Session: Al for Systems, Systems For Al

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

Apollo: An ML-assisted Real-Time Storage Resource Observer

Neeraj Rajesh, Hariharan Devarajan, Jaime Cernuda Garcia, Keith Bateman, Luke Logan, Jie Ye,
Anthony Kougkas, and Xian-He Sun

Department of Compute Science, Illinois Institute of Technology
{nrajesh,hdevarajan,jcernudagarcia,kbateman,llogan,jye20}@hawk.iit.edu,{akougkas, sun}@iit.edu

ABSTRACT

Applications and middleware services, such as data placement en-
gines, I/O scheduling, and prefetching engines, require low-latency
access to telemetry data in order to make optimal decisions. However,
typical monitoring services store their telemetry data in a database
in order to allow applications to query them, resulting in significant
latency penalties. This work presents Apollo: a low-latency mon-
itoring service that aims to provide applications and middleware
libraries with direct access to relational telemetry data. Monitoring
the system can create interference and overhead, slowing down raw
performance of the resources for the job. However, having a current
view of the system can aid middleware services in making more
optimal decisions which can ultimately improve the overall perfor-
mance. Apollo has been designed from the ground up to provide
low latency, using Publish—Subscribe (Pub-Sub) semantics, and low
overhead, using adaptive intervals in order to change the length of
time between polling the resource for telemetry data and machine
learning in order to predict changes to the telemetry data between
actual resource polling. This work also provides some high level
abstractions called I/O curators, which can further aid middleware
libraries and applications to make optimal decisions. Evaluations
showcase that Apollo can achieve sub-millisecond latency for acquir-
ing complex insights with a memory overhead of ~57MB and CPU
overhead being only 7% more than existing state-of-the-art systems.

CCS CONCEPTS

« Computer systems organization — Real-time system architec-
ture; Client-server architectures; « Information systems — Mul-
tidimensional range search; Hybrid storage layouts.

KEYWORDS

Resource Monitoring, Storage Monitoring, Storage Utilization, HPC
Cluster Monitoring, Low Latency Monitoring, Real-Time Monitoring

ACM Reference Format:

Neeraj Rajesh, Hariharan Devarajan, Jaime Cernuda Garcia, Keith Bateman,
Luke Logan, Jie Ye,, Anthony Kougkas, and Xian-He Sun. 2021. Apollo: An
ML-assisted Real-Time Storage Resource Observer. In Proceedings of the 30th
International Symposium on High-Performance Parallel and Distributed Com-
puting (HPDC °21), June 21-25, 2021, Virtual Event, Sweden. ACM, Stockholm,
Sweden, 13 pages. https://doi.org/10.1145/3431379.3460640

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HPDC 21, June 21-25, 2021, Virtual Event, Sweden

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8217-5/21/06...$15.00

https://doi.org/10.1145/3431379.3460640

147

1 INTRODUCTION

Capturing the status of resources in a computing environment is
as fundamental as using them. Understanding how resources are
used is crucial to users, administrators, and owners for several rea-
sons [54]. For instance, one can achieve a better mapping of compute
elements to hardware resources, identify performance bottlenecks,
detect faulty hardware, analyze and tune an application’s execution,
enable hardware-based triggers (e.g., raise interrupts on a hardware
condition), and derive accurate client/user pricing based on utiliza-
tion. However, capturing the state of resources accurately and timely
is challenging, especially in a distributed environment [58]. Modern
supercomputer architectures demonstrate complex hardware com-
positions [7, 30, 22] (e.g., multi-tiered storage, compute accelerators,
software-defined networks etc.,) that can overwhelm the underlying
monitoring services. Further, scientific applications [46, 14, 61] run
in large decoupled workflows making it harder for the developers
to keep track of resource utilization across a cluster. There is a wide
variety of monitoring services that capture, store, and provide ac-
cess to telemetry data — measurement data that describe the state
of a remote resource for a given time window. For example, Gan-
glia [37] provides distributed and federated access to telemetry data,
Lightweight Distributed Metric Service (LDMS) [1] can detect features
and events of user interest on meaningful timescales, TOKIO [36]
collects and analyzes different aspects of a system resources to un-
derstand possible bottlenecks, and lastly, Automatic Library Tracking
Database (ALTD) [21] can track linkage and execution information
of applications. These monitoring services help scientists, system
administrators, and machine owners understand how resources are
allocated, deployed, and utilized across applications and through
time. Through offline analysis of telemetry data, resource monitor-
ing can guide performance tuning, track architectural development,
and even inform future machine purchases or upgrades.

