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Abstract— Permanent magnet manipulators provide a unique
potential for safe operation of magnetically driven medical tools
inside the human body for noninvasive surgical, imaging, and
drug targeting procedures. These systems manipulate magnetic
objects from a distance without direct contact, by generating a
magnetic f eld using strong permanent magnets, and controlling
the shape of this feld properly. Control over the magnetic f eld
is gained by displacement of the magnets using independent
mechanical actuators for each magnet. However, interactions
between the magnets result in a coupling between the actuators,
which prevents them from independent and precise operation.
This paper develops a multivariate, nonlinear feedback control
to cancel the magnetic coupling between the actuators in effect.
This feedback control incorporates a complex mathematical
model of the magnetic interactions between the actuators, which
does not admit a simple analytical form. Instead, this model is
constructed numerically using the fnite element method. The
decoupling performance of the proposed feedback control is
verif ed by numerical simulations.

I. INTRODUCTION

In a series of recent publications [1]-[5], we presented the
concept of noncontact manipulation of magnetic objects by
means of controllable arrays of permanent magnets. Multiple
magnets in such arrays generate a magnetic feld and control
its shape f exibly in order to apply magnetic forces of desired
magnitude and direction to magnetic objects inside the feld.
The shape of magnetic feld is controlled by displacement of
the permanent magnets using mechanical actuators allocated
to each magnet, which intend to control the position of their
magnets independently. In practice, however, the actuators
are coupled magnetically because of the interactions between
their magnets. This coupling noticeably changes the dynamic
and steady-state behavior of the actuators, and prevents them
from operating independently. This paper aims to develop a
multivariate feedback control technique to effectively cancel
the magnetic coupling between the actuators.

Noncontact magnetic manipulators, consisting of arrays of
mechanically adjustable permanent magnets or spatially f xed
arrangements of electromagnets, have found a wide spectrum
of medical [6]-[18] and microrobotics [19]-[23] applications
which require to operate miniaturized tools from a distance
without a direct mechanical contact. For instance, they can
be utilized for operation of magnetically driven medical tools
inside the human body for noninvasive surgical, imaging, and
drug targeting procedures [6]-[18]. For medical applications,
which typically require large magnetic forces at far distances
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of up to several decimeters, permanent magnets are preferred
over electromagnets (if they are not the only feasible choice),
as the magnetic felds generated by electromagnets are much
weaker than permanent magnets of similar size, weight, and
cost [24].

Application of feedback control to magnetic manipulators
enables them to accurately drive magnetic objects in desired
directions at desired speeds, for instance, to precisely track a
reference trajectory. In our previous work, we have proposed
several control design approaches [2]-[5], [25]-[27] for both
permanent magnet and electromagnet manipulators. Among
our proposed approaches, the best performance is attained by
a feedback linearization technique requiring the mechanical
actuators to operate independently, precisely, and much faster
than the dynamics of the magnetic object under control. Yet,
all these requirements are violated by the inherent magnetic
coupling between the actuators.

The remedy proposed in this paper is the application of an
inner feedback loop to compensate for the magnetic coupling
before applying the main feedback control via an outer loop.
This inner feedback loop is a highly nonlinear, multivariate
state feedback designed based on a mathematical model for
the magnetic interactions between the actuators. This model
is highly complex and does not admit a tractable analytical
form; instead, it must be constructed numerically using the
fnite element method.

Section II describes the coupled dynamics of the actuators
by a state-space model, which is employed then to develop a
decoupling state feedback. This control is later enhanced by a
mild integral action to ensure zero steady-state error without
seriously altering the dynamics of actuators, optimized by the
manufacturer. The state-space model of Section II includes a
highly nonlinear function representing the magnetic coupling
between the actuators. This function is numerically obtained
in Section III using a fnite element software. In Section IV,
the decoupling performance of feedback control is evaluated
by numerical simulations.

