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Environmental performance of blue foods

Jessica A. Gephart1,20 ✉, Patrik J. G. Henriksson2,3,4,20, Robert W. R. Parker5,6,20, 
Alon Shepon7,8,9,20, Kelvin D. Gorospe1, Kristina Bergman10, Gidon Eshel11, 
Christopher D. Golden9,12,13, Benjamin S. Halpern14,15, Sara Hornborg10, Malin Jonell2,4,16, 
Marc Metian17, Kathleen Mifflin5, Richard Newton18, Peter Tyedmers5, Wenbo Zhang19, 
Friederike Ziegler10 & Max Troell2,4

Fish and other aquatic foods (blue foods) present an opportunity for more 
sustainable diets1,2. Yet comprehensive comparison has been limited due to sparse 
inclusion of blue foods in environmental impact studies3,4 relative to the vast diversity 
of production5. Here we provide standardized estimates of greenhouse gas, nitrogen, 
phosphorus, freshwater and land stressors for species groups covering nearly three 
quarters of global production. We find that across all blue foods, farmed bivalves and 
seaweeds generate the lowest stressors. Capture fisheries predominantly generate 
greenhouse gas emissions, with small pelagic fishes generating lower emissions than 
all fed aquaculture, but flatfish and crustaceans generating the highest. Among 
farmed finfish and crustaceans, silver and bighead carps have the lowest greenhouse 
gas, nitrogen and phosphorus emissions, but highest water use, while farmed salmon 
and trout use the least land and water. Finally, we model intervention scenarios and 
find improving feed conversion ratios reduces stressors across all fed groups, 
increasing fish yield reduces land and water use by up to half, and optimizing gears 
reduces capture fishery emissions by more than half for some groups. Collectively, 
our analysis identifies high-performing blue foods, highlights opportunities to 
improve environmental performance, advances data-poor environmental 
assessments, and informs sustainable diets.

The food system is a major driver of environmental change, emitting 
a quarter of all greenhouse gas (GHG) emissions, occupying half of all 
ice-free land, and responsible for three quarters of global consumptive 
water use and eutrophication3,6. Yet, it still fails to meet global nutrition 
needs7, with 820 million people lacking sufficient food8 and with one in 
three people globally overweight or obese9. As a critical source of nutri-
tion8,10 generating relatively low average environmental pressures1,2,11,12, 
blue foods present an opportunity to improve nutrition with lower 
environmental burdens, in line with the Sustainable Development Goals 
to improve nutrition (Goal 2), ensure sustainable consumption and 
production (Goal 12), and sustainably use marine resources (Goal 14).

Blue foods, however, are underrepresented in food system environmen-
tal assessments13 and the stressors considered are limited4 such that we 
have some understanding of GHG emissions14,15, but less of others such as 
land or freshwater use16. Where blue foods are included, they are typically 
represented by only one or a few broad categories (see, for example, refs. 
3,17,18), masking the vast diversity within blue food production. Finally, esti-
mates combining results of published life cycle assessments undertaken 

for different purposes, and consequently using incompatible methodolo-
gies19,20, cannot be compared reliably. It is therefore critical to examine the 
environmental performance across the diversity of blue foods in a robust, 
methodologically consistent manner to serve as a benchmark within the 
rapidly evolving sector as blue food demand increases21, production shifts 
toward aquaculture and production technologies advance.

Here, we provide standardized estimates of GHG emissions, consump-
tive freshwater use (water use), terrestrial land occupation (land use), 
and nitrogen (N) and phosphorus (P) emissions for blue foods, reported 
per tonne of edible weight. We identify a set of key life cycle inventory 
data (that is, material and energy input, and farm-level performance 
data) from published studies and datasets to which a harmonized meth-
odology is applied. We draw on studies that collectively report data from 
over 1,690 farms and 1,000 unique fishery records around the world. 
The 23 species groups represented in our results cover over 70% of 
global blue food production. We then discuss environmental impacts 
not covered by the standard stressors, most notably biodiversity loss. 
Finally, we leverage our model to identify and quantify improvement 
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opportunities and discuss public and private policy options to realize 
these improvements. In doing so, these results help to identify current 
and future opportunities for blue foods within sustainable diets.

Blue food environmental stressors
Reducing food system GHG emissions is central to meeting global emis-
sion targets8. Fed aquaculture emissions result primarily from feeds22, 
while fuel use drives capture fisheries emissions11. Across assessed blue 
foods, farmed seaweeds and bivalves generate the lowest emissions, 
followed by small pelagic capture fisheries, while flatfish and crusta-
cean fisheries produce the highest (Fig. 1). For fed aquaculture, feed 
production is responsible for more than 70% of emissions for most 
groups (Supplementary Fig. 6). Farmed bivalves and shrimp produce 
lower average emissions than their capture counterparts (bivalves, 
1,414 versus 11,400 kgCO2e t−1 (kilograms of CO2 equivalent per tonne); 
shrimps, 9,428 versus 11,956 kgCO2e t−1), while salmon/trout are similar 
whether farmed or fished (5,101–5,410 versus 6,881 kgCO2e t−1).

Land use, especially conversion of natural areas, results in a range 
of context-dependent biodiversity impacts and GHG emissions23 and 
creates potential trade-offs with alternate uses, including production 
of other foods. On-farm land use is low (<1,000 m2 annual terrestrial 
land occupation per tonne, m2a t−1; <10%) for most systems and highest 
(3,737–8,689 m2a t−1) for extensive ponds (for example, milkfish, shrimp 
and silver and bighead carp). Generally, most land use is associated with 
feed production for fed systems and explains the overall rankings (Fig. 1), 
though milkfish uses the highest amount of on- and off-farm land.

Freshwater increasingly constrains agriculture production but cap-
ture fisheries and unfed mariculture require little to no freshwater24. 
Although blue foods are produced in water, consumptive freshwater 
use is largely limited to feed production and on-farm evaporative losses 
for freshwater production16, with feeds accounting for essentially all 
water use for marine species, but on-farm evaporative losses account-
ing for over 60% of water use for freshwater species. (Supplementary 
Fig. 6). High evaporative losses cause silver and bighead carps to have 
the highest total water use, 2.6 times the water use of other carps and 4.4 

times the water use of catfish, while milkfish and miscellaneous marine 
and diadromous fishes have the highest feed-associated water use. 
Among fed aquaculture, trout and salmon have the lowest water use, 
in part attributable to lower crop utilization, highlighting a trade-off 
with fishmeal and fish oil.

Nitrogen and phosphorus emissions are responsible for marine and 
freshwater eutrophication and are highly correlated due to natural 
biomass N:P ratios (Supplementary Table 4). For fed systems, the major-
ity of N (>87%) and P (>94%) emissions occur on-farm. The highest 
total N and P emissions result from miscellaneous farmed marine and 
diadromous fishes, milkfish and fed carp. Non-fed groups such as sea-
weeds and bivalves, as well as unfed and unfertilized finfish systems (for 
example, some silver and bighead carp), represent extractive systems 
that remove more N and P than is emitted during production, resulting 
in negative emissions (Fig. 1).

Across all blue foods, farmed seaweeds and bivalves generate the low-
est stressors. However, these groups also highlight several assumptions 
and nuances. First, bivalve estimates change by nearly five-fold when 
expressed in terms of edible portion (Fig. 1) compared to live weight 
(Supplementary Fig. 10) due to the shell weight. Second, some processes 
falling outside our system boundaries represent a potentially large frac-
tion of life cycle emissions for these groups, even if still small in absolute 
value in some cases. For seaweeds, a large proportion of GHG emissions 
can occur at the drying stage25 while for bivalves, CO2 emissions during 
shell formation26 and high emissions associated with live product from 
transport27 can be important. Third, impacts on biogeochemical cycling 
and habitats are highly context dependent. For example, the systems 
represented here extract nitrogen and phosphorus, which could be 
problematic in nutrient-poor environments. Additionally, ozone effects 
from volatile short-lived substances depend on the location and varies 
widely across species28,29. Fourth, sustainable diet recommendations 
based on these or similar results must account for differences in nutri-
tion content and bioavailability, a particularly important considera-
tion for seaweeds30. Finally, these systems are underrepresented in the 
literature, particularly for edible seaweeds (Supplementary Fig. 3). As 
recommendations point towards the potential of these groups, it is 
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Fig. 1 | Stressor posterior distributions. a, Aquaculture GHG emissions 
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(that is, range of values that have a 95% (light), 80% and 50% (dark) probability 
of containing the true parameter value). Beige bands represent estimated 
chicken minimum to maximum range. See Supplementary Fig 10 for estimates 
expressed in terms of live weight .