Real-time access to telemetry data is critical to application and
middleware library developers for ensuring behavior correctness
and optimizing performance. For instance, modern multi-tiered dis-
tributed buffering platforms, such as Hermes [30], leverage tier ca-
pacity and load information to guide their data distribution policy.
For every buffering request at a given timestamp, Hermes needs to
know: a) the remaining capacity of the storage tiers to ensure that the
incoming data can fit in the buffers, and b) the load of each participat-
ing buffering node to find the optimal buffering placement scheme.
Similarly, data prefetchers [20, 52] need to know the current prefetch-
ing cache size to optimally fetch new data expected to be read soon
while reducing the cache pollution. As another example, I/O sched-
ulers [31] leverage information about the current load of a resource
to better balance the load across a collection of distributed elements.
For every incoming client connection/request, such algorithms need
to direct traffic to the least busy node. Similarly, an MPI application

Session: Al for Systems, Systems For Al

can distribute work across all ranks based on the current CPU and
main memory load on the host machines [1]. Lastly, coordination
mechanisms such as leader election algorithms [45] require the set
of available resources to achieve an optimal point of synchronization
and coordination. Similarly, fault detection techniques [50] require
the set of degrading nodes to successfully predict faults. Further,
malleable storage systems [28] require a list of available resources
to be able to expand their footprint to additional machines. The
above examples highlight how important is to access telemetry data
accurately and timely to achieve optimized and correct solutions.
In this study, we highlight some critical features of distributed
monitoring services. First, to make optimal decisions, applications
need near-real time access to telemetry data that accurately reflect
the current status of the monitored resources. Typically, existing
monitoring services use file systems or relational databases to store
telemetry data. However, these storage backends were not designed
to provide any additional functionality for time-series datasets, and
thus, do not efficiently support the I/O characteristics of a moni-
toring service: fast ingestion of monitoring events and low-latency
random access of historical data. Second, telemetry data (i.e., raw
metrics from hardware) often cannot be utilized by the application
directly [6]. Additional processing and data transformations typi-
cally occur to produce higher-level information about the status of
a distributed computing environment. For example, a typical query
might be: get the total remaining capacity of a subset of nodes in a
cluster that are equipped with tier 1 storage devices. These type of
questions demand an advanced querying engine to achieve complex
data transformations, such as metric aggregation, filtering, or order-
ing. Since these operations are executed on-demand [26], a further
increase in access latency is expected. Parallel query resolution and
efficient pre-processed enriched metadata can alleviate this issue
and offer a higher level of sophistication in telemetry data. Third, re-
source monitoring is costly due to the additional overhead of polling
the resources and the potential interference with the running ap-
plication. High-resolution monitoring (i.e., high polling frequency)
may lead to increased accuracy of capturing the status of resources
but with an additional cost. In contrast, by relaxing the resolution,
monitoring services trade accuracy with performance. One way to
better balance this, is to use a dynamic — instead of a static — polling
frequency. In other words, a monitoring service should tighten the
frequency of resource polling when a significant change in status
is detected and relax it otherwise. Lastly, general purpose monitor-
ing services such as Ganglia [37] have a very wide scope of what
kind of resources they can monitor. Even though this is a great ca-
pability, generality may hurt the accuracy, resolution, and quality
of monitoring data (i.e., breadth and depth of low-level hardware
metrics). Domain-specific monitoring is necessary when one wishes
to acquire a curated set of information of a certain type of a resource.
To address the above challenges, we introduce Apollo, an ML-
assisted, real-time, and low-latency monitoring service. Apollo fo-
cuses on monitoring the storage subsystem of a distributed com-
puting environment, but ideas presented here can be easily repli-
cated for other domains as well. Apollo supports fast ingestion and
low-latency access to metrics by a custom distributed data struc-
ture, called Storage Condition Report (SCoRe), that leverages a data
streaming approach and a publish-subscribe delivery paradigm. With
ScoRe as its internal repository of collected metrics, Apollo uses an

