Second, the model by Davis et al., 2018, distributes migrants392

to neighboring regions, without accounting for either return migration or cascading ef-393

fects, which are key factors in driving our model to its new equilibrium. Third, the model394

by Davis et al., 2018 is not formulated in terms of a continuity equation in which mi-395

gration fluxes are combined to calculate the variations in the population throughout the396

network. As a result, it is tenable that the population distribution associated with the397

approach by Davis et al., 2018 does not constitute an equilibrium, from which there will398

be additional influx or outflux of people due to the immediate or long-term consequences399

of environmental migration.400

The latter difference between our work and the approach by Davis et al., 2018 could401

be further developed by examining the transient dynamics of our model. In Figure 6,402

we show the population in the four districts of Dhaka, Narayanganj, Shariatpur, and Mun-403

shiganj as a funcion of time; these districts are selected based on Table 1, which defines404

them as the most critical districts for our model and the one by Davis et al., 2018. In405

all of these simulations, we used as initial conditions the predicted population at the equi-406

librium in the absence of inundations and, at the first time-step of the simulation, we407

modified the vector α to capture the simultaneous SLR of the 21 inundated districts. Re-408
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ronmental change from droughts, desertification, floods, earthquakes, and wildfire is be-434

ing increasingly recognized as a key driver for mass migration (Kaczan & Orgill-Meyer,435

2019). SLR, in particular, is expected to affect the life of more than 600 million people436

living close to the coast, who could see their livelihood at risk and decide to migrate (Hauer437

et al., 2019).438

Here, we make a further step toward a universal model of human migration under439

environmental change. Our migration model extends the promising approach of Davis440

et al., 2018 along several directions to anticipate salient phenomena that have been ex-441

tensively documented in the literature: unwillingness or inability to migrate, cascading442

effects on migration patterns, and return migration (Hauer et al., 2019). These exten-443

sions do not come at the expense of an increased complexity, whereby the model con-444

tains a single additional parameter that is used to capture the baseline tendency of peo-445

ple to migrate, in the absence of environmental change. This is the only parameter that446

should be calibrated, before embarking on the predictions of migration patterns.447

In principle, the modeling framework is applicable to a wide class of environmen-448

tal migration problems. Similar to Davis et al., 2018, we demonstrate the framework on449

SLR in Bangladesh, using easily-available geographic and demographic data to draw pre-450

dictions on internal migrations. Our findings point at a more complex interplay between451

geography and demographics in shaping migratory fluxes due to environmental change452

than Davis et al., 2018. Highly populated districts should not always experience increases453

in population in response to environmental change occurring in lesser populated regions,454

but may also see their population reduce. Likewise, lesser populated regions could reg-455

ister further reduction or increase in their population, depending on where the location456

of environmental change. We propose that the predictions of our model should be pre-457

ferred to those by Davis et al., 2018, in the study of SLR, whose impact will gradually458

affect Bangladesh population, rather than drive immediately the system out of equilib-459

rium.460

The present model is not free of limitations, which should be explored in further461

studies.462

1. During each time-step, we always assume that the hypotheses of the radiation model463

by Simini et al., 2012 hold true. In particular, we hypothesize that only economic464

factors drive the selection of the migration destination, thereby neglecting social465

ties which could play a critical role in shaping migration patterns as evidenced by466

Kartiki, 2011, for rural Bangladesh. This limitation might be addressed by inform-467

ing the construction of the weighted network of the radiation model on the ba-468

sis of social ties within communities. This modeling route could also assist in a469

more detailed quantification of the opportunities that are offered by large cities,470

against rural areas. Whether these improvements will result into substantially dif-471

ferent predictions is presently unclear, whereby preliminary analysis on the het-472

erogeneity in the baseline migration propensity seem to point at robustness of our473

model predictions against these unmodeled effects.474

2. In its present form, the model does not distinguish between recent and past mi-475

grants in each district, which may be crucial in determining the real opportuni-476

ties available to migrants in each district. This limitation might be addressed by477

extending the model beyond a first-order difference equation to capture sedimen-478

tation in the migration process. In this vein, one should explore the possibility of479

including memory in the migration rates.480

3. Introducing a memory in the migration rates may also help resolve the ambigu-481

ity underlying the notion of return migration. In its present form, the model ac-482

counts for return migration but does not offer a means to tease out their net ef-483

fect. Specifically, from the flux between two districts, it is impossible to identify484
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individuals who migrate for the first time versus individuals who are returning to485

their district of origin.486

4. The model does not distinguish between capability and vulnerability as two dif-487

ferent causes for the decision to migrate (Kaczan & Orgill-Meyer, 2019). The com-488

plex interplay between these drivers might challenge the premises of the radiation489

model, which does not distinguish between individuals in their decision process.490

This limitation might be resolved through a further degree of refinement that par-491

titions the affected population in classes.492

5. The model does not account for within-region migration, which could play an im-493

portant role in migration patterns. For example, in Bangladesh, it has been pro-494

posed that a relevant fraction of displaced people could attempt short-range mi-495

gration (Fussell et al., 2014). This limitation might be addressed by teasing out496

the portion of individuals who decide not to migrate from those who choose to mi-497

grate within the same district through an additional parameter to be identified498

from experiments.499

6. The model does not allow for a detailed treatment of external migration, in the500

form of crossing the boarders of the country through ground transportation or air-501

plane. Preliminary analyses on external migration to a virtual destination that502

is equally accessible from any district point at a secondary effect of the resilience503

of the country to localized shocks. Future research should explore whether this504

claim generalizes to more accurate representations of external migration.505

Whether the simplicity of the modeling framework should be regarded as a limi-506

tation or a strength depends on the envisioned application of a mathematical model of507

environmental migration. The proposed approach requires the calibration of a single pa-508

rameter to capture baseline migrations, which avoids overfitting the data, but comes at509

the cost of a limited temporal and spatial resolution of baseline migration throughout510

a country. Likewise, the prediction of environmental migration patterns is based on the511

number of individuals in any region who could become mobile due to environmental change.512

In principle, this number could account for economic, political, social, and demographic513

factors that could identify the most impacted individuals (Black, Adger, et al., 2011).514

However, working with the Bangladesh case study, we chose to estimate this number based515

on the extent to which each district will be inundated. This simplistic choice allows for516

a first assessment of the effect of environmental change, upon which one can determine517

the effect of specific, intervening factors.518
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