362 | Nature | Vol 597 | 16 September 2021

Article

important to increase data on these systems, deepen understanding 
of the above nuances, and be mindful of the total impacts associated 
with large-scale production on coastal habitats.

Capture fisheries, with negligible land, water, N and P values, also 
compare favourably, though groups fall at both the bottom and top 
of GHG rankings. Among farmed finfish and crustaceans, silver and 
bighead carps result in the lowest GHG, N and P emissions, while salmon 
and trout use the least land and water. To compare with terrestrial foods, 
we estimated stressors for industrial chicken produced in the USA and 
Europe and find it falls in the middle of farmed blue foods, with similar 
stressors as tilapia (Fig. 1, Supplementary Fig. 14). Because chicken 
typically has lower stressors than other livestock3, it follows that many 
blue food groups compare favourably to other animal-sourced foods. 
Notably, groups generating among the lowest stressors (for example, 
bivalves and small pelagic fishes) also provide the greatest nutritional 
quality across all forms of aquatic foods2,10.

Our results represent the most comprehensive and standardized 
blue food stressor estimates to date. Overall, data availability is corre-
lated with global aquaculture production across these taxa groups, but 
there are still notable taxonomic and geographic gaps (Supplementary 
Figs. 3, 4). Critically, there are substantial data gaps for silver and big-
head carp and seaweeds given their level of production (Supplementary 
Fig. 3). Furthermore, our capture fishery data primarily represents 
commercial marine fisheries31. However, subsistence marine and inland 
catches often utilize non‐motorized or no vessels, which probably 
generate few emissions, but there is insufficient data on fuel use across 
the diversity of small-scale fishing methods to reliably estimate emis-
sions. These systems should be prioritized for additional research. 
Our estimates represent a snapshot of the knowledge of current pro-
duction, but future work on emerging production technologies, feed 
innovations and growing sub-sectors is important for tracking changes 
against these benchmarks.

From stressors to ecosystem impacts
Emission and resource-use stressors are valuable for comparing envi-
ronmental performance across foods but cannot fully capture final 
ecosystem and biodiversity consequences (that is, impacts). Estimating 
impacts stemming from blue food production requires considering 
additional stressors and accounting for local context.

While GHG, N, P, land and water are important stressors commonly 
used to compare foods, other less studied stressors can be critical 

drivers of ecosystem impacts (Fig. 2). Both aquaculture and fisher-
ies may impose other stressors through toxic substance applications 
(for example, antifouling and pesticides in agriculture) and physical 
disturbance (for example, bottom trawling and on-bottom culture). 
Additional stressors include genetic pollution, invasive species intro-
ductions32, application of antibiotics33, and disease spread34. While 
capture fisheries have negligible N, P, water and land stressors, other 
stressors can markedly alter ecosystems. Fisheries often shift size struc-
ture and abundance of targeted species (see, for example, refs. 35,36), 
alter the structure of food webs (see, for example, ref. 37) and impact 
non-targeted fauna through bycatch38.

Local context, such as ecosystem function, carrying/assimilating 
capacity, and species composition influence how stressors translate 
into environmental impacts39,40. Notably, land use impacts on biodi-
versity depend on the land use history and ecological context41. While 
all land used for food cultivation represents habitats converted at one 
point, avoiding additional agricultural expansion is important for pre-
venting further habitat loss42. This is also true for on-farm land use by 
aquaculture, where conversion of ecologically valuable ecosystems, 
such as mangrove forests23 that serve as critical carbon sinks43 and nurs-
ery habitats, can generate severe impacts. Local species composition 
and management contexts are also important, including risks associ-
ated with marine mammal bycatch (Box 1). Individual stressors may also 
have nonlinear relationships with impacts or act interactively44,45, such 
as climate change impacts compounding land use patterns that limit 
climate refuges or migration options46, or resulting in more frequent 
disease outbreaks, that increase antibiotic use and risk of antibiotic 
resistance.

Capturing the full suite of environmental impacts will require more 
systematic data collection and methodological advancements. This is 
crucial for informing policy decisions and realizing the potential con-
tributions of blue foods to sustainable diets while avoiding undesirable 
trade-offs. Combining local ecological risk and stressor estimates can 
reveal these important trade-offs, as well as potential synergies (Box 1). 
While there are no impact-free foods, highlighting synergies simplifies 
sustainability messaging and helps identify priority interventions.

Levers for reducing environmental impacts
Variance in stressors indicates diversity across fishing/farming systems 
(Supplementary Figs. 7–9) as well as potential ‘performance gaps’. High 
variability in milkfish and miscellaneous marine and diadromous fish 
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stressors points to large potential performance gains per unit. This is 
promising given the interest in marine finfish expansion47. Meanwhile, 
smaller performance gains per unit for high production groups such 
as carps are likely to generate larger total gains. While some variability 
within a taxa group is due to differences in on-farm practices, produc-
tion technology is an important factor across stressors48 as variability 
in stressors for a given species reared in different farming systems can 
be considerable (see, for example, ref. 49).

We find feed conversion ratios (FCRs) represent the strongest lever, 
wherein a 10% reduction results in a 1–24% decrease in all stressors 
(Fig. 4a). To evaluate potential shifts under current technology, we 
estimate the effect of moving each species to the 20th percentile FCR 
and find the largest reductions for silver and bighead carps (Fig. 4b). 
However, lower FCRs generally come at the cost of larger pond area33, 
suggesting a potential trade-off with land and water use.

Holding all else constant, a 10% fish production yield improvement 
(t ha−1) reduces land and water use for freshwater pond systems by 
1–10% (Fig. 4a). Increasing yields to the 80th percentile reduces land 
and water use by up to 50% (Fig. 4b). Intensifying production, however, 
can require more energy for aeration and water pumping as well as 
increased disease risks with higher animal densities.

Feed composition represents another potential lever. Overall, 
shifting relative proportions of crop- and fish-derived inputs to feeds 
results in negligible changes in stressors (Fig. 4a). Comparing changes 
in feed sourcing, we found switching to deforestation-free soy and 
crops reduced GHG emissions by 5–50% (Fig. 4b). This could create 
a co-benefit of also reducing biodiversity impacts. However, as part 
of integrated global commodity markets, reductions by aquaculture 
producers will only help to meet emissions targets if broader food 
sector commitments are made. Replacing fish meal and fish oil with 
fishery by-products has a relatively small effect (Fig. 4b), but increased 
by-product utilization can improve system-wide performance when it 
directs potential wastes toward more favourable applications50. Finally, 
novel aquaculture feeds, including algal, microorganism and insect 
meals, are increasingly available but currently account for a small frac-
tion of feeds. While they are likely to hold potential to improve feed 
quality and reduce forage fish demand51, their impacts at scale remain 
uncertain52 and therefore could not be modelled here.

For capture fisheries, reducing fuel use represents the primary 
stressor improvement opportunity. Increasing stock biomass 
could reduce fuel use per tonne of fish landed12,53, where a 13% catch 
increase with 56% of the effort54 corresponds to a 50% reduction in 

GHG emissions. Alternatively, we find that prioritizing low-fuel gears 
within each fishery can reduce GHG emissions by 4–61%, depending 
on the species (Supplementary Fig. 16). In some cases, this could cre-
ate co-benefits for biodiversity impacts (Box 1). Another strategy is 
to transition fishing fleets to low-emission technologies8. While some 
fleets have transitioned to electric, hydrogen fuel and sail-assisted ves-
sels, general adoption necessitates transformations beyond traditional 
fishery management.

Realizing blue food’s environmental potential
Blue foods already have great potential for reducing food system 
environmental stressors. Unfed aquaculture results in negligible val-
ues for most considered stressors, and many fed aquaculture groups 
outperform industrial chicken, the most efficient major terrestrial 
animal-source food. Capture fisheries vary widely in their GHG emis-
sions but are low impact with respect to the other stressors considered. 
This underscores the value of sustainably managing wild fisheries to 
avoid the environmental replacement cost that would be incurred 
under fish catch declines24.