148

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

advanced query engine that can resolve queries in parallel and in-
situ while maintaining a highly curated list of I/O-specific metrics.
Since Apollo is a storage resources observer, a comprehensive list
of I/O Insights is presented to help guide optimizations in I/O sched-
uling, data placement, and workload distribution. These insights
can further motivate application and middleware library developers
to build new resource-aware algorithms that would improve the
performance [43]. Lastly, to lower the cost of monitoring while main-
taining high accuracy of monitoring information, Apollo first adopts
a dynamic monitoring approach where measurement intervals are
relaxed or tightened based on the change in state. To further improve
the responsiveness and accuracy of the collected metrics, Apollo
adopts a new machine learning model, called Delphi, that is trained
to provide predicted values of a metric within polling periods. The
combination of SCoRe, I/O Insights, and Delphi allows Apollo to offer
a highly flexible service that provides high-resolution information
to resource-aware applications with low system overhead. Apollo
demonstrates the following contributions:

(1) Stale monitoring data is useless data! It is critical for teleme-
try data to be delivered on time to accurately capture the current
status of the resources. To address this, this paper presents the
design and implementation of SCoRE (§3.2), a fast ingestion and
low-latency data structure optimized for telemetry data.
Raw monitoring data is useless data! Low-level hardware
counters demonstrate limited value to application developers
and require specialized knowledge to extract meaningful infor-
mation about the monitored resource. To address this, this paper
presents a collection of highly curated I/O Insights (§3.3 that
transform raw metrics into high-level user-friendly knowledge.
(3) A costly monitoring service is useless! High-resolution mon-
itoring leads to increased accuracy of telemetry data but demon-
strates high overheads. To lower the cost of resource monitoring
while maintaining high accuracy of telemetry data, this paper
presents two key ideas: a) dynamic polling frequency (§3.4.1),
Apollo adapts its polling frequency based on a configurable
threshold in change in status. b) Delphi predictive model (§3.4.2),
Apollo uses ML techniques to forecast intermediate metric values
within polling periods.

@

2 BACKGROUND AND MOTIVATION

2.1 Existing Monitoring Services

Resource monitoring is vital to know how the system resources are
used. Itis done extensively in High Performance Computing (HPC) [37,
1] and Cloud environments [62]. These services are aimed to pro-
vide system administrators with visualizations of the resource status
and enable offline analysis. As of late, middleware services and dis-
tributed applications [30, 20, 19, 29, 52] can make use of telemetry
data to aid them in their decisions. These services always need an
up-to-date view of the system resources, be it remaining capacity or
load on a storage resource or the overall load of a node in the system,
to make optimal decisions. However, the existing monitoring tools
cannot provide a recent view of the system for these applications
and middleware services to make optimal decisions, as monitoring
services have been designed from a system administrator perspec-
tive or from the perspective of a scientist looking to optimize their
code. In order for monitoring to be effective for these applications

Session: Al for Systems, Systems For Al

and services, they need a constantly updated view of the system at a
much higher resolution than existing tools; otherwise it it can lead to
sub-optimal decisions. To support this high resolution monitoring,
existing data stores need to be capable of ingesting and querying
large amounts of data from these middleware services. Currently,
this telemetry data is stored in a centralized database [13, 9], like
PostgreSQL and Neo4]. This, however, is ineffective and can lead to
bottlenecks as they cannot support the high ingestion and querying
requirements of this high resolution resource monitoring needed
by middleware services and applications. This shift in the need for
monitoring from a user-centric view to an application-centric view
motivates us to create a new type of I/O backend for monitoring
purposes that can support high ingestion and querying rates using
a Pub-Sub paradigm and using a decoupled and embarrassingly par-
allel architecture that can keep up with the monitoring demands of
middleware services and other applications.

