
22

Bridging Storage Semantics Using Data Labels and
Asynchronous I/O

ANTHONY KOUGKAS, HARIHARAN DEVARAJAN, and XIAN-HE SUN, Illinois Institute of

Technology, Department of Computer Science

In the era of data-intensive computing, large-scale applications, in both scientific and the BigData communi-

ties, demonstrate unique I/O requirements leading to a proliferation of different storage devices and software

stacks, many of which have conflicting requirements. Further, new hardware technologies and system designs

create a hierarchical composition that may be ideal for computational storage operations. In this article, we

investigate how to support a wide variety of conflicting I/O workloads under a single storage system. We

introduce the idea of a Label, a new data representation, and, we present LABIOS: a new, distributed, Label-

based I/O system. LABIOS boosts I/O performance by up to 17× via asynchronous I/O, supports heteroge-

neous storage resources, offers storage elasticity, and promotes in situ analytics and software defined storage

support via data provisioning. LABIOS demonstrates the effectiveness of storage bridging to support the

convergence of HPC and BigData workloads on a single platform.

CCSConcepts: • Information systems→Distributed storage;Hierarchical storagemanagement; Stor-

age power management; • Computer systems organization → Distributed architectures; Data flow archi-

tectures; Heterogeneous (hybrid) systems;

Additional Key Words and Phrases: Label-based I/O, storage bridging, heterogeneous I/O, datalabels, task-

based I/O, exascale I/O, energy-aware I/O, elastic storage

ACM Reference format:

Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. 2020. Bridging Storage Semantics Using Data

Labels and Asynchronous I/O. ACM Trans. Storage 16, 4, Article 22 (October 2020), 34 pages.

https://doi.org/10.1145/3415579

1 INTRODUCTION

Large-scale applications, in both scientific and the BigData communities, demonstrate unique I/O
requirements that none of the existing storage solutions can unequivocally address them. This has
caused a proliferation of different storage devices, device placements, and software stacks, many
of which have conflicting requirements. Each new architecture has been accompanied by new
software for extracting performance on the target hardware. Further, to reduce the I/O perfor-
mance gap, hardware composition of modern storage systems is going through extensive changes

This material is based upon work supported by the National Science Foundation under Grants No. OCI-1835764 and No.

CSR-1814872.

Authors’ addresses: A. Kougkas, H. Devarajan, and X.-H. Sun, Department of Computer Science, Illinois Institute of Tech-

nology, 10 West 35th Street, Chicago, IL 60616; emails: {akougkas, hdevarajan, sun}@iit.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1553-3077/2020/10-ART22 $15.00

https://doi.org/10.1145/3415579

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

22:2 A. Kougkas et al.

by adding new storage devices. This leads to heterogeneous storage resources where data move-
ment is complex, expensive, and dominating the performance of most applications [40]. For in-
stance, machineswith a large amount of RAMallow new computation frameworks, such as Apache
Spark [80], to thrive. Supercomputers equipped with node-local fast storage, such as NVMe drives,
take scientific simulation to new performance standards [8]. To achieve computational efficiency
modern parallel and distributed storage systems must efficiently support a diverse and conflicting
set of features.
Data-intensive applications grow more complex as the volume of data increases, creating di-

verse I/O workloads. Thus, the features a distributed storage system is required to support also
increases dramatically in number and are often conflicting. For instance, scientific applications
demonstrate a periodic behavior where computations are followed by intense I/O phases. Highly-
concurrent write-intensive workloads (e.g., final results, checkpoints), shared file parallel access,
frequent in-place data mutations, and complex data structures and formats are the norm in most
High-Performance Computing (HPC) workloads [39]. However, iterative write-once, read-many
data access, created by the popular MapReduce paradigm, are the defacto patterns in most BigData
applications [56]. Another example is the ability of an I/O subsystem to handle data mutations. In
HPC, the ability to frequently update data forces storage systems to obey certain standards, such
as POSIX, and increase the cost of metadata operations, which is projected to limit the scalability
of these systems [64]. In contrast, most cloud storage solutions prefer an immutable representation
of data, such as RDDs [79] or key-value pairs. Finally, each application manipulates data in a differ-
ent data representation (i.e., format) spanning from files, objects, buckets, key-value pairs, and so
on, which increases the complexity of the data organization inside a storage system. To navigate
this vast and diverse set of contradictory I/O requirements, the software landscape is filled with
custom, highly specialized storage solutions varying from high-level I/O libraries to custom data
formats, interfaces, and, ultimately, storage systems.
The ability to seamlessly execute different conflicting workloads is a highly desirable feature.

However, the tools and cultures of HPC and BigData have diverged, to the detriment of both [63],
and unification is essential to address a spectrum of major research domains. This divergence has
led organizations to employ separate computing and data analysis clusters. For example, NASA’s
Goddard Space Flight Center uses one cluster to conduct climate simulation, and another one for
the data analysis of the observation data [84]. Due to the data copying between the two clusters,
the data analysis is currently conducted off-line, not at runtime. The data transfer between storage
systems along with any necessary data transformations are a serious performance bottleneck and
cripples the productivity of those systems [41]. Additionally, it increases the wastage of energy
and the complexity of the workflow. Integrating analytics into a large scale simulation code has
been proven to significantly boost performance and can lead to more accurate and faster solutions.
Current storage systems address interoperability (i.e., cross-storage system data access) by adding
various connectors, such as IBM’s Spectrum Scale HDFS Transparency [34] and Intel’s Hadoop
Adapter [35], and/or middleware libraries, such as IRIS [41] and Alluxio [45]. Nevertheless, better
system support is needed for in-transit, in situ analysis, with scheduling being a big challenge and
node sharing impossible in existing solutions [57]. However, High-Performance Data Analytics
(HPDA) [36], the new generation of Big Data applications, involve sufficient data volumes and
algorithmic complexity to require HPC resources. For example, Paypal, an online financial trans-
action platform, and the US Postal Service are using HPC resources to perform fraud detection in
real time on billions of transactions and mail scans. Cycle Computing tested 21 million drug can-
didate molecules on the Amazon public cloud using a new HPC algorithm [69]. Gaining insights
from massive datasets while data is being produced by large-scale simulations can enhance the
scalability and flexibility of exascale systems [82].

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

Bridging Storage Semantics Using Data Labels and Asynchronous I/O 22:3

To address this divergence in storage architectures and workload requirements, we have de-
veloped LABIOS, a new, distributed, scalable, and adaptive I/O System. LABIOS, a new class of a
storage system, is the first (data) LAbel-based I/O System, is fully decoupled, and is intended to
grow in the intersection of HPC and BigData. LABIOS demonstrates the following contributions:

(1) the effectiveness of storage malleability, where resources can automatically
grow/shrink based on the workload;

(2) how to effectively support synchronous and asynchronous I/O with configurable het-
erogeneous storage;

(3) how to leverage resource heterogeneity under a single platform to achieve application
and system-admin goals;

(4) the effectiveness of data provisioning, enabling in situ data analytics, computational
storage, and process-to-process data sharing;

(5) how to support a diverse set of conflicting I/O workloads, from HPC to BigData analytics,
on a single platform, through managed storage bridging.

LABIOS achieves these contributions by transforming all I/O requests each into a configurable
unit called a Label, which is a tuple of an operation and a pointer to data. Labels are pushed from the
application to a distributed queue served by a label dispatcher. This queuing system provides the
ability to perform asynchronous I/O. LABIOS workers (i.e., storage servers), which can store data
in any storage medium (e.g., SSD, HDD, etc.), execute labels independently. LABIOS architecture
is fully decoupled and distributed, which allows the worker set to be resized, independently from
the clients, based on the I/O traffic within the system. The existence of a temporary intermediate
space, the distributed queueing system for labels, and the fact that workers operate independently
from the clients allows LABIOS to provide active storage semantics. Using the label structure, that
encapsulates an operation and its input data, LABIOS can offer software-defined storage services
and QoS guarantees for a variety of workloads on different storage architectures. Finally, the mod-
ular design of LABIOS allows its workers to connect to a plethora of external storage services, and,
thus, bridging the semantic gap between different storage APIs.
The remainder of the article is organized as follows. Section 2 provides a detailed view of the

existing storage solutions and the complexity of managing a diverse set of application require-
ments. It also presents the motivation behind the design of LABIOS. Section 3 offers the details of
LABIOS design, architecture, component analysis, objectives and challenges, the implementation
details along with the deployment models. We also provide a discussion on current design con-
siderations and implications as well as some of the limitations of our prototype system. Section 4
details the performance characteristics of our proposed system by experimentally evaluating each
individual LABIOS component as well as the entire system as a whole.We present the related work
in Section 5, and we conclude this work in Section 6 along with listing some of our future steps.

2 BACKGROUND ANDMOTIVATION

2.1 Parallel and Distributed File Systems

Parallel file systems (PFS) are the dominant storage solution in most large-scale machines such as
supercomputers and HPC clusters and are therefore well understood in the storage community.
As the name implies, a PFS deals with data in the form of files. PFS obey the POSIX standard to
offer portable guarantees and strong data consistency. PFSmanipulate data in a certain sequence of
operations, a paradigm known as streamlined I/O (i.e., Unix Standard I/O Streams). Parallel access is
achieved by shared file handlers and a complex system of locking mechanisms. Through the years,
PFS have been optimized to fit the needs of typical HPC workloads. Application development and

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

22:4 A. Kougkas et al.

storage systemdesign have grown in harmonywith one driving the other, since theHPC ecosystem
is relatively closed to external influence. However, PFS face many limitations [33]. Some relevant
to this study include:

(a) Storage malleability. Existing high-performance storage solutions are not elastic but static
and cannot support power-capped I/O and tunable concurrency control (i.e., QoS guaran-
tees based on job size, priority, input, output, etc.). Sudden workload variations (i.e., I/O
demand fluctuations) in distributed systems can be addressed by resource malleability.
By dynamically increasing or decreasing the amount of storage resources allocated to an
application, the system can reduce its idle resources and therefore achieve lower energy
consumption and costs for the end user.

(b) Resource utilization. Storage resources are provisioned for the worst-case scenario where
multiple jobs happen to enter their I/O-dominant phases simultaneously leading to
over/under-provisioning. This issue is worsened by the growing need to support stor-
age resources sharing across multiple clusters via global mounts. Furthermore, allocation
exclusivity and over-provisioning due to ignorance or malicious intent also contribute to
erroneous resource utilization.

(c) Hardware heterogeneity. New storage devices (e.g., SSD, NVMe, etc.) are being incorpo-
rated into system designs resulting in a diverse heterogeneous storage environment. Exist-
ing solutions cannot handle this heterogeneity, since they assume homogeneous servers.
Currently, the responsibility for orchestrating data movement, placement, as well as lay-
out within and across nodes falls on both system administrators and users [52].

(d) Flexible interface. Currently, storage is tightly coupled to certain vendor-specific APIs and
interfaces. Even though this ensures consistency and reliability of the storage system, it
can also lead to reduced productivity; developers either need to learn newAPIs, which lim-
its flexibility, or, adopt new storage systems, which leads to environment isolation. Many
PFS have introduced various connectors to increase interoperability, but at the cost of per-
formance. Moreover, existing storage systems provide limited facilities for developers to
express intent in the form of I/O requirements, semantics, and performance guarantees.
Consequently, to achieve good I/O performance, the level of abstraction has been raised.
I/O libraries, such as HDF5 [25] and PnetCDF [47] help alleviate this issue but they also
add overheads and increase the complexity of use.

In cloud environments the storage scene is different. Innovation is driven by the wide popularity
of computing frameworks. As a result, the cloud community has developed a wide variety of stor-
age solutions tailored to serve specific purposes. The most popular storage solution in deployment
is the Hadoop Distributed File System (HDFS), which also follows the streamlined I/O paradigm.
The architecture and data distribution are somewhat similar to PFS. In HDFS, there are metadata
nodes (i.e., namenodes), which are responsible to maintain the namespace, and data nodes that
hold the files. However, it has relaxed the POSIX standard to achieve scalability. As the Hadoop
ecosystem grows, so are the storage solutions around it: Hive [71] puts a partial SQL interface on
front of Hadoop, Pig [58] enables a scripting language in top of MapReduce, HBase [15] applies a
partial columnar scheme on top of Hadoop, and HCatalog [27] introduces a metadata layer to sim-
plify access to data stored in Hadoop, and finally, Impala [10] builds a database-like SQL layer on
top of Hadoop. This diversity can offer advantages but also undoubtedly increases the complexity
of storage. Some of the above solutions suffer from similar limitations as PFS [76], some others are
missing critical features [43] and, in general, most of them perform well for the purpose they were
designed for.