Our standardized estimates enhance the resolution of the potential 
role of blue foods within sustainable diets, highlighting opportunities 
to shift demand from relatively high- to low-stressor blue foods and 
from terrestrial animal-source foods to comparatively low-stressor 
blue foods. Shifting to non-animal alternatives remains an efficient 
lever but low-stressor blue foods may represent an appealing alterna-
tive for some consumers. Furthermore, blue foods provide the highest 
nutrient richness across multiple micronutrients (for example, iron and 
zinc), vitamins (for example, B12), and long-chain polyunsaturated fatty 
acids (for example, EPA and DHA) relative to terrestrial animal-source 
foods10, which may provide greater incentive to shift demand as con-
sumers generally prioritize seafood freshness, food safety, health and 
taste over sustainability55.

Major challenges remain for shifting demand, as well as meeting 
increased demand. While improved management offers potential 
opportunities for expanding some production from low-stressor cap-
ture fisheries, uncertainty remains around the extent and feasibility of 
rebuilding many fisheries47. Additional research is needed to under-
stand the total environmental impacts of large-scale expansion of low 
per unit stressor foods, especially for system-specific impacts (Box 1). 
Increasing production also requires creating appropriate incentives 
and reducing barriers for producers. Historical food system transitions 

Box 1

Emissions and biodiversity risk
Stressors from life cycle assessments quantify fishery emissions 
but fail to capture local ecological risks. Combining stressors 
and impact assessments can illuminate potential sustainability 
trade-offs. Ecological risk assessments have been developed 
for capture fisheries to promote holistic assessment of local 
ecological risks. Integrating GHG emissions with marine mammal 
risk assessments reveals that some low-GHG emission gears 
are associated with higher marine mammal risks (for example, 
gillnets and entangling nets; Fig. 3), while bottom trawls show the 
opposite. Acknowledging ecological context is critical because 
risk from similar gears varies across regions. For example, traps 
and lift nets generally pose low risk to marine mammals (Fig. 3). 
However, North Atlantic right whales (Eubalaena glacialis) in the 
northwest Atlantic are at high risk from entanglements in American 
lobster (Homarus americanus) traps70.
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required public investment technologies that could be scaled up by the 
private sector and public policy leadership56. Overly strict regulations 
or lack of capital can prevent expansion of low-stressor blue foods 
such as offshore mussel farms (see, for example, ref. 57). Facilitating 
low-stressor blue food expansion and novel production methods may 
require new and more adaptive policies and distribution of grants or 
other forms of start-up capital. Finally, policies can steer production 

and consumption through taxes and subsidies58 as well as softer poli-
cies, such as dietary advice that considers environmental impacts59.

Within the diversity of blue food production there are numerous 
opportunities to reduce environmental stressors. As a young and rap-
idly growing sector, there are many promising technological innova-
tions in aquaculture (for example, recirculating aquaculture systems, 
offshore farming and novel feeds). However, less charismatic interven-
tions may represent greater potential for rapid and substantial impact 
reductions. These include policy or technological interventions that 
improve husbandry measures (especially reducing disease and mor-
tality) and lower FCRs. Improved management in salmon aquaculture 
demonstrated considerable sustainability benefits through disease 
and area management plans60 and improved stock management with 
precision aquaculture and automation61. Furthermore, selective breed-
ing, genetic improvements and high-quality feeds can all reduce FCRs 
(Supplementary Table 8). While we looked at individual interventions, 
improvements are likely to occur through a suite of interventions and 
the synergistic or antagonistic interactions of interventions represents 
an important area for future work. Unfortunately, many innovations 
are often beyond the reach of smallholder producers of low-value spe-
cies. This highlights a need for public research and development as 
well as technology transfer to enable all farmers to adopt practices 
that reduce environmental stressors. For capture fisheries, continued 
management reforms together with incentives to use low-fuel gears 
could substantially improve the performance of capture fisheries11,47. 
A range of actors will be important for stimulating a shift to more sus-
tainable production methods and, for instance, nation states, civil 
society and the private sector all have important roles. Private sector 
pre-competitive collaborations; for example, SeaBOS62 and the Global 
Salmon Initiative can help to stimulate production improvements 
at scale. Likewise, government-led initiatives helping small-holders 
improve their farming practices through, for example, access to high 
quality feeds, seed and broodstock, are crucial for closing the aquacul-
ture performance gap63–65. Certification and improvement projects can 
help to reduce ecosystem impacts66, but have been criticized for passive 
exclusion of small-scale producers. Moving towards best practices such 
as state-led, national certification schemes and area-based approaches 
will therefore be key67. Finally, the finance sector can help to steer the 
sector towards sustainability through strategic investments68.

The above findings do not suggest unlimited blue food growth is 
possible nor that expansion comes without environmental trade-offs. 
Furthermore, without careful consideration for local contexts and 
inclusion of relevant stakeholders, environmentally focused interven-
tions can generate social and economic trade-offs that undermine 
broader sustainability goals. Nevertheless, farmed blue food is among 
the fastest growing food sectors and the global community now faces 
a unique window of opportunity to steer expansion towards sustain-
ability69. Our model and results provide blue food stressor benchmarks 
and enable data-poor environmental stressor assessments. This serves 
as a critical foundation for understanding blue food environmental 
performance and to ensuring sustainable and healthy blue foods are 
available now and into the future.
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Fig. 4 | Aquaculture stressor intervention opportunities. a, Change (%) in 
each stressor associate with a 10% reduction in the parameter value (black cell 
indicates stressor change >20%). b, Change (%) in each stressor under four 
scenarios (defined in Supplementary Table 8) relative to the current estimate. 
Arrows indicate changes greater than 50%. Additional aquaculture scenario 
results displayed in Supplementary Fig. 15 and capture scenario results in 
Supplementary Fig. 16 .
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S1 Methods overview 
We draw on life cycle inventory data (i.e., material and energy input and farm-level performance 

data) from studies that collectively report data from over 1690 farms and 1000 unique fishery records to 
inform standardized estimates of GHG (kg CO2-eq), N (kg N-eq), P (kg P-eq), water (m3), and land (m2a) 
stressors. GHG represents the potential contributions to climate change via radiative forcing, N and P 
represent the emissions of biologically available nitrogen and phosphorus to water bodies contributing to 
marine and freshwater eutrophication, water represents consumption of fresh water, and land represents 
annual crop-equivalent occupation of terrestrial land area.  

Data from published seafood LCA studies, additional data (detailed below), and background data 
from the ecoinvent v3.6 LCI database, were used to aggregate environmental stressors (see Fig S1). We 
produced a series of hierarchical Bayesian models to estimate the off-farm (i.e., feed-associated) and on-
farm stressor values at the species level and use global production volumes to produce weighted means 
for each taxonomic group. Any environmental assessment also varies based on a series of methodological 
decisions, notably the allocation method and functional unit. We use mass allocation and edible portion as 
the functional unit in the main text, but also express the aquaculture stressor results in terms of economic 
and energy allocation (Fig S11–12) and live weight (Fig S10). Additionally, our simplified model stops at 
the farmgate (Fig S2) or at landing. Some systems with low stressor values within these boundaries may 
have non-trivial stressors outside these boundaries, such as those associated with processing or 
transportation.  



 
Fig S1 | Methods flow chart. Summary of methodological steps, including data collection and 
preprocessing, as well as a summary of the variables in each model. Asterisks on compiled life cycle 
inventory variables indicate variables estimated at the imputation stage for missing values.  



S1.1 Goal of the study 
The current research builds upon a simplified LCA approach, developed to allow for broader and 

more rapid environmental assessments of aquaculture systems, using a harmonized approach. We carried 
out this research to provide an overview of the current environmental impacts of the most farmed 
aquaculture species worldwide. By using life cycle inventory (LCI) data, rather than characterised life 
cycle impact assessment (LCIA) results, we allow production systems to be compared using a harmonised 
approach. Earlier comparisons of the environmental performance of aquaculture either limit themselves to 
a geographical region, rely upon already characterized LCIA data, limit themselves to aquaculture 
systems, or only evaluate global warming impacts1–3. In response, we recalculate greenhouse gas 
emissions, nitrogen emissions, phosphorus emissions, terrestrial land occupation, and consumptive 
freshwater use for aquaculture systems using inventory data (e.g., feed use, feed composition, on-farm 
energy use, etc.) from existing LCA studies and related literature. In the process, we aim to improve data 
for systems of high importance for global aquaculture production, in terms of production volumes, but 
that have been scarcely described in aquaculture LCA literature to date (e.g., carp farming).  

The results generated are aimed to inform the scientific community, policy makers, and 
consumers about the diversity of environmental impacts related to global aquaculture and wild-caught 
fish. Blue foods are often treated as a homogenous group among these communities, but in this study, we 
detailed the diversity among individual species and systems. The results are published alongside several 
other academic publications, as part of the Blue Food Assessment (https://www.bluefood.earth/). 