Inevitably, resource monitoring creates overheads. There is a
trade-off between the monitoring overhead and the resolution of
monitoring. Coupled with the increased monitoring needs of middle-
ware services and applications that need a fresh view of the system,
there should be a balance between monitoring and the overhead it
creates. Using afixed time interval, as proposed by Eugen et al. [9] and
Vishwanath et al. [55], has 2 main problems. A small monitoring in-
terval can either lead to unwanted interference on the system and can
ultimately slow down the job running. While with a large monitoring
interval the information collected can be too stale for applications
and middleware services to effectively make optimal decisions. Since,
there is a trade-off between accuracy and cost. As I/O has significant
bursty behavior and is known to be generated in phases [38], this mo-
tivates us to adopt an adaptive and dynamic monitoring interval that
can shrink the interval when the system is dynamic, keeping track of
the changes in the system, and stretch the interval when the system
is static, within a threshold, reducing the cost of monitoring when
there is no major change happening to the system. This reduces the
overall overhead of monitoring based on the changes in the system.

As hardware has gotten more and more powerful over the years,
there has been a surge in the use of machine learning techniques to
aid various applications [61, 5, 48]. These models provide predictions
which provide valuable insights of what could happen. Additionally,
telemetry data can be represented as a time-series and so machine
learning techniques [47] and time-series analysis [42] can be used to
create a machine leaning model that can further reduce the overhead
of polling the system for monitor data by using this model to predict
values between polling intervals, further reducing the overhead of
monitoring while providing high resolution telemetry data. There is
amotivation to reduce the overall overhead of high resolution mon-
itoring by using adaptive intervals to balance the cost of monitoring
and maintaining an updated view of the system. There is also a moti-
vation to use a machine learning model where the cost of prediction
is lower than the cost of polling the system. These two techniques
will be used to reduce the overall cost of monitoring the system while
simultaneously providing high resolution telemetry data.

149

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

2.2 Predicting Time-series Data

Telemetry data is time-series data which can be modeled using Ma-
chine Learning (ML) techniques such as Deep Long short-term mem-
ory (LSTM) models [47]. These models aim to capture the different
intricacies of the features using a cell which stores values over ar-
bitrary time intervals and use input, output, and forget gates to
regulate the flow of information into and out of the cell. There are
other models that use Convolutional Neural Networks (CNNs) [48]
which take advantage of the hierarchical pattern in data and create
more complex patterns using smaller, simpler patterns. They have
been shown to work as well as Recurrent Neural Networks (RNNs) for
time-series forecasting [5]. However, these models are unsuitable in
environments that have limited resources and consequently for en-
vironments that have low overhead requirements [39]. Additionally,
these models are extremely specific to the individual metrics they are
trained on and often expensive in inference. These characteristics
make them unsuitable for building a low-latency monitoring service.
This work proposes a novel methodology to create a lightweight
and effective model by using understanding of time-series datasets
from Morill et. al. and neural network models catered to lowering
the requirements for low overhead environments.

3 APOLLO

Applications and middleware services require telemetry data pro-
vided by monitoring services in order to determine data placement,
perform synchronization, manage resources, etc. To do so, they
require low-latency access to metrics in order to make informed
decisions based on a highly-detailed view of the cluster. Addition-
ally, modern middleware services require aggregations of metrics to
derive valuable insights to drive optimization decisions. To this end,
Apollo is a near-real-time monitoring service which is tailored to
serve highly concurrent queries generated by middleware services.
Moreover, Apollo provides I/O-specific insights which are curated to
meet the complex storage status demands of modern middleware ser-
vices [30, 29]. Apollo’s design encompasses the following principles:
a) Reducing telemetry data access latency while increasing
I/0 throughput: Apollo aims to provide middleware services with
low-latency access to monitoring metrics in order to give them the
latest view of the cluster status. That is, Apollo should utilize a
decoupled and embarrassingly parallel computation paradigm to
enable near-real-time maintenance/serving of telemetry data. Ad-
ditionally, middleware services require high-level I/O metrics [30,
29] aggregated at different levels to perform their tasks efficiently.
Hence, Apollo should provide a framework where low-level I/O
metrics (e.g., disk queue size, disk capacity, etc.) can be efficiently
converted into high-level insights (e.g., load of the storage resource,
or total remaining capacity of an NVMe tier). b) Reducing overall
cost of resource monitoring while increasing accuracy: mon-
itoring status for a distributed and multi-tenant cluster is complex
due to the change in optimal granularity of monitoring over time.
Apollo aims to use an adaptive and dynamic interval (i.e., the interval
of monitoring changes over time) to adapt to this dynamic nature of
the cluster and reduce the cost of monitoring while also providing
high resolution telemetry data when needed. Additionally, Apollo
also uses a machine learning model called Delphi to increase the

Session: Al for Systems, Systems For Al

resolution of monitoring by predicting intermediate values and can
hence further reduce the overall cost of monitoring.

