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Abstract: The energy consumption of buildings at the city scale is highly influenced by the
weather conditions where the buildings are located. Thus, having appropriate weather data is
important for improving the accuracy of prediction of city-level energy consumption and demand.
Typically, local weather station data from the nearest airport or military base is used as input into
building energy models. However, the weather data at these locations often differs from the local
weather conditions experienced by an urban building, particularly considering most ground-based
weather stations are located far from many urban areas. The use of the Weather Research and
Forecasting Model (WRF) coupled with an Urban Canopy Model (UCM) provides means to predict
more localized variations in weather conditions. However, despite advances made in climate
modeling, systematic differences in ground-based observations and model results are observed
in these simulations. In this study, a comparison between WRF-UCM model results and data
from 40 ground-based weather station in Austin, TX is conducted to assess existing systematic
differences. Model validations was conducted through an iterative process in which input
parameters were adjusted to obtain to best possible fit to the measured data. To account for the
remaining systemic error, a statistical approach with spatial and temporal bias correction is
implemented. This method improves the quality of the WRF-UCM model results by identifying the
statistic properties of the systematic error and applying several bias correction techniques.

1 INTRODUCTION

Studies comparing actual, measured building energy consumption and model-predicted energy
consumption indicate that there can be significant differences between these two sets of values
(Torcellini et al. 2004; Coakley, Raftery, and Keane 2014; Karlsson, Rohdin, and Persson 2007).
These differences can be due to variations in a wide range of input variables, such as weather
conditions, building systems components, occupant and internal loads and energy-influencing
occupant behaviors (De Wilde 2014). To improve the performance of building energy models,
uncertainties within the input data must be better addressed. One of the most important and
impactful input parameters utilized by building energy models is the weather data. U.S. weather
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data used for building simulations typically originates from measurements taken at ground-based
weather stations located at airports (Stewart and Oke 2012). Given that airports are not typically
directly adjacent to city centers where most commercial and residential buildings are located, the
weather data collected at airports does not necessarily represent the actual weather conditions
at the location of a studied building. Therefore, methods to enable a better understanding of local
weather conditions for buildings can significantly improve the accuracy of the weather data input
to energy models.

There are several studies (Bhandari, Shrestha, and New 2012; Salamanca et al. 2011; EPA 2017;
Crawley 2008) that highlight the importance of utilizing local weather data for building energy
modeling purposes. For example in a study done by Bhandari et al. (Bhandari, Shrestha, and
New 2012), two different weather datasets were compared as the inputs for energy model: j) data
available from public providers, and ii) data from service providers that provide historical weather
data at a 15-40 km? grid across the globe. The comparison showed that depending on the
provided weather data, annual modeled building energy consumption can vary by 7% and
monthly building loads can vary by +40%. In another study (Gros, Bozonnet, and Inard 2014), the
authors emphasises on the importance of high resolution weather data and simulation of the
different physical processes that exist in urban areas. A new numerical approach has been
developed to assess building energy demand, including microclimate interactions on buildings.
Considering that the cost of installing a significant number of ground-based weather stations to
capture variations in climate conditions in a small geographic region is quite high, it is beneficial
to explore the use of lower cost methods to capture the spatial variations in weather parameters.

To capture localized climate characteristics in urban areas, the Weather Research and
Forecasting (WRF) model (Skamarock et al. 2005) can be used. WRF is a physics-based
atmospheric model that, given initial atmospheric conditions over a 3D domain (e.g., temperature,
relative humidity, wind speed and direction, and precipitation), numerically solves for the future
state of the atmosphere. In this study, the WRF solves for atmospheric variables at a grid
resolution down to 1 km over a 24-hour forecast window. To account for urban effects on the local
climate, a single-layer urban canopy model (UCM) (Bueno et al. 2014; Chen, Yang, and Zhu
2014) is coupled with WRF model. Some features of UCM include, shadowing from buildings,
reflection of short and longwave radiation, and a wind profile in the canopy layer and multi-layer
heat transfer equation for roof, wall and road surfaces (Kusaka and Kimura 2004).These features
as facilitated by providing urban parameters such as the land use and land cover information,
percentage impervious surface, building dimensions, the surface albedo, emissivity, and thermal
properties of materials used in urban construction as inputs into the model. Thus, UCM coupled
with WRF model can help to provide more accurate forecasts for urban regions.

In spite of the presence of detailed data which can be utilized as input into the UCM and WRF
models, model errors can arise from such sources as imperfect model representation of
atmospheric physics, incorrect initialization of the model or errors in the parameterization chain
(Ehret et al. 2012). In addition, in some locations of study, all required input data for the WRF and
UCM models may not be available or are unknown, thus in this case initial assumptions must be
made. As such, there is a need to investigate the presence of and correction for systematic biases
in the WRF/UCM model results to improve the accuracy of the simulated local weather conditions
resulting from the WRF/UCM model. In a study done by Christensen et al (Christensen et al.
2008), 13 regional climate models (RCM) were utilized with the European Centre for Medium
Range Weather Forecasting Reanalysis (ERA40). The results were compared to a high resolution
gridded observational dataset, to explore the systematic bias in simulated monthly mean
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temperature and precipitation. Although there are several studies done which utilize bias
correction of high resolution of regional climate models, they are mainly focused on correcting the
bias for hydrological aspects of the data (Berg, Feldmann, and Panitz 2012; Teutschbein and
Seibert 2012; Bum, Kwon, and Han 2015; Piani, Haerter, and Coppola 2010). To the best of the
authors’ knowledge, no research has considered bias correction of the WRF/UCM results
focusing on temperature.

In this study, a WRF/UCM model was developed for the city of Austin, TX. Given the significant
extreme heat events in terms of high levels of building energy consumption and the impacts of
these events on electric grid operations, this study focuses on three historical heatwave events
that occurred in Austin, TX in 2011, 2013, and 2017. The simulation results of the WRF/UCM are
compared to high-resolution ground-based measured weather data at 40 ground-based weather
stations. Utilizing these comparisons, two bias correction methods are assessed in terms of their
ability to reduce the error between measured data and model results.

2 METHODOLOGY

First, a dense network of measured data was obtained across the city of Austin, TX. Next the
WRF/UCM model was developed and simulated over three historical heat wave events of which
measured data also existed. Finally, the measured data and modeled data are compared, and
two bias correction methods are tested to improve the overall fit of the modeled and measured
data.

2.1 Observational weather data

Ground-based weather station data was collected from a dataset of 40 weather stations located
in the Austin, TX area (Figure 1). Most weather stations are installed at schools, stadiums and
businesses (Earth Networks 2014a). At each weather station, temperature (+/- 0.5 °C), humidity
(+/- 3.5%), wind direction (+/- 3 degrees), wind speed (+/- 3 kph), pressure (+/- 1.7 hPa), and
rainfall (+/- 1%) are measured (Earth Networks 2014b). All the data undergo data quality control
procedures and are assigned a tag to represent the level of data verification (Earth Networks
2014a). Data was available from 2011 to 2018, however not all 40 weather stations were collecting
data at any given time. For each heatwave event considered, the number of weather stations with
hourly measured data are reported in Table 1.

Table 1. Number of available ground-based weather stations (GBWS) in Austin during the considered
historical heatwave events

Heatwave event date Number of available

GBWS
8/28/2011 13
8/8/2013 14
7/24/2017 17
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Figure 1. The location of all available ground base weather stations for the studied heatwave events

2.2 WRF and UCM model configuration

WREF forecasts are generated using 4 nested domains with a horizontal grid spacing of 36 km, 12
km, 4 km and 1 km. The outer domain comprises most of the U.S. and the inner domains consist
of the central U.S., the state of Texas, and the city of Austin respectively. The boundary conditions
of the outer domain and the initial conditions are provided by the archived data of the Global
Forecast System of the NOAA’s National Centers for Environmental Prediction (NOAA n.d.). The
WRF model is initialized for each heatwave event starting at 12 UTC (7:00 a.m. CDT) and
forecasts are generated hourly for a 24-hour forecast horizon.