S1.2 Scope of the study 

We build our analysis on inventory data from existing LCA literature, and supplement this with 
additional data sources from production descriptions of species and systems that are deemed important for 
the global aquaculture sector (Fig S1). The focus of our simplified LCA approach is the grow-out phase, 
as this is the denominator for most inputs that drive environmental impacts, including use of feed, land, 
and freshwater. 

Our simplified LCA approach allows us to generate standardized stressor estimates that are 
comparable across studies, enabling us to generalize the patterns in stressors across the main blue food 
taxa groups. Taking this approach allows us to capture the major sources of stressors in blue food 
production, yet there are some processes that are potentially important that we were not able to include 
within our system boundaries (Fig S2) due to limitations in available data and/or processes that are highly 
context dependent. As aquaculture system mapping and documentation improves, many of these represent 
important areas for improving stressor models. Feed resources were simplified into four categories: Fish-
derived products, livestock byproduct meals, agricultural products (excl. soybean), and soybean-meal and 
oil. Soybeans were specified separately given their strong association with land-use and land-use change 
(LULUC) in Brazil4. Emissions from feed resources were sourced from5,6, and weighted based on country 
exports for crops, soy and animal byproducts, and by production for fishery products. Electricity use was 
specified on a country basis, using data from IEA.org (accessed 12-May-2020), detailing sources of 
electricity generation, energy use by the sector, and losses across the grid. Proxies for all emissions 
related to electricity generation were derived from the ecoinvent 3.6 APOS database7.  



Additionally, our on-farm greenhouse gas emissions do not include emissions from the 
decomposition of organic matter in ponds. Standing water bodies will result in hypoxic conditions and 
methanogenesis, and nitrogen will volatilise form the surface. This can result in substantial emissions of 
methane, nitrous oxide, nitrogen dioxide, ammonia, and other gases8. Of these methane and nitrous oxides 
are potent greenhouse gases and can result exaggerate carbon footprints. MacLeod et al.3 for example, 
identified nitrous oxide emissions as a major source of GHGs for bivalves and some finfish systems, 
while Astudillo et al.9 attributed 97% of GHG emissions from extensive carp systems to methane from 
ponds. While we acknowledge that these emissions are highly relevant when accounting GHG emissions 
from aquaculture, large uncertainties exist, especially when estimating blue foods at a global scale, as was 
done in the current study. Both the formation of methane and nitrous oxide are dependent upon 
temperature, salinity, aeration, pond depth, grow-out period, and other biotic and abiotic factors. In-situ 
and ex-situ empirical measurements subsequently range over an order of magnitude per tonne fish 
produced8. Since our study includes a global mix of systems and regions for each species, with a mix of 
farming in aerated and non-aerated systems, reservoirs, ponds, and cages, these estimates would become 
extremely crude. We subsequently do not integrate methane emissions from ponds or nitrous oxide 
volatilisation in our models. Nonetheless, we encourage more data to be collected and improvement of 
models to capture these sources of GHGs. We also encourage better accounting of blue food production 
by systems and aeration at national levels. Nitrous oxide emissions would also better be estimated based 
upon nitrogen inputs into systems, rather than generically across systems10. This as, for example, bivalves 
are generally net nitrogen extractors, rather than nitrogen emitters. 

 

Fig S2 | Study system boundaries. System boundaries for fisheries (orange arrow) and aquaculture (blue 
arrow) with inputs in red indicating components excluded from the study. This figure is modified from11. 



The goal and scope of our study sets out to define the current environmental impact of different 
blue foods globally. Thus, our simplified modeling approach adopts an attributional LCA approach 
whereas consequential LCA modeling warrants an understanding of substituting food products that would 
need to be grossly simplified at the global scale and broad taxa groups within our study. Even at a 
regional level it is hard to predict which food commodities blue foods substitute, and preference for 
different blue foods is in rapid transition12. Market substitutions will be further influenced by realities 
such as: not all fish species can be farmed; wild and domesticated fish can have different fillet yields; 
consumer perceptions of wild and farmed fish differ, and, maybe most importantly, price remains the 
main determinant for food procurement choices13. Subsequently, system substitution (system expansion), 
was not a viable option for our model. A result of this decision is that our scenarios modeled represent a 
snapshot in time and do not speak to future changes in prices or demand.  

Co-product allocation is the division of impacts among products originating from the same 
process (e.g., livestock meat and by-products). Allocation is an artificial problem and can therefore only 
be solved in artificial ways14. One should, however, seek to maintain a consistent allocation strategy 
throughout the modeling and try to adhere to well justified allocation strategies14. In attributional LCAs, 
as in this case, the most common allocation strategies include: cut-off, where all impacts are attributed to 
the main product; allocation based upon mass; allocation based upon economic value; and allocation 
based on gross energy content. 

Our global scope complicates economic allocation due to regional price differences and price 
fluctuations over time. In terms of edible yields, cultural preferences strongly influence the market price. 
Fish heads or racks are, for example, more expensive than the fillets in some markets. We consequently 
choose to use mass allocation for our primary results, as it is simple to understand, can be consistently 
applied to all regions, and remains static over time. It is also the only allocation option possible for 
capture fisheries, as details on all types and prices of fish landed were limited6.  

To test the robustness of our conclusions, we recalculated the aquaculture results using allocation 
based on monetary value (economic allocation) and gross energy content (Fig S11-S12). These results 
landed in slightly different absolute impacts, but their relative ranking remained largely consistent. Thus, 
we argue that in the realm of relative LCA results, changing allocation strategy does not undermine our 
study’s conclusions. 

Choice of allocation can strongly influence the environmental burdens associated with certain 
products, such as animal byproducts. For example, mass allocation dictates that the overall environmental 
costs are divided between meat and its by-products based on the differences in mass, but if these by-
products have low economic value, their environmental cost will be low. This implies that caution is 
required when comparing different product stressors15,16 and  the reason why we tested how the allocation 
factor affects the results below17. While ISO 14044 gives some guidance in choosing an allocation factor 
(e.g. that it should have a physical relationship if possible), the crude guidance provided leaves many 
options for interpretation18,19. In reality, each allocation choice has its strengths and weaknesses and the 
final choice often comes down to the worldview of the modeler. This is evident in previous LCAs of blue 
foods that have used all of the aforementioned allocation methods, or a mix of them, depending on the 
modeled process14,20.  



Stressor estimates can be expressed in terms of different functional units such as live weight or 
edible portion at the farm gate. Stressor estimates expressed in terms of live weight equivalent enable the 
data to be easily connected to production data, which is also typically expressed in terms of live weight, 
while the edible portion is more relevant to blue food demand and the role of blue foods in diets. As a 
result, we calculate the stressors in terms of both edible portion (Fig 1) and live weight equivalent (Fig 
S10). Edible portions as a fraction of the live weight can vary substantially due to differences in anatomy 
(Table S1). Further, edible yields are also influenced by cultural preferences and processing efficiencies. 
Fish heads, for example, are a delicacy throughout most of Asia, while they are discarded in Europe and 
North America. Other edible parts, such as swim bladders from Pangasius catfish, can yield much higher 
values than the fillets21. While these result in higher utilization, in other cases, inefficiencies in processing 
can result in a lower percentage of the live weight mass being utilized. Other byproducts are also often 
utilized for other processes, such as raw materials for fishmeal and fish oil production, but details on these 
utilization rates are incomplete. Moreover, these efficiencies vary across space and time. To standardize 
the definition of edible at the global level, we use the muscle fraction to represent the edible portion. Note 
that in both cases plants are expressed in terms of dry weight due to the fact that water loss varies 
substantially after harvest up to the farm gate, even pre-processing. In our analysis, all impacts reside in 
the edible portion. As utilization approaches 100%, the stressor estimates would approach the estimates 
expressed in terms of live weight. Even though the two allocation methods result in different stressor 
estimates, the relative performance of the blue food groups is generally robust to the choice of functional 
unit.  

Table S1 | Edible portions for farmed and capture taxa groups. Edible portions represent the average 
muscle fraction (% live weight) for species within each taxa group derived from the indicated references.  

Taxa group Production source Edible portion (%) 
Milkfish Aquaculture 61.00 
Salmon Aquaculture 58.50 
Trout Aquaculture 58.50 
Shrimp Aquaculture 57.00 
Silver and bighead carp Aquaculture 54.00 
Other carp Aquaculture 54.00 
Catfish Aquaculture 53.05 
Misc. diadromous Aquaculture 53.05 
Misc. marine Aquaculture 51.00 
Tilapia Aquaculture 37.00 
Bivalves Aquaculture 20.33 
Cephalopods Capture 66.67 
Large pelagic fishes Capture 61.74 
Small pelagic fishes Capture 60.19 
Salmonids Capture 59.33 
Shrimps Capture 58.00 
Jacks, mullets, sauries Capture 54.09 
Flatfishes Capture 52.75 
Gadiformes Capture 49.62 
Redfishes, basses, 
congers Capture 47.26 
Lobsters Capture 30.00 
Bivalves Capture 17.89 



S2 Data characterization 

This section summarizes the data inputs used in the aquaculture and capture fishery models. All 
data and code is publicly available on Github and archived22.  

S2.1 Aquaculture inventory data 

Aquaculture inventory data were extracted from a database of aquaculture life cycle assessments 
initially compiled by23 and updated with more recent studies by comparing the reference list to other 
published reviews and conducting targeted searches for underrepresented taxa groups and geographies 
(Fig S3; Fig S4; Table S9). Published LCAs were supplemented with FCR and feed composition data 
from Monterey Bay Aquarium’s Seafood Watch program24 and farm-level data collected for a range of 
systems in southeast Asia25 to improve geographic representativeness (Fig S4). Studies were 
systematically filtered to exclude those assessing experimental or hypothetical systems, agri-aquaculture 
systems, polyculture systems producing species in more than one taxa group, and those for which no 
inventory data were reported, resulting in a dataset of 61 studies and datasets published between 1995 and 
2020 (Table S9). For each study, where available, we compiled inventory data on economic feed 
conversion ratios, general feed composition (soy, other crop, fishery, and livestock-derived ingredients), 
electricity use, inputs of diesel and other energy carriers, and data relating to stocking densities and 
annual yields (t m-2) (Table S10). All inventory data were converted to edible portion (Table S1) and live 
weight farm-gate values.  

 
Fig S3 | Representativeness of observations by taxa group. Number of farm-level observations from 
which life cycle inventory data was recorded for each taxa group compared to total global production 
(2014–2018). Points are scaled by the number of studies from which the observations are recorded. Farm-
level production volumes varied substantially but were not consistently available across source studies. 



 
Fig S4 | Geographic representativeness of data. Number of farm-level observations from which life 
cycle inventory data was recorded for each observation from each country compared to national 
production by taxa group (2014–2018). Points are scaled by the number of studies from which the 
observations are recorded. Farm-level production volumes varied substantially but were not consistently 
available across source studies.  



Table S2 | Species representation within each aquaculture taxa group included in this study. The 
number of studies and number of farms (N) represented by each study are detailed.  

Taxa Group Species or scientific name N farms N studies 
Aquatic plants Gracilaria chilensis 1 1 
Aquatic plants Laminaria digitata 1 1 
Aquatic plants Macrocystis pyrifera 1 1 
Aquatic plants Saccharina latissima 2 2 
Bivalves Crassostrea gigas 2 2 
Bivalves Mytilus edulis 10 5 
Bivalves Mytilus galloprovincialis 34 5 
Catfish Clarias batrachus 5 1 
Catfish Clarias gariepinus 1 1 
Catfish Pangasianodon hypophthalmus 231 6 
Catfish Pangasius spp 71 4 
Milkfish Chanos chanos 2 2 
Miscellaneous diadromous fishes Lates calcarifer 1 1 
Miscellaneous diadromous fishes Salvelinus alpinus 2 2 
Miscellaneous marine fishes Anoplopoma fimbria 1 1 
Miscellaneous marine fishes Cynoscion spp 8 2 
Miscellaneous marine fishes Dicentrarchus labrax 3 3 
Miscellaneous marine fishes Epinephelus spp 5 1 
Miscellaneous marine fishes Scophthalmidae 2 2 
Miscellaneous marine fishes Seriola rivoliana 1 1 
Miscellaneous marine fishes Sparus aurata 2 2 
Other carps, barbels and cyprinids Carassius carassius 1 1 
Other carps, barbels and cyprinids Ctenopharyngodon idella 1 1 
Other carps, barbels and cyprinids Cyprinidae 264 6 
Other carps, barbels and cyprinids Cyprinus carpio 14 2 
Salmon Oncorhynchus kisutch 1 1 
Salmon Oncorhynchus tshawytscha 1 1 
Salmon Salmo salar 20 13 
Salmon Salmonidae 2 2 
Shrimps, prawns Litopenaeus vannamei 430 7 
Shrimps, prawns Penaeus monodon 170 5 
Silver and bighead carp Hypophthalmichthys molitrix 1 1 
Silver and bighead carp Mixed H. molitrix and H. nobilis 1 1 
Tilapias and other cichlids Oreochromis niloticus 255 13 
Trout Oncorhynchus mykiss 44 12 

  



S2.2 Capture fuel use data  

Emissions data for wild capture fisheries were calculated based on fishing vessel fuel 
consumption. Fuel use intensity (liters of fuel consumed per tonne of round weight landings) data were 
extracted from the Fisheries Energy Use Database, which consists of both published and non-published 
fuel use observations and calculations from academic, industry, and government-derived sources26. A 
fishery record refers to a vessel or multiple vessels for which a species, gear, and fishing country can be 
associated. After calculating fuel-related emissions for each fuel use observation, an average of 25% 
additional emissions was assumed to account for non-fuel sources such as refrigerant loss and 
manufacture of gear, following6. For each fuel use record, several weightings were also estimated to 
reflect representativeness of observations within the industry. These weightings included species-specific 
landings within each ISSCAAP group and gear-specific landings within each species27 and estimated rates 
at which each species was destined for human consumption as opposed to industrial use for fish meal and 
fish oil28,29.  

S2.3 Emission and resource use factors 

Life cycle emission factors and resource use rates were calculated for all included feed inputs 
using characterization factors from ReCiPe 2016 Hierarchist method as implemented in the OpenLCA 
LCIA methods v2.0.5 by GreenDelta31. Soy- and other crop-derived feed inputs were modelled using the 
Agri-footprint 5.0 life cycle inventory database5. Fishery-derived inputs were modelled based on species-
specific fuel use intensities of various reduction fisheries26, species-specific yields of meal and oil28, and 
energy inputs to meal and oil processing included in Agri-footprint 5.0 datasets. Livestock-derived feed 
inputs were modelled by adapting animal by-product processes in Agri-footprint 5.0 with inventory data 
from poultry LCAs undertaken in the United States32 and Europe33,34. Impact factors for energy carriers 
were modelled using the ecoinvent 3.6 life cycle inventory database from the Swiss Center for Life Cycle 
Inventories, accounting for national grid mixes7. 

Average feed component stressors were weighted based on the country of origin and the 
proportion of exports of that feed component originating from that country for crop and livestock 
products based on FAO commodity flows tables35. Fishery products were weighted based on national 
production data36. 

S2.4 Evaporative loss 

For evaporative water loss (mm/year), we use climatology data maintained by the U.S. NOAA 
National Weather Service’s Climate Prediction Center37. We downloaded global climatological monthly 
means from 1981–2010 and used the stars package38 in R to compute the annual mean for each pixel. We 
then spatially-joined these data with a map of country borders and extract country-level means using the 
rnaturalearth39 and sf40 packages, respectively, in R.  

S2.5 N and P contents 

Nitrogen and phosphorus content of blue foods were derived from a new comprehensive database 
of food composition focused on aquatic foods41. Wherever direct N and P values for specific species were 
unavailable we calculated these values based on carbon and lipid concentrations using regression 
coefficients42. When species-specific data were unavailable, data for species in the same genus, family, or 



order were substituted. We used N and P values of feeds from the United States-Canadian tables of feed 
composition43. We averaged the relevant values for each feed component group.   

S2.6 Production 

Aquatic food production by species/taxa group comes from the FAO36 capture and aquaculture 
production data. Aquaculture production in 2018 was used to calculate the proportion of production by 
each species within each taxa group. All taxa-level estimates represent a production-weighted average of 
the species-level stressors. Calculations of the representativeness of the aquaculture and capture data is 
based on 2012–2018 averages. For aquaculture, aquatic plants were reduced to 6.8% to discount algae 
produced for industrial purposes44. After this adjustment, we calculated that the taxa groups in our study 
are representative of 76% of global aquaculture production (or 82% without the adjustment). Since global 
data on production method or intensity is not available, we cannot ensure that the studies are 
representative of these attributes. Further, while we have both small- and large-scale aquaculture 
producers represented in the data, we do not have complete data on the size of all farms or the size 
distribution of farms globally, so we cannot compare the representativeness with respect to producer size. 
However, all studies included do represent commercial-scale operations. Similarly, for wild capture, small 
pelagic fishes (herrings, sardines, anchovies) were reduced to 63.8% to discount catch destined for non-
human consumption45. Some taxa are also reported with the generic term, “osteichthyes”. When all 
“osteichthyes” are removed from the data and after small pelagics are adjusted, the taxa groups used in 
our study account for 65% of global capture fisheries production. The 23 taxa groups then collectively 
cover over 70% of blue food production.  

Table S3 | Definitions of abbreviated taxa names  
Taxa group name Definition 

silver/bighead silver or bighead carp 
cod, etc cods, hakes, haddocks 
flounder, etc flounders, halibuts, soles 
herring, etc herrings, sardines, anchovies 
jack, etc jacks, mullets, sauries 
misc diad miscellaneous diadromous fishes 
misc marine miscellaneous marine fishes 
redfish, etc redfishes, basses, congers 
salmon, etc salmons, trouts, smelts 
squid, etc squid, cuttlefishes, octopuses 
tuna, etc tunas, bonitos, billfishes 

 

S2.7 Ecological risk assessment  

The number of marine mammal species assessed as being at different levels of risk (high, 
medium, low) in Fig 3 were extracted from two studies assessing multiple gear types in different regions 
of the world46,47. To calculate the risk index, we multiplied the number of species at high risk by three, the 
number of species at medium risk by two and the number of species at low risk by 1 and summed. This 
data was matched with data from FEUD26 for the same gear types and region, and closest match available 
for target species. 



S3 Model 

We used a hierarchical framework to estimate Bayesian means of total emissions and resource 
use across five stressors (greenhouse gas [kg CO2-eq], nitrogen [kg N-eq], phosphorus [kg P-eq], land 
[m2a] and water [m3]). We do this for all unique scientific names (e.g., Cyprinidae, Cyprinus carpio) 
found in our compiled LCA data as well as for aggregated groups of taxa (e.g., miscellaneous carps). 
Specifically, our model structure has study 𝑖, nested in scientific name 𝑗, nested in taxa group 𝑘. To give 
additional weight to studies with multiple observations, but for with individual farm-level data or variance 
around the mean was not reported, study-level data was replicated to the farm-level as the square root of 
the number of farms. All Bayesian models were run using Markov Chain Monte Carlo (MCMC) 
algorithms in Stan48 and called from R49 using the R package, 𝑟𝑠𝑡𝑎𝑛 50. All models converged (i.e., 
diagnostics for all parameters showed 0.99 < 𝑅* < 1.01, 𝑛!""/𝑁 > 0.1, and no divergent transitions) after 
2500 iterations run on 4 chains. For each stressor, we calculate total emissions and resource use as the 
sum of their off-farm (feed-associated) and on-farm components as described below. 

S3.1 Off-farm (feed-associated) stressors 

For off-farm stressors, we modelled the dry weight feed conversion ratio of study 𝑖, 𝐹𝐶𝑅#, as: 
𝐹𝐶𝑅# ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇$%&![#] , 𝜎$%&![#]) 

𝜇$%&![#] ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇$%&%[!] , 𝜎$%&%[!]) 

𝜎$%&![#] , 𝜎$%&%[!] ∼ ℎ𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0,1) 

such that 𝜇$%&![#] and 𝜇$%&%[!] are the mean FCR for scientific name 𝑗 and and taxa group 𝑘, respectively, 
and 𝜎$%&![#] and 𝜎$%&%[!] are their respective standard deviations. To help with convergence we apply 
weakly-informative half-Cauchy priors on the scientific name and taxa group level 𝜎’s. 

For off-farm stressors, we also modelled the proportions of feed originating from soy, crops, 
livestock, and fisheries. For each study i, Xi is a vector of feed proportions that sums to 1. We modelled 
this vector as: 

𝑋# = (𝑋'() , 𝑋*+(,', 𝑋-#.!'/(*0 , 𝑋"#'1!+#!') ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼2[#]) 

such that 𝛼2[#] is a shape parameter describing the distribution (uniform or degenerate) of the feed 
proportions for scientific name 𝑗. We then reparameterized 𝛼2[#] as: 

𝛼2[#] = 𝐾2[#] ∗ 𝜃2[#] 

such that 𝜃2[#] is the vector of estimated feed proportions of scientific name 𝑗 and 𝐾2[#] is the sample size 
(number of studies) for scientific name 𝑗 (Stan Development Team, 2020). To obtain our taxa group 
estimates, we modelled the estimated scientific name feed proportions 𝜃2[#] as Dirichlet distributed, and 
reparameterized this as above to obtain a vector of estimated feed proportions for taxa group 𝑘: 

𝜃2[#] ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼0[2]) 

𝛼0[2] = 𝐾0[2] ∗ 𝜃0[2] 



Finally, we calculated the species and taxa group level off-farm (i.e., feed-associated) stress 
(𝑆"!!5['/+!''(+]) for each stressor (GHG, N, P, land, and water) by multiplying the feed requirements by 
the associated stressors of the feed, weighted by the feed composition: 

𝑆"!!5['/+!''(+] = 𝐹𝐶𝑅H𝑆"

6

"78

𝑝" 

Here, 𝑓 indexes the four feed ingredients (soy, other crops, fishmeal and fish oil, and livestock 
byproducts). 𝑆" is a constant that quantifies the stressors of each feed ingredient 𝑓, while 𝐹𝐶𝑅 and 𝑝" are 
the posterior distributions of the estimated dry weight feed conversion ratio and the proportion of each 
feed component 𝑓. 

S3.2 On-farm stressors 

On-farm nitrogen and phosphorus stressors are calculated from the same species and taxa-level 
means of 𝐹𝐶𝑅 and feed proportions, 𝑝", described above for off-farm stressors. Here, on-farm N and P 
stress are estimated as the difference between the N and P content of each feed component and the 
species-specific N and P contents of each blue food product such that: 

𝑆9(9"!!5[9#/+(:!9] = 𝐹𝐶𝑅H𝑁"
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𝑝" −𝑁"#'1 

𝑆9(9"!!5[,1(',1(+;'] = 𝐹𝐶𝑅H𝑃"
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𝑝" − 𝑃"#'1 

where 𝑁" and 𝑃" represent the nitrogen and phosphorus content of feed component 𝑓 and 𝑁"#'1 and 𝑃"#'1 
represent the species-specific nitrogen and phosphorus content of a unit of fish, shellfish, or seaweed. 
While on-farm stress, 𝑆9(9"!!5, for N and P are both derived from the Bayesian means of FCR and the 
feed proportions, the other stressors, land, GHG, and water, are derived from nested means of the 
calculated stressor as described below. The non-feed associated land use refers to the land area allocated 
to the growth of a unit of output which applies to aquaculture systems that are ponds, recirculating 
systems and tanks. We calculated land stress (𝑆9(9"!!5[-<95]; m2 a t-1) as the reciprocal of annual yield (Y; 
t m-2): 

𝑆9(9"!!5[-<95] =
1
𝑌
 

The on-farm greenhouse gas emissions (𝑆9(9"!!5[=>=]) are calculated as the electricity use times 
the country-specific GHG emissions, plus the diesel, petrol, and natural gas use times each of their GHG 
stressor factors: 

𝑆9(9"!!5[=>=] =H𝐺?
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Here, 𝑞 indexes the four energy sources (electricity, diesel, petrol, and natural gas), 𝐺? represents the 
GHG emissions of energy source 𝑞, and 𝐸? represents the energy use of source 𝑞. While energy use does 
contribute to the other stressors, we only include it in the GHG stressor since the contribution to the other 



stressors is negligible. To calculate the on-farm water use, we estimated the evaporative losses over the 
surface area allocated to the unit of production as: 

𝑆9(9"!!5[@</!+] = 𝑉𝑇𝑆9(9"!!5[-<95] 

where 𝑉 represents the country-specific average surface evaporation rate and 𝑇 represents the grow-out 
period. Evaporative loss was only included for freshwater systems. We then model the Bayesian means 
for on-farm land, GHG, and water stressors with study 𝑖 nested in scientific name 𝑗, nested in taxa group 
𝑘 as shown below: 

𝑆9(9"!!5['/+!''(+] ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇A/+!''(+![#] , 𝜎A/+!''(+![#]) 

𝜇A/+!''(+![#] ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇A/+!''(+%[!] , 𝜎A/+!''(+%[!]) 

To help with convergence, we apply the following hyperpriors on all ’s at the scientific name and 
taxa group level. Specifically, 

𝜎=>=![#] , 𝜎=>=%[!] ∼ ℎ𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0,1000) 

𝜎B<95%[!] , 𝜎B<95%[!] ∼ ℎ𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0,10000) 

𝜎C</!+%[!] , 𝜎C</!+%[!] ∼ ℎ𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0,100) 

Finally, we apply priors on mean FCR at the taxa-level for all taxa groups except “miscellaneous 
diadromous fishes”: 

𝜇$%&%[!] ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(𝑝𝑟𝑖𝑜𝑟, 1) 

We focus on FCR because it is a parameter found in all of our stressor models for which there is 
considerable information. Priors were derived from51 and updated by expert judgement. Re-running the 
models with vs without these priors caused slight shifts in the posterior, but the major results (i.e., 
ordering of taxa results from highest to lowest stress) did not change (Fig S13). 

S3.3 Missing Data Imputation 

Missing data for FCR, feed proportions, yield, and all energy inputs (electricity, petrol, diesel, 
and natural gas) were imputed using taxa group as a categorical predictor and intensity and system type as 
ordinal predictors. In other words, the predicted value for missing data is pulled to the mean of other LCA 
studies of the same taxa group, intensity, and system type. For the feed proportions we used a Bayesian 
Dirichlet regression and for all other variables we used a Bayesian gamma regression with log link to 
estimate the effects of all predictors on each variable. For each missing data point, we used the median of 
their predicted posterior distribution as the imputed value for all subsequent analyses. All predictor 
variables are centered and scaled by two standard deviations. All models were fitted using Stan and 
implemented with brms in R. All models converged (i.e., diagnostics for all parameters showed 0.99 < 𝑅*  
< 1.01, 𝑛!""/𝑁 > 0.1, and no divergent transitions) after 5000 iterations run on 4 chains. For the gamma 
regressions, the following hyperpriors were implemented on the coefficients (𝑚#), intercept (𝑏), and shape 
(𝛼) parameter for the gamma: 

𝑚# ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(0,2.5) 

𝑏 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(0,5) 



𝛼 ∼ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

All stressor estimates are provided in Table S11.  

S3.4 Poultry estimates 

To draw comparisons with poultry, often used as a relatively low-impact benchmark for animal 
protein, we re-modelled three chicken LCAs following the same impact assessment methods applied here. 
These systems were also the basis for our chicken by-product feed inputs. Inputs of electricity and energy 
carriers were extracted from Agri-footprint 5.0 processes. Feed compositions and FCRs were derived 
directly from poultry LCAs in the United States32, Italy33, and France34. Our poultry estimates therefore 
represent industrial poultry production in the US and Europe. Cases were run using the same model 
developed for aquaculture and were checked against GHG ranges from LCAs as reported by52. Poultry 
estimates are presented in Fig S14 and Table S7.  

S3.5 Modelled scenarios 

We first tested the influence of model parameters on estimated stressors by reducing each 
parameter by 10%, holding all other parameters constant, and computing the difference between the 
baseline and perturbed stressor. In the case of feed composition, when one feed component is decreased, 
the others are increased proportionally such that the proportions still sum to one. 

To test the result of more realistic scenarios, we developed a series of intervention scenarios that 
shift parameters or constants, described in Table S8. We also ran the scenarios using economic allocation 
estimates for comparison (Fig S17–S18).  

S4 Stressor estimates 

S4.1 Aquaculture stressor estimate trade-offs 

 
Fig S5 | Spider diagram of mean stressor estimates for aquaculture taxa groups. Mean stressor 
estimates are displayed along each spoke to illustrate the trade-offs across stressors among the taxa 



groups. Values represent normalized stressors from 0 to 1 calculated as stressor / max(stressor). In the 
case of N and P, which include negative values, we normalize the min/max values. Capture taxa groups 
are not displayed since the non-GHG stressors are all zero in our simplified model.   

S4.2 Aquaculture stressor estimates by source 

 
Fig S6 | Stressor estimates by feed-associated versus on-farm component. Units: GHG emissions (kg 
CO2-eq t-1); Land use (m2a t-1); Water use (m3 t-1); N (kg N-eq t-1); P (kg P-eq t-1).  



S4.3 Stressor estimate distributions 

 
Fig S7 | Stressor estimate distributions by taxa. Within a taxa group, GHG emissions may vary more 
than 20-fold, N/P emissions vary up to 12-fold, and land and water vary up to 22-fold. 
 

 

Fig S8 | Stressor estimate distributions by production system 

 



 
Fig S9 | Stressor estimate distributions by intensity  



Table S4 | Correlations among stressors. The correlation matrix among the stressors represents 
Pearson’s correlation coefficient across all stressor observations.  

 GHG N P Water Land 

GHG 1.00 0.72 0.77 -0.18 0.57 

N 0.72 1.00 0.95 -0.05 0.77 

P 0.77 0.95 1.00 -0.12 0.64 

Water -0.18 -0.05 -0.12 1.00 0.12 

Land 0.57 0.77 0.64 0.12 1.00 

 

S4.4 Stressor estimates expressed in terms of live weight 

In addition to the results expressed in terms of edible portion in the main text, we also provide the 
estimates in terms of live weight equivalents (Fig S10).  

 
Fig S10 | Stressor posterior distributions. Panels represent a) Aquaculture GHG emissions (kg CO2-eq 
t-1); b) Aquaculture N (kg N t-1); c) Aquaculture P (kg P t-1); d) Capture GHG emissions (kg CO2-eq t-
1); e) Aquaculture Water use (m3 t-1); f) Aquaculture Land use (m2a t-1). Values represent tonnes in live 
weight equivalents and use mass allocation. Dot indicates the median, colored regions show credible 
intervals (i.e., range of values that have a 95% (light), 80%, and 50% (dark) probability of containing the 
true parameter value). Taxa group names are abbreviated ISSCAAP names (e.g., flounder, etc refers to 
flounders, halibuts, soles; See Table S2 for definitions). Beige bands represent chicken min to max range 



S4.5 Aquaculture stressor estimates with economic and energy allocation 

We modeled the stressors using economic and energy allocation as a sensitivity analysis and to inform on 
the possible differences in results using different allocation methods often used in the LCA literature.  

 
Fig S11 | Total stressor estimates using economic allocation. Posterior distributions by taxa for 
aquaculture include: a) GHG emissions (kg CO2-eq t-1); b) N (kg N t-1); c) P (kg P t-1); d) Water use (m3 
t-1); e) Land use (m2a t-1). Values represent tonnes in edible portion equivalent and use economic value 
allocation. Intervals show 95% (light), 80%, and 50% (dark) credible intervals. Dot indicates the median. 
Taxa groups are abbreviated as follows: silver/bighead = silver or bighead carp; misc diad = 
miscellaneous diadromous fishes; misc marine = miscellaneous marine fishes. No data was available for 
wild capture fisheries. 

 
Fig S12 | Total stressor estimates using energy allocation. Posterior distributions by taxa for 
aquaculture include: a) GHG emissions (kg CO2-eq t-1); b) N (kg N t-1); c) P (kg P t-1); d) Water use (m3 



t-1); e) Land use (m2a t-1). Values represent tonnes in edible portion equivalent and use gross energy 
content allocation. Intervals show 95% (light), 80%, and 50% (dark) credible intervals. Dot indicates the 
median. Taxa groups are abbreviated as follows: silver/bighead = silver or bighead carp; misc diad = 
miscellaneous diadromous fishes; misc marine = miscellaneous marine fishes. No data was available for 
wild capture fisheries. 

S4.6 Stressor estimates with weakly informative priors 

Stressor estimates were largely similar whether the model was run with informative versus weakly 
informative priors (Fig. S10), however slight shifts were seen in the median and distributions When 
comparing tuna vs squid greenhouse gas emissions, tuna have higher emissions under the no priors 
scenario, while squid have higher emissions when priors are implemented. Wild salmon vs bivalves also 
switch in terms of their relative greenhouse gas emissions depending on whether priors are implemented 
or not. In all cases, however, the differences in the median estimate were less than 500 kg CO2-eq t-1. 
 

 
Fig S13 | Stressor estimates with weakly informative priors. Bands represent posterior distributions by 
taxa for a) Aquaculture GHG emissions (kg CO2-eq t-1); b) Aquaculture N (kg N t-1); c) P (kg P t-1); d) 
Capture GHG emissions (kg CO2-eq t-1); e) Aquaculture Water use (m3 t-1); f) Aquaculture Land use 
(m2a t-1). Values represent tonnes in edible portion equivalent and use mass allocation. Intervals show 
95% (light), 80%, and 50% (dark) credible intervals. Dot indicates the median. Taxa groups are 
abbreviated as follows: silver/bighead = silver or bighead carp; cod, etc = cods, hakes, haddocks; 
flounder, etc = flounders, halibuts, soles; herring, etc = herrings, sardines, anchovies; jack, etc = jacks, 
mullets, sauries; misc diad = miscellaneous diadromous fishes; misc marine = miscellaneous marine 
fishes; redfish, etc = redfishes, basses, congers; salmon, etc = salmons, trouts, smelts; squid, etc = squid, 
cuttlefishes, octopuses; tuna, etc = tunas, bonitos, billfishes. Beige bands represent chicken min to max 
range.  



Table S5 | Feed conversion ratio priors Feed conversion ratio priors applied based on expert judgement.  
Group name Ave FCR Upper FCR Lower FCR 
Grass carp 1.8 3.2 1.2 
Crucian carp 1.4  0 
Common carp 1.5  0 
Silver and bighead carp 0 0 0 
Tilapias and other cichlids 1.6 2.1 1.2 
Miscellaneous freshwater fishes 1.8 2 1.5 
Salmon 1.1 1.3 1 
Trouts 1.1 1.4 1 
Milkfish 1.5 1.9 1.3 
Freshwater crustaceans 1.7 4.5 0 
Shrimps, prawns 1.3 2.2 0 
Oysters 0 0 0 
Mussels 0 0 0 
Aquatic plants 0 0 0 
 

S4.7 Stressor estimates for poultry 

We used several sources to derive poultry’s muscle fraction from live weight. In these sources we 
extracted the carcass weight (eviscerated weight) and the relative weights of the main prime cuts. Using 
muscle fractions from those prime cuts, we derived total muscle from carcass weight, and consequently 
from live weight (see Table S6). We only list single values although the values presented in those 
references varied slightly based on sex or feed regimes. Based on these estimates, we apply an edible 
portion from live weight value of 40% for poultry.   



Table S6 | Poultry edible portion calculations.  
Reference Item Carcass 

weight 
wing thigh Drum-

stick 
breast back neck Muscle from live 

weight 

Lukaszewics 
2014 

Fraction 
(%) 

75        

Muscle 
(% of 
carcass) 

  21  27   48%×75%=36% 

Preston 
1972 

Fraction 
from 
carcass 
weight 
(%) 

71 12 17 16 27 19 4 71%×(12%×39%
+17%×75%+16%
×64%+27%×68
%+19%×43%) = 
38% 
0r based on 58% 
whole carcass: 
58%×71% = 41% 

Muscle 
(%) 

 39 75 64 68 43  

Moran 1990 

Fraction 
from 
carcass 
weight 

67 14 19 16 30 13 7 67%×(14%×38%
+19%×67%+16%
×55%+30%×75
%+13%×40%+7
%×47%) = 39% 
0r based on 58% 
whole carcass: 
58%×67%=39% 

Muscle 
% 

 38 67 55 75 40 47 

 
 

 
Fig S14 | On- and off-farm poultry stressor estimates. Stressor estimates represent GHG emissions (kg 
CO2-eq t-1), Land use (m2a t-1), N emissions (kg N-eq t-1), P (kg P-eq t-1), and Water use (m3 t-1). 
  



Table S7 | Poultry model stressor estimates. Minimum, median, mean and maximum total stressor 
estimates for poultry (edible portion) for GHG emissions (kg CO2-eq t-1), Land use (m2a t-1), N emissions 
(kg N-eq t-1), P (kg P-eq t-1), and Water use (m3 t-1) 

 Total GHG Total N Total P Total Land Total Water 

Min 7817 192.2 28.4 14485 424.5 

Median 8335 204.1 30.5 14525 454.7 

Mean 8365 207.3 32.5 14664 459.7 

Max 8973 228.8 40.3 15119 505.0 

S5 Analysis of levers 

Table S8 | Intervention scenario descriptions  

Name Description Example impact magnitude or policy 

FCR lower 
20th 

Move all taxa 
observations to the 20th 
percentile FCR value  

Improved husbandry: Selective breeding showed 18.4% 
increase in survival and additionally 21.2% increase in 
weight gain compared with the unselected control group 
(Dey et al. 2020; Argue et al. 2002). 

Feed improvements: Shift from farm-made feed to pelleted 
feeds reduced FCR in Pangasius from 2.25 to 1.69. (Phan et 
al. 2009) 

Genetic improvements: Average reduction in FCR of 13% 
on avg. across species (Gjedrem & Rye 2018) 

Replace 
FMFO with 
deforestatio
n-free soy 

Replace FMFO portion of 
feeds with land change-
free soy based on US  

Replacement of fish oil with soy or with by-product would 
reduce the forage fish dependency ratio. A substitution of 
fish oil with plant oils (rapeseed, palm and camelina) in 
salmon feed is associated with an estimated 18% rise in 
CO2-eq . Replacing fish meal with plant ingredients in 
shrimp feeds is associated with a 67% increase in land 
occupation and 63% in water consumption . 

Replace 
FMFO with 
fish by-
products 

Replace FMFO portion of 
feeds with fishery by-
product impact factors 

The replacement of fishmeal and fish oil with fishery and 
aquaculture by-products, including with low-impact fishery 
by-products has been discussed to reduce reliance on 
reduction fisheries. This includes the Organic Standards for 
Aquaculture 2020  
(https://www.soilassociation.org/media/18611/soil-
association-eu-equivalent-standards-aquaculture.pdf) and 
other certification standards, such as ASC, Global GAP, 
BAP. There are also initiatives from major feed suppliers.  

Replace 
FMFO with 
low impact 
fishery by-
products 

Replace FMFO portion of 
feeds with low-impacts 
fishery by-product impact 
factors (based on Alaska 
pollock by-products) 

Yield upper Move all taxa Opportunities to improve yield include disease management 



20th observations to the 20th 
percentile yield value 

policies55 as well as improved farm management56. 

13% more 
catch with 
56% of the 
effort 

Best management 
resulting in 13% more 
catch and 56% of the 
effort 

A suite of fishery management best practices could increase 
catch, while decreasing the effort (and therefore the 
emissions per tonne)57 

Min GHG 
gear-type 

Switch gear to min. GHG 
per species  

There is substantial variability in greenhouse gas emissions 
associated with different gears. This scenario represents an 
optimization of gear type by species.  

Changes to constants 

Deforestatio
n-free soy & 
crops 

Source crops and soy from 
non-rainforest depleting 
sources 

Land use change for soy and other crops is a major source 
of greenhouse gas emissions for feeds. Eco-certification of 
crops and traceability programs that aim to eliminate soy 
and other crops associated with deforestation would reduce 
the emissions associated with these crops. Notably, this 
could reduce emissions associated with a farmed fish 
product, but may not reduce total emissions given the 
integrated nature of the soy and feed-crop markets and the 
demand for these products in other sectors.  

Zero 
emission 
electricity 

Assume zero emissions 
associated with on-farm 
energy use 

Decarbonising the global energy system, including that used 
by fisheries and aquaculture, is a prerequisite for reaching 
the Paris Agreement of limiting global warming to 2°C (and 
aiming for 1.5°C; Willett et al. 2019). This would entail on-
farm energy use would be associated with zero emissions. 



 
 

Fig S15 | Additional aquaculture scenario results. Change (%) in stressor values three additional 
scenarios (using mass allocation; defined in Table S5) relative to the current estimate. 
 

 
Fig S16 | Capture fishery scenario results. Change (%) in GHG emissions under a scenario with 
catching 13% more fish with 56% of the effort, as in57 and a scenario where all species catch is with the 
gear type with the lowest GHGs.  



 
Fig S17 | Lever and scenario analysis from Fig 4 using economic allocation. a) Change (%) in each 
stressor associate with a 10% reduction in the parameter value (black cell indicates stressor change 
>20%); b) Change (%) in each stressor under four scenarios (defined in Table S5). Arrows indicate 
changes greater than 100%. 



 

 
Fig S18 | Additional aquaculture scenario results using economic allocation. Change (%) in stressor 
values in additional scenarios (using economic allocation; defined in Table S5) relative to the current 
estimate. 
 
Tables S9-S11 are included as Supplementary Table csv files. 
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