II. DECOUPLING FEEDBACK CONTROL

This paper aims to develop a general method for feedback
decoupling of magnetically coupled actuators applicable to a
variety of magnetic manipulators. For demonstration of this
method, the planar magnetic manipulator of Fig. 1 is adopted,
which we frst introduced in [5]. As shown schematically in
Fig. 1(a), this manipulator consists of a circular array of
six diametrically magnetized cylindrical permanent magnets,
each equipped with a servomotor which can freely rotate it a
full 360°. By controlling the directions of all six magnets, the
total magnetic feld generated by the array can be controlled,
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Fig. 1. Planar magnetic manipulator with a circular array of six rotatable,
diametrically magnetized permanent magnets: (a) schematic diagram; (b)
experimental setup. The permanent magnets can freely rotate a full 360°
inside their guiding cylinders using 6 independent servomotors.

which is then exploited to control the motion of magnetic
objects inside this magnetic feld [1]-[5].

After developing our frst prototype shown in Fig. 1(b), it
turned out that the interaction between the magnets was more
severe than expected. Therefore, feedback decoupling of the
actuators is necessary for accurate operation of the magnetic
manipulator. Based on a nonlinear state-space model of the
coupled servomotors developed in Section II-A, a decoupling
feedback control is presented in Section II-B.

A. Dynamical Model of Magnetically Coupled Servomotors

Each servomotor in the magnetic manipulator of Fig. 1(b)
is a coreless DC motor with an internal feedback loop aimed
to adjust its angular position according to a reference input,
rapidly and precisely. This built-in feedback utilizes a sensing
device to measure the angular position of the DC motor, and
effectively controls the motor to adjust the measured value as
required by the reference input (the desired angular position).
The second order linear dynamics [28] of the servomotor is
represented by the transfer function
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from the reference input to the actual angular position of the
servomotor. We experimentally verif ed this transfer function
by recording the step response of the individual servomotors,
as shown in Fig. 2. According to this f gure, the step response
of the transfer function (1) closely f'ts the empirical data with
the parameters ¢ = 0.75 and w,, = 75 rad/sec.

Let uy, () and 0y, (¢) be respectively the input and output
angles of servomotor k£ = 1,2,...,6 with respect to a fxed
reference direction. Further, assume that 7, (¢) is the torque
applied to the servomotor & externally, in case of this paper,
by other magnets. Denote by Oy, (s), Uy (s), and T} (s), the
Laplace transforms of 0, (t), us (t), and 73, (¢), respectively.
Then, the angular position of the servomotor £ is given by
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Fig. 2. Step response of the servomotors used in the experimental setup of
Fig. 1(b) obtained experimentally (markers), and generated from the second
order transfer function (1) (solid line) with the parameters w,, = 75 rad/sec
and ¢ = 0.75. The experiment was performed in the absence of magnetic
coupling but the servomotor was loaded by its own magnet.

where k7, > 0 is a constant. This input-output representation
can be equivalently expressed as the state-space equations

O (1) = wy ()
wk (t) - —2<wnwk (t) — wfﬂk (t) + wfluk (t) — WikLTk (t)

by taking the angular velocity wy, (t) as a state variable.

In the magnetic manipulator of Fig. 1, the external torque
applied to servomotor £ is caused by interactions between the
permanent magnets and is a function of the angular positions
of all servomotors, that is

7k (t) = 7 (61 (t) , 02 (1), 03 (1) , 04 (t) , 05 (), 06 (). (2)

The dependence of 74 (¢) on all angles 6; (¢),i=1,2,...,6
results in the coupling of the dynamics of all 6 servomotors.
This dynamics is then expressed in the vector form using the
state-space equations

0(t) = w(t)
W(t) = —2Cwnw (t) — w20 (t) + w2u (t) — W2k (0 (1)),

where 6 (t), w (t), and u (t) are 6 x 1 vectors consisting of all
the output angles 6y, (t), angular velocities wy, (¢), and input
angles uy, (t), respectively. Correspondingly, 7 (+) : RS — RS
is a vector function containing all 6 scalar functions (2). The
construction of this vector function is detailed in Section III.

By applying a constant input vector w5 to the system of 6
coupled servomotors, the steady-state output vector 0, of the
system solves the algebraic equation ugs — 055 = k7 (6s5),
which indicates that k7,7 (65 ) is the steady-state error caused
by magnetic coupling under the input uss. Then, the largest
possible error in each servomotor is given by

e= max ki|7(0)| -

0€0,27]8
Then, by defning the vector function
7 (0)
fo) = :
maxg. ¢o,2x)° 17 (0]l

the overall dynamics of the system of 6 magnetically coupled
servomotors is expressed in the more intuitive form

0(t) = w(t) (3a)
W (t) = —2Cwnw (t) — w20 (t) + wiu (t) — wief (0 (1)) .
(3b)



Experiments performed on the setup of Fig. 1(b) indicate
that its maximum angular error is around € = 4° [29], which
is substantially larger than the unloaded resolution 0.3° of the
individual servomotors. The goal of feedback control shortly
introduced is to restore the precision of the servomotors and
cancel the effect of magnetic coupling between them.