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

Bridging Storage Semantics Using Data Labels and Asynchronous I/O 22:5

2.2 Applications’ I/O Requirements

Every computing framework expects specific I/O requirements and features from the underly-
ing storage system. Scientific computing, for instance, relies mostly on MPI for its computations-
communications, and domain scientists expect POSIX, MPI-IO, and other high-level I/O libraries
to cover their I/O needs. The existing collection of storage interfaces, tools, middleware libraries,
data formats, and APIs is deeply instilled in the community and has created a certain mindset of
what to expect from the storage stack. We present here some storage requirements representative
of typical scientific workloads:

(a) Strong data consistency: any data passed to the I/O system must at all times be consis-
tent between operations. A typical example is the read after write access pattern where
a set of producers pushes some data to the distributed storage and another different set
of consumers reads them back. Moreover, this extends to any data mutation: data must
be consistent immediately after an update operation is completed. There is a tradeoff be-
tween performance and consistency. In HPC and traditional financial computing work-
loads, data consistency is not negotiable. However, in many cloud and BigData workloads
immutability or eventual consistency might be enough. Some research [73] has proposed
tunable data consistency offered by workload, or by file, or even per-operation.

(b) Concurrent shared file access: multiple processes must be able to operate on the same file
concurrently. This access pattern is particularly common in HPC workloads where mul-
tiple MPI ranks open the same file and read/write data concurrently. Collective I/O op-
timization [70], concurrent file handlers [26], and complex locking schemes [20, 78, 81]
can make this feature possible. However, most storage solutions in the cloud community
do not support concurrent data access and prefer a multi-replica scheme to offer a highly
available concurrent systems.

(c) Hierarchical global namespace: users must be able to organize data in a hierarchy with
directory support and nesting. Moreover, data identifiers (i.e., file names, directory struc-
tures, keys, etc.) must be resolved and recognizable in a global namespace that can be
accessed from anywhere. This feature is fundamental to most traditional code (i.e., C,
C++, Fortran, etc.), where file paths and directory nesting is common in data organiza-
tion. The hierarchical organization of the global namespace creates a central point of
metadata handling, which may lead to performance bottlenecks and limited scalability.
Some solutions to this include partitioning of the global namespace and distribution in
many servers, client-side caching, and decoupling of the metadata from the data [21, 64,
77, 83]. In contrast, cloud storage solutions offer a flat namespace boosting scalability.
However, they cannot support traditional workloads and many efforts [6, 7, 68] are under-
way to extend cloud storage by introducing file connectors and other abstractions of file
namespaces.

(d) High bandwidth and parallelism: scientific discovery is often dependent on the ability of
the storage infrastructure to push data into/out of the compute nodes for (near) real-time
processing. I/O performance is crucial in achieving computational efficiency and is now
the number one priority to most mission-critical workloads. Higher I/O bandwidth is his-
torically the driving force and a desired feature in the development of any parallel stor-
age infrastructure. However, more often than not, I/O bandwidth is the one commodity
easily traded for the sake of other features such as fault tolerance, or security. Storage
resources are external in most of the supercomputers and as data-intensive computing is
now the norm rather the exception, high storage parallelism can boost applications’ I/O
bandwidth.

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

22:6 A. Kougkas et al.

However, MapReduce and Hadoop workloads, prominent in cloud environments, discount some
of the above and dictate different I/O requirements from the underlying storage that supports
them. Please note that the I/O requirements mentioned in this section are not necessarily mutually
exclusive but are often contradictory. We highlight some here:

(a) Fault tolerance: hardware faults are expected as most cloud workloads run on data cen-
ters consisting of commodity hardware. Hence, errors have been in the front row while
designing a distributed cloud storage solution. Applications expect faults to be the norm,
and thus, require the storage infrastructure to be able to handle them graciously. Data
replication, erasure coding, and data partitioning have been among the most popular de-
fenses against this. However, HPC machines are built with more expensive, sophisticated,
and specialized hardware that includes fault tolerant guarantees (i.e., server-graded drives,
RAID, etc.), and thus, I/O systems assume a certain level of hardware reliability. This does
not mean that fault tolerance is sidestepped in HPC workloads. To handle faults, applica-
tions perform frequent checkpoints and/or restart the entire workload.

(b) Extreme scalability and multi-tenancy: the growth of web services gave birth to extreme
scale multitenant workloads (e.g., many-task computing [62]), where multiple small appli-
cations run on a large datacenter sharing the storage resources. In contrast, HPCmachines
run few large scale batch jobs. Scalability is desired in both storage camps but the way
an I/O system scales differs significantly. BigData workloads involve smaller iterative jobs
with an extremely high number of I/O clients. Some cloud storage solutions can expand
(i.e., scale-out) adding resources to meet applications’ demands. In HPC, multitenancy is
addressed by sophisticated job scheduling, synchronization techniques, and I/O optimiza-
tions such as data buffering.

(c) Data locality: a major paradigm shift, brought by the widely used MapReduce framework
has been data locality (i.e., jobs are spawnedwhere data is). This resulted in system designs
with node-local storage devices; fundamentally different than supercomputerswhere stor-
age is an external remote resource. Distributed storage leverages data locality to minimize
possible network bottlenecks but sacrifices global aggregate I/O bandwidth. This further
highlights that each storage platform can offer higher performance to certain applications
and that the diversity of workloads has led to the divergence of I/O systems.

(d) Ease-of-use: the cloud community strongly advocates for the ease-of-use of their tools and
frameworks whereas the scientific community aims to develop high-performance solu-
tions at the expense of user-friendliness and ease of deployment. This is made apparent
by the growth of data formats such as key-value pairs in object stores, along with their
interfaces and APIs, such as Amazon’s S3 [2] or Openstack Swift [55]. HPC storage re-
quires a higher level of expertise from the developer. Ease-of-use is the number one factor
of high productivity and can reduce erroneous code.

Table 1 summarizes some I/O requirements and how each storage camp, HPC and Cloud, han-
dles them. It also presents proposed optimizations in the literature. Due to those different I/O
requirements, there is no “one storage system for all” approach. This is more evident in large
scale computing sites, where distributed storage solutions support multiple concurrent applica-
tions with conflicting requirements. We believe that future storage systems need a major re-design
to efficiently support the diversity of workloads and the explosion of scale.

2.3 Motivating Examples

Applications perform I/O operations for several reasons: reading initial input, writing final out-
put (i.e., results to persistent layer), temporary I/O for out-of-core computations, defensive I/O

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

Bridging Storage Semantics Using Data Labels and Asynchronous I/O 22:7

Table 1. Application I/O Requirements

Feature I/O requirement HPC Cloud Optimizations

Data
consistency

Data passed to the I/O
system must be

consistent between
operations.

Strong,
POSIX

Eventual,
Immutable

Tunable
consistency [73]

File access

Multiple processes
must be able to

operate on the same
file concurrently

Shared
Concurrent

Multiple
replicas

Collective I/O [70],
Concurrent file

handlers [26], Complex
locks [20, 78, 81]

Global
namespace

Data identifiers must
be resolved and
recognizable in a

global namespace that
can be accessed from

anywhere

Hierarchical
Directory,
Nesting

Flat

Namespace
partitioning [77],

Client-side caching [21],
Decouple

data-metadata [64, 83],
File connectors [6, 7, 68]

Fault
tolerance

Data must be
protected against
faults and errors

Specialized
hardware,
Check-
pointing

Data
replication,

Data
partitioning

Erasure coding [75]

Scale
Support for extreme

scales and
multi-tenancy

Few large
jobs, Batch
processing

Many small
jobs, Iterative

Job scheduling, I/O
buffering, Scale-out

Locality
Jobs are spawned
where data is

Remote
storage

Node local Data aggregations

Ease of use
Interface,

user-friendliness and
ease of deployment

High-level
I/O libraries

Simple data
formats

Amazon S3, Openstack
Swift

(i.e., checkpointing), and process-to-process data sharing (i.e., inter- and intra-node communica-
tions). We provide some examples of workloads that demonstrate the growing need of a storage
system that supports diverse workloads on the same single platform.

2.3.1 CM1 (Write-intensive, Final Output). CM1 is a multi-dimensional, non-linear, numerical
model designed for idealized studies of atmospheric phenomena [12]. CM1’s I/O workload demon-
strates a sequential write pattern. The simulation periodically writes collectively its results (e.g.,
atmospheric points with a set of features) usingMPI-IO. Data are written in a binary GrADS format
with a shared file access pattern. This workload requires persistence, fault-tolerance, and highly
concurrent file access.

2.3.2 HACC (Update-intensive, Check-pointing). HACC stands for Hardware Accelerated Cos-
mology Code and is a cosmological simulation that studies the formation of structure in collision-
less fluids under the influence of gravity in an expanding universe. Each process in HACC period-
ically saves the state of the simulation along with the dataset using POSIX and a file-per-process
pattern. Since HACC runs in time steps, only the last step checkpoint data is needed. Thus, the I/O
workload demonstrates an update-heavy pattern. A major performance improvement in HACC
workflow is the addition of burst buffers that absorb the checkpointing data faster and perform
the last flush of data to the remote PFS.

2.3.3 Montage (Mixed Read/Write, Data Sharing). Montage is a collection of programs compris-
ing an astronomical image mosaic engine. Each phase of building the mosaic takes an input from

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

22:8 A. Kougkas et al.

the previous phase and outputs intermediate data to the next one. It is an MPI-based engine and
therefore Montage’s workflow is highly dependent on the data migration between processes. The
exchange of data between executables is performed by sharing temporary files in the Flexible Im-
age Transport System (FITS) format via the storage system. At the end a final result is persisted
as the final jpeg image. The I/O workload consists of both read and write operations using either
POSIX or MPI independent I/O.

2.3.4 K-means Clustering (Read-intensive, Node-local). This application is a typical and widely
used BigData kernel that iteratively groups datapoints into disjoint sets. The input datapoints can
be numerical, nodes in a graph, or set of objects (e.g., images, tweets, etc.). Implementations using
the MapReduce framework [18] remain the most popular clustering algorithm because of the sim-
plicity and performance. The algorithm reads the input dataset in phases and each node computes
a set of means, broadcasts them to all machines in the cluster and repeats until convergence. The
I/O workload is read-intensive and is performed on data residing on the node locally. K-means
clustering is typically I/O bound [59].

3 LABIOS

LABIOS, a new class of a storage system that uses data-labeling to address the issues discussed
in Section 2, is a distributed, fully decoupled, and adaptive I/O platform that is intended to grow
in the intersection of HPC and BigData. This section presents the design and implementation of
LABIOS.

3.1 Design Requirements

As any distributed storage system, LABIOS is designed to be responsible for the organization,
storage, retrieval, sharing, and protection of data. LABIOS also contains a representation of the
data itself and methods for accessing it (e.g., read/write). However, LABIOS manipulates data in
a new paradigm using data labeling and therefore it makes some assumptions and design choices
that might be different or complementary to a traditional parallel or distributed storage system.
LABIOS’ main objective is to support a wide variety of conflicting I/O workloads under a single

platform.
LABIOS is designed with the following principles in mind:

(a) Storage Malleability: Applications’ I/O behavior consists of a collection of I/O bursts. Not
all I/O bursts are the same in terms of volume, intensity, and velocity. The storage system
should be able to tune the I/O performance by dynamically allocating/deallocating storage
resources across and within applications, a feature called data access concurrency control.
Storage elasticity enables power-capped I/O, where storage resources can be suspended
or shutdown to save energy. Much like modern operating systems shut down the hard
drive when not in use, distributed storage solutions should suspend servers when there is
no I/O activity.

(b) I/O Asynchronicity: A fully decoupled architecture can offer the desired agility and move
I/O operations from the existing streamlined paradigm to a data-labeling one. In data-
intensive computing where I/O operations are expected to take a large amount of time,
asynchronous I/O and the data-labeling paradigm are a good way to optimize processing
efficiency and storage throughput / latency.

(c) Resource Heterogeneity: The hardware composition of the underlying storage should be
managed by a single I/O platform. In other words, heterogeneity in hardware (RAM,
NVMe, SSD, HDD) but also the presence of multiple layers of storage (i.e., local file sys-
tems, shared burst buffers, or remote PFS) should be transparent to the end user. The

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

Bridging Storage Semantics Using Data Labels and Asynchronous I/O 22:9

storage infrastructure should be able to dynamically reconfigure itself to meet the I/O de-
mand of running applications and their I/O requirements. Moreover, storage Quality of
Service (QoS) guarantees are a highly desired feature that can be achieved by efficiently
matching the supply to the I/O demand [51].

(d) Data provisioning: The I/O system should be programmable (i.e., policy-based provision-
ing and management). Storage must naturally carry out data-centric architectures (e.g.,
ActiveStorage [66], or ActiveFlash [72]), where data operations can be offloaded to the
storage servers relieving the compute nodes of work such as performing data filtering,
compression, visualization, deduplication, or calculating statistics (i.e., Software Defined
Storage (SDS)). Offloading computation directly to storage and efficient process-to-process
data sharing can significantly reduce expensive data movements and is the pinnacle of
success for data-centric architectures [60].

(e) Storage Bridging: The I/O system should abstract low-level storage interfaces and support
multiple high-level APIs. Modern distributed computing makes use of a variety of storage
interfaces ranging from POSIX files to REST objects. Moreover, existing datasets are stored
in a universe of storage systems, such as Lustre, HDFS, or Hive. Storage solutions should
offer developers the ability to use APIs interchangeably avoiding interface isolation and,
thus, boost user productivity while minimizing programmability errors.

3.2 Architecture

3.2.1 Data Model. The core of LABIOS storage is a Label, which is effectively a tuple of one or
more operations to perform and a pointer to its input data. It resembles a shipping label on top of
a Post Office package where information such as source, destination, weight, priority, and so on,
clearly describe the contents of the package and what should happen to it. LABIOS’ label struc-
ture includes: type, uniqueID, source and destination as pointers (i.e., can be a memory pointer,
a file path, a server IP, or a network port), operation to be performed as a function pointer (i.e.,
all functions, user- or pre-defined, are stored in a shared program repository, which servers have
access to), and a collection of flags indicating the label’s state (i.e., queued, scheduled, pending,
cached, invalidated, etc.). In essence, labels encapsulate the instructions to be executed on a piece
of data. All I/O operations (e.g., fread() or get(), fwrite() or put(), etc.) are expressed in the form
of one or more labels and a scheduling policy to distribute them to the servers. Labels belong to
each application exclusively. They are immutable, independent of one another, cannot be reused,
and can be executed by any worker anywhere in the cluster. In contrast, labels are not a compu-
tation decomposition (i.e., compute task), or a simple data object encapsulation (e.g., RDDs) but
rather a storage-independent abstraction that simply expresses the application’s intent to operate
on certain data. In their most primitive form, labels are of a simple type such as write or read.
In other words, a write-label is one where the operation bundled with a piece of data is to read
the data from the defined source and persist it at the defined destination. LABIOS organizes infor-
mation with primitive labels that include: write, read, delete, and move. More complicated opera-
tions are expressed with complex labels including: software-defined-storage (SDS) (i.e., where the
data operation defined applies one ore more transformation on its input data), shared, protected,
and priority labels. The LABIOS runtime may be capable to support more label types but only
when considering the computation necessary to carry out the label. More investigation on this is
required.

3.2.2 Overview. As it can be seen in Figure 1(a), LABIOS can be used either as a middleware
I/O library or as a full stack storage solution. Applications can use the LABIOS library to perform
I/O using labels and take advantage of the full potential of the system. Each label can carry a set of

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

22:10 A. Kougkas et al.

Fig. 1. LABIOS overview.

functions to be performed by the storage server that executes it. For instance, an application can
pushwrite labels and instruct LABIOS to first deduplicate entries, sort the data, compress them, and
finally write them to the disk. However, to maintain compatibility with existing systems, legacy
applications can keep their I/O stack and issue typical I/O calls (e.g., fwrite()). This way, there
is no need to modify any code in the user application but only link the LABIOS library (either
statically by re-compiling or dynamically using LD_PRELOAD) and LABIOS will intercept those
I/O calls, transform them into labels automatically , and forward them to the storage servers. In
the prototype implementation, we provide UNIX file I/O (i.e., POSIX and STDIO) wrappers but
more can be added to support other interfaces such as HDF5, netCDF, or MPI-IO. LABIOS can also
access data via its own raw driver that handles data on the storage device in the form of labels. By
adding more servers, the capacity and performance of them is aggregated in a single namespace.
Furthermore, LABIOS can unify multiple namespaces by connecting to external storage systems,
a feature that allows LABIOS to offer effective storage bridging.
LABIOS offers high speed data access to parallel applications by splitting the data, metadata, and

instruction paths and decoupling storage servers from the application, as shown in Figure 1(b). This
decoupling of clients and servers is a major architectural choice that enables several key features in
LABIOS: the power the asynchronous I/O, the effectiveness of data provisioning, and the prolifera-
tion of heterogeneous storage resources. An incoming application first registers with LABIOS, upon
initialization, and, passes workload-specific configurations to set up the environment. LABIOS re-
ceives the application’s I/O requests via the client API, transforms them, using the label manager,
into one or more labels depending mostly on the request size, and then pushes them into a dis-
tributed label queue. Users’ data are passed to a distributed data warehouse and a metadata entry
is created in an inventory. A label dispatcher consumes the label queue and distributes labels using
several scheduling policies. Storage servers, called LABIOS workers, are organized into a worker
pool with a manager being responsible to maintain its state. Workers can be suspended depending
on the load of the queue creating an elastic storage system that is able to react to the state of the

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

Bridging Storage Semantics Using Data Labels and Asynchronous I/O 22:11

Fig. 2. LABIOS client internal design.

cluster. Last, workers execute their assigned labels independently and read/write data either on
their own storage device or through a connection to an external storage system.

3.3 Component Analysis

LABIOS consists of three main components that work in harmony but in a decoupled fashion: the
clients, the core lib, and the servers. We present here a detailed analysis of all LABIOS components.

3.3.1 LABIOS Client. This component, shown in Figure 2, interacts with the application and
has three main goals: (a) per-application system initialization: register application info (i.e., ID,
group name, group credentials and permissions), apply application-specific settings, pre-load data
from external sources (if needed), and setup LABIOS workers; (b) accept application’s I/O requests,
either by intercepting existing I/O calls using function call wrappers or by exposing LABIOS API,
and; (c) build labels based on the incoming I/O request. It consists of the following:

(a) The Label Manager is responsible to create labels based on the incoming I/O requests. The
label creation is automatic and does not require any user intervention. The Label Manager
builds one or more labels based on the request characteristics (e.g., read/write, size, file
path, etc.), serializes and publishes them to the distributed label queue. Each label gets a
unique identifier based on the origin of the operation and a timestamp (in nanoseconds),
which ensures the order of operations (i.e., this is the constraint in the priority queue).
There are two ways labels get created: a) via the native API, or b) transparently via the
provided wrappers. In the first case, users create labels programmatically within a config-
urable maximum data size (much like how key-value pairs are created in any object store).
In the case of wrappers, labels are created by a configurable size parameter within a range
of min and max values (e.g., min 64 KB–max 4 MB). The data size parameter in each label

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

22:12 A. Kougkas et al.

is the unit of data distribution in the system. An I/O request larger than the maximum
label size will be split into more labels creating a 1-to-N relationship between request
and number of labels (e.g., for a 10 MB fwrite() and 1 MB max_label_ size, 10 labels
will be created). Any I/O request smaller than the minimum label size will be cached and
later aggregated in a special indexed label to create a N-to-1 relationship between number
of requests and label (e.g., for ten 100 KB fwrite() and 1 MB min_label_size, one label
will be created). Last, these thresholds can be bypassed for certain operations, mostly for
synchronous reads. Setting min and max label size values is dependent on many system
parameters such as memory page size, cache size, network type (e.g., TCP buffer size),
and type of destination storage (e.g., HDDs, NVMe, SSDs). LABIOS can be configured in
a synchronous mode, where the application waits for the completion of the label, and in
asynchronous mode, where the application pushes labels to the system and goes back to
computations. A waiting mechanism, much like a barrier, can be used to check the com-
pletion of a single or a collection of asynchronously issued labels. The async mode can
significantly improve the system’s throughput but it also increases the complexity of data
consistency and fault tolerance guarantees.

(b) The Content Manager is mainly responsible for handling user data inside a warehouse. The
warehouse is implemented by a distributed hashmap (i.e., key-value store), it temporar-
ily holds data in-memory effectively serving as the bridge between clients and workers.
The warehouse is a collection of system-level structures (i.e., tables in the distributed
key-value store), that are application-specific, and has the following requirements: highly
available, concurrent data access, fault tolerant, and high throughput. The content man-
ager exposes the warehouse via a simple get/put/delete interface to both the clients and
the workers. The size and location of the warehouse is configurable based on several pa-
rameters such as number of running applications, application’s job size, dataset aggregate
size, and number of nodes (e.g., one hashtable per node, or per application). Every entry in
the warehouse is uniquely identified by a key that is associated with one or more labels.
The content manager can also create ephemeral regions of the warehouse (e.g., tempo-
rary rooms), which can be used for workflows where data are shared between processes
(i.e., data sharing, Section 2.2). Data flows through LABIOS as follows: from application’s
buffer to the warehouse, and from there to worker storage for persistence or to another
application’s buffer. Last, the content manager also provides a cache to optimize small size
data access; a known issue in distributed storage [13]. I/O requests smaller than a given
threshold are kept in a cache and, once aggregated, a special label is created and pushed to
the distributed queue to be scheduled to a worker (much like memtables and SSTables in
LevelDB). This minimizes network traffic and can boost the performance of the system.

(c) The Catalog Manager is responsible to maintain both user and system metadata infor-
mation in an inventory, implemented by a distributed hashmap. The catalog manager
exposes an interface for each application to query and update the entries within the in-
ventory. Decentralization of the catalog services makes the system scalable and robust.
Multiple concurrent processes can query the inventory at the same time. For concurrent
updates, LABIOS adopts the semantics of the underlying distributed hashmap with high-
availability and concurrent access ensuring the correctness and high throughput of cat-
alog operations. LABIOS also offers the flexibility to place the inventory in memory for
high performance, protected by triple replication for fault tolerance. However, this in-
creases the memory footprint of LABIOS and it depends on the availability of resources.
The organization of inventory entries depends on the datamodel (files, objects, etc.) and/or
high-level I/O libraries andmiddleware. For instance, for POSIX files the inventory entries

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

Bridging Storage Semantics Using Data Labels and Asynchronous I/O 22:13

Fig. 3. LABIOS core internal design.

may include: filename to file stat, file handler to filename, file handler to file position in
offset, filename to a collection of labels, and others. An HDF5 or a JSON file will have
different inventory entries. The distribution of the user’s namespace between machines
follows the state-of-the-art metadata services proven within the storage community [64].
LABIOS-specific catalog information include: label status (e.g., in-transit, scheduled, pend-
ing), label distribution (e.g., label to workerID), label attributes (e.g., ownership, flags),
and location mappings between user’s data and LABIOS internal data structures (e.g., a
user’s POSIX file might be stored internally as a collection of objects residing in several
workers). Last, when LABIOS is connected to external storage resources, it relies on their
metadata service. LABIOS becomes a client to the external storage resources and “pings”
their metadata service to acquire needed information. LABIOS does not keep a copy of
their respective metadata internally to avoid possible inconsistent states. However, fur-
ther investigation is needed to optimize this process by avoiding added network latencies
from external sources.

3.3.2 LABIOS Core. This component, shown in Figure 3, is responsible to manage the instruc-
tion, data, and metadata flow separately. It consists of the following:

(a) The Administrator maintains the system’s state by keeping track of all running applica-
tions in a global registry, setting up the environment per application (e.g., boot up exclu-
sive workers if needed, pre-load data from external sources, etc.), and performing security
control via user authentication and access permission checks.

(b) The Label Queue hosts the labels from the application. LABIOS distributed queuing sys-
tem has the following requirements: high message throughput, always on and available,
at-most-once delivery guarantees, highly concurrent, and fault tolerant. These features

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

22:14 A. Kougkas et al.

ensure data consistency, since the label dispatcher will consume labels once and in order.
The queue concurrency ensures that multiple dispatchers can service the same queue or
one dispatcher multiple queues. The number of queues is configurable based on the load
(e.g., one queue per application, or one queue per 128 processes, or one queue per node).

(c) The Label Dispatcher subscribes to one or more distributed label queues and dispatches
labels to workers using several scheduling policies. The label dispatcher is multi-threaded
and can run on one or more nodes depending on the size of the cluster. LABIOS dispatches
labels based on either a time window or the number of labels in the queue; both of those
parameters are configurable. For example, the dispatcher can be configured to distribute
labels one by one or in batches (e.g., every 1000 labels). To avoid stagnation, a timer is
also used; If the timer expires, then LABIOS will dispatch all available labels in the queue.
Furthermore, the number of label dispatchers is dynamic and depends on the number of
deployed queues. There is a fine balance between the volume and velocity of label produc-
tion stemming from the applications and the rate at which the dispatcher handles them.
The relationship between the dispatcher and queuing system increases the flexibility and
scalability of the platform and provides an infrastructure to match the rate of incoming
I/O. The dispatcher consists of two phases:
(a) Label Shuffling: takes a vector of labels as an input and shuffles them based on type

and flags. Two operations are performed by the shuffler. Data aggregation: labels that
reflect user’s requests in consecutive offsets can be combined to one larger label to
maintain locality (this feature can be turned on or off). Label dependencies: data consis-
tency must be preserved for dependent labels. For instance, a read after write pattern;
LABIOS will not schedule a read label before the dependent write label completes.
To resolve such dependencies, the shuffler will create a special label, called supertask,
which embodies a collection of labels that need to be executed in strictly increasing
order. After sorting the labels and resolving dependencies, the shuffler sends labels
either to the solver to get a scheduling scheme, or directly to the assigner depending
on the type (e.g., a read label is preferably assigned to the worker that holds the data
to minimize worker-to-worker communication).

(b) Label Scheduling: takes a vector of labels as an input and produces a dispatching plan.
For a given set of labels and workers, the scheduler answers three main questions:
howmany workers are needed, which specific workers, and which labels are assigned
to which workers. LABIOS is equipped with several scheduling policies (in detail in
Section 3.5). A map of {workerID, vector of labels} is passed to the worker manager
to complete the assignment by publishing the labels to each individual worker queue.
Labels are published in parallel using a thread pool. The number of threads in the pool
depends on the machine the label dispatcher is running on as well as the total number
of available workers.

3.3.3 LABIOS Server. This component, shown in Figure 4, is responsible for managing the stor-
age servers and has two main entities:

(a) The Worker is essentially the storage server in LABIOS. It is fully decoupled from the
applications, is multithreaded, and runs independently. Its main responsibilities are:
(a) service its own queue, (b) execute labels, (c) calculate its ownworker score and commu-
nicate it to the worker manager, (d) auto-suspend itself if there are no labels in its queue
for a given time threshold, and (e) connect to external storage sources. The worker score
is a new metric, critical to LABIOS operations, that encapsulates several characteristics
of the worker into one value, which can then be used by the label dispatcher to assign

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

Bridging Storage Semantics Using Data Labels and Asynchronous I/O 22:15

Fig. 4. LABIOS server internal design.

Table 2. LABIOS Worker’s Score—Weighting Examples

Priority Availability Capacity Load Speed Energy

Low latency 0.5 0 0.35 0.15 0
Energy savings 0 0.15 0.2 0.15 0.5
High Bandwidth 0 0.15 0.15 0.70 0

any label to any appropriate worker. A higher scored worker is expected to complete the
label faster and more efficiently. The score is calculated by every worker independently at
an interval or if substantial change of status occurs, and it includes: (i) availability: 0, not
available (i.e., suspended or busy); 1, available (i.e., active and ready to accept labels). (ii)
capacity: (double) [0,1] based on the ratio between remaining and total capacity. (iii) load:
(double) [0,1] based on the ratio between worker’s current queue size and max queue size
(the max value is configurable). (iv) speed: (integer) [1,5] based on maximum bandwidth
of worker’s storage medium and grouped based on ranges (e.g., 1: ≤200 MB/s, 2: 200–550
MB/s, ... 5: ≥3,500 MB/s). (v) energy: (integer) [1,5] based on worker’s power wattage on
full load (e.g., an ARM-based server with flash storage consumes less energy than a Xeon-
based server with a spinning HDD). The first three are dynamically changing based on the
state of the system whereas speed and energy variables are set during initialization and
remain static. Last, each variable is multiplied by a weight. LABIOS’ weighting system
is set in place to express the scheduling policy prioritized (examples shown in Table 2).
For instance, if energy consumption is the constraint that the label dispatcher aims to op-
timize, then the energy variable gets a higher weight. The final score is a float in range
between 0 and 1 and is calculated as follows: Scoreworker (i) =

∑5
j=1Weiдhtj ∗Variablej .

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

22:16 A. Kougkas et al.

(b) The Worker Manager is responsible for managing the worker pool. Its responsibilities
are: (a) maintain workers’ statuses (e.g., remaining capacity, load, state, and score) in a
distributed hashmap (in-memory or on disk), (b) host the workers’ queues, (c) perform
load balancing between workers, and (d) dynamically commission/decommission work-
ers to the pool. It is connected to the administrator for accepting initial configurations for
incoming applications, and to the label dispatcher for publishing labels in each worker’s
queue. It can be executed independently on its own node by static assignment, or dy-
namically on one of the worker nodes by election among workers. In a sense, the worker
manager partially implements objectives similar to other cluster resource management
tools such as Zookeeper, or Google’s Borg. One of the most performance-critical goals of
the worker manager is to maintain a sorted list of workers based on their score. Workers
update their scores constantly, independently, and in a non-deterministic fashion. There-
fore, the challenge is to be able to quickly sort the updated scores without decreasing the
responsiveness of the worker manager. LABIOS addresses this issue by a custom sort-
ing solution based on buckets. The set of workers are divided on a number of buckets
(e.g., high, medium, and low scored workers) and an approximate bin sorting algorithm
is applied [29]. A worker score update will only affect a small number of buckets and the
complexity time is relevant to the size of the bucket. Last, the worker manager can send
activation messages to suspended workers either by using the administrative network, if
it exists, (i.e., ipmitool--power on), or by a custom solution based on ssh connections
and wake-on-lan tools.

3.4 Deployment Models

The power and potential of LABIOS’ flexible and decoupled architecture can be seen in the several
ways the system can be deployed. Depending on the targeted hardware and the availability of
storage resources, LABIOS can: (a) replace an existing parallel or distributed storage solution, or
(b) be deployed in conjunction with one or more underlying storage resources as an I/O accelerator
(e.g., burst buffer software, I/O forwarding, or software-defined storage in user space). In any of
these models, LABIOS will first spawn five separate services (i.e., LABIOS executables) during
the application initialization (e.g., MPI_Init()). These services are: the warehouse, the queues, the
label dispatcher, the worker manager, and the workers. The application, then, can simply use the
LABIOS library (i.e., include labios.hpp) and start using the system. Leveraging the latest trends
in hardware innovation, the machine model we present here as our basis for several deployment
schemes is as follows: compute nodes equipped with a large amount of RAM and local NVMe
devices, an I/O forwarding layer [37], a shared burst buffer installation based on SSD equipped
nodes, and a remote PFS installation based on HDDs (motivated by the recent machines Summit
in ORNL or Cori on LBNL). Four equally appropriate deployment examples that can cover different
workloads can be seen below:
(a) LABIOS as I/O accelerator (Figure 5): Client runs on compute nodes and the distributed queue
and hashmaps are placed on each node’s memory for lower latency and higher throughput. The
label scheduler runs on a separate compute node serving one or more queues per node, and last,
one core per node can execute LABIOS worker, who stores data in the local NVMe. This mode
can be used as a fast distributed cache for temporary I/O or on top of other external sources. It is
also ideal for Hadoop workloads with node-local I/O. However, it must use some compute cores to
run its services and I/O traffic will mix with the compute network. Pros: fast distributed cache for
temporary I/O or on top of external storage resources, good performance for Hadoop workloads.
Cons: I/O traffic mixed with compute network, overheads by using compute core to run LABIOS
services.

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

Bridging Storage Semantics Using Data Labels and Asynchronous I/O 22:17

Fig. 5. Deployment example: LABIOS as I/O accelerator in compute nodes.

Fig. 6. Deployment example: LABIOS as I/O forwarder solution.

(b) LABIOS as I/O forwarder (Figure 6): Client runs on compute nodes and the distributed queue
and hashmaps are placed on compute nodes’ memory or NVMe. The label scheduler and workers
run on the I/O nodes of the forwarding layer. This mode is ideal for asynchronous I/O calls where
applications pass their data to LABIOS, which pushes them in a non-blocking fashion to remote
storage, either native to the system or external. However, its scalability is limited by the size of
the I/O forwarding layer. Pros: good performance for asynchronous non-blocking I/O, great for
storage bridging by connecting to many external storage services Cons: subject to the existence
of an I/O forwarding layer, limited scalability.
(c) LABIOS as I/O buffering (Figure 7): Client runs on compute nodes and the distributed queue
and hashmaps are placed on compute nodes’ memory or NVMe. The label scheduler can be de-
ployed either in compute or I/O forwarder nodes, serving one or more client queues. Workers are
deployed on the burst buffer nodes utilizing the SSD devices to store data. ideal for fast tempo-
rary storage, data sharing between applications, and in situ visualization and analysis. Requires
additional storage and network resources (i.e., burst buffer infrastructure). Pros: fast scratch stor-
age space, fast data sharing between applications, enables in situ visualization and analysis. Cons:
requires additional storage and network hardware resources (e.g., burst buffers).
(d) LABIOS as remote distributed storage (Figure 8): This can be achieved with various combinations
of deploying LABIOS components in different nodes in the cluster. For instance, a natural fit in

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

22:18 A. Kougkas et al.

Fig. 7. Deployment example: LABIOS as I/O buffering platform.

Fig. 8. Deployment example: LABIOS as remore distributed storage.

our machine model is running the client in the I/O forwarding nodes, the distributed queue and
hashmaps on the burst buffers, and the workers on the storage servers, effectively replacing a PFS.
This mode offers better system scalability by scaling each individual component independently,
better resource utilization, and higher flexibility to the system administrator. For instance, one can
increase the number of client queues in scenarios when label production is high, or deploy more
dispatchers to distribute labels faster. It has, however, higher deployment complexity. LABIOS’
fully decoupled architecture provides greater flexibility and promotes scalability; I/O scales along
with the application by simply provisioning additional resources. Pros: very scalable, optimal re-
source utilization, increased flexibility.Cons: high deployment complexity, requires system admin
involvement.

3.5 Implementation

3.5.1 Usage. LABIOS system is packaged into five separate services that get deployed during
the application initialization. When LABIOS is compiled the following executables are created:
(a) warehouse, (b) distributed queue(s), (c) label dispatcher(s), (d) worker manager(s), and (e)
workers. These executables must be started before the client application can use the system.
Depending on the deployment model, these services can start either manually via a collection
of scripts or automatically during application’s initialization phase via a bootstrapping method

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

Bridging Storage Semantics Using Data Labels and Asynchronous I/O 22:19

(e.g., intercept MPI_Init() and spawn LABIOS). Clients simply connect to the warehouse and the
distributed queues via the LABIOS library. The only user intervention is to include the LABIOS
header file. We plan to incorporate the bootstrapping of LABIOS as a plugin to the global system
scheduler (e.g., Flux [1]).

3.5.2 Label Scheduling. LABIOS balances the rate of incoming labels, the dispatching cost, and
the time to execute the labels and offers an flexible, intent-aware infrastructure. LABIOS provides
a custom data distribution by implementing different scheduling policies:

(1) Round Robin: given a set of labels and a list of available workers the dispatcher will distrib-
ute labels in a round robin fashion, much like a PFS does. The responsibility of activating
workers and compiling a list of available workers for every scheduling window falls un-
der worker manager. This policy demonstrates low scheduling cost but additional load
balancing between workers might occur.

(2) Random Select: given a set of labels, the dispatcher will distribute labels to all workers ran-
domly regardless of their state (i.e., active or suspended). This policy ensures the uniform
distribution of workload between workers, low scheduling cost, but with no performance
guarantees (i.e., possible latency penalty by activating suspended workers, or lack of re-
maining capacity of worker, etc.).

(3) Constraint-based: in this policy, LABIOS provides the flexibility to express certain priorities
on the system. Through the weighting system of worker scores, discussed in Section 3.3,
the dispatcher will distribute labels to workers based on the constraint with higher weight
value. The constraints used are: (a) availability, active workers will have higher score.
(b) worker load, based on worker’s queue size. (c) worker capacity, based on worker’s re-
maining capacity. (d) performance, workers with higher bandwidth and lower latency get
higher score. For a given set of labels, the dispatcher requests a number of workers with
the highest score, respective to the prioritized constraint, from the worker manager and
distributes the labels evenly among them. The number of workers needed per a set of la-
bels is automatically determined by LABIOS based on the total aggregate I/O size and the
selected constraint balancing parallel performance and efficiency. These heuristics can be
configured and further optimized based on the workload.

(4) MinMax: given a set of labels and a collection of workers, the dispatcher aims to find a label
assignment that maximizes I/O performance while minimizing the system’s energy con-
sumption, subject to the remaining capacity and load of the workers; essentially a minmax
multidimensional knapsack problem, a well-known NP-hard combinatorial optimization
problem [61]. LABIOS solves this problem using an approximate dynamic programming
(DP) algorithm [5], which optimizes all constraints from the previous policy. This policy
gives a near-optimal matching of labels-workers but with a higher scheduling cost.

3.5.3 Software Defined Storage (SDS) Support. Computational storage, often expressed with
terms such as Active Storage or Software Defined Storage, is the ability of a storage system to carry
out some form of computations or data operations right where the data resides. Offloading data-
intensive functions to the storage can be beneficial in two meaningful ways: (a) reducing data
movement from storage to compute thus reducing network traffic, energy consumption, and ulti-
mately freeing compute performance, and (b) providing functional asynchronicity where applica-
tions can exit once they pass the data to the storage (e.g., archival storage with data compression
performed on storage). The decoupled architecture of LABIOS along with the label paradigm are
a great fit for offering a storage infrastructure for computational storage operations. Further, the
decoupled architecture of LABIOS workers allows us to offload computations to both the CPU of

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

22:20 A. Kougkas et al.

Fig. 9. LABIOS prototype implementation lines of code.

the storage node or even to any computational elements of modern storage devices (e.g., ARM
processors or FPGAs inside a Flash SSD controller). We have already explored the implications of
using the computational power of such storage devices in our previous work [23, 44].

The infrastructure LABIOS offers to enable computational storage capabilities to applications is
simple and scalable. First, users submit the source code of their data intensive functions. LABIOS
provides a custom compiler (i.e., wrapper over GCC) to build the provided source code into
shared libraries. Then, the compiled shared libraries, which reside in a special shared folder in the
Worker Manager’s disk (see Figure 4) get dynamically loaded into each worker node’s OS using
LD_PRELOAD environment variable. Once this happens, each worker has the definitions required
to execute the provided operation. From there, things are very simple for the end user. On label
creation, user needs to do the following: define the type of labels as SDS_IN_SITU and include
the definition of their data-intensive function (i.e., function name and args) passed as a function
pointer. Once a worker picks up a label that includes an instruction like this, it simply performs
the operation. More interestingly, those data intensive functions can be stacked. For instance, a
user might want to first sort the data, then compress them, and, finally, write them out to storage.
This dictates a certain order of operations. Users can define such operation dependencies. In case
such dependency is not defined, LABIOS will execute the instructions in the order they were de-
clared. Users need to be aware of such system behavior. A non-resolved dependency can lead to
sub-optimal results. For instance, in our previous example of sorting, compressing, and writing, it
is widely known that compression is more effective on sorted data (i.e., smaller compressed size).
However, offloading data operations on storage nodes is not a new concept. There must be

balance between how much computation one offloads to the often weaker computation elements
of storage nodes and the cost of moving data to the more powerful CPUs of the compute nodes.
LABIOS provides an efficient infrastructure to perform such offloading but does not currently have
a balance check. It is the responsibility of the user to evaluate how much computation should be
offloaded to offset the cost of data movement. There are a few insights that can be used as a guide
in the literature, most notably Active Disks [65], Active Storage [66], and Active Flash [72].

3.5.4 Prototype Library Implementation Details. LABIOS is written in C++ and has approxi-
mately 10K lines of code, excluding external open source projects we used in our LABIOS proto-
type. Figure 9 shows the summary of LOCs for all LABIOS components in our prototype imple-
mentation. For the distributed queuing system, used widely in LABIOS both in client and workers,
we used NATS server [17], a simple, high-performance open source messaging system. NATS was
selected due to its superiority in throughput (i.e., >200Kmsg/s, 12× higher than Apache ActiveMQ
and 3× than Kafka), low latency, and lightweight nature. For the distributed hashmaps, we used
a custom version of Memcached with the extstore [54] plugin. Memcached is a simple in-memory
key-value store, with easy deployment, development, and great APIs. The extstore plugin allows
us to store memcached data to a storage device (e.g., NVMe, SSD) instead of RAM. We also modi-
fied the default key distribution from randomly hashing keys to servers, to a node local scheme to

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

Bridging Storage Semantics Using Data Labels and Asynchronous I/O 22:21

Fig. 10. LABIOS API example.

increase throughput and promote locality. Effectively, each node in LABIOS stores its hashtables
on its local memcached daemon.
For label serialization, we used Cereal [31], a header-only binary serialization library, which

is designed to be fast, light-weight, and easy to extend. For hashing, we used CitiHash algo-
rithms [30], for memory allocations TCMalloc, and last, for metadata indexing an in-memory
B-Tree implementation by Google.

3.5.5 API. LABIOS exposes a label API to the application to interact with data. The storage
interface expresses I/O operations in the form of labels. The API includes calls to create-delete,
publish-subscribe labels, among others. LABIOS’ API offers higher flexibility and enables software
defined storage capabilities. The active storage operation offloading is achieved via the label type
(e.g., SDS) and a set of flags. For instance, the code snippet shown in Figure 10, creates an asyn-
chronous label, which reads a file that includes a collection of integers from an external PFS using
the MPI-IO driver, calculates the median value, and passes only the result back to the application
via asynchronous I/O.

3.6 Discussion

3.6.1 Considerations. LABIOS’ design and architecture promotes its main objective of support-
ing a diverse variety of conflicting I/O workloads under a single platform. However, additional
features could be derived from LABIOS label paradigm. These include the following:

(a) Fault tolerance. In the traditional streamlined I/O paradigm, if an fwrite() call fails the en-
tire application fails and it must restart to recover (i.e., using check-pointing mechanisms
developed especially in the scientific community). LABIOS’ label granularity and decou-
pled architecture could provide the ability to repeat a failed label and allow the application
to continue without restarting.

(b) Energy-awareness. First, LABIOS’ ability to dynamically commission/decommission
workers to the pool creates an elastic storage solution with tunable performance and
concurrency control but also offers a platform that could leverage the energy budget
available. One could observe the distinct compute-I/O cycles and redirect energy from
compute nodes to activate more LABIOS workers for an incoming I/O burst. Second,

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

22:22 A. Kougkas et al.

LABIOS’ support of heterogeneous workers could lead to energy-aware scheduling
where non mission-critical work would be distributed on low-powered storage nodes,
effectively trading performance for power consumption.

(c) Storage containerization. Virtualization could be a great fit for LABIOS’ decoupled archi-
tecture. Workers could execute multiple containers running different storage services. For
instance, workers would host one set of containers running Lustre servers and another
running MongoDB. The worker manager would act as the container orchestrator and the
label dispatcher could manage hybrid workloads by scheduling labels to both services
under the same runtime.

3.6.2 Challenges and Limitations. During the design and implementation of LABIOS, we have
identified several challenges as follows:

(a) Multitenancy and Security. How does LABIOS handle multiple applications accessing the
system? Contention avoiding techniques must be employed. LABIOS could handle this
by operating in isolation, where each application would have had its own queues, label
dispatchers, and workers; an additional layer of global application orchestrator [42] could
deal with the overall system traffic. Further concerns might arise by multitenancy such as
user authentications and security. For instance, the LABIOS prototype uses NATS server
as the queuing system. As of now, NATS does not support TLS and SSL, which could limit
the secure capabilities of the system.

(b) Concurrent operations: There are many components in LABIOS that need to be efficiently
accessed at the same time. The distributed queuing systemneeds to support highly concur-
rent label insertion. The distributed hashmaps have to support a large number of clients
for accessing both data and metadata. For instance, LABIOS’ constraint on the priority
queue is the timestamp, which means clock skewness across the cluster can affect the
order of operations in the system. LABIOS’ design relies heavily on the characteristics
and performance of those components and any limitations from their side could become
limitations of the entire LABIOS system.

(c) I/O request decomposition: The main question LABIOS faces is how to transform I/O re-
quests into labels. What would be an optimal decomposition granularity? LABIOS’ label
manager addresses this by splitting requests based on an I/O size range. For small re-
quests, LABIOS caches them and aggregate them into a larger label. For large requests,
LABIOS splits them into more labels offering a higher degree of parallelism. We plan to
leverage the underlying hardware characteristics (network buffers, RAM page size, disk
blocks, etc.) to refine LABIOS I/O request decomposition strategy. Another question, rele-
vant to label granularity, is how are label dependencies and session/service management
handled? Any task-based system faces these challenges [74]. LABIOS resolves label de-
pendencies based on a configurable policy-driven granularity (i.e., per-application, per-
file, per-dataset, etc.). We plan to further LABIOS ability to resolve label dependencies by
using dependency graphs.

(d) User-defined functions execution safety: LABIOS allows users to submit their own custom
data functions to be used in labels under the software defined storage type (see subsec-
tion 3.5.3). We provide a custom compiler, which is a simple wrapper over GCC, that
compiles user-submitted code and stores the binary in an executable registry. However,
ill-written user code might misbehave and cause adverse effects on LABIOS stability and
performance. There are no safety controls in our prototype implementation of LABIOS,
but we plan to add some in the future. Our design allows such future extensions where
the compiler can reject user code due to safety concerns. LABIOS can, however, currently

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

Bridging Storage Semantics Using Data Labels and Asynchronous I/O 22:23

protect the integrity of user’s data by shielding users from each other. The executable reg-
istry is only exposed to the owner of the application and other applications cannot access
each others binaries. In other words, user authentication and permission checks, handled
by the administrator during registration, provide a level of protection in regards to the
integrity of data across multiple users.

4 EVALUATION

4.1 Methodology

4.1.1 Testbed. Experiments were conducted on a bare metal configuration offered by
Chameleon systems [14]. The total experimental cluster consists of 64 client nodes, 8 burst buffer
nodes, and 32 storage servers. Each node has a dual Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30 GHz
(i.e., a total of 48 cores per node), 128 GB RAM, 10 Gbit Ethernet, and a local Seagate ST2000NX0273
HDD for the OS. Each burst buffer node has the same internal components but, instead of an HDD,
it is equipped with Intel SSDSC1BG40 SSDs. LABIOS has been deployed in the cluster as a storage
solution (Figure 8). Additional experimental evaluations (tests in subsection 4.2.6 (b) and (c)) have
been conducted on the Ares cluster at Illinois Institute of Technology. Each compute node has a
dual Intel(R) Xeon Scalable Silver 4114 @ 2.20 GHz (i.e., 40 cores per node), 96 GB RAM, 40 Gbit
Ethernet, and a local 512 GBM.2 Samsung 960 Evo NVMe SSD. Each storage node has a dual AMD
Opteron 2384 @ 2.7 Ghz, 32 GB RAM, 40 GBit Ethernet with RoCE, and is also equipped with
2x512 GB Samsung 860 Evo SATA SSD in RAID, and 2TB Seagate 7,200K SATA HDD. The total
experimental cluster consists of 2,560 client MPI ranks (i.e., 64 nodes), 4 burst buffer nodes, and 24
storage nodes.

4.1.2 Software. The cluster OS is CentOS 7.2, the PFS we used is OrangeFS 2.9.6.We useMPICH
3.2.1 as the MPI library for the applications. In terms of workloads, we used all four applications
from Section 2.3, as well as several application kernels such as word count, integer sorting, nu-
merical statistics, data filtering, and data compression. Finally, several syntheticmicro-benchmarks
were used to evaluate the internal components of LABIOS. More information on how each appli-
cation or kernel works are provided with the description on each test and figures presented below.

4.2 Experimental Results

4.2.1 Anatomy of LABIOS Read/Write Operations. Figure 11 shows decomposition of the read
and write label execution expressed as time percentage and divided by each LABIOS component.
For instance, awrite label starts with the LABIOS client building a label (at 12 o’clock on the figure),
which takes 2% of the total time, it then passes the data to the warehouse (put data 11%), publishes
the label to the queue (1%), and finally updates the catalog manager (MDM) about the operation
(17%). The total LABIOS client operations take 31% of the total time. The label journey continues
in the label dispatcher who picks up the label from the queue (subscribe 5%), schedules it (3%),
and pushes it to a specific worker’s queue (publish 1%). The most work is done by the LABIOS
worker (60% of the total operation time) who first picks up the label from its queue and the data
from the warehouse (get data 17%), writes the data down to the disk (29%), and finally updates the
catalog manager (1%). Read label time decomposition can also be seen in Figure 11. All results are
the average time of executing a 1 MB label 10K times.

4.2.2 Label Dispatching. In this test, we present how LABIOS performs with different sched-
uling policies and by scaling the number of label dispatcher processes. We report the rate (i.e.,
labels per second) at which each scheduling policy handles incoming labels. LABIOS client runs
on all 64 client machines, the label dispatcher is deployed on its own dedicated node, and LABIOS

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

22:24 A. Kougkas et al.

Fig. 11. Anatomy of LABIOS operations.

Fig. 12. Label Scheduling.

workers run on the 32 server machines. We measure the time the dispatcher takes to distribute
100K randomly generated labels (i.e., mixed read and write equally sized labels). As it can be seen
in Figure 12, all policies scale linearly as we scale the label dispatcher processes from 6 to 48 (i.e.,
equal to max cores of the node). Round-robin and random-select achieve comparable schedul-
ing rates between 55–125K labels per second. Constraint-based is more communication intensive,
since it requires exchanging information about the workers with their manager. MinMax scales
better with more resources, since it is more CPU intensive (i.e., DP approach).

4.2.3 Storage Malleability. In this test, we present how LABIOS elastic storage feature affects
I/O performance and energy consumption. We issue 4,096 write labels of 1 MB each, and we mea-
sure the total I/O time stemming from different ratios between active workers over total workers
(e.g., 50% ratio means that 16 workers are active and 16 are suspended). A suspended worker can
be activated in about 3 seconds on average (in our testbed between 2.2 and 4.8 s). Figure 13 demon-
strates the importance of balancing the added latency to activate more workers and the additional
performance we get. We show two worker allocation techniques, the static (S), where labels are

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

Bridging Storage Semantics Using Data Labels and Asynchronous I/O 22:25

Fig. 13. Storage Malleability.

Fig. 14. I/O asynchronicity—CM1 performance.

placed only on the active workers, and the elastic (E), where more workers activate to serve in-
coming I/O. When LABIOS has a small percentage of active workers, the elastic strategy can boost
performance significantly even though we pay the latency penalty to activate more workers. How-
ever, when we have a sufficient number of active workers (e.g., 75% or 24 out of 32 total workers),
waking up more workers hurts the performance due to the latency penalty. This is further appar-
ent when we see the energy efficiency of the system, expressed in watts per hour (Whr). In our
testbed, active workers consume 165 watts, whereas suspended workers only 16 watts. LABIOS
elastic worker allocation makes sense until the 75% case where the static allocation is more energy
efficient.

4.2.4 I/O Asynchronicity. LABIOS supports both synchronous and asynchronous operations.
The potential of a label-based I/O system is more evident by the asynchronous mode where
LABIOS can overlap the execution of labels behind other computations. In this test, LABIOS is
configured with the round robin scheduling policy, label granularity of 1 MB, and the label dis-
patcher uses all 48 cores of the node. We scaled the clients from 384 to 3,072 processes (or MPI
ranks in this case) to see how LABIOS scales. We run CM1 in 16 iterations (i.e., time steps) with
each step first performing computing and then I/O. Each process is performing 32 MB of I/O with
the total dataset size reaching 100 GB per step for the largest scale of 3,072. As it can be seen
in Figure 14, LABIOS scales well with the synchronous mode, offering competitive performance

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

22:26 A. Kougkas et al.

Fig. 15. Resource heterogeneity—HACC performance.

when compared with our baseline, an OrangeFS deployment using the same number of storage
servers (i.e., 32 servers). When LABIOS is configured in the async mode, each I/O phase can be
executed overlapped with the computation of the next step. This results in a significant 16× I/O
performance boost, and a 40% execution time reduction, since the I/O is hidden behind computa-
tion. Note that no user code change is required. LABIOS intercepts the I/O calls and builds labels
that get executed in a non-blocking fashion.

4.2.5 Resource Heterogeneity. In this test, we run HACC also in 16 time steps. At each step,
HACC saves its state on the burst buffers and only at the last step persists the checkpoint data to the
remote storage, an OrangeFS deployment. This workload is update-heavy. LABIOS is configured
similarly as before but with support of heterogeneous workers, 8 SSD burst buffers and 32 HDD
storage servers. LABIOS transparently manages the burst buffers and the servers, and offers 6×
I/O performance gains, shown in Figure 15. Moreover, worker to worker flushing is performed in
the background.

4.2.6 Data Provisioning. Process-to-process data sharing, in situ data analytics, and compu-
tational storage capabilities are expressed by provisioning data for each respective purpose. We
investigate LABIOS’ ability to support these cases by performing the following tests.

(a) Process-to-process data sharing: in this test, we runMontage, an application that consists of
multiple executables that share data between them (i.e., output of one is input to another).
LABIOS is configured similarly to the previous set of tests. The baseline uses an OrangeFS
deployment of 32 servers. In this test, the simulation produces 50 GB of intermediate data
that are written to the PFS and then passed, using temporary files, to the analysis kernel,
which produces the final output. As it can be seen in Figure 16, our baseline PFS spends
significant time in I/O for this data sharing via the remote storage. This workflow can
be significantly boosted by making the data sharing more efficient. LABIOS, instead of
sharing intermediate data via the remote storage, passes the labels from the simulation to
the analysis via the distributedwarehouse. Each intermediate data file creates labels where
the destination is not LABIOS workers but the analysis compute nodes. This accelerates
the performance in two ways: (a) no temporary files are created in the remote storage
servers, and (b) simulation and analysis can now be pipelined (i.e., analysis can start once
the first labels are available). As a result, LABIOS offers 65% shorter execution time, boosts
I/O performance by 17×, and scales linearly as the number of clients grow.

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

Bridging Storage Semantics Using Data Labels and Asynchronous I/O 22:27

Fig. 16. Data provisioning—Montage performance.

Fig. 17. Data provisioning—In situ data analytics performance.

(b) In situ data analytics: in this series of tests, we evaluate how effective are LABIOS’ in situ

analysis capabilities. Through the Label paradigm users can offload certain data intensive
operations to the LABIOS workers effectively reducing unnecessary data movements. We
run all these tests on Ares cluster, which demonstrates a heterogeneous architecture be-
tween compute and storage nodes. Technical details on this hardware composition can be
found in subsection 4.1.1. The main idea behind the kernels evaluated in this test is that
a large amount of data residing in PFS needs to be analyzed and, thus, moved to compute
nodes through the network. This data transfer is expensive and often the bottleneck in
such situations. Figure 17 shows results from three data analytics application: a numerical
statistics kernel that calculates average, min, andmax values over a integer dataset; a word
count kernel that counts word frequencies in a textual dataset extracted from Wikipedia
articles; and a data filtering kernel that sieves the third quartile of the histogram for a float-
ing point dataset with a gamma distribution. A common theme between these kernels is
that the size of input data is significantly larger than the intermediate or output data (i.e.,
orders of magnitude data reduction). In each of these kernels the amount of input data is

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

22:28 A. Kougkas et al.

Fig. 18. Data provisioning - Computational storage performance.

4 TB and the number of compute MPI ranks is 2,560. There are 24 storage nodes for the
baseline of PFS or LABIOS workers, respectively. Burst buffer nodes are not used. As it
can be seen in the figure, for the baseline the I/O time is dominating the overall execution
time, since 4 TB of data are transferred from the PFS to the compute nodes. The actual
computations are not significantly complex (i.e., in the order of O (n)). This is a great fit
for in situ analysis. Instead of transfering data through the slower network, the functions
can be shipped to the storage nodes even if their computational capability is less. In fact,
LABIOS cuts the I/O cost down to more than half, since it only performs reads locally.
The CPUs present in storage nodes are significantly slower than the compute nodes (i.e.,
twice as slow) but the reduction in data movement more than justifies the in situ analysis.
In conclusion, we can observe that the smaller the delta between input and output data
size is, the less effective in situ analysis becomes. This can be seen in the data filtering ker-
nel where 10% of the data are returned to the compute nodes as the result of the analysis,
hence making the LABIOS improvement only 30% over the baseline whereas for statistical
and word count kernels is more than 2×.

(c) Computational Storage: in this series of test, we evaluate how offloading data operations
onto storage can boost applications perceived performance. The main benefit stems from
the operation asynchronicity. Applications can exit once they ship their data to storage
alongwith the desired operation to be performed. The following tests were also conducted
on the Ares cluster. The main idea behind the applications evaluated in this test is that a
large amount of data that reside in compute nodes has to be first processed in some way
(i.e., compressed, sorted, etc.) and then written to the remote storage for persistence. The
computations applied on the data before they are written out are not necessarily expen-
sive, but they are part of the overall time to exit. Instead, if computational storage is used,
then the data transformations can happen in the background by the storage nodes effec-
tively reducing the time to exit. Figure 18 shows results from three application kernels,
namely, an integer sorting where data are sorted before written to the remote storage,
an AES encryption where data are first encrypted and then written out, and a data com-
pression where all data produced by compute need to first be compressed, reducing their
footprint, before written to the archival storage. All tests were conducted with max scale
of the cluster (i.e., 2,560 ranks over 64 nodes), and the dataset size is 4 TB. Similarly as

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

Bridging Storage Semantics Using Data Labels and Asynchronous I/O 22:29

the previous testing, 24 storage nodes were used to run PFS and LABIOS workers, respec-
tively. As it can be seen in the figure, starting from the integer sorting application, for
the baseline the sorting algorithm completed in 404 sec and the PFS I/O in 1,271 s for an
overall 1,675 s. For LABIOS, the application only needs to write the data (took 1,200 s) and
instruct LABIOS to sort them in the background (took 728 s). Note that the computational
capabilities of LABIOS workers cannot match that of the compute nodes. However, since
the sorting happened in the background (i.e., asynchronously) the application does not
experience this slowdown and can exit once I/O has been completed. This leads to a 1.4×
speedup. Once the data operation applied to the data before written out to the remote
storage becomes more complex the effect of asynchronously execute them on the storage
nodes is even more noticeable. Results for the AES data encryption show this clearly. The
baseline completed the operation and I/O in 2,525 s, whereas LABIOS allowed the appli-
cation to exit in only 1,150 s. This is due to the fact that data were written without being
encrypted. Data encryption was applied by the LABIOS workers in the background. An
interesting observation can be made when we look at the compression case. Compression
is a data transformation that spends CPU cycles to perform the compression algorithm for
a reduction in data size in return. However, different compression algorithms demonstrate
different performance characteristics. For instance, bzip, a widely used compression, has
a slow compression speed for a high compression ratio. This means that the more time
one spends in compressing data the smaller the dataset size becomes. In contrast, when
using LABIOS, the application wrote all 4 TB of data to LABIOS workers, which in turn
applied compression in the background. However, if we switch the compression algo-
rithm to something more balanced where a more moderate compression ratio is achieved
quicker, such as LZ4, then we see that the baseline can outperform LABIOS under this con-
figuration where storage nodes’ CPU are weaker. The data reduction achieved by lighter
compression by LZ4 was the main reason why the baseline was quicker to finish. In con-
clusion, computational storage is not a panacea. Its effectiveness depends on few things
such as the hardware composition of the storage nodes, the complexity of the computa-
tion required, and the application willingness to apply the data operation asynchronously
(i.e., in the background).

4.2.7 Storage Bridging. Figure 19 demonstrates the results of running K-means clustering. Our
baseline is a 64-node HDFS cluster. LABIOS is configured in two modes: node-local I/O, similar
to the HDFS cluster, and remote external storage, similar to an HPC cluster (Section 3.4 (a) and
(d)). In the first mode, LABIOS workers run on each of the 64 nodes in the cluster whereas in
the second mode, data resides on an external storage running on 32 separate nodes. This appli-
cation has three distinct phases: (a) Map, each mapper reads 32 MB from storage and calculates
the squared distance of each point from each initial mean. It then finds the mean that minimizes
that distance and writes back to the disk 32 MB of key-value pairs with the mean index as key
and the point as value. (b) Reduce, each reducer reads 32 MB of key-value pairs written from the
mappers and performs a pairwise summation over the values of each key. (c) Shuffle, all values
across all reducers in the cluster are exchanged via the network (i.e., 32 MB network I/O) to recal-
culate the new means (i.e., centroids). Finally, it writes the new final centroids back to the disk. An
optimized version of this algorithm (i.e., Apache Mahout) avoids writing the key-value pairs back
to HDFS during map phase, but instead it emits those values to the reducers avoiding excessive
disk I/O (i.e., Hadoop-Memory in Figure 19). This significantly boosts the performance of this algo-
rithm, which is mostly read-intensive, except of the shuffling phase, which is network-heavy [18].
LABIOS supports this workload by having each worker on every node reading the initial dataset

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

22:30 A. Kougkas et al.

Fig. 19. Storage Bridging—Hadoop K-Means performance.

in an optimized way by performing aggregations, much like MPI collective-I/O where one pro-
cess reads from storage and distributes the data to all other processes. Further, LABIOS decoupled
architecture allows the system to read data from external resources (i.e., LABIOS-Disk-Remote
in Figure 19). As it can be seen in the results, reading from external sources is slower than the
native node-local I/O mode but it is still a feasible configuration under LABIOS, one that leads to
the avoidance of any expensive data movements or data-ingestion approach. In summary, LABIOS
supports Hadoop workloads under the same cluster and offers competitive performance with the
native HDFS.

5 RELATEDWORK

5.0.1 Innovation and New Features in Modern Storage. Fixed reservation with performance
guarantees in Ceph [77], in-memory ephemeral storage instances in BeeGFS [32], decoupling of
data and metadata path in latest versions of OrangeFS [67], and client-to-client coordination with
low server-side coupling in Sirocco [19]. Our work is partially inspired by the above developments.
LABIOS is able to offer these features due to its innovative design and architecture.

5.0.2 Active Storage. Comet [28] is an extensible, distributed key-value store that seeks
application-specific customization by introducing active storage objects. Comet’s design allows
storage operations as a result of executing application specific handlers. ActiveFlash [72] is an
in situ scientific data analysis approach, wherein data analysis is conducted on where the data
already resides. LABIOS workers can independently execute data-intensive operations in a non-
blocking fashion, since they are fully decoupled from the clients.

5.0.3 Workflow Interoperability. Running data analysis along with computationally challeng-
ing simulations has been explored by Reference [9]. Dataspaces [24] offers a semantically special-
ized virtual shared space abstraction to support multiple interacting processes and data-intensive
application workflows. DAOS [11] integrates a high-performance object store into the HPC stor-
age stack and supports a flexible interface for diverse workloads. However, dedicated analysis
resources or expensive data movement between different clusters is still required. LABIOS’ label
describes the destination of a certain data operation and can be amemory buffer or a file on another
compute node making data sharing easy and efficient.

5.0.4 Task-based Computation Frameworks. Machine independent parallel task-based comput-
ing paradigms with new runtime systems such as Charm++ [38] and Legion [3] have been long

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

Bridging Storage Semantics Using Data Labels and Asynchronous I/O 22:31

advocating for splicing computation to smaller, independent pieces that can be better man-
aged [46], scheduled [48, 50], and executed [53] on heterogeneous environments. LABIOS, in a
sense, realizes the same vision of work decomposition but for I/O jobs and not computations.

5.0.5 Storage Malleability. Elasticity is a well explored feature in Cloud storage. Dynamic com-
mission of servers in HDFS [16], transactional database properties with elastic data storage such
as ElasTraS [22], and several works exploring energy efficiency in storage systems [4, 49]. LABIOS
inherits this feature by its decoupled architecture and the worker pool design and brings storage
malleability to HPC as well as BigData.

6 CONCLUSIONS AND FUTURE WORK

Modern large-scale storage systems are required to support a wide range of workflows with dif-
ferent, often conflicting, I/O requirements. Current storage solutions cannot definitively address
issues stemming from the scale explosion. In this article, we present the design principles and
the architecture of a new, distributed, scalable, elastic, energy-efficient, and fully decoupled label-
based I/O system, called LABIOS. We introduce the idea of a label, a fundamental piece of LABIOS’
architecture, that allows the I/O system to provide storage flexibility, versatility, agility, and mal-
leability. Performance evaluation has shown the potential of LABIOS’ architecture by successfully
executing multiple conflicting workloads on a single platform. LABIOS can boost I/O performance
on certain workloads by up to 17× and reduce overall execution time by 40–60%. Finally, LABIOS
provides a platform where users can express intent with software-defined storage abilities and a
policy-based execution. As future work, we plan to further develop our system, test it with larger
scales, deploy it on more platforms, and extend its functionality with higher fault tolerance se-
mantics, label dependency graphs, and efficient communication protocols.

REFERENCES

[1] Dong H. Ahn, Ned Bass, Albert Chu, Jim Garlick, Mark Grondona, Stephen Herbein, Helgi I. Ingólfsson, Joseph

Koning, Tapasya Patki, Thomas R. W. Scogland, et al. 2020. Flux: Overcoming scheduling challenges for exascale

workflows. Future Gen. Comput. Syst. 110 (2020), 202–213.

[2] Amazon Inc. 2018. Amazon S3. Retrieved from http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html.

[3] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion: Expressing locality and independence

with logical regions. In Proceedings of the Conference on High Performance Computing, Networking, Storage and Anal-

ysis (SC’12). IEEE, 1–11.

[4] Andreas Berl, Erol Gelenbe, Marco Di Girolamo, Giovanni Giuliani, Hermann De Meer, Minh Quan Dang, and Kostas

Pentikousis. 2010. Energy-efficient cloud computing. Comput. J. 53, 7 (2010), 1045–1051.

[5] Dimitris Bertsimas and Ramazan Demir. 2002. An approximate DP approach to multidimensional knapsack problems.

Manage. Sci. 48, 4 (2002), 550–565.

[6] Deepavali M. Bhagwat, Marc Eshel, Dean Hildebrand, Manoj P. Naik, Wayne A. Sawdon, Frank B. Schmuck, and Renu

Tewari. 2018. Global namespace for a hierarchical set of file systems. U.S. Patent App. 15/397,632.

[7] Deepavali M. Bhagwat, Marc Eshel, Dean Hildebrand, Manoj P. Naik, Wayne A. Sawdon, Frank B. Schmuck, and Renu

Tewari. 2018. Rebuilding the namespace in a hierarchical union mounted file system. U.S. Patent App. 15/397,601.

[8] Wahid Bhimji, Debbie Bard, Melissa Romanus, David Paul, Andrey Ovsyannikov, Brian Friesen, Matt Bryson, Joaquin

Correa, Glenn K. Lockwood, Vakho Tsulaia, et al. 2016. Accelerating Science with the NERSC Burst Buffer Early User

Program. Technical Report. NERSC.

[9] John Biddiscombe, Jerome Soumagne, Guillaume Oger, David Guibert, and Jean-Guillaume Piccinali. 2011. Parallel

computational steering and analysis for hpc applications using a paraview interface and the hdf5 dsm virtual file

driver. In Proceedings of the Eurographics Symposium on Parallel Graphics and Visualization. Eurographics Association,

91–100.

[10] M. K. A. B. V. Bittorf, Taras Bobrovytsky, C. C. A. C. J. Erickson, Martin Grund Daniel Hecht, M. J. I. J. L. Kuff,

Dileep Kumar Alex Leblang, N. L. I. P. H. Robinson, David Rorke Silvius Rus, John Russell Dimitris Tsirogiannis Skye

Wanderman, and Milne Michael Yoder. 2015. Impala: A modern, open-source SQL engine for Hadoop. In Proceedings

of the 7th Biennial Conference on Innovative Data Systems Research.

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

22:32 A. Kougkas et al.

[11] M. Scot Breitenfeld, Neil Fortner, Jordan Henderson, Jerome Soumagne, Mohamad Chaarawi, Johann Lombardi, and

Quincey Koziol. 2017. DAOS for extreme-scale systems in scientific applications. arXiv (2017): arXiv-1712.

[12] George H. Bryan and J. Michael Fritsch. 2002. A benchmark simulation for moist nonhydrostatic numerical models.

Monthly Weather Rev. 130, 12 (2002), 2917–2928.

[13] Philip Carns, Sam Lang, Robert Ross, Murali Vilayannur, Julian Kunkel, and Thomas Ludwig. 2009. Small-file access in

parallel file systems. In Proceedings of the IEEE International Symposium on Parallel & Distributed Processing (IPDPS’09).

IEEE, 1–11.

[14] Chameleon.org. 2018. Chameleon system. Retrieved from https://www.chameleoncloud.org/about/chameleon/.

[15] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra,

and Robert E. Gruber. 2008. Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst. 26,

2 (2008), 4.

[16] Nathanaël Cheriere, Matthieu Dorier, and Gabriel Antoniu. 2018. A Lower Bound for the Commission Times in

Replication-based Distributed Storage Systems. Ph.D. Dissertation. Inria Rennes-Bretagne Atlantique.

[17] Cloud Native Computing Foundation. 2018. NATS Server-C Client. Retrieved from https://github.com/nats-io/cnats.

[18] Xiaoli Cui, Pingfei Zhu, Xin Yang, Keqiu Li, and Changqing Ji. 2014. Optimized big data K-means clustering using

MapReduce. J. Supercomput. 70, 3 (2014), 1249–1259.

[19] Matthew L. Curry, H. Lee Ward, and Geoff Danielson. 2015. Motivation and Design of the Sirocco Storage System Ver-

sion 1.0. Technical Report. Sandia National Laboratories. Retrieved from https://prod-ng.sandia.gov/techlib-noauth/

access-control.cgi/2015/156031.pdf.

[20] Matthew Curtis-Maury, Vinay Devadas, Vania Fang, and Aditya Kulkarni. 2016. To waffinity and beyond: A scalable

architecture for incremental parallelization of file system code. In Proceedings of the USENIX Symposium on Operating

Systems Design and Implementation (OSDI’16). 419–434.

[21] Matteo D’Ambrosio, Christian Dannewitz, Holger Karl, and Vinicio Vercellone. 2011. MDHT: A hierarchical name

resolution service for information-centric networks. In Proceedings of the ACMWorkshop on Information-centric Net-

working. ACM, 7–12.

[22] Sudipto Das, Amr El Abbadi, and Divyakant Agrawal. 2009. ElasTraS: An elastic transactional data store in the cloud.

HotCloud 9 (2009), 131–142.

[23] Hariharan Devarajan, Anthony Kougkas, X. H. Sun, and H. Chen. 2017. Open ethernet drive: Evolution of energy-

efficient storage technology. Proc. ACM SIGHPC Datacloud 17 (2017).

[24] Ciprian Docan, Manish Parashar, and Scott Klasky. 2012. Dataspaces: An interaction and coordination framework

for coupled simulation workflows. Cluster Comput. 15, 2 (2012), 163–181.

[25] Mike Folk, Albert Cheng, and Kim Yates. 1999. HDF5: A file format and I/O library for high performance computing

applications. In Proceedings of Supercomputing, Vol. 99. 5–33.

[26] Kui Gao, Wei-keng Liao, Arifa Nisar, Alok Choudhary, Robert Ross, and Robert Latham. 2009. Using subfiling to

improve programming flexibility and performance of parallel shared-file I/O. In Proceedings of the International Con-

ference on Parallel Processing (ICPP’09). IEEE, 470–477.

[27] Alan Gates. 2012. HCatalog: An Integration Tool. Technical Report. Intel.

[28] Roxana Geambasu, Amit A. Levy, Tadayoshi Kohno, Arvind Krishnamurthy, and Henry M. Levy. 2010. Comet: An

active distributed key-value store. In Proceedings of the USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI’10). 323–336.

[29] Joachim Giesen, Eva Schuberth, and Miloš Stojaković. 2009. Approximate sorting. Fundamenta Informaticae 90, 1–2

(2009), 67–72.

[30] Google Inc.2018. CityHash library. Retrieved from https://github.com/google/cityhash.

[31] Grant, W. Shane and Voorhies, Randolph. 2017. Cereal - A C++11 library for serialization by University of Southern

California. Retrieved from http://uscilab.github.io/cereal/.

[32] Jan Heichler. 2014. An Introduction to BeeGFS. Technical Report.

[33] Tony Hey, Stewart Tansley, Kristin M. Tolle, et al. 2009. The Fourth Paradigm: Data-intensive Scientific Discovery.

Vol. 1. Microsoft Research, Redmond, WA.

[34] IBM. 2018. HDFS Transparency. Retrieved from https://ibm.co/2Pciyv7.

[35] Intel. 2018. Hadoop Adapter for Lustre (HAL). Retrieved from https://github.com/whamcloud/lustre-connector-for-

hadoop.

[36] High Performance Data Division Intel Enterprise Edition for Lustre* Software. 2014. WHITE PAPER Big Data Meets

High Performance Computing. Technical Report. Intel. Retrieved from https://www.intel.com/content/dam/www/

public/us/en/documents/product-briefs/lustre-big-data-white-paper.pdf.

[37] Kamil Iskra, John W. Romein, Kazutomo Yoshii, and Pete Beckman. 2008. ZOID: I/O-forwarding infrastructure for

petascale architectures. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming. ACM, 153–162.

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

Bridging Storage Semantics Using Data Labels and Asynchronous I/O 22:33

[38] Laxmikant V. Kale and Sanjeev Krishnan. 1996. Charm++: Parallel programmingwithmessage-driven objects. Parallel

Programming Using C+ (1996), 175–213.

[39] Youngjae Kim, Raghul Gunasekaran, Galen M. Shipman, David Dillow, Zhe Zhang, and Bradley W. Settlemyer. 2010.

Workload characterization of a leadership class storage cluster. In Proceedings of the 5th Petascale Data Storage Work-

shop (PDSW’10). IEEE, 1–5.

[40] Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. 2018. Hermes: A heterogeneous-aware multi-tiered dis-

tributed I/O buffering system. In Proceedings of the 27th International Symposium on High-Performance Parallel and

Distributed Computing. ACM, 219–230.

[41] Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. 2018. IRIS: I/O Redirection via Integrated Storage. In

Proceedings of the 32nd ACM International Conference on Supercomputing (ICS’18). ACM.

[42] Anthony Kougkas, Hariharan Devarajan, Xian-He Sun, and Jay Lofstead. 2018. Harmonia: An interference-aware

dynamic I/O scheduler for shared non-volatile burst buffers. In Proceedings of the IEEE Cluster Conference (Cluster’18).

IEEE.

[43] Anthony Kougkas, Hassan Eslami, Xian-He Sun, Rajeev Thakur, and William Gropp. 2017. Rethinking key–value

store for parallel I/O optimization. Int. J. High Perform. Comput. Appl. 31, 4 (2017), 335–356.

[44] Anthony Kougkas, Anthony Fleck, and Xian-He Sun. 2016. Towards energy efficient data management in hpc: The

open ethernet drive approach. In Proceedings of the 1st Joint International Workshop on Parallel Data Storage and Data

Intensive Scalable Computing Systems (PDSW-DISCS’16). IEEE, 43–48.

[45] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. 2014. Tachyon: Reliable, memory speed storage

for cluster computing frameworks. In Proceedings of the ACM Symposium on Cloud Computing. ACM, 1–15.

[46] Jing Li, Jian Jia Chen, Kunal Agrawal, Chenyang Lu, Chris Gill, and Abusayeed Saifullah. 2014. Analysis of federated

and global scheduling for parallel real-time tasks. In Proceedings of the 26th Euromicro Conference on Real-Time Systems

(ECRTS’14). IEEE, 85–96.

[47] Jianwei Li, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur, William Gropp, Robert Latham, Andrew

Siegel, Brad Gallagher, and Michael Zingale. 2003. Parallel netCDF: A high-performance scientific I/O interface. In

Proceedings of the ACM/IEEE Supercomputing Conference. ACM/IEEE, 39–39.

[48] Kenli Li, Xiaoyong Tang, Bharadwaj Veeravalli, and Keqin Li. 2015. Scheduling precedence constrained stochastic

tasks on heterogeneous cluster systems. IEEE Trans. Comput. 64, 1 (2015), 191–204.

[49] Harold C. Lim, Shivnath Babu, and Jeffrey S. Chase. 2010. Automated control for elastic storage. In Proceedings of the

7th International Conference on Autonomic Computing. ACM, 1–10.

[50] Juan Liu, Yuyi Mao, Jun Zhang, and Khaled B. Letaief. 2016. Delay-optimal computation task scheduling for mobile-

edge computing systems. In Proceedings of the IEEE International Symposium on Information Theory (ISIT’16). IEEE,

1451–1455.

[51] Yu-Hang Liu and Xian-He Sun. 2015. LPM: Concurrency-driven layered performance matching. In Proceedings of the

44th International Conference on Parallel Processing (ICPP’15). IEEE, 879–888.

[52] Glenn K. Lockwood, Damian Hazen, Quincey Koziol, R. S. Canon, Katie Antypas, Jan Balewski, Nicholas Balthaser,

Wahid Bhimji, James Botts, Jeff Broughton, et al. 2017. Storage 2020: A Vision for the Future of HPC Storage. Technical

Report. NERSC.

[53] Yucheng Low, Joseph E. Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E. Guestrin, and Joseph Hellerstein. 2010.

Graphlab: A new framework for parallel machine learning. In Proceedings of the Twenty-Sixth Conference on Uncer-

tainty in Artificial Intelligence. 340–349.

[54] Memached. 2018. Extstore plugin. Retrieved from https://github.com/memcached/memcached/wiki/Extstore.

[55] Monty Taylor. 2018. OpenStack Object Storage (Swift). Retrieved from https://launchpad.net/swift.

[56] Wira D. Mulia, Naresh Sehgal, Sohum Sohoni, John M. Acken, C. Lucas Stanberry, and David J. Fritz. 2013. Cloud

workload characterization. IETE Tech. Rev. 30, 5 (2013), 382–397.

[57] Ron A. Oldfield, Kenneth Moreland, Nathan Fabian, and David Rogers. 2014. Evaluation of methods to integrate anal-

ysis into a large-scale shock physics code. In Proceedings of the 28th ACM International Conference on Supercomputing.

83–92. DOI:https://doi.org/10.1145/2597652.2597668

[58] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins. 2008. Pig latin: A not-so-

foreign language for data processing. In Proceedings of the ACM SIGMOD Conference on Management of Data. ACM,

1099–1110.

[59] Fengfeng Pan, Yinliang Yue, Jin Xiong, and Daxiang Hao. 2014. I/O characterization of big data workloads in data

centers. In Proceedings of the Workshop on Big Data Benchmarks, Performance Optimization, and Emerging Hardware.

Springer, 85–97.

[60] Juan Piernas, Jarek Nieplocha, and Evan J. Felix. 2007. Evaluation of active storage strategies for the lustre parallel

file system. In Proceedings of the ACM/IEEE Conference on Supercomputing. ACM, 28.

[61] Jakob Puchinger, Günther R. Raidl, and Ulrich Pferschy. 2010. The multidimensional knapsack problem: Structure

and algorithms. INFORMS J. Comput. 22, 2 (2010), 250–265.

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

22:34 A. Kougkas et al.

[62] Ioan Raicu, Ian Foster, Mike Wilde, Zhao Zhang, Kamil Iskra, Peter Beckman, Yong Zhao, Alex Szalay, Alok

Choudhary, Philip Little, et al. 2010. Middleware support for many-task computing. Cluster Comput. 13, 3 (2010),

291–314.

[63] Daniel A. Reed and Jack Dongarra. 2015. Exascale computing and big data. Commun. ACM 58, 7 (2015), 56–68.

[64] Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gibson. 2014. IndexFS: Scaling file system metadata performance with

stateless caching and bulk insertion. In Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (SC’14). IEEE, 237–248.

[65] Erik Riedel, Christos Faloutsos, Garth A. Gibson, and David Nagle. 2001. Active disks for large-scale data processing.

Computer 34, 6 (2001), 68–74.

[66] Erik Riedel, Garth Gibson, and Christos Faloutsos. 1998. Active storage for large-scale data mining and multimedia

applications. In Proceedings of 24th Conference on Very Large Databases. Citeseer, 62–73.

[67] Robert B. Ross, Rajeev Thakur, et al. 2000. PVFS: A parallel file system for Linux clusters. In Proceedings of the 4th

Annual Linux Showcase and Conference.

[68] Michael W. Shapiro. 2017. Method and system for global namespace with consistent hashing. U.S. Patent 9,787,773.

[69] Steve Conway. 2015. When Data Needs More Firepower: The HPC, Analytics Convergence. Retrieved from

https://bit.ly/2od68r7.

[70] Rajeev Thakur, William Gropp, and Ewing Lusk. 1999. Data sieving and collective I/O in ROMIO. In Proceedings of

the 7th Symposium on the Frontiers of Massively Parallel Computation (Frontiers’99). IEEE, 182–189.

[71] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh Anthony, Hao Liu, PeteWyckoff,

and Raghotham Murthy. 2009. Hive: A warehousing solution over a map-reduce framework. Proc. VLDB Endow. 2, 2

(2009), 1626–1629.

[72] Devesh Tiwari, Simona Boboila, Sudharshan S. Vazhkudai, Youngjae Kim, Xiaosong Ma, Peter Desnoyers, and Yan

Solihin. 2013. Active flash: Toward energy-efficient, in situ data analytics on extreme-scale machines. In Proceedings

of the USENIX Conference on File and Storage Technologies (FAST’13). 119–132.

[73] Murali Vilayannur, Partho Nath, and Anand Sivasubramaniam. 2005. Providing tunable consistency for a parallel file

store. In Proceedings of the USENIX Conference on File and Storage Technologies (FAST’05), Vol. 5. 2–2.

[74] Zhenyu Wang and David Garlan. 2000. Task-driven Computing. Technical Report. School of Computer Science,

Carnegie-Mellon University, Pittsburgh, PA.

[75] Hakim Weatherspoon and John D. Kubiatowicz. 2002. Erasure coding vs. replication: A quantitative comparison. In

Proceedings of the International Workshop on Peer-to-Peer Systems. Springer, 328–337.

[76] Jean-FrancoisWeets, Manish Kumar Kakhani, and Anil Kumar. 2015. Limitations and challenges of HDFS andMapRe-

duce. In Proceedings of the International Conference on Green Computing and Internet of Things (ICGCIoT’15). IEEE,

545–549.

[77] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos Maltzahn. 2006. Ceph: A scalable,

high-performance distributed file system. In Proceedings of the 7th Symposium on Operating Systems Design and Im-

plementation. USENIX Association, 307–320.

[78] Jian Xu and Steven Swanson. 2016. NOVA: A log-structured file system for hybrid volatile/non-volatile main memo-

ries. In Proceedings of the USENIX Conference on File and Storage Technologies (FAST’16). 323–338.

[79] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, MurphyMcCauley, Michael J. Franklin,

Scott Shenker, and Ion Stoica. 2012. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster

computing. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation. USENIX

Association, 2–2.

[80] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: Cluster com-

puting with working sets. HotCloud 10, 10-10 (2010), 95.

[81] Shuanglong Zhang, Helen Catanese, and An-I. Andy Wang. 2016. The composite-file file system: Decoupling the

one-to-one mapping of files and metadata for better performance. In Proceedings of the USENIX Conference on File

and Storage Technologies (FAST’16). 15–22.

[82] Fang Zheng, Hasan Abbasi, Ciprian Docan, Jay Lofstead, Qing Liu, Scott Klasky, Manish Parashar, Norbert

Podhorszki, Karsten Schwan, and MatthewWolf. 2010. PreDatA—Preparatory data analytics on peta-scale machines.

In Proceedings of the IEEE International Symposium on Parallel & Distributed Processing (IPDPS’10). IEEE, 1–12.

[83] Qing Zheng, Kai Ren, and Garth Gibson. 2014. BatchFS: Scaling the file system control plane with client-funded

metadata servers. In Proceedings of the 9th Parallel Data Storage Workshop. IEEE, 1–6.

[84] Shujia Zhou, Bruce H. Van Aartsen, and Thomas L. Clune. 2008. A lightweight scalable I/O utility for optimizing high-

end computing applications. In Proceedings of the IEEE International Symposium on Parallel and Distributed Processing

(IPDPS’08). IEEE, 1–7.

Received January 2020; revised July 2020; accepted August 2020

ACM Transactions on Storage, Vol. 16, No. 4, Article 22. Publication date: October 2020.