The physical processes such as the exchange of heat, momentum, and water vapor in urban
environment in mesoscale model can be better represented when the WRF model is coupled with
an UCM model (Bueno et al. 2014; Chen, Yang, and Zhu 2014). The UCM model divides the
urban area into three urban categories, namely (a) low-intensity residential (constructed materials
account for 30 to 80 percent of the cover), (b) high-intensity residential (constructed materials
account for 80 to 100 percent of the cover), and (¢) commercial/industrial, which includes all other
highly developed areas not included in the (b) high-intensity residential (Tewari et al. 2007). The
UCM model has 51 urban parameters representing land use, anthropogenic heat, building
dimensions, surface albedo, emissivity, and thermal properties of materials for each of the three
urban categories. In this study, all UCM parameters are kept as default values (Skamarock et al.
2005), with the exception of the building height, roof surface albedo, wall surface albedo, and the
Akanda parameter. Table 2 provides the values for these parameters utilized in the models. These
values are modified for better model performance and according to the Austin, TX urban
landscape. Together, the WRF model coupled with the UCM improves the depiction of the lowest



levels of the atmosphere in consideration of urban heat effects associated with the city of Austin,
and should result in improved model-based forecasts for urban regions.

Table 2. List of UCM parameter values that differ from WRFv3.9 (Skamarock et al. 2005) default
values(Kusaka and Kimura 2004).

Parameter Value Unit

Roof level (building height) 5.0,6.5,6.5 [m]
Roof surface albedo 0.2 -
Wall surface albedo 0.2 -
Road surface albedo 0.2 -
Akanda parameter 0.3,0/4,05 -

Note: Multiple entries indicate values respectively for low-density residential,
high-density residential, and commercial/industrial urban fraction

2.3 Bias Correction Methods

The hourly WRF/UCM results are first compared with the measured data for each of the three
heatwave events individually. To improve the resulting WRF/UCM model prediction, two statistical
techniques, including linear regression and an average delta correction method are investigated
to improve the WRF/UCM results and reduce the bias of the modeled results as compared to the
measured data. For each considered bias correction method, for each heatwave event, 70% of
the stations’ data are used as the training data to develop the model. The remaining 30% of the
stations’ data are kept as a control set for use in holdout cross validation, to determine the fit of
the model to out-of-sample data. A possible combination of stations are considered for the control
and training data from the set of available stations for each event. The WRF/UMC results are then
updated using the resulting equation and compared with GBWS which are hold as a control data
set. . The total root mean squared error (RMSE) values for the control stations are then compared
to the original WRF/UCM results. This value indicates the impact of the bias correction method
on the agreement of the WRF/UCM model results with the measured data. The results of the two
methods are then compared to determine which of these techniques performs better for the
heatwave events considered in this study.

2.3.1 Linear regression

In this bias correction method, a linear regression model is created using the training dataset,
which includes a predictor variable as WRF/UCM model temperature results and a dependent
variable as measured temperature at the GBWS. A linear regression line has an equation of the
form Y = a + bX, where X is the WRF/UCM model temperature results and Y is the dependent
variable considered as measured temperature at GBWS. The slope of the line is b, and a is the
intercept. To calculate a and b, the method of least squares has been applied.

2.3.2 Average delta correction

In this bias correction method, the hourly temperature difference between the WRF/UCM results
and measured data in the training dataset are calculated for all available stations for each event.
Next, the average delta value is calculated for each time span considering all stations. The
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WRF/UCM results for the control stations are then adjusted by adding the delta value for each
time span to WRF/UCM results.

2.3.3 Methods comparison

As the RMSE values for the control stations were calculated for both linear regression and
average delta correction methods, the applicability of these methods is compared considering the
percentage of RMSE improvement for each method.

3 RESULTS AND DISCUSSION

3.1 Linear regression

For each of the three heat wave events, the hourly measured data at each ground-based weather
stations are plotted versus the WRF/UCM results for the training dataset and three linear
regression equations are fitted to the modeled data as shown in Error! Reference source not
found.. An R-squared value of 0.87 to 0.9 is found, indicating a reasonably strong fit to the data.
We also note that the regression lines are close to that of the 1:1 lines shown in Error! Reference
source not found.. Using these equations for each event, the WRF/UCM results for the control
stations were modified accordingly and are compared to the measured data (Error! Reference
source not found.). The percentage of RMSE improvement due to the WRF/UCM bias correction
(Error! Reference source not found.) ranges from 2% to 37%, indicating that in all cases the
linear regression improved the resulting RMSE values. However, the percentage of improvement
varies by heat wave event considered.

Table 3. Comparison of RMSE values (i) before and (ii) after applying linear regression on WRF/UCM
results for three historical heatwave events

RMSE
Adjusted % Improve-
Date WRF/UCM WRF/UCM ment
8/28/2011 2.213 1.387 37%
8/8/2013 1.495 1.466 2%
7/25/2017 1.367 1.233 10%

As the ground-based weather stations are located in various locations spatially throughout the
city of Austin and also have different urban characteristics, e.g. urban fraction, land use, etc.,
choosing a different set of control stations affects the final linear equation and results. To address
this variability, all possible combinations of control stations from the available stations are thus
investigated to determine the range of the possible RMSE improvements for each combination.
Details of the results of this analysis for one heatwave event are included in this work for brevity.
The total number of available stations on 8/28/2011 is 13 stations; all possible combinations for
choosing four control stations from all available stations results in 715 cases. The same
methodology is applied for all 715 cases. The resulting RMSE improvement for all the possible
cases is shown in Error! Reference source not found.. The mean value of RMSE improvement
for all the cases is 43% with a standard deviation of 10%. This is slighting higher than the 37%
determined in Table 2.
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Figure 2. WRF/UCM hourly temperature results versus measured data during three heatwave events in
Austin. TX, including (a) 8/82013, (b) 8/28/2011, and (c) 7/252017. (Note: grey line = 1:1; red line = bias
correction linear regression line)
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Figure 3. Percentage of RMSE improvement by applying linear regression for 715 possible cases during
the 8/28/2011 heatwave event

3.2 Average delta correction

The average delta correction technique was applied for the three heatwave events. The RMSE
values before and after applying this method are compared in Error! Reference source not
found.. The percentage of RMSE improvement due to the WRF/UCM bias correction ranges from
31% to 54%, indicating that in all cases the average delta correction improved the resulting RMSE
values. In all three heatwave events, the average delta correction results in a larger improvement
in RMSE.

Table 4. Comparison of RMSE values (i) before and (ii) after applying the average delta correction on
WRF/UCM results for three historical heatwave events

Average delta correction

RMSE
Adjusted %
Date WRF/UCM WRF/UCM Improve-
ment
8/28/2011 2.180 1.010 54%
8/8/2013 1.495 0.860 42%
7/25/2017 1.367 0.948 31%

Similar to the linear regression model results, all possible combinations of control stations from
the available stations are then used to determine the range of the possible RMSE improvements
for each combination for the heatwave event on 8/28/2011. 715 combinations of control stations
are investigated; the average delta correction method is applied for each case (Error! Reference
source not found.). These results indicate that majority of the cases have 45% to 55%
improvement in RMSE. The mean value of RMSE improvement for all the cases is 51% with a
standard deviation of 7%.
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Figure 4. Percentage of RMSE improvement using the average delta correction method for 715 possible
cases during the 8/28/2011 heatwave event

3.3 Comparison of two techniques

Both techniques are then applied for all heatwave events. The ability of each method to improve
the RMSE values is reported in Error! Reference source not found.. Results indicate that overall
the average delta correction method performs better with a higher percent RMSE improvement
as compared to the regression method.

Table 5. Comparison of percentage improvement for average delta correction and linear regression bias
correction methods

Average Delta Correction Linear Regression
RMSE RMSE
Adjusted %o Adjusted %o
WRF/UCM WRF/UCM Improv- WRF/UCM WRF/UCM Improv-
Date ement ement
8/28/2011 2.180 1.010 54% 2.213 1.387 37%
8/8/2013 1.495 0.860 42% 1.495 1.466 2%
7/25/2017 1.367 0.948 31% 1.367 1.233 10%

4 Conclusions

A WRF model coupled with a UCM was used to simulate the local weather conditions in the city
of Austin, TX for three historical heatwave events which occurred in 2011, 2013, and 2017. These
results were compared to data collected from a dense ground-based weather stations network
located within the city. The resultant difference between the model and the measured data,
represented using RMSE, found that there are systemic errors between the simulated
temperature and the measured temperature data. This study aimed to reduce this error using two
bias correction methods. These include the average delta correction and linear regression
methods. For both methods, stations available for each heatwave event were divided into training
and testing sets. The outcomes for the both methods indicated that bias correction is capable of
improving model result agreement with measured data.
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To assess spatial variation, all combinations of training and testing datasets were investigated for
the heatwave events occurred in 2011. Considering all combinations, it is concluded that average
delta correction performs better. This suggests that biases in the UCM/WRF results can be
improved using these methods. To further improve these results, additional measured data and
additional simulation results across additional years of data could be used to further assess the
validity of the above-mentioned bias correction methods.
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