B. Controller Design

The structure of the state-space equations (3) suggests the
simple state feedback law

u(t) =0, (t)+ef (0(1)) “

to compensate for the magnetic coupling of the servomotors.
Here, 0, (t) is the 6 x 1 vector of new reference inputs to the
servomotors after compensation. Application of the feedback
control (4) to the state-space equations (3) results in the fully
decoupled dynamics

0 (t) = w(t)
& (1) = —2Cwnw (1) — wif (t) + wpbr (t)

for the servomotors.

The major obstacle to this approach is that computation of
the vector-valued function f (-) is not feasible in real time, as
discussed in Section III. The obvious remedy is to modify the
state feedback (4) as

u(t) =6r (1) +f (6(1)) (&)

with the best possible approximation f (-) for f (-), which is
suitable for real-time implementation. The main contribution
of this paper is the development of such approximate f (+),as
is detailed in Section III.

Under the feedback control (5), the magnetic coupling of
the servomotors is mostly but not completely compensated,
as indicated by the closed-loop dynamics

0(t) =w(t)

W (t) = —2Cwnw (t) — w20 (t) + w20, (t) — w2ed f (0 (1)).
Here, 6f (-) = f (-)— f (-) is the approximation error, which
is supposed to have a maximum value
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much smaller than 1. Then, the feedback control (5) reduces
the maximum steady-state error by a factor of 7.

To compensate for the remaining small steady-state error,
the feedback control (5) can be enhanced by a mild integral
action according to

q(t) =0r(t) = 0(t)
u(t) = 60r (1) +ef (6(1) +wnkrq (t).

The integral gain k£; > 0 is chosen large enough to effectively
compensate for the steady-state error, and small enough to
not severely alter the dynamics of servomotors optimized by
their manufacturer. The block diagram of Fig. 3 characterizes
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Fig. 3. Block diagram of each individual servomotor compensated with
an integral controller.
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Fig. 4. Frequency response of servomotors under the integral control with
different gains.

each individual servomotor under the integral compensation.
The transfer function of this black diagram is given by

(s/wn) + ki1
(s/wn)® +2¢ (3/wn)” + (s/wn) + k1

from the scalar input 0, (¢) to the scalar output 6, (¢). The
frequency response of this linear system is shown in Fig. 4
for the values k; = 0,0.1,0.3. According to this f gure, an
integral gain k7 < 0.1 is a suitable choice, as it only slightly
modif es the dynamics of individual servomotors.

To simplify the feedback control (6), it might be tempting
to drop the nonlinear compensation term & f (6 (t)) from the
right-hand side of (6b) and try to decouple the servomotors
simply by a sole integral action. However, this approach often
requires a larger integral gain, which can substantially change
the optimized dynamics of the servomotors, and even more
crucially, can lead to instability due to the highly nonlinear
nature of the magnetic coupling e f (6 (¢)) in (3).

H[ (S):

III. MODELING OF MAGNETIC INTERACTIONS

Implementation of the ideal state feedback (4) requires to
compute the vector-valued function f (-) in real time. Since
the complex structure of this function does not admit a simple
analytical form, it can be only computed numerically using a
fnite element software such as COMSOL Multiphysics. The
procedure for numerical construction of f (-) begins with the
construction of a COMSOL model describing the geometry
and material properties of the experimental setup of Fig. 1(b),
as shown partly in Fig. 5. Based on this model, COMSOL
generates a MATLAB function to compute the torque applied
to each magnet for any given instance of the vector . This
function can be directly called by MATLAB for the purpose
of simulations or any other use.
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Fig. 5. Part of the COMSOL model developed for the magnetic manipulator
of Fig. 1(b). Using this model, COMSOL computes the total torque applied
to each magnet from all other magnets.
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Fig. 6. Equidistant arrangement of 6 cylindrical magnets around a circular
region and the coordinate systems for measuring their angular positions. The
distance between the center of circular region and the center of each magnet
is a. The angular position of each magnet is measured counterclockwise
between its line of sight pj to the center and its north pole direction.