3.1 High Level Architecture

Sub-figure 1 (a) presents the overall architecture of Apollo. Apollo’s
core responsibility is to provide an end-to-end infrastructure to to
maintain and serve the current status of the Cluster/Application
Resources. To achieve this goal, Apollo utilizes SCoRe to enable
low-latency accesses to telemetry data. SCoRe is a distributed data
structure represented as a Directed Acyclic Graph (DAG) of vertices,
where each vertex collects Information from Apollo. Information is
characterized into two types: Fact and Insight, they are stored as a
tuple along with (timestamp, fact/insight, predicted/measured(0/1)).
A Fact is the smallest unit within Apollo. Facts represent the value
of a given Metric that has been captured from a particular hardware
or software resource. The Fact Vertices hook into different cluster
resources and extract Metrics from them. An Insight is a high-level
combination of one or more Facts and/or Insights. Some examples
of Insightsinclude the total available memory in the cluster, the aggre-
gated CPU performance of a group of compute nodes, the remaining
capacity of SSD drives, etc. Users can also instrument their code and
register/unregister custom Fact and Insight vertices during the run-
time of their application. In the figure, Fact Vertices are the sources
whereas Insight Vertices form the Sinks and Inner Vertices of SCoRe.
The Vertices of SCoRe are distinct processes in the cluster that create,
store, and serve their Information. Middleware services query Apollo
through the use of the Apollo Query Engine (AQE), which resolves
queries into multiple accesses within SCoRe. The Insight and Fact
Vertices utilize the stream-paradigm [51] for data movement. This
paradigm enables the overlap of operations within vertices with the
Information movement within Apollo.

Sub-figure 1b) presents the flow of Information through the afore-
mentioned vertices of SCoRe. It starts from the Fact Vertices which
capture Metrics from Cluster/Application Resources. This data flow
is labeled as “Create” in the figure. The Fact Vertices capture these
Metrics with an adaptive and dynamic monitoring interval using the
Monitor Hook (1). The Monitor Hook sends this Metric to the Fact
Builder, which converts the Metric into a Fact. This Fact is linearized
and published (2) onto the Fact Queue, a simple queue. The Facts are
ordered by timestamp, making them linearizable and removing the
need for a priority queue. Facts from the Fact Queue can be consumed
by an Insight Vertex to generate new Insights (3). The Insight Vertex
can consume Facts (3) and/or other Insights (4) and convert them into
new Insights in the Insight Builder. Similar to a Fact Vertex, the In-
sight Vertex pushes Insights (5) into an Insight Queue, which later can
be consumed directly (6). Each Fact and Insight vertex holds a ded-
icated, in-memory queue and Archiver, which is both efficient and
scalable and stores the queue in alog. The Monitor Hooks and Insight
Builder are enhanced with an ML inference model, called Delphi,
that predicts Facts for Fact Vertices and Insights for Insight Vertices
between the monitoring intervals to increase the granularity of mea-
surements, which further increase the resolution of the telemetry
data. Time granularity differences between metrics motivate the use
of a pull mechanism in order to achieve low-latency and durable re-
sults, each metric in a node is stored in a unique queue, as in-memory
queues are scalable and efficient. Finally, the middleware services

150

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

can query Apollo via the AQE, which uses algorithms similar to
state-of-the-art query engines such as Presto [49], converts a client
query into multiple Information access calls which are served by the
Query Executor of that Vertex. The executor parses the queue (or the
persisted log for evicted entries) using timestamp-based indexing
to perform the requested queries. This translates to highly parallel
and decoupled access to information within the Apollo service.

