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Key Points:

¢ We establish a mathematical model that captures unwillingness or inability to mi-
grate, return migrations, and cascading effects.

« For the case study of Bangladesh, the model predicts population changes of each
of the 64 districts, impacting 1.3 million people by 2050.

e Migration from inundated central regions will trigger country-wide, non-trivial pat-
terns, such as the reduction in the population of Dhaka.
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Abstract

Sea level rise could have catastrophic consequences worldwide. More than 600 million
people currently living in coastal areas may see their livelihood at risk and choose to mi-
grate in the near future. Predicting when, how, and where people could migrate under
environmental change is critical to devise effective policy initiatives and improve our pre-
paredness. Here, we propose a modeling framework to predict the effect of sea level rise
on migration patterns from easily-accessible geographic and demographic data. The frame-
work adapts the radiation model to capture unwillingness or inability to migrate of af-
fected residents, as well as return migration and cascading effects in migration patterns.
We apply the mathematical model to study internal migration in Bangladesh, predict-
ing a complex and counterintuitive landscape of migration patterns between districts.
Our predictions indicate that the impact of sea level rise on 816 thousand people by 2050
will trigger cascading effects in migration patterns throughout the entire country. The
population of each of the 64 districts will change, leading to a total variation of 1.3 mil-
lion people. Migration from inundated regions in the center will trigger non-trivial pat-
terns, including a reduction in the population of the district of the capital Dhaka.

Plain language summary

Droughts, desertification, floods, earthquakes, and wildfire threaten livelihood world-
wide, triggering more and more often human unrest. From wealthy to developing economies,
every country is vulnerable to environmental change. Mathematical models can assist
in providing reliable predictions of environmental migration, which are critical for de-
vising effective policy initiatives and improving our preparedness for future migration
patterns. Here, we establish a modeling framework to predict environmental migration
from knowledge of the number of individuals who will be placed on the move due to en-
vironmental change. We specialize the model to the study of the catastrophic consequences
of sea level rise in Bangladesh. Our results indicate that the geography and demograph-
ics of Bangladesh could magnify the threat posed by sea level rise on internal migration.
Although seal level rise will affect only a fraction of the districts, these district have a
critical role on migration patterns and local inundations therein will ultimately trigger
human unrest in the entire country.

1 Introduction

Sea level rise (SLR) is expected to be one of the “most expensive and irreversible
future consequences of global climate change, costing up to 4.5% of global gross domes-
tic product” — as recently summarized by Hauer et al., 2019. A population of more than
600 million who is currently living close to the coast could be displaced by SLR. Over
forty years ago, Mercer, 1978, identified the disintegration of the West Antarctic Ice Sheet
as a potential driver of human migration in coastal regions. Since then, the technical lit-
erature has made strides in elucidating the complex range of drivers of human migra-
tion that are related to SLR (Hauer et al., 2019). While the most evident consequence
of SLR is the ultimate inundation of low-elevation areas, a number of related hazards
might cause human unrest before these regions become uninhabitable. From flooding by
tropical cyclones (Woodruff et al., 2013) to saltwater intrusions in coastal aquifers (Ketabchi
et al., 2016), SLR-induced hazards may damage coastal biodiversity and human health
(Mahmuduzzaman et al., 2014), reduce property values (Keenan et al., 2018), and de-
stroy infrastructure (Fussell et al., 2017). More and more households will become vul-
nerable to SLR-induced hazards and forced to migrate.

Although there is a deep uncertainty in future sea level projections, due, for instance,
to the uncertainty in anthropogenic emissions, there is consensus on the potentially catas-
trophic worldwide impact of SLR (Kopp et al., 2019). Coastal regions in the US might
experience migrations “of a magnitude similar to the twentieth century Great Migration
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of southern African-Americans” (Hauer et al., 2016). Likewise, developing countries, like
Bangladesh, may see the majority of their population experience SLR-related impact by
the middle of the century, potentially triggering massive migrations (Neumann et al., 2015).
Not only is formulating reliable predictions of environmental migration critical for de-
vising effective policy initiatives around the implications of SLR, but also it plays a fun-
damental role in improving our preparedness for future migration patterns.

Several mathematical models have been proposed to predict the impact of SLR on
migration patterns (Hauer et al., 2019). For example, Hassani-Mahmooei & Parris, 2012
established an agent-based model to examine environmental migration in Bangladesh.
Their results suggest a migration in 2050 toward east and northeast districts, along with
a continuous absorption of migrants in current urban areas. Through a linear probabil-
ity model, Chen & Mueller, 2018, determined that gradual increases in soil salinity due
to coastal flooding could be a stronger factor for environmental migration in Bangladesh
than inundation alone. Agent-based modeling was also utilized by Karanci, Berglund,

& Overton, 2017 to predict housing decisions in the coastal town of Nags Head in North
Carolina, US. While having considerable technical merit, these modeling approaches are
relatively complex to implement, with several parameters to be empirically calibrated
toward accurate predictions.

The work of Davis, Bhattachan, D’Odorico, & Suweis, 2018, makes an important
contribution to the literature, by proposing a universal model of human migration un-
der environmental change. The model constitutes a valuable trade-off between complex-
ity and accuracy to predict the influence of SLR on migration fluxes. The approach adapts
the radiation model by Simini, Gonzélez, Maritan, & Barabdsi, 2012, which has been shown
to accurately describe mobility patterns as a function of population distribution. Specif-
ically, the radiation model predicts that the flux between two regions is controlled by their
populations and those of all the neighboring regions. The adaptation by Davis et al., 2018,
reduces the value of the populations in the expression of the fluxes to account for hu-
man migration triggered by SLR. The model is parameter-free, whereby it only takes as
input the population distribution and the population in inundated regions for the pre-
diction of migration fluxes. The approach was illustrated through the study of future en-
vironmental migration driven by SLR in Bangladesh.

Albeit offering the first parameter-free approach for elucidating environmental mi-
gration, the original approach presented by Davis et al., 2018, has a number of limita-
tions that are, in fact, discussed by the authors in their manuscript. In its present in-
carnation, the model does not allow for considering unwillingness and inability to mi-
grate, which is widely documented in the technical literature (Hauer et al., 2019). For
example, previous studies on Bangladesh have indicated that residents of affected regions
display a complex coping response to hazard, which may not trigger migration (Hutton
& Haque, 2003; Barman et al., 2012). Should one be willing to migrate, the route to mi-
gration is still hampered by socioeconomic factors, where the poorest and least mobile
will be “trapped populations” (Black, Bennett, et al., 2011).

In addition, the model neither accounts for cascading effects in environmental mi-
gration nor for return migration (Hauer et al., 2019). As large populations are displaced
due to environmental change to a new region, they may conflict with existing residents
who may see their economic resource base threatened (Reuveny, 2007). Such a conflict
may, in turn, trigger consequent migrations in a cascading effect. Displaced people may
also express a desire to return to their homes, as seen for example among New Orleans’
residents who returned to New Orleans after Hurricane Katrina for a sense of place (Chamlee-
Wright & Storr, 2009). Both cascading effects and return migration will ultimately con-
tribute to a richer landscape of migration patterns, in which local effects of environmen-
tal change in any region will have global consequences.



119 Here, we propose a mathematical model to study migration patterns due to envi-

120 ronmental change that seeks to overcome these limitations. Each region is treated as a
121 node in a weighted network (Estrada, 2012), whose directed links represent migrations
122 between regions. We encapsulate demographic and geographic data in each node through
123 the population and position of the corresponding region. The population of a region may
124 increase or decrease due to incoming or outgoing links, respectively. The migration rate
125 along each link is controlled by the population of the endpoints, as well as the popula-
126 tion of any other regions that is geographically closer to the origin than the destination,
127 following the radiation model (Simini et al., 2012). The migration flux is then computed
128 by multiplying the corresponding rate by the population of the origin that is willing and
129 able to migrate under the effect of environmental change.

130 Different from the approach of Davis et al., 2018, the model contains one param-
131 eter that captures baseline migration between regions, in terms of the fraction of lifetime
132 migrants who are born in a region and live their lives in another region. The presence
133 of environmental change is modelled through a localized shock onto this baseline param-
134 eter. The more severe is the shock, the larger is the fraction of people that could be dis-
135 placed in a region, thereby changing the global landscape of migration patterns. Adapt-
136 ing techniques from the study of vulnerability and leadership in network dynamical sys-
137 tems (Fitch & Leonard, 2015; Porfiri & Frasca, 2018; Pagnier & Jacquod, 2019), we pro-
138 pose a sensitivity analysis to examine the specific effect of a local shock on global mi-

130 gration patterns. In this context, we apply a perturbation at a given node (that is, an
140 increase in the number of individuals who are willing and able to migrate) and study its
14 cascading effects in any other node. We introduce a resilience index to measure the ex-
142 tent by which a localized perturbation induces migration everywhere in the network.

143 By linking the results of the resilience analysis with predictions about the spatial
144 distribution of environmental change, we quantify the extent of the potential threat on
145 migration patterns and offer long-term predictions. For example, the same average SLR
146 for a given country may trigger widely different migration patterns, depending on how
17 the population is distributed between coastal and inland regions and between rural and
148 densely-populated urban areas. We focus the analysis on the effect of SLR on internal
149 migrations in Bangladesh, demonstrating complex inter-dependencies between SLR dis-
150 tribution and migration patterns between different regions.

151 2 Data and methods
152 2.1 Formulation of the migration model

Our modeling approach begins by partitioning the overall geographical area where
environmental change and the resulting migration take place into N regions, correspond-
ing to the network nodes. At each node, we measure the population at discrete time in-
stants separated by a unitary time step; the population in the i-th region at time k is
denoted as n;(k). By assuming that birth and death rate balance each other and that
there is not an influx from or outflux toward other areas, we can write the following con-
tinuity equation to predict the time-evolution of the population in the network:

N N
ni(k+1) = ni(k) =Y _J(G =i k)= > J(i = j, k), (1)

j=1 j=1

153 where J(i — j, k) is the migration flux from origin ¢ to destination j in the time inter-
154 val UC, k 4+ 1).

To complete the system of equations and afford predictions of environmental mi-
grations, we must relate the migration fluxes to the populations and some salient param-
eter of environmental change through constitutive equations. We propose the following



155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

constitutive equation of the generic flux:
J(i = j, k) = n”(k)rij(n(k)). (2)

Here, n*(k) < n;(k) is the number of people living in region ¢ at time &k that could mi-
grate in the time interval [k, k+1) (superscript “m” stands for “mobile”); n(k) is a vec-
tor that aggregates all the populations at time k; and 7;;(n(k)) € [0, 1] is the fraction
of the mobile population of origin 7 which chooses j as the destination, which we name
the migration rate.

We measure the mobile population in each of the N regions with respect to the ini-

tial population at time 0, that is, we introduce N parameters aq,...,ay € (0, 1), such
that

(k) = ni(k) — a;ni(0). (3)
The parameters a1,...,ay € (0,1) are used to capture the effect of environmental change,

whereby affected regions will register an increase in the fraction of inhabitants that will
try to move, that is, a reduction in the corresponding parameter values. In our model-
ing approach, environmental change causes an increase in the number of people who are
willing and able to move: whether or not the migration will take place depends on de-
mographic and geographic data that involved the entire network. To minimize the num-
ber of fitting parameters, we hypothesize that in the absence of environmental change
ap = --- = ay =: ag, where «aq is the baseline value.

Demographic and geographic data contribute to the value of all the r;;(n(k))-s for
i,j=1,...,N. We take r;;(n(k)) to be equal to the probability of migration obtained
from the radiation model (Simini et al., 2012), which relates migration tendency from
an origin to a destination to the populations of both these regions as well as the pop-
ulation of any neighboring region. Specifically, we set

n;(k)n; (k) iy 7& j
rij(n(k)) = (ni (B g (0)+ S, 70 (8)) (e (B4 Sy, me(R)) : "
YL, k)’ otherwise,

where Mj ={l#£i:dy< dij} is the set of all the regions which are closer to the ori-

gin than the destination, with d;; being the distance between the centroids of districts

i and j. In the original radiation model, (4) is derived under the premises that an in-
dividual will select its migration destination on the basis of better life opportunities, while
seeking to remain close to the origin. In this vein, the summation in the denominator

of (4) over the neighbors accounts for intervening opportunities that should be weighted
during the decision process.

The structure of the model equations leads to the following three properties, which
are easy to verify:

1. The total population is constant, that is,

N N
an(k‘) = Zni(O), for all k. (5)
i=1 i=1

This property follows directly from the continuity equation in (1) by summing over
i.
2. Foralli=1,..., N, and for all times k,

This property follows from the fact that the outflux at time k£ can never exceed

n™(k).

2
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3. The probability of not migrating at time k can be computed from the radiation
model as r;;(n(k)) = n;(k)/ (Zf\il nl(k)), thereby yielding

N N
rii(n — 211 (k) —ni(k) or all i
; i (n(k)) SR for all 4, k. (7)

Jj#i

We utilize the migration model to predict the populations in a network at the steady-
state, starting from given initial conditions for the populations n(0),...,nx(0), a cho-
sen distribution of aq,...,ay (encompassing changes with respect to the baseline value
ap), and prescribed geographical distances between each pair of nodes d;; with 4,5 =
1,...,N. This step is simply executed by running the recursion (1) with constitutive equa-
tions (2), specified through (3) and (4). By comparing the steady-state populations with
the original populations, we assess the extent of net migration within the network.

We note that r;;(n(k)) depends on demographic and geographic data, without ex-
plicitly accounting for the size of the time step, whether it is one year or five years, for
example. The derivation by Simini et al., 2012, does not explicitly include time, such that
probability of migration is intended with respect to the time scale of the migration pro-
cess itself. Should the decision process by an individual unfold on the time scale of five
years, this number should be intended as the probability of migrating within five years
and a simulation conducted with a resolution of one year should artificially reduce the
probability of migration by a factor of five. In our simulations, this aspect has a limited
role, whereby we always focus on the equilibrium where influxes and outfluxes are com-
pletely balanced, that is, k — 400. The same predictions would be obtained by directly
solving (1) with n(k + 1) = n(k) =: @ and considering (5), that is, by setting the left-
hand-side to zero.

2.2 Analysis of the migration model

To facilitate the study of the proposed mathematical model of migration, we in-
troduce the matrix function Q(-) with zero-column sum, whose ij-th element is

Tji(a’)a lfl#jv
17 = a;— a . 8
Qus(a) {12%{\[11 L otherwise, (8)
=19
where a is an arbitrary vector, with components ay,...,ay. By accounting for (7), we
write the model equations as
n(k+1) = (In + Q(n(k)))n(k) — Q(n(k))diag(a)n(0), (9)

where Iy is the identity matrix, diag(-) is the diagonal form of a vector, and « collates
all the values aq,...,an.

As a first step in the analysis of migration patterns, we perform a sensitivity anal-
ysis by increasing the number of mobile individuals in the generic region ¢ by one with
respect to the baseline value «g, such that, n™ (k) = n(k) — aon(0)+e; where ¢; is the
vector of all zeros except of a one at position i. The perturbation will modify the equi-
librium 7 corresponding to a; = --- = ay =: ag into 7y + vV, where v*) collates
the (zero-sum) changes in the population at the equilibrium for all the nodes in the net-
work due to the perturbation at node 1.

By linearizing (9), we establish

v (k+1) = (IN + Q(Mo) + Q (7o, Ty — aon(()))) v (k) + Q(mo)e:, (10)
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where Q(,-) is a matrix function with zero-column sum, whose generic element is com-
puted as

N
- 80,
Qij(a,b) = %éin)

=1

bi, (11)

a

for any pairs of vectors a and b. The expression of (11) can be explicitly obtained by car-
rying out the derivatives.

We can compute the steady-state value 7 of (10), either as the limit as k — +o0
or simply solving for v(k+1) = v(k) with a zero-sum perturbation. By studying 7(*),
we establish how a small increase in the mobile population of a region may trigger com-
plex migration patterns throughout the network. As a result, one of the regions will see
an increase in the number of incoming migrants and another may register a decrease in
the population. We quantify the extent of these effects throughout the network by sum-
ming the absolute values of all the variations in the population to obtain Hﬂ(i) H1

By comparing the values of Hﬁ(i) H1 for different indices i, we can evaluate resilience

to a localized shock anywhere in the network. The higher this number is, the stronger

will be the global effect caused by a localized shock on migration patterns. To present
results in a normalized manner, we calculate “resilience” to environmental change at re-
gion ¢ as v

B max{“?(l)Hl}i:l - ||§(z)||1
Pi = - N - N (12)
max {[[79] },Z, —min {7},

Such a sensitivity analysis offers insight into the relative role of each network node
on migration patterns, under the premise that only a small fraction of the population
will be affected by a shock. To overcome this approximation, we should simulate the com-
plete nonlinear model (9) with a large perturbation. Due to the nonlinearity of the prob-
lem, the superposition principle does not apply and we should consider at once all the
perturbations that are applied throughout the network. Hence, the nonlinear analysis
requires to increase the number of mobile individuals as n™ (k) = n(k)—agn(0)+n™"°,
where the vector n™ 7 collates the estimated number of people that could become en-
vironmental migrants at each node (superscript “m-ec” identifies “mobile” population
due to the “environmental change”). Finally, by subtracting 7y from the resulting steady-
state solution 7, we can estimate the (zero-sum) variations in the population due to en-
vironmental migration.

2.3 Demographic and inundation data in Bangladesh

The administration of Bangladesh is organized in two main levels: divisions and
districts. Based on the 2011 Census (Bangladesh Bureau of Statistics 2015, 2011 Pop-
ulation and Housing Census, 2011), Bangladesh had seven divisions (Bengali: bibhag),
each of them further divided into districts (Bengali: zila), for a total of 64. In the fol-
lowing analysis, the censused population in 2011 for each division and district is used
as the initial population n(0) in our model. The 2011 Census also contains data on life-
time migration at division level. Specifically, for each ordered pair of divisions, we ex-
tracted the number of individuals born in a division of origin that became resident in
a division of destination.

The impact of SLR on Bangladesh is potentially disruptive, since 41% of the to-
tal population lives in areas where the elevation is lower than 10 m (Neumann et al., 2015).
To quantify the population in each district that could be affected by SLR in 2050, we
use the estimations made by Davis et al., 2018. These estimations were obtained by first
retrieving an inundation map which combined elevation data taken from the Shuttle Radar
Topology Mission for Bangladesh (NASA Shuttle Radar Topography Mission (SRTM)
Version 3.0 Global 1 arc second Data Released over Asia and Australia, 2008) with SLR
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Figure 1. Tuning of the parameter ao of model (1)—(3) using division-level lifetime migra-
tion data: plot of the R? value between the pairs predictions/data and the bisectrix (left panel).
Comparison between migration fluxes predicted by our model with cg = 0.704, correspond-

ing to the maximum value of R?, and division-level lifetime migration data (right panel). Each
point corresponds to the pairwise log-transformed flux between divisions; given a flux x, we plot

logyo(x +1).

projections (Intergovernmental Panel on Climate Change, 2013). Then, the inundation
map was overlaid on the 2010 Gridded Population of the World (GPWv4) dataset (Center
for International Earth Science Information Network - CIESIN - Columbia University,
2016), adjusted according to the projected population of Bangladesh in 2050 (United Na-
tions, Department of Economic and Social Affairs, Population Division, 2015), to finally
gather the population that is expected to be inundated in each district. We collate these
values in the vector n™~°¢ with NV = 64 entries, of which 21 are different from zero in
correspondence to potential environmental migration from inundated districts. From a
modeling perspective, this vector consolidates the entire effect of environmental change,
thereby serving as the sole input to predict migration patterns.

2.4 Calibration of the migration model on 2011 division-level migration
data

As a baseline for studying the effect of environmental change, we calibrate the model
with respect to division-level migration data from (Bangladesh Bureau of Statistics 2015,
2011 Population and Housing Census, 2011) (N = 7). We hypothesize a common value
for aq,...,an equal to ag, which we identify from the data. We set the initial popula-
tion in each of the seven divisions from the 2011 Census data and use geographic dis-
tances between the centroids of divisions computed from Davis et al., 2018, to implement
the model as a function of ap. Model output is the vector @ of length equal to seven, from
which we calculate the 49 values of migration fluxes (7; — agn;(0))r;; (%), with r;; (%)
given by (4).

For each pair of origin and destination, data are log-transformed and compared with
the actual flows between divisions taken from (Bangladesh Bureau of Statistics 2015, 2011
Population and Housing Census, 2011). By varying ag from 0 to 1, in steps of 0.001, we
determine the value that maximizes the R? value between the pairs predictions/data and
the bisectrix (R? = 0.739, p < 0.001), see Figure 1. While it might be preferable to
calibrate at a finer spatial resolution and over a time window, data availability challenged
pursuing a different approach. A similar analysis has been, in fact, reported by Davis
et al., 2018, although with the different goal of validating the fluxes in the radiation model
against lifetime migrants, prior to examining the effect of environmental change.



278 3 Results and discussion

279 We articulate the assessment of the severity of the potential threat of SLR on Bangladesh
280 in three sequential steps.

281 First, we apply the sensitivity analysis to district level data from 2011 Census (N =
282 64), thereby computing the resilience in (12). To delve into the mechanisms underlying
283 a differential resilience of the country to environmental change, we perform a correla-

284 tion analysis linking the resilience to a localized shock in a district with the population
285 in its neighboring districts. Neighbors are defined to be those districts whose centroids

286 are within a distance that is less than the average distance between any two districts (207 km).
287 A positive correlation would indicate that highly populated regions could shield migra-
288 tion from a neighboring district, whereas a negative correlation would reveal cascade ef-
289 fects in migration patterns.

200 Second, we correlate the values of the resilience indices with the corresponding af-
201 fected populations n™~°¢ in the inundated districts (N = 21) by 2050 (estimated by

202 Davis et al., 2018). Through this analysis, we seek to evaluate the overall resilience of

203 Bangladesh to SLR. A positive correlation would indicate the more favorable scenario

204 in which inundated regions have a more peripheral role on migration patterns, such that
295 people who will be placed on the move will not trigger cascading migrations through-

206 out the country. On the other hand, a negative correlation would point at a more dra-

207 matic scenario, in which SLR will impact critical districts with respect to global migra-
208 tion patterns.

200 Third, we perform a full nonlinear analysis of migration patterns that accounts for
300 the simultaneous SLR of the 21 inundated districts. Toward this aim, we estimate the

301 steady-state population in all the 64 districts, using the 2050 projected populations as

302 the initial condition. These values are compared with the population 7y that are pre-

303 dicted from the same initial conditions, but in the absence of the potential environmen-
304 tal migrants n™°°.

30 3.1 The location of environmental change will have a differential effect
306 on migration patterns in Bangladesh

307 We begin by examining the resilience of Bangladesh to localized shocks in each of
308 the 64 district. The map in Figure 2 suggests that shocks in districts in the north, east,
300 and south will have a lesser impact on migration patterns than central and western dis-
310 tricts. However, we should acknowledge a rich spatial dependence, with some of the most
a1 critical districts that neighbor less influential regions. The highest value of resilience is

312 registered in the capital district of Dhaka in the center of the country, while the lowest
313 is in the central-western district of Narail. Notably, these rankings are robust with re-

314 spect to a simplistic inclusion of external migration, in the form of an additional, vir-

315 tual district that is equally accessible from all the 64 districts (see Supporting Informa-

316 tion S1 and Figure S1).

317 The correlation analysis in Figure 2 indicates that resilience to environmental change
318 in a district is inversely related to the population of neighboring district (R? = 0.340,
319 p < 0.001). The more a district is surrounded by highly populated districts, the stronger

320 are the resulting migration patterns within the country. This suggests the possibility to
321 mathematically anticipate cascading effects, in which people affected by environmental

322 change will first migrate to neighboring district, thereby triggering further migration to
323 the rest of the country. These cascading effects have been documented in the literature
324 (Hauer et al., 2019) and attributed to potential conflict between migrants and existing

35 residents, who may experience lower quality of life due to the incoming migration.
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boring districts (right panel).

The correlation analysis in Figure 2 utilizes a common value «q, but equivalent pre-

dictions would be obtained by accounting for small heterogeneity in the values of oy, ..., an

with respect to ag, as discussed in Supporting Information S2 and Figure S2. In par-
ticular, variations of up to 10% in as, ..., ay never confound the significance of the cor-
relation and the resulting changes in the slope of the fit are within 5% of the nominal
value for a common ay.

3.2 The geography and demographics of Bangladesh could magnify the
threat posed by sea level rise on internal migration

The map in Figure 3 illustrates the number of people who will be impacted by SLR
in 2050. Districts in the south will be mostly impacted by SLR, with the largest frac-
tion in the central-southern districts of Shariatpur, Munshiganj, and Narayanganj, where
over 335 thousand people will be affected.

Although the districts that are expected to be impacted by SLR are not those that
yield the lowest resilience from Figure 2, their effect is expected to be dramatic. From
the correlation analysis in Figure 3, we evidence a negative correlation between resilience
to localized shocks and the affected population (R? = 0.223,p = 0.031). SLR is pre-
dicted to affect large segments of the population living in critical districts, which will trig-
ger global migration patterns throughout the country.

The extent of the effect of SLR can be visualized in Figure 4. Therein, we demon-
strate that a unitary increase in the mobile population of Shariatpur (the most affected
district by SLR in 2050) will trigger mobility in three northern districts toward western
districts. The capital of Dhaka should register an outflux of people due to the increased
mobility of the population in Shariatpur. This possibility might appear counterintuitive,
based on predictions of previous models (Davis et al., 2018; Hassani-Mahmooei & Par-
ris, 2012; Chen & Mueller, 2018) and empirical evidence by Kartiki, 2011, suggesting that
migrants prefer to migrate to urban areas.
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Figure 4. Normalized net migration flux in each district caused by a unitary increase in the
mobile population in Shariatpur (left panel) and Cox’s Bazar (right panel) from the sensitivity

analysis.
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Figure 5. Variation in the population of each district in Bangladesh due to SLR in 2050 pre-
dicted by Davis et al., 2018, (left panel) and our proposed modeling framework (right panel).
The sum of the variations (in absolute value) for the left panel is 992 thousands and for the right
is 1,354 thousands.

The basis of this surprising result is related to the gradual effects of SLR, which
drive the system to a new equilibrium. Specifically, our analysis focuses on steady-state
migration patterns that will emerge in response to the increased tendency of people to
move from inundated areas. While in a single time-step, highly populated districts will
tend to attract more migrants, as time evolves this incoming population might tend to
diffuse to neighboring regions, until reaching the new equilibrium. For example, a one
time-step prediction in (1) about the effect of the shock in Shariatpur (corresponding
to a unitary increase in the mobile population) will consist of an increase of 0.048 on Dhaka’s
population, in contrast with the steady-state decrease of 0.224 shown in Figure 4.

The same phenomenon is not observed in response to environmental change in the
peripheral region of Cox’s Bazar shown in Figure 4, where more than 23 thousand peo-
ple are estimated to be impacted by SLR. In this case, the neighboring districts are not
expected to see their population change, while the central districts of Dhaka, Rajbari,
and Narsingdi will register an increase in their population. This long-range phenomenon
should be explained as a cascading effect, in which people from Cox’s Bazar will begin
moving to other south-eastern districts, prompting migration of local residents toward
neighboring districts and ultimately gravitate toward Dhaka, Rajbari, and Narsingdi.

3.3 Sea level rise will trigger migration patterns involving the whole coun-
try

In Figure 5, we compare the results of the model by Davis et al., 2018, with our
predictions, starting from the same initial populations in 2050 and accounting for the
same values for the affected populations in the inundated districts (a total of 816 thou-
sand people over 21 districts). The two models anticipate a comparable net change in
the population of all the districts (992 versus 1,354 thousands) and are in agreement in
the identification of the districts which will see their population reduce the most (Narayan-
ganj, Shariatpur, and Munshiganj).
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District Net flux Net flux Rank (Davis Rank
(Davis et al., (proposed et al., 2018) (proposed

2018) model) model)
Dhaka* 207,373 —34,060 1 11
Narayanganj —95,003 —126,694 2 1
Shariatpur —80,916 —124,444 3 3
Barisal —80,669 —64,252 4 6
Munshiganj —77,916 — 124,598 5 2
Madaripur 61,791 —-937 6 60
Chandpur -37,711 —70,998 7 4
Jhalakati 35,546 9,198 8 36
Satkhira —32,287 —19,603 9 23
Khulna —28,148 —9,982 10 33
Cox’s Bazar —25,680 —16,366 11 24
Bagherat 24,860 12,263 12 28

Table 1. Net variations in the population due to SLR in 2050 in selected districts. Comparison
between predictions by Davis et al., 2018, and our proposed modeling framework; the rank is

based on the absolute value of the variation. An asterisk identifies a non-inundated district.

However, the predictions of the destination of the migrations are radically differ-
ent. The model by Davis et al., 2018, predicts that SLR will cause a massive flux toward
Dhaka, which will increase its population of more than 207 thousand people, and north-
ern and south-eastern districts will be unaffected by the internal migration. In contrast,
our mathematical model predicts that migration will involve the whole country, includ-
ing the northern districts, and that no district will register an increase in population above
67 thousand people. Our model also suggests that Dhaka will see its population reduce
by about 34 thousand people. Differences between the two model predictions are further
clarified in Table 1.

With respect to the model by Davis et al., 2018, the proposed approach presents
the following differences. First, the model by Davis et al., 2018, assumes that environ-
mental change will cause the migration of every individual in an affected region, with-
out considering unwillingness and inability to move by many people. In our model, we
take as input the fraction of people that could migrate in an affected region and predict
the ultimate migration. Second, the model by Davis et al., 2018, distributes migrants
to neighboring regions, without accounting for either return migration or cascading ef-
fects, which are key factors in driving our model to its new equilibrium. Third, the model
by Davis et al., 2018 is not formulated in terms of a continuity equation in which mi-
gration fluxes are combined to calculate the variations in the population throughout the
network. As a result, it is tenable that the population distribution associated with the
approach by Davis et al., 2018 does not constitute an equilibrium, from which there will
be additional influx or outflux of people due to the immediate or long-term consequences
of environmental migration.

The latter difference between our work and the approach by Davis et al., 2018 could
be further developed by examining the transient dynamics of our model. In Figure 6,
we show the population in the four districts of Dhaka, Narayanganj, Shariatpur, and Mun-
shiganj as a funcion of time; these districts are selected based on Table 1, which defines
them as the most critical districts for our model and the one by Davis et al., 2018. In
all of these simulations, we used as initial conditions the predicted population at the equi-
librium in the absence of inundations and, at the first time-step of the simulation, we
modified the vector a to capture the simultaneous SLR of the 21 inundated districts. Re-
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Figure 6. Transient population dynamics in four select districts due to SLR. The blue lines
correspond to the instantaneous inundation of all the 21 districts, whereas the red lines cor-
responds to their gradual inundation over 21 time steps, with a linear increase from 0 to the
desiderd final value. The black line corresponds to the case in which one district was inundated
at each time-step, averaged over 100 permutations, with the extrema of the shaded region corre-

sponding to one standard deviation.

sults presented in Figure 6 confirm the intuition that the district of Dhaka might undergo
an initial increase in its population, which would then reduce as time progresses. The
same response is not visible for the other three districts, which are directly impacted by
inundations and steadily register a decrease in their population.

These predictions depend on the modality that we used to force the system to a
new equilibrium, whereby changing the spatio-temporal patterning of SLR-driven inun-
dations would lead to a different transient dynamics. To explore this aspect, we exam-
ined two alternative inundation patterns. Within the first pattern, one district was in-
undated at each time-step, taking 21 time-steps to inundate the whole set of districts
(a total of 100 simulations was conducted to account for the randomness of the selec-
tion). Within the second pattern, the 21 districts were gradually inundated over 21 time-
steps, by linearly increasing the inundation from 0 to the desired final value correspond-
ing to the original analysis. In general, both of these two modifications delay and mit-
igate the migration process with respect to the original analysis. For example, in the dis-
trict of Dhaka, we observe that a gradual inundation would delay the peak in the pop-
ulation of 20 time-steps and reduce its magnitude of 32.14%. Randomizing the inundated
districts has an equivalent effect, although the extent to which the peak is delayed and
reduced depends on the specific temporal ordering of the inundated districts. A slightly
different scenario is recorded for the three other districts of Narayanganj, Shariatpur,
and Munshiganj, where any of the two modifications is responsible for a diffusion of the
migration over a wider time-window.

4 Summary and concluding remarks

Borrowing the words in Jasso, 2003, “Every year and at every age humans move.”
They move to pursue a better quality of life — as the Romans put it, “ubi bene, ibi Pa-
tria” (‘where one is well-off, there is one’s country’) — sometimes just to survive. Envi-
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a3 ronmental change from droughts, desertification, floods, earthquakes, and wildfire is be-

435 ing increasingly recognized as a key driver for mass migration (Kaczan & Orgill-Meyer,
436 2019). SLR, in particular, is expected to affect the life of more than 600 million people
237 living close to the coast, who could see their livelihood at risk and decide to migrate (Hauer

438 et al., 2019).

430 Here, we make a further step toward a universal model of human migration under
440 environmental change. Our migration model extends the promising approach of Davis
a1 et al., 2018 along several directions to anticipate salient phenomena that have been ex-
a2 tensively documented in the literature: unwillingness or inability to migrate, cascading
a3 effects on migration patterns, and return migration (Hauer et al., 2019). These exten-
aaa sions do not come at the expense of an increased complexity, whereby the model con-

s tains a single additional parameter that is used to capture the baseline tendency of peo-
446 ple to migrate, in the absence of environmental change. This is the only parameter that
a7 should be calibrated, before embarking on the predictions of migration patterns.

218 In principle, the modeling framework is applicable to a wide class of environmen-
a9 tal migration problems. Similar to Davis et al., 2018, we demonstrate the framework on
450 SLR in Bangladesh, using easily-available geographic and demographic data to draw pre-
451 dictions on internal migrations. Our findings point at a more complex interplay between
452 geography and demographics in shaping migratory fluxes due to environmental change
453 than Davis et al., 2018. Highly populated districts should not always experience increases
454 in population in response to environmental change occurring in lesser populated regions,
455 but may also see their population reduce. Likewise, lesser populated regions could reg-
456 ister further reduction or increase in their population, depending on where the location
457 of environmental change. We propose that the predictions of our model should be pre-
a8 ferred to those by Davis et al., 2018, in the study of SLR, whose impact will gradually
450 affect Bangladesh population, rather than drive immediately the system out of equilib-
460 rium.

a61 The present model is not free of limitations, which should be explored in further
462 studies.

463 1. During each time-step, we always assume that the hypotheses of the radiation model
464 by Simini et al., 2012 hold true. In particular, we hypothesize that only economic
465 factors drive the selection of the migration destination, thereby neglecting social
266 ties which could play a critical role in shaping migration patterns as evidenced by
167 Kartiki, 2011, for rural Bangladesh. This limitation might be addressed by inform-
468 ing the construction of the weighted network of the radiation model on the ba-

469 sis of social ties within communities. This modeling route could also assist in a

470 more detailed quantification of the opportunities that are offered by large cities,
an against rural areas. Whether these improvements will result into substantially dif-
an ferent predictions is presently unclear, whereby preliminary analysis on the het-
73 erogeneity in the baseline migration propensity seem to point at robustness of our
a7 model predictions against these unmodeled effects.

a7 2. In its present form, the model does not distinguish between recent and past mi-
476 grants in each district, which may be crucial in determining the real opportuni-

ar7 ties available to migrants in each district. This limitation might be addressed by
478 extending the model beyond a first-order difference equation to capture sedimen-
a79 tation in the migration process. In this vein, one should explore the possibility of
480 including memory in the migration rates.

481 3. Introducing a memory in the migration rates may also help resolve the ambigu-
a2 ity underlying the notion of return migration. In its present form, the model ac-
283 counts for return migration but does not offer a means to tease out their net ef-
484 fect. Specifically, from the flux between two districts, it is impossible to identify
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a8 individuals who migrate for the first time versus individuals who are returning to
286 their district of origin.

ag7 4. The model does not distinguish between capability and vulnerability as two dif-

488 ferent causes for the decision to migrate (Kaczan & Orgill-Meyer, 2019). The com-
289 plex interplay between these drivers might challenge the premises of the radiation
490 model, which does not distinguish between individuals in their decision process.

201 This limitation might be resolved through a further degree of refinement that par-
492 titions the affected population in classes.

403 5. The model does not account for within-region migration, which could play an im-
a0 portant role in migration patterns. For example, in Bangladesh, it has been pro-
405 posed that a relevant fraction of displaced people could attempt short-range mi-
496 gration (Fussell et al., 2014). This limitation might be addressed by teasing out

a07 the portion of individuals who decide not to migrate from those who choose to mi-
408 grate within the same district through an additional parameter to be identified

499 from experiments.

500 6. The model does not allow for a detailed treatment of external migration, in the

501 form of crossing the boarders of the country through ground transportation or air-
502 plane. Preliminary analyses on external migration to a virtual destination that

503 is equally accessible from any district point at a secondary effect of the resilience
504 of the country to localized shocks. Future research should explore whether this

505 claim generalizes to more accurate representations of external migration.

506 Whether the simplicity of the modeling framework should be regarded as a limi-

507 tation or a strength depends on the envisioned application of a mathematical model of
508 environmental migration. The proposed approach requires the calibration of a single pa-
500 rameter to capture baseline migrations, which avoids overfitting the data, but comes at
510 the cost of a limited temporal and spatial resolution of baseline migration throughout

511 a country. Likewise, the prediction of environmental migration patterns is based on the
512 number of individuals in any region who could become mobile due to environmental change.
513 In principle, this number could account for economic, political, social, and demographic
514 factors that could identify the most impacted individuals (Black, Adger, et al., 2011).

515 However, working with the Bangladesh case study, we chose to estimate this number based
516 on the extent to which each district will be inundated. This simplistic choice allows for
517 a first assessment of the effect of environmental change, upon which one can determine
518 the effect of specific, intervening factors.
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