This MATLAB function is computationally expensive and
its runtime is far larger than a typical sampling time required
for implementation of the state feedback (4). This runtime is
certainly affordable for the simulations of Section IV, but is
not suitable for real-time implementation. An alternative for
real-time implementation, apparently, is the use of a lookup
table constructed non-real-time. Yet, this method is infeasible
for a function of 6 variables. To achieve a resolution of 0.3°
comparable to that of the servomotors, the lookup table must
have (360/0.3)% ~ 3 x 10'8 clements.

In the remainder of this section, an approximation f (+) for
the exact function f () is proposed which is feasible for real-
time implementation by means of a lookup table. To explain
the construction of this approximate function, the coordinate
systems used for def ning the angular positions 61, 6s, .. ., 0
are shown in Fig. 6. This f gure illustrates a circular array of 6
cylindrical magnets numbered from 1 to 6 counterclockwise.
The distance between the center of the circular array and the
center of each magnet is denoted by a. The angular position
of each magnet is measured counterclockwise from its line
of sight to the center of array toward the direction of its north
pole, and is denoted by ), for magnet k.

The approximate function f (+) is determined based on the
following guidelines. First, the torque applied to each magnet
from 5 other magnets is characterized by the superposition of
the pairwise interactions between this magnet and 5 others.
Second, only the interactions between adjacent magnets are
counted, as these interactions rapidly weaken with distance.
Specif cally, let 7, (6;,0;) denote the torque applied from
magnet ¢ to magnet j in the absence of other magnets. This
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Fig. 7. Coordinate system for construction of pairwise interaction between
a pair of magnets.

Fig. 8. Surface plot of the pairwise torque 7 (¢1, ¢2) measured in N - m.

function clearly holds the property
Tji (0, 0:) = —Tiws;j (0:,0;) -

Suppose 7 () is a vector containing the approximate torques
applied to all 6 magnets. Then, this vector is represented by

T6—1 (967 91) — T1-2 (91, 92)
T1—2 (91,92)—7'243( )
~ _ |23 (92,93)—7'3»4( )
7(6) = T334 (03,04) — Tas5 (04,05) | 7
Tas5 (04,05) — T556 ( )
7556 (05,06) — T61 ( )

The specif ¢ def nition of the angles 61, 6o, ... 6 in Fig. 6
makes it possible to express all functions 7;,_,; (-) in (7) as a
single function 7, (¢1, ¢2) describing the pairwise interaction
of two adjacent magnets. By def ning the angles ¢; and ¢- as
shown in Fig. 7, the magnetic torque applied from the magnet
on the right-hand side of the f gure to the magnet on the left
is denoted by the bivariate function 7, (¢1, ¢2). This function
is numerically constructed by COMSOL, as shown in Fig. 8.

In terms of 7, (¢1, ¢2), the approximate vector function (7)
can be expressed as

“1 0 0 0 0 17 [r(6:.6:)
1 =1 0 0 0 0] |7(0,60s
o lo 1 =1 0 0 0 |76s060)
TO=1o 0o 1 -1 0 o0 7, (04,05)
0 0 0 1 =1 0] |7(6s,0)
0 0 0 0 1 =1||7(b6)

(®)
This function is normalized next to determine
; 7(0)
f(0)=
maxXg:¢o,2x] 7 (@)
as an approximation for f (-). ~
For real-time computation of the approximation f (-), the
bivariate function 7, (¢1, ¢2) can be tabulated with suff cient




resolution. For a resolution of 0.3°, this function is expressed
by (360/0.3)> = 1.44 x 105 elements. If cach element of the
table is represented by 16 bytes, the total memory needed for
its storage will be 23 megabytes, which is affordable by any
modern computer. Application of lookup tables in modeling
pairwise interactions between actuators is not limited to the
specif ¢ magnetic manipulator of this paper and is extendable
to magnetic manipulators of diverse designs and geometries.

For the magnetic manipulator of this paper, in particular,
an approach more eff cient than lookup table can be adopted.
Since 7, (¢1, ¢2) is periodic with respect to both ¢; and ¢,
it can be represented by a bivariate Fourier series. This series
certainly has inf nite number of terms for exact representation
of 7, (¢1, ¥2); however, an arbitrarily close approximation is
achievable using a fnite but large enough number of terms.
This approximation is expressed as

N N
7o (61,62) = > Y aijcos (ig1 + jdo + Vi)
i=1 j=1

with a suff ciently large /N and the parameters a;; and ;;
extracted from the numerical values of 7, (¢1, ¢2) generated
by COMSOL.

IV. SIMULATION RESULTS

Computer simulations have been performed to evaluate the
decoupling performance of the proposed feedback controls.
Some results of this study are presented in this section under
the following scenario. The reference positions of all magnets
but magnet 1 are kept fxed at 0° during the experiment, and
for this single magnet, the reference is abruptly changed from
the initial value 0° to the fnal value 30°. For this test signal,
the step response of servomotor 1 is obtained in the presence
of magnetic coupling with other magnets. This step response
is generated for three scenarios: without feedback decoupling
of the servomotors, with feedback decoupling under the state
feedback (5), and with feedback decoupling enhanced by the
integral action according to (6).

The parameter values used for the simulations have been
determined as ( = 0.75 and € = 0.07 rad via experiments
performed on the servomotors and the setup of Fig. 1(b). The
simulation results are presented for the normalized time w,,t
and normalized angular velocity w (¢) /wy, so the normalized
value w,, = 1 was adopted for numerical simulations of the
state-space equation (3). The integral action in the control (6)
was implemented with the gain k; = 0.002.

The step response of servomotor 1 is illustrated in Fig. 9.
As indicated by this f gure, the magnetic coupling results in a
signif cant steady-state error, if left uncompensated. Further,
it is observed that the magnetic coupling mostly introduces a
steady-state error with only a slight change in the dynamical
behavior of the servomotors. Fig. 9 indicates that both state
feedback (5) and its integral enhanced upgrade (6) effectively
cancel the magnetic coupling between the servomotors. Yet,
the integral action noticeably improves the steady-state error,
as shown in Fig. 10.

Fig. 11 presents a numerical comparison between the exact
magnetic torque 71 (6) applied to servomotor 1 and 74 (6), its
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Fig. 9. Step response of servomotor 1 in the presence of magnetic coupling
with other magnets, without decoupling control, under the state feedback (5),
and under the integral controller (6). The step response under the state
feedback is barley distinguished from that of the integral control.
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Fig. 10. Tracking error of servomotor 1, without decoupling control, under
the state feedback (5), and under the integral control (6).

approximation (8). In this f gure, 71 (61e1) and 7 (61e1) are
illustrated versus 61, where e; = (1,0,0,0,0,0). The close
match observed between the graphs of this f gure evidences
the soundness of the approximation method of Section III.

V. CONCLUSION AND FUTURE WORK

Permanent magnet manipulators render a unique ability to
actuate and control magnetic objects from a distance without
direct mechanical contact, which is exploited for operation of
magnetically driven medical tools inside the human body for
noninvasive surgical, imaging, and drug targeting procedures.
These systems utilize mechanical actuators to independently
control the position of permanent magnets arranged in spatial
arrays in order to generate a controllable magnetic feld used
for noncontact manipulation of magnetized tools. Yet, the
magnetic coupling between the actuators prevents them from
independent and precise operation. To compensate for the
magnetic coupling, a multivariate, nonlinear feedback control
was developed based on a model of the interactions between
the magnets. Due to the complex nature of this model, it was
constructed numerically using a fnite element software. The
performance of the decoupling feedback control was verif ed
by computer simulations.

Although the simulation results verify the effectiveness of
feedback control in restoring the actuators dynamics, another
severe consequence of magnetic coupling cannot be canceled
by means of feedback. Strong magnetic coupling between the
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Fig. 12. Unidirectional transmission of torque from motor to magnet using
a worm gear mechanism.

servomotors results in substantial stall current, which in turn,
results in energy loss, overheating of the motors, and higher
cost to utilize stronger motors. This diff culty can be rectif ed
by a worm gear mechanism for unidirectional transmission of
torque from motors to magnets, as shown in Fig. 12. Detailed
investigation of this modif cation is planned as future work.
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