3.2 Improved Storage Layer

3.2.1 Storage Condition Report (SCoRe). SCoRe is the core data
structure of Apollo. It is a distributed data store based on a graph
structure, and serves data with low latency. Its main responsibilities
are to collect the telemetry data, maintain facts, generate insights,
and service various middleware libraries or clients. The distributed
graph design structure uses a Pub-Sub communication fabric that
enables it to support highly concurrent telemetry data access with
low latency. It uses libuv [34] for asynchronously setting and ma-
nipulating intervals between monitoring hook accesses, and Redis
Streams [25] for maintaining telemetry data in a queue and providing
the Pub-Sub communication paradigm.

SCoRe hastwo key components: Fact Vertices and Insight Vertices.
The vertices are implemented using concurrent lock-free queues [18].
Facts are collected and then added into its queue. Fact Vertices act
as the source in SCoRe. The Insight Vertex builds insights and adds
them to its queue, similar to the fact vertex. Facts and Insights are
added only if there is a change from their previous value. Once
in the queue, the Fact or Insight can be serviced immediately.The
distributed graph-based design of SCoRe can be mathematically
modeled to calculate its time complexity. Let f(X) be a function used
to calculate an Insight using the Information vector X. h is the height
of the DAG and V be the number of vertices. Each parameter x; € X
can have a Hamming Distance up to h from the vertex generating
the insight. Thus, in the worst case, the cost of propagating insights
from the source to destination is O(p+h), where p <V.

Figure 2 showcases a simple use case of SCoRe, where a mid-
dleware service desires information about the total storage space
available in all nodes of the cluster. Each compute node possesses an
NVMe and SSD device. Each storage node contains an HDD. As such,
two Fact Vertices get deployed in every compute node and one in each
storage node. The Fact Vertices monitor the available space on the
mount point for both storage devices and add the Facts into their re-
spective queues. A similar deployment is made on the storage nodes.
The middleware can then request through AQE the status of any
individual device. Additionally, four Insight Vertices are deployed in
the cluster, where three of them are in charge of subscribing to the in-
dividual streams of all devices in the same node and aggregating data
for their Insights into their respective Insight Vertices. The final In-
sight Vertex will subscribe to the other Insight Vertices and continually
generate a combined view of the total space available in the cluster.

3.3 I/OInsight Curation

Middleware services [30, 29, 28] require I/O-specific insights in or-
der to make data placement, computation placement, and resource
allocation decisions. Insights have been curated from popular I/O
algorithms that can be categorized into: Performance, Energy, Ac-
cess, and Workflow info. These insights are motivated from a variety

Session: Al for Systems, Systems For Al

Buffering /0 Visualization Runtime Eve"ex .
Accelerator Analysis :Composition
| Apollo AP |

[Apollo Query Engine (AQE) | !

6. To (4)

A
Apollo Core * A _L_-_-f-(zE H
(SCoRe) : ’//" AQE 7
| 1. Metrics

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

— Create — - Query — Fact — Insight]

[]iz] n B3te Delphi’l 1, \nsights
: Insight Insight e
| Builder 3. Facts

[1In-Memory
] Archived

1
Insight Query Executor| Insight Vertex

‘Delphi’
Monitor

Fact Builder I
2. Store Fact

T

T Metrics
Cluster/App Resources

hook
e I [l
! AQE A
Fact Vertex [Fact Query Executoree = ————=—' - :
AQE '

a) Apollo Architecture

b) Apollo Vertex Composition

Figure 1: Visualization of the High Level Architecture for Apollo.

[SSD][NVM]| ([SSD][NVM]

ol lhwond ol

oo i) i e

Figure 2: A simple use case of Apollo

[SSD|[NVM]| [[SSD][NVM]

of middleware libraries that need specific information about the
resource performance or load and other aspects of the job. These
insights provide high-level knowledge about the resource while en-
compassing various other factors. To come up with these Insights
required looking at various middleware services [30, 29, 20, 19, 23]
and reverse engineering insight curations that would be useful for
them as well as developing ideas with a clear relationship to the in-
sight categories determined above. Details of a few of these insights
is provided in Table 1. For example, in relation to the performance
category, there is an “Interference Factor”, which indicates the de-
gree to which the I/O is being interfered with. This is an insight that
could be used by an1/O scheduler to find the device that has the least
amount of I/O interference and is capable of accepting more I/O. For
the Access category, a Node Availability List is maintained which is
useful for leader election algorithms where there is a need to know
which nodes are currently online. This metric can reduce the time
to perform the election as Apollo already knows which nodes are
online. For the Energy category, there is Energy Consumption per
Transfer, which has been designed to indicate the amount of power
the node is using vs the amount of work the node is doing. With this a
resource allocator may decide to decommission resources that have
high energy consumption per transfer and move their workloads
somewhere else. For Workflow Info, there are Allocation Charac-
teristics. For these, Apollo uses metrics provided by Slurm. This
information can be gathered using various Slurm commands. With

151

these insights, Apollo provides easy hooks to get this information
which otherwise would be tedious for most middleware libraries.

3.4 High Accuracy With Low Monitoring Cost

3.4.1 Adaptive and Dynamic Monitoring Interval. Middleware li-
braries are required to have up-to-date information about the various
metrics that a monitoring service like Apollo can provide. While
polling each metric, a balance needs to be made between polling
frequency and overhead. Polling at a high frequency can present a
significant bottleneck while polling less often always presents a risk
that they could miss vital information. It would be more effective
to poll less often when there is little change in a particular metric,
and more often when the metric is changing rapidly, in order to
provide reasonably up-to-date information when requested without
incurring a significant monitoring cost. In addition, there is always
the possibility that the optimal polling interval for any given metric
could change due to changing patterns, so the monitoring service
needs to be able to adapt to that change as it occurs [57].

In Apollo, there were two main techniques explored in order to cap-
ture the optimal polling interval of a workload. The techniques that
utilized include the simple parameterized method and the adaptive
parameterized method. The simple parameterized method is based
on the Additive Increase, Multiplicative Decrease (AIMD) method [17].
The idea behind this is that when the change in metric value is within
a certain user-defined threshold, Apollo can consider the value effec-
tively close enough and increase the interval by an additive constant,
when the change in metric value is not within this threshold Apollo
must decrease the value in a multiplicative fashion. The adaptive
parameterized method is an optimization of the simple parameter-
ized method, where instead of using a single change to determine
how close the value is to optimal, Apollo utilized a difference from
arolling average of changes. This adaptive technique ensured that
changes would be accounted for by their difference from the expected

Session: Al for Systems, Systems For Al

Legend
Trainable

O Frozen

p, Prediction
c, Confidence

L —

Constant

Time Series

Feature-based
Model Compiler

Dynamic Feedback
|

Inference
Workflow

Current Trend

0.06 hd

1.0

0.5

=4
o
R

0.0

2 Value

—0.5 &

Inference Time in sec
14
o
N

-1.0

o
°
3

Dataset Metric

(c) Predicting different I/O metrics

Figure 3: The Delphi predictive model

change rather than their difference from a recent value, which pro-
vided the benefit of accounting for non-continuous metrics which
bounced repeatedly between two or more discrete value groupings,
something that the original algorithm had a difficult time accounting
for and which was found to be a common case in certain real metrics.

3.4.2 Relaxing Measurements through Delphi. Delphi is a key com-
ponentin Apollo.Itaids in reducing the monitoring interval of Apollo
by utilizing machine learning techniques. Delphi utilizes a Neural
Network (NN) model to predict intermediate values between two
measurements. This allows Apollo to always have the latest view of
the resource without making the monitoring process too expensive.
Telemetry data is represented as time series data [47]. Therefore, Del-
phiapplies time series analysis to model the metrics of interest. When
creating the model Delphi needs to ensure that the model’s inference
cost and overheads are lower than that of monitoring the resource.
Delphi Methodology: Delphi is designed with the intuition that
time-series data is made of eight key features [35]. We experimented
by creating a synthetic dataset of these eight different features found
in time-series data and trained a lightweight, one-Dense layer neural
network on each of the features with a window size of five. We
then created a synthetic test dataset to ensure that the models could
accurately predict for their specific features. We noticed that it was
possible for these models to accurately predict for their specific
feature. So, we then stacked the models as seen on Sub-figure 3(a).

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

We set these pre-trained feature models to be untrainable [4] (i.e., the
weights of mathematical model are fixed and non-trainable) while
stacking it as seen in the figure. Then we add a one-Dense trainable
layer that could learn any other missing features and subsequent
noise that can be in the data. We then trained this model with a
synthetic dataset comprised of the different features. During this
process, the model learns how to combine the predