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Nonparametric Reconstruction of Vector Fields
From Noisy Observations of Their Flow Curves

Terry-Ann Sneed and Arash Komaee

Abstract—In an ordinary differential equation represented by
a set of state-space equations, the differential of the state vector
is given by the values of a vector f eld evaluated at the values
of the state vector. This paper focuses on the reconstruction of
this vector f eld from noisy measurements of the state trajectories
generated empirically from a physical process. For this estimation
problem, a nonparametric least squares formulation is presented,
which is then expressed as a linear quadratic tracking problem
with a well known solution from the optimal control theory. This
approach is demonstrated for experimental reconstruction of the
magnetic force f eld around a permanent magnet from the motion
trajectories of a magnetic particle attracted toward the magnet.

Index Terms—Least squares method, linear quadratic tracking,
magnetic force, numerical differentiation, signal smoothing.

I. INTRODUCTION

THIS work aims to experimentally characterize magnetic
force f eld around a permanent magnet, and is part of our

long-term effort toward a framework for systematic design and
development of noncontact magnetic manipulators. Magnetic
f elds provide a unique ability for noncontact manipulation of
magnetized objects behind nonmagnetic barriers, which can be
exploited for operation of magnetically driven medical tools
inside the human body, or for actuating micro- and nanoscale
systems in which direct contact for manipulation and control is
not feasible [1]–[20]. For effective design and feedback control
of magnetic manipulators, a reliable model of magnetic force
is an essential need. The existing models of magnetic force are
usually theoretically driven, while empirical models are more
reliable due to the existing gap between theory and practice.
In this work, a model of magnetic force is constructed from

empirical data. An experimental setup was used to record the
trajectories of motion of a magnetic particle attracted toward
a permanent magnet. These trajectories are the f ow curves of
the magnetic force, which can be processed to reconstruct this
vector f eld. Ideally, a vector f eld can be constructed along its
f ow curves simply by differentiating these curves with respect
to time. However, the accuracy of this approach for empirical
data is severely degraded by the measurement noise and limits
on the maximum achievable sampling rate of the f ow curves.
To improve the estimation accuracy, a least squares problem

is formulated in this paper to both smooth the empirical f ow
curves and estimate their differentials. This formulation takes
the form of a linear quadratic tracking (LQT) problem with an
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explicit solution known from the optimal control theory [21].
By solving this problem for each empirical f ow curve (noisy
and sampled), the vector f eld is constructed along that curve,
and by gathering a large collection of these curves, the vector
f eld is interpolated at those points not lying on the curves.
Most of prior work on reconstruction of vector f elds focuses

on two categories of problems differing from this paper either
in terms of the structure of empirical data or the reconstruction
approach. In tomographic reconstruction, the goal is to extract
a vector f eld from a collection of its line integrals [22]–[28],
versus the f ow curves used in this paper. The second research
direction relies on parametric techniques for reconstruction of
vector f elds [29]–[38], in opposition to this paper that adopts a
nonparametric approach. The least squares estimation problem
formulated in this paper can be similarly applied for smoothing
any noisy trajectory of motion, as extensively studied in [39].

II. EXPERIMENTAL SETUP AND DATA COLLECTION

The experimental setup shown in Fig. 1(a) was used in this
work for data collection. This setup consists of a f at container
f lled with a high viscosity f uid, and a magnetic bead moving
inside the f uid under the attractive magnetic force of a magnet
f xed at the edge of the container. A simple screw mechanism
is embedded into the setup to adjust the container horizontally
using a bubble level. A high-speed camera is mounted on the
top of the container to record the trajectories of motion of the
magnetic bead. The camera operates at a frame rate of 667 fps,
and a LabVIEW video tracking module extracts the position
of the magnetic bead from the captured frames. Certainly, the
video tracker is imperfect and can only estimate the position
with some error, regarded as a measurement noise. As shown
in Fig. 1(c), several trajectories of the magnetic bead starting
from different initial points were recoded using the setup of
Fig. 1(a). Each recorded trajectory is stored as an array of the
estimated positions and an array of their corresponding time
stamps. The goal in this paper is to reconstruct the magnetic
force around the magnet by processing the recorded data.
The motion of the magnetic bead is described by Newton’s

second law of motion under the applied magnetic force and the
f uid resistance (drag). Let x (t) ∈ R

2 and v (t) ∈ R
2 denote,

respectively, the position and velocity of the magnetic bead at
time t in the planar coordinate system of Fig. 1(c). Then, the
dynamics of the magnetic bead is governed by the state-space
equations

ẋ (t) = v (t) (1a)

v̇ (t) = −
µ

m
v (t) +

1

m
Fmag (x (t)) , (1b)
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Fig. 1. Data collection procedure: (a) experimental setup consisting of a f at
container f lled with a highly viscous f uid, a magnetic bead moving under a
permanent magnet, and a camera on top for recording; (b) experimental set
up as viewed by the camera; (c) recorded trajectories of the magnetic bead
and the planar coordinate system in which they are represented.

where m is the mass of the magnetic bead. The term −µv (t)
on the right-hand side of (1b) represents the drag force with the
friction coeff cient µ > 0, linearly depending on the viscosity
of the f uid surrounding the magnetic bead. Also, Fmag (x) on
the right-hand side of (1b) characterizes the component of the
magnetic force in the plane of motion at a point x.
The experiment in this work was purposefully designed with

a high viscosity f uid aimed at two goals. First, the magnetic
bead moves slower in a more viscous f uid, which enables the
camera to capture more frames from each trajectory of motion.
Second, for a high viscosity f uid with a very large µ, the set
of state-space equations (1) reduces to a single equation

ẋ (t) =
1

µ
Fmag (x (t))

by a singular perturbation [40] approximation v̇ (t) ≃ 0. This
reduced form is more convenient for the purpose of this paper,
and is utilized to estimate the vector f eld

f (x) ,
1

µ
Fmag (x) (2)

from the recorded data. Then, by direct measurement of µ, the
actual magnetic force is obtained, or alternatively, the magnetic
force is expressed in a normalized form, like this paper.

III. RECONSTRUCTION OF VECTOR FIELDS
This section presents a solution to the inverse problem of

reconstructing a vector f eld from the noisy observations of its
f ow curves. First, the problem is formalized in Section III-A,
and next, a least squares formulation of the estimation problem
is introduced in Section III-B. It is shown in Section III-D how
this estimation problem can be converted to a linear quadratic
tracking problem, for which an explicit solution is presented.
Finally, a nearest neighbour interpolation scheme is presented
in Section III-E to reconstruct the vector f eld at those points
not lying on any of the multiple reconstructed trajectories.

A. Problem Statement
Let f (·) : Rm → R

m be a continuous vector function and
assume that the state-space equation

ẋ (t) = f (x (t)) , t ∈ [0, T ] (3a)
x (0) = x0 (3b)

admits a unique solution for the state vector x (t) ∈ R
m on the

interval t ∈ [0, T ], starting from the initial state x0. Suppose
the noisy observations

yn = x (tn) + vn, n = 0, 1, 2, . . . , N (4)

of the state vector are provided at the sampling times

0 = t0 < t1 < t2 < · · · < tN = T.

Here, vn ∈ R
m, n = 0, 1, 2, . . . , N is a measurement noise of

unspecif ed nature. The concern of this paper is to address the
inverse problem of reconstructing the trajectories of x (t) and
its derivative ẋ (t) on t ∈ [0, T ] from the observed data (4).
The estimated trajectories are denoted by x̂ (t) and f̂ (x̂ (t)),

respectively. These trajectories provide an estimate f̂ (·) of the
vector function f (·) along x̂ (t), t ∈ [0, T ]. By constructing
several such estimated trajectories from different data sets of
the form (4), the values of f (·) can be estimated at the points
not lying on the curves x̂ (t) by means of interpolation. This
procedure is explained in Section III-E.

B. Least Squares Formulation of the Estimation Problem
Perhaps, the simplest scheme for construction of x̂ (·) at the

sampling times tn is to disregard noise and take x̂ (tn) = yn
for n = 0, 1, 2, . . . , N . Moreover, f̂ (yn) = ẏn is estimated by
numerical differentiation of the data set (4) according to

ẏn ,























y1 − y0

t1 − t0
, n = 0

yn+1 − yn−1

tn+1 − tn−1
, n = 1, 2, . . . , N − 1

yN − yN−1

tN − tN−1
, n = N.

(5)

However, this approach typically produces inaccurate results
in the presence of noise, in particular for the differential ẏn. A
less crucial but still important drawback of this simple scheme
is that it can only provide estimations at the sampling times
not the entire interval t ∈ [0, T ].
In this section, a least squares problem is formulated to yield

a continuously differentiable estimate x̂ (t) on t ∈ [0, T ] with
a reasonably small second derivative, while staying reasonably
close to the observed values yn at the sampling times tn. Then,
the derivative of x̂ (t) is taken as f̂ (x̂ (t)) for t ∈ [0, T ].
Let x (t) be a vector in R

m with continuous f rst derivative
and piecewise continuous second derivative on t ∈ [0, T ]. In
terms of x (t), def ne z (t) ∈ R

2m and u (t) ∈ R
m as

z (t) =
[

xT (t) ẋT (t)
]T

, u (t) = ẍ (t) , t ∈ [0, T ]. (6)

Then, x (t) can be expressed by the state-space equations

ż (t) = Az (t) +Bu (t) (7a)
x (t) = Cz (t) (7b)
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with the parameters

A =

[

0m Im
0m 0m

]

, B =

[

0m
Im

]

, C =
[

Im 0m
]

,

where Im and 0m denote them×m identity and zero matrices,
respectively. Noting that the only assumptions on the solution
of (3) are its unique existence and continuous differentiability,
the solution to (7) can also solve (3) for some suitable choice
of piecewise continuous bounded u (·).
Certainly, determining the exact value of such function u (·)

is not possible in the presence of measurement noise and with
limited number of observed data points. Yet, a proper estimate
of u (·) can be obtained by minimizing the quadratic cost

J =

∫ T

0

β ‖u (t)‖2 dt+
N
∑

n=0

wn ‖Cz (tn)− yn‖
2 (8)

with respect to u (·) and the initial state z (0) = z0 of (7a). In
this quadratic cost functional, β is a positive constant and wn

for n = 0, 1, 2, . . . , N are nonnegative constants summing up
to 1. The integral on the right-hand side of (8) penalizes a large
second derivative u (t) to keep x (t) smooth and u (t) bounded,
while the sum term penalizes large deviations of x (t) from the
data points y0, y1, . . . , yN to keep it close to the empirically
observed trajectory. By varying the regularization parameter β,
a trade-off is made between the smoothness of x (t) and the
goodness of f t, while the values of w0, w1, . . . , wN determine
the relative importance of the f tting error at each point yn.
After minimizing the cost functional (8) subject to the state-

space equation (7a), the estimators

x̂ (t) = Cz∗ (t) , t ∈ [0, T ]

f̂ (x̂ (t)) = Dz∗ (t) , t ∈ [0, T ]

are obtained in terms of the optimal state trajectory z∗ (t). The
matrixD in the second equation is def ned as D =

[

0m Im
]

.
The least squares estimation problem involving (7) and (8)

is extendable to the case that the vector f eld f (·) in (3) is
not only continuous, but also continuously differentiable. This
new assumption implies that the second derivative ẍ (t) exists
and is continuous. To enforce the continuity of ẍ (t), the state-
space equation (7) is redef ned with the new vectors

z (t) =
[

xT (t) ẋT (t) ẍT (t)
]T

, u (t) =
...
x (t) (9)

and accordingly redef ned parameters A, B, C, and D. Then,
the least squares problem is redef ned subject to this new state-
space equation and a cost functional of the same structure (8).
Depending on the prior knowledge on the smoothness of the
vector f eld f (·), this procedure is extendable to higher orders.

C. Selection of the Weighting Parameters
In a typical experiment, samples of the f ow curves are taken

uniformly in time, that leads to nonuniform sampling in space
as a result of temporal variations in ‖ẋ (t)‖. This phenomenon
results in nonuniform distribution of the data points along the
f ow curves. Hence, for a fair distribution of f tting error along
these curves, this error must be emphasized at the points with
more sparse distribution of the data points, and deemphasized

for the points with more dense distribution. A straightforward
approach to this problem is to take the weighting parameter wn

proportional to the empirical value of ‖ẋ (tn)‖ estimated as the
numerical differential ẏn in (5). Since the sequence {ẏn}

N

n=0

is typically rough, it can be smoothed before generating wn.
Selection of the regularization parameter β > 0 in this work

relies on human effort by direct investigation of the estimated
trajectories of x̂ (t) and f̂ (x̂ (t)). Automated selection of this
parameter has been proposed by cross-validation methods [39].

D. Conversion to a Linear Quadratic Tracking Problem
The cost functional (8) can be expressed as

J =

∫ T

0

(

w (t) ‖Cz (t)− y (t)‖2 + β ‖u (t)‖2
)

dt

+ wN ‖Cz (T )− yN‖
2
, (10)

where y (t) is any continuous function satisfying y (tn) = yn
for n = 0, 1, 2, . . . , N − 1, and w (t) is def ned as

w (t) =

N−1
∑

n=0

wnδ (t− tn)

in terms of the Dirac delta function δ (·). With this new form
of J , the problem of minimizing (8) with respect to the control
trajectory u (t), t ∈ [0, T ] and the initial state z0 of (7) reduces
to an LQT problem and a simple quadratic optimization. The
solution to the LQT problem can be accessed in any standard
optimal control textbook such as [21], which is specialized in
the remainder of this section for the cost functional (10).
For any f xed initial state z0 of the state-space equation (7),

the minimum of (10) is a quadratic function of z0 given by

J∗ (z0) = J∗
0 + 2qT (0) z0 + zT0 P (0) z0,

where J∗
0 is a constant independent of z0, and q (0) and P (0)

are respectively a vector and an invertible matrix of appropriate
dimensions. Then, the minimum of (10) over all initial states
is attained by the specif c choice

z∗0 = −P−1 (0) q (0) . (11)

The numerical values of P (0) and q (0) are determined by
solving the set of differential equations

Ṗ (t) = −ATP (t)− P (t)A+ β−1P (t)BBTP (t)

− w (t)CTC (12a)

q̇ (t) = −
(

A− β−1BBTP (t)
)T

q (t) + w (t)CT y (t)
(12b)

backward in time with the terminal condition

P (T ) = wNCTC, q (T ) = −wNCT yN .

By resolving this set of equations, the values of P (0) and q (0)
are determined at t = 0, from which, the optimal initial state is
extracted according to (11), Moreover, in terms of the recorded
trajectories of q (t) and P (t) over t ∈ [0, T ], the optimal state
trajectory z∗ (t), t ∈ [0, T ] is given by the forward solution of

ż∗ (t) =
(

A− β−1BBTP (t)
)

z∗ (t)− β−1BBT q (t)

z∗ (0) = z∗0 .



w (t)

Ṗ (t) = −ATP (t)− P (t)A+ β−1P (t)BBTP (t)

q̇ (t) = −
(

A− β−1BBTP (t)
)T

q (t)

t ∈ (tn−1, tn] n = N,N − 2, . . . , 2, 1

(tn−1, tn]
(tn, tn+1]

P (tn) = P
(

t+n
)

+ wnC
TC

q (tn) = q
(

t+n
)

− wnC
T yn.

n = N − 1, N − 2, . . . , 2, 1
n = 0

P (0) q (0)

f (·) L

x̂i (t) , f̂ (x̂i (t)) , t ∈ [0, Ti], i = 1, 2, . . . , L,

x ∈ R
m

x ∈ R
m

di (x) = min
t∈[0,Ti]

‖x̂i (t)− x‖ , i = 1, 2, . . . , L

t∗i (x) = arg min
t∈[0,Ti]

‖x̂i (t)− x‖ , i = 1, 2, . . . , L.

1 � K � L di (x) i = 1, 2, . . . , L
K

SK (x) K f (·)
x

f̂K (x) =

∑

i∈SK(x) d
−1
i (x) f̂ (x̂i (t

∗
i (x)))

∑

i∈SK(x) d
−1
i (x)

.

β

f (·)

f (x) =

[

−2 −4
4 −2

]

x

x0 = (3,−2)
t ∈ [0, 1]
0.01

vn
diag (0.0004, 0.0004)

tt

tt

tt

tt

x
1
(t
)

x
2
(t
)

x
1
(t
)
−
x̂
1
(t
)

x
2
(t
)
−
x̂
2
(t
)

ẋ
1
(t
)
,
f̂
1
(x̂

(t
))

ẋ
2
(t
)
,
f̂
2
(x̂

(t
))

ẋ
1
(t
)
−
f̂
1
(x̂

(t
))

ẋ
2
(t
)
−
f̂
2
(x̂

(t
))

β = 10−8

wn

β

ẋ (t) β

β β = 10−8 β → 0



t

ẋ
1
(t
)
,
f̂
1
(x̂

(t
))

ẋ1 (t)

log β = −8

log β = −10
log β = −12

β
β < 10

−8

ẋ1 (t)

β

β = 10−5 β

t

ẋ
1
(t
)
,
f̂
1
(x̂

(t
))

ẋ1 (t)

15.9

β = 10−13

wn ẏ0, ẏ1, . . . , ẏN

21 L = 17
N = 858 N = 4376

T = 1.32 T = 6.63

L = 17

K = 6

x

2L = 34
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Fig. 5. Reconstruction of magnetic force. (a) The x-component of a typical trajectory of motion (solid line) reconstructed from observed data (markers). (b)
The x-component of the estimated derivative (velocity) of the same trajectory (solid line), and the numerical differentials ẏn determined from (5) (markers).
(c) The x-component of velocity [proportional to the magnetic force by (2)] versus distance from the face of magnet along x-axis. The markers represent the
x-component of ẏn against the x-component of yn. (d) Normalized magnitude of the reconstructed magnetic force for the points on the plane of motion.
The normalization factor is the maximum force at the face of the magnet. (e) Direction of the reconstructed magnetic force determined as the angle between
x-axis and the magnetic force at each point. (f) Quiver plot of the reconstructed magnetic force. The force directions are represented by vectors of equal
length, and the magnitude of force is color-coded with a logarithmic scale. The reconstructed trajectories of motion are shown in (f) by solid lines.
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