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Abstract—Permanent magnet manipulators provide a unique
potential for safe operation of magnetically driven medical tools
inside the human body for noninvasive surgical, imaging, and
drug targeting procedures. These systems manipulate magnetic
objects from a distance without direct contact, by generating a
magnetic f eld using strong permanent magnets, and controlling
the shape of this f eld properly. Control over the magnetic f eld
is gained by displacement of the magnets using independent
mechanical actuators for each magnet. However, interactions
between the magnets result in a coupling between the actuators,
which prevents them from independent and precise operation.
This paper develops a multivariate, nonlinear feedback control
to cancel the magnetic coupling between the actuators in effect.
This feedback control incorporates a complex mathematical
model of the magnetic interactions between the actuators, which
does not admit a simple analytical form. Instead, this model is
constructed numerically using the f nite element method. The
decoupling performance of the proposed feedback control is
verif ed by numerical simulations.

I. INTRODUCTION

In a series of recent publications [1]–[5], we presented the
concept of noncontact manipulation of magnetic objects by
means of controllable arrays of permanent magnets. Multiple
magnets in such arrays generate a magnetic f eld and control
its shape f exibly in order to apply magnetic forces of desired
magnitude and direction to magnetic objects inside the f eld.
The shape of magnetic f eld is controlled by displacement of
the permanent magnets using mechanical actuators allocated
to each magnet, which intend to control the position of their
magnets independently. In practice, however, the actuators
are coupled magnetically because of the interactions between
their magnets. This coupling noticeably changes the dynamic
and steady-state behavior of the actuators, and prevents them
from operating independently. This paper aims to develop a
multivariate feedback control technique to effectively cancel
the magnetic coupling between the actuators.
Noncontact magnetic manipulators, consisting of arrays of

mechanically adjustable permanent magnets or spatially f xed
arrangements of electromagnets, have found a wide spectrum
of medical [6]–[18] and microrobotics [19]–[23] applications
which require to operate miniaturized tools from a distance
without a direct mechanical contact. For instance, they can
be utilized for operation of magnetically driven medical tools
inside the human body for noninvasive surgical, imaging, and
drug targeting procedures [6]–[18]. For medical applications,
which typically require large magnetic forces at far distances
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of up to several decimeters, permanent magnets are preferred
over electromagnets (if they are not the only feasible choice),
as the magnetic f elds generated by electromagnets are much
weaker than permanent magnets of similar size, weight, and
cost [24].
Application of feedback control to magnetic manipulators

enables them to accurately drive magnetic objects in desired
directions at desired speeds, for instance, to precisely track a
reference trajectory. In our previous work, we have proposed
several control design approaches [2]–[5], [25]–[27] for both
permanent magnet and electromagnet manipulators. Among
our proposed approaches, the best performance is attained by
a feedback linearization technique requiring the mechanical
actuators to operate independently, precisely, and much faster
than the dynamics of the magnetic object under control. Yet,
all these requirements are violated by the inherent magnetic
coupling between the actuators.
The remedy proposed in this paper is the application of an

inner feedback loop to compensate for the magnetic coupling
before applying the main feedback control via an outer loop.
This inner feedback loop is a highly nonlinear, multivariate
state feedback designed based on a mathematical model for
the magnetic interactions between the actuators. This model
is highly complex and does not admit a tractable analytical
form; instead, it must be constructed numerically using the
f nite element method.
Section II describes the coupled dynamics of the actuators

by a state-space model, which is employed then to develop a
decoupling state feedback. This control is later enhanced by a
mild integral action to ensure zero steady-state error without
seriously altering the dynamics of actuators, optimized by the
manufacturer. The state-space model of Section II includes a
highly nonlinear function representing the magnetic coupling
between the actuators. This function is numerically obtained
in Section III using a f nite element software. In Section IV,
the decoupling performance of feedback control is evaluated
by numerical simulations.

II. DECOUPLING FEEDBACK CONTROL

This paper aims to develop a general method for feedback
decoupling of magnetically coupled actuators applicable to a
variety of magnetic manipulators. For demonstration of this
method, the planar magnetic manipulator of Fig. 1 is adopted,
which we f rst introduced in [5]. As shown schematically in
Fig. 1(a), this manipulator consists of a circular array of
six diametrically magnetized cylindrical permanent magnets,
each equipped with a servomotor which can freely rotate it a
full 360◦. By controlling the directions of all six magnets, the
total magnetic f eld generated by the array can be controlled,
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