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Abstract—In an ordinary differential equation represented by
a set of state-space equations, the differential of the state vector
is given by the values of a vector feld evaluated at the values
of the state vector. This paper focuses on the reconstruction of
this vector f eld from noisy measurements of the state trajectories
generated empirically from a physical process. For this estimation
problem, a nonparametric least squares formulation is presented,
which is then expressed as a linear quadratic tracking problem
with a well known solution from the optimal control theory. This
approach is demonstrated for experimental reconstruction of the
magnetic force f eld around a permanent magnet from the motion
trajectories of a magnetic particle attracted toward the magnet.

Index Terms—Least squares method, linear quadratic tracking,
magnetic force, numerical differentiation, signal smoothing.

I. INTRODUCTION

HIS work aims to experimentally characterize magnetic
force feld around a permanent magnet, and is part of our
long-term effort toward a framework for systematic design and
development of noncontact magnetic manipulators. Magnetic
felds provide a unique ability for noncontact manipulation of
magnetized objects behind nonmagnetic barriers, which can be
exploited for operation of magnetically driven medical tools
inside the human body, or for actuating micro- and nanoscale
systems in which direct contact for manipulation and control is
not feasible [1]-[20]. For effective design and feedback control
of magnetic manipulators, a reliable model of magnetic force
is an essential need. The existing models of magnetic force are
usually theoretically driven, while empirical models are more
reliable due to the existing gap between theory and practice.
In this work, a model of magnetic force is constructed from
empirical data. An experimental setup was used to record the
trajectories of motion of a magnetic particle attracted toward
a permanent magnet. These trajectories are the f ow curves of
the magnetic force, which can be processed to reconstruct this
vector feld. Ideally, a vector feld can be constructed along its
fow curves simply by differentiating these curves with respect
to time. However, the accuracy of this approach for empirical
data is severely degraded by the measurement noise and limits
on the maximum achievable sampling rate of the f ow curves.
To improve the estimation accuracy, a least squares problem
is formulated in this paper to both smooth the empirical f ow
curves and estimate their differentials. This formulation takes
the form of a linear quadratic tracking (LQT) problem with an
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explicit solution known from the optimal control theory [21].
By solving this problem for each empirical f ow curve (noisy
and sampled), the vector feld is constructed along that curve,
and by gathering a large collection of these curves, the vector
feld is interpolated at those points not lying on the curves.
Most of prior work on reconstruction of vector f elds focuses
on two categories of problems differing from this paper either
in terms of the structure of empirical data or the reconstruction
approach. In tomographic reconstruction, the goal is to extract
a vector feld from a collection of its line integrals [22]-[28],
versus the f ow curves used in this paper. The second research
direction relies on parametric techniques for reconstruction of
vector felds [29]-[38], in opposition to this paper that adopts a
nonparametric approach. The least squares estimation problem
formulated in this paper can be similarly applied for smoothing
any noisy trajectory of motion, as extensively studied in [39].

II. EXPERIMENTAL SETUP AND DATA COLLECTION

The experimental setup shown in Fig. 1(a) was used in this
work for data collection. This setup consists of a f at container
flled with a high viscosity fuid, and a magnetic bead moving
inside the fuid under the attractive magnetic force of a magnet
fxed at the edge of the container. A simple screw mechanism
is embedded into the setup to adjust the container horizontally
using a bubble level. A high-speed camera is mounted on the
top of the container to record the trajectories of motion of the
magnetic bead. The camera operates at a frame rate of 667 fps,
and a LabVIEW video tracking module extracts the position
of the magnetic bead from the captured frames. Certainly, the
video tracker is imperfect and can only estimate the position
with some error, regarded as a measurement noise. As shown
in Fig. 1(c), several trajectories of the magnetic bead starting
from different initial points were recoded using the setup of
Fig. 1(a). Each recorded trajectory is stored as an array of the
estimated positions and an array of their corresponding time
stamps. The goal in this paper is to reconstruct the magnetic
force around the magnet by processing the recorded data.

The motion of the magnetic bead is described by Newton’s
second law of motion under the applied magnetic force and the
fuid resistance (drag). Let z (t) € R? and v (t) € R? denote,
respectively, the position and velocity of the magnetic bead at
time ¢ in the planar coordinate system of Fig. 1(c). Then, the
dynamics of the magnetic bead is governed by the state-space
equations

(1a)
(1b)
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Fig. 1. Data collection procedure: (a) experimental setup consisting of a f at
container flled with a highly viscous fuid, a magnetic bead moving under a
permanent magnet, and a camera on top for recording; (b) experimental set
up as viewed by the camera; (c) recorded trajectories of the magnetic bead
and the planar coordinate system in which they are represented.

where m is the mass of the magnetic bead. The term —pwv (t)
on the right-hand side of (1b) represents the drag force with the
friction coeff cient x> 0, linearly depending on the viscosity
of the fuid surrounding the magnetic bead. Also, Fipqq () on
the right-hand side of (1b) characterizes the component of the
magnetic force in the plane of motion at a point x.

The experiment in this work was purposefully designed with
a high viscosity fuid aimed at two goals. First, the magnetic
bead moves slower in a more viscous fuid, which enables the
camera to capture more frames from each trajectory of motion.
Second, for a high viscosity fuid with a very large p, the set
of state-space equations (1) reduces to a single equation

R S
i (t) = uFmag( (1))

by a singular perturbation [40] approximation © (¢) ~ 0. This
reduced form is more convenient for the purpose of this paper,
and is utilized to estimate the vector feld

L1
f (.I) = ; Fmag (-I) (2)

from the recorded data. Then, by direct measurement of 1, the
actual magnetic force is obtained, or alternatively, the magnetic
force is expressed in a normalized form, like this paper.

III. RECONSTRUCTION OF VECTOR FIELDS

This section presents a solution to the inverse problem of
reconstructing a vector feld from the noisy observations of its
fow curves. First, the problem is formalized in Section III-A,
and next, a least squares formulation of the estimation problem
is introduced in Section III-B. It is shown in Section III-D how
this estimation problem can be converted to a linear quadratic
tracking problem, for which an explicit solution is presented.
Finally, a nearest neighbour interpolation scheme is presented
in Section III-E to reconstruct the vector feld at those points
not lying on any of the multiple reconstructed trajectories.

A. Problem Statement

Let f(-) : R™ — R™ be a continuous vector function and
assume that the state-space equation

@(t)=f(z@®), te[0,T]
2 (0) = xo

(3a)
(3b)
admits a unique solution for the state vector  (¢) € R on the

interval ¢ € [0, T, starting from the initial state xy. Suppose
the noisy observations

Yn = (tp) +vn, n=0,1,2,...,N @)
of the state vector are provided at the sampling times
O=to<ti<to<---<ty=T.
Here, v,, € R, n=0,1,2,..., N is a measurement noise of

unspecif ed nature. The concern of this paper is to address the
inverse problem of reconstructing the trajectories of x (¢) and
its derivative & (¢) on ¢ € [0, 7] from the observed data (4).

The estimated trajectories are denoted by 2 (t) and f (@),
respectively. These trajectories provide an estimate f (-) of the
vector function f (-) along Z (¢), ¢ € [0,7T]. By constructing
several such estimated trajectories from different data sets of
the form (4), the values of f (-) can be estimated at the points
not lying on the curves & (t) by means of interpolation. This
procedure is explained in Section III-E.

B. Least Squares Formulation of the Estimation Problem

Perhaps, the simplest scheme for construction of Z (+) at the
sampling times ¢, is to disregard noise and take # (t,) = yn
forn=0,1,2,..., N. Moreover, f (y,) = ¢ is estimated by
numerical differentiation of the data set (4) according to

LE —yo, n=0
t1 —to
oot Intl 19 N1 (5)
tn—i—l _tn—l
YN ZYN-1 , mn=N.
ty —tn—1

However, this approach typically produces inaccurate results
in the presence of noise, in particular for the differential ¢,,. A
less crucial but still important drawback of this simple scheme
is that it can only provide estimations at the sampling times
not the entire interval ¢ € [0, 7.

In this section, a least squares problem is formulated to yield
a continuously differentiable estimate 2 (¢) on ¢ € [0, 7] with
a reasonably small second derivative, while staying reasonably
close to the observed values y,, at the sampling times ¢,,. Then,
the derivative of # (¢) is taken as f (2 (t)) for t € [0, T].

Let  (t) be a vector in R™ with continuous frst derivative
and piecewise continuous second derivative on ¢ € [0,T]. In
terms of z (¢), defne 2 (t) € R?*™ and u (t) € R™ as

T

() =[z"() ")) . ut)=2(),
Then, x (t) can be expressed by the state-space equations

Z(t) = Az (t) + Bu (t) (7a)
x(t) = Cz(¢) (7b)

€ [0, 7). (6)



with the parameters

o ] a ] oo
where I,,, and 0,, denote the m x m identity and zero matrices,
respectively. Noting that the only assumptions on the solution
of (3) are its unique existence and continuous differentiability,
the solution to (7) can also solve (3) for some suitable choice
of piecewise continuous bounded w (-).

Certainly, determining the exact value of such function w ()
is not possible in the presence of measurement noise and with
limited number of observed data points. Yet, a proper estimate
of u (+) can be obtained by minimizing the quadratic cost

T N
= [ Bl @3 wn Oz t) < wl? ®)
0 n=0

with respect to u () and the initial state z (0) = zo of (7a). In
this quadratic cost functional, 3 is a positive constant and w,,
forn=0,1,2,..., N are nonnegative constants summing up
to 1. The integral on the right-hand side of (8) penalizes a large
second derivative u (t) to keep x (t) smooth and « (¢) bounded,
while the sum term penalizes large deviations of x (¢) from the
data points yo, y1,...,yn to keep it close to the empirically
observed trajectory. By varying the regularization parameter 3,
a trade-off is made between the smoothness of x () and the
goodness of f't, while the values of wg, w1, ..., wy determine
the relative importance of the ftting error at each point y,.

After minimizing the cost functional (8) subject to the state-
space equation (7a), the estimators

C#(H)=027 (1),
@) =Dz (1),

are obtained in terms of the optimal state trajectory z* (¢). The
matrix D in the second equation is defned as D = [0, L.

The least squares estimation problem involving (7) and (8)
is extendable to the case that the vector feld f(-) in (3) is
not only continuous, but also continuously differentiable. This
new assumption implies that the second derivative # (¢) exists
and is continuous. To enforce the continuity of Z (), the state-
space equation (7) is redef ned with the new vectors

2= [T @) T O], uE)=F) )

and accordingly redef ned parameters A, B, C, and D. Then,
the least squares problem is redef ned subject to this new state-
space equation and a cost functional of the same structure (8).
Depending on the prior knowledge on the smoothness of the
vector feld f (-), this procedure is extendable to higher orders.

te[0,T]
te[0,T]

C. Selection of the Weighting Parameters

In a typical experiment, samples of the f ow curves are taken
uniformly in time, that leads to nonuniform sampling in space
as a result of temporal variations in ||z (¢)||. This phenomenon
results in nonuniform distribution of the data points along the
fow curves. Hence, for a fair distribution of f tting error along
these curves, this error must be emphasized at the points with
more sparse distribution of the data points, and deemphasized

for the points with more dense distribution. A straightforward
approach to this problem is to take the weighting parameter wy,
proportional to the empirical value of || £ (¢,,)|| estimated as the
numerical differential g, in (5). Since the sequence {yn}szo
is typically rough, it can be smoothed before generating w,,.

Selection of the regularization parameter 5 > 0 in this work
relies on human effort by direct investigation of the estimated
trajectories of & (t) and f (& (¢)). Automated selection of this

parameter has been proposed by cross-validation methods [39].

D. Conversion to a Linear Quadratic Tracking Problem

The cost functional (8) can be expressed as

T
7= [ (w ez 0 -y O + 8 )) d
+ x| C=(T) —ywlP, (10)

where y (t) is any continuous function satisfying vy (t,) = yn
forn=0,1,2,...,N — 1, and w (t) is defned as

N-1
w(t) = Z w0 (t —tp)
n=0

in terms of the Dirac delta function ¢ (). With this new form
of J, the problem of minimizing (8) with respect to the control
trajectory u (¢), t € [0,7] and the initial state zo of (7) reduces
to an LQT problem and a simple quadratic optimization. The
solution to the LQT problem can be accessed in any standard
optimal control textbook such as [21], which is specialized in
the remainder of this section for the cost functional (10).
For any fxed initial state zy of the state-space equation (7),
the minimum of (10) is a quadratic function of zy given by

T* (20) = J§ 4 247 (0) 20 + 2L P (0) 2o,

where Jjj is a constant independent of zg, and ¢ (0) and P (0)
are respectively a vector and an invertible matrix of appropriate
dimensions. Then, the minimum of (10) over all initial states
is attained by the specif c choice

2 =—P71(0)q(0). (11)

The numerical values of P (0) and ¢ (0) are determined by
solving the set of differential equations

P(t)=—-ATP(t)— P(t) A+ 7P (t) BBT P (t)
—w (t)CTC (12a)
q(t)=—(A=B'BBTP(#)" q(t) +w(®) CTy(®)
(12b)

backward in time with the terminal condition
P(T)=wnyC"C, q(T)=—-wnC"yn.

By resolving this set of equations, the values of P (0) and ¢ (0)
are determined at ¢t = 0, from which, the optimal initial state is
extracted according to (11), Moreover, in terms of the recorded
trajectories of ¢ () and P (t) over ¢ € [0, T, the optimal state
trajectory z* (t), t € [0, T is given by the forward solution of

()= (A= 'BB"P(t))z* (t) - B 'BBTq(t)
2" (0) = 7.



Considering the explicit form of w (¢) involving Dirac delta
functions, the set of differential equations (12) reduces to

P(t)y=—-ATP(t)— P(t) A+ 7P (t) BBTP (1)
. _ T
q(t)=—(A=B"'BBTP(t)) q(1)
over the intervals t € (t,_1,t,] forn = N,N —2,...,2,1.
Moreover, the terminal condition for solving these equations

over the interval (¢,,_1, t,,] is determined in terms of the initial
condition of the previous interval (¢, ¢,+1] according to

P(t,) =P () +w,C"C
q(tn) =q (t'r-‘;,_) - wnCTyn-

These latter equations hold forn =N —1, N —2,...,2,1 to
obtain the terminal conditions, and for n = 0 to determine the
actual values of P (0) and ¢ (0).

E. Nearest Neighbour Interpolation
Once the vector feld f (-) is estimated along L fow curves

Ti(t), [f(E:i(t), te[0,T (13)

it is interpolated for those points x € R™ not lying on any of
these curves. For any such = € R™, defne

i=1,2,...,L,

di = i Ait — ) .—1,2,...,L
t* (z) = min |# (¢) —z||, i=1,2,...,L.
i (JJ) argte[Ol.,Ti] ||£L' ( ) $H ?

Let 1 < K < L be an integer. Among d; (z), i = 1,2,..., L,
choose K with the smallest values and gather their indices in
a set Sk (x). Then, the K -nearest neighbour estimate of f (-)
at any point x not lying on any trajectory (13) is expressed as

fre (@) = S iesn (e &t (@) f (@ (1] (2))
. Eicsi & (@) '

IV. ESTIMATION RESULTS FOR SIMULATED DATA

Before applying the least squares estimator of Section III to
empirical data, its performance is evaluated for simulated data.
Since for a simulated data set, the exact solution of (3) and its
derivative are known, they can serve as a reference to evaluate
the estimation performance. Moreover, the selection process of
the regularization parameter 3 and the advantage of the triple
integral formulation (9) over its double integral counterpart (6)
are demonstrated using the simulated data.

For the purpose of simulations, the vector feld f (-) in (3)
was considered as the linear function

-2 —4

f (‘T) - |: 4 _2:| T
with the initial state o = (3, —2). The solution to the resulting
state-space equation was numerically computed over ¢ € [0, 1].
This solution was then sampled with a constant period 0.01 to
generate the observation set (4) with a white Gaussian noise vy,
of the covariance matrix diag (0.0004,0.0004). The resulting
observation set is illustrated in Fig. 2(a).

Using the least squares method of Section III, the simulated
state vector and its derivative were reconstructed with the triple

1 (8) = 21 (1)

actual
estimate

actual
estimate
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Fig. 2. Reconstruction of noisy simulated trajectories: (a) elements of the
state vector versus time (solid lines) and their noisy measurements (markers);
(b) estimation error of the state vector (solid lines) and the measurement noise
(markers); (c) derivative of the state vector (dark solid lines), its least squares
estimation (light solid lines), and the numerical differential (5) (markers); (d)
estimation error of the derivative of state for the least squares method (solid
lines) and for the numerical differentiation (markers).

integral model (9), the regularization parameter 3 = 10~%, and
the weighting parameters w,, described in Section III-C. The
reconstruction results are illustrated in Fig. 2. The estimation
error of the state vector is illustrated versus time (solid lines)
in Fig. 2(b), which shows signif cant improvement compared
to the measurement noise (markers). Note that the latter is the
estimation error in case the observed values are taken without
further processing as the estimation of state. In Fig. 2(c), the
derivative of the state vector (dark solid lines), its least squares
estimation (light solid lines), and the numerical differential (5)
(markers) are illustrated versus time. The effectiveness of the
proposed least squares estimation method is best demonstrated
by Fig. 2(d), which shows great improvement in the estimation
error of derivative over the naive numerical differentiation (5).

The selection process for the regularization parameter [ is
explained in Fig. 3. This f gure illustrates the estimation of the
derivative & (t) for different values of 3 (only the frst element
is shown for simplicity). Certainly, decreasing the value of this
parameter improves the goodness of f't, which is desirable; but
its gradual decrease must be stopped whenever the frst sign of
overf tting emerges. This sign is manifested by the oscillatory
behavior of the estimated trajectories in Fig. 3 for the values
of 3 taken below 3 = 10~8. Note that as 3 — 0, the estimated



trajectory tends to the rough trajectory generated by numerical
differentiation using (5).
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Fig. 3. Selection of the regularization parameter 8. The oscillatory behavior
observed for 3 < 1078 is a sign of overftting, which must be prevented.

Fig. 4 compares the estimation performance for two models
of double integral in (6) and triple integral in (9). In this f gure,
the frst element @4 (¢) of the state derivative, together with its
estimation based on both models are illustrated. The best value
of the regularization parameter ( for the double integral model
was selected as 3 = 107°. Even with this best value of 3, the
triple integral model noticeably outperforms its double integral
counterpart, particularly at the endpoints of the trajectory.

#1(t), fi(@ @)

i (t)
triple integral
double integral

-10 I I I I I I I | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4. Performance comparison between the double integral model (6) with
its triple integral counterpart (9).

V. EXPERIMENTAL MODELING OF MAGNETIC FORCE

The reconstruction method of Section III was implemented
on MATLAB to reconstruct the magnetic force feld around a
NdFeB cubic permanent magnet of side length 15.9 mm. The
reconstruction procedure utilized the triple integral formulation
in (9) with the regularization parameter 3 = 10~13. To obtain
the weighting parameters w,,, the sequence 7o, ¥1,...,yn of
numerical differentials was computed from (5) and was then
smoothed using a weighted moving average f lter implemented
by a Hamming window of length 21. The lengths of L = 17
recorded data sets were ranging from N = 858 to N = 4376,
corresponding to experiment times 7' = 1.32 to 7" = 6.63 sec.
The reconstruction results for a typical trajectory are illustrated
in Figs. 5(a) through 5(c).

After reconstruction of L = 17 individual trajectories (13),
the entire magnetic force was reconstructed using the nearest
neighbour interpolation scheme of Section III-E with K = 6.
Due to the geometric symmetry of the magnet, it is known in
advance that its magnetic force is symmetric with respect to
the z-axis in the coordinate system of Fig. 1(c). Therefore, the

symmetric images of the reconstructed curves were included in
the dictionary (13) to both improve the interpolation resolution
using 2L = 34 trajectories, and to preserve the symmetry of
the reconstructed vector feld shown in Figs. 5(d) through 5().

VI. CONCLUSION

A least squares estimation method combined with a nearest
neighbour interpolation scheme was developed to reconstruct
vector felds from their empirically recorded f ow curves. As a
case study, the reconstruction scheme was applied to empirical
data to build an experimental model for a magnetic force feld.
The reconstruction accuracy can be improved by involving the
spatial correlation of the nearby data points into the estimation
problem, which is planned for future work.
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Fig. 5. Reconstruction of magnetic force. (a) The xz-component of a typical trajectory of motion (solid line) reconstructed from observed data (markers). (b)
The z-component of the estimated derivative (velocity) of the same trajectory (solid line), and the numerical differentials ¥, determined from (5) (markers).
(c) The z-component of velocity [proportional to the magnetic force by (2)] versus distance from the face of magnet along x-axis. The markers represent the
z-component of ¥, against the z-component of y,,. (d) Normalized magnitude of the reconstructed magnetic force for the points on the plane of motion.
The normalization factor is the maximum force at the face of the magnet. () Direction of the reconstructed magnetic force determined as the angle between
z-axis and the magnetic force at each point. (f) Quiver plot of the reconstructed magnetic force. The force directions are represented by vectors of equal
length, and the magnitude of force is color-coded with a logarithmic scale. The reconstructed trajectories of motion are shown in (f) by solid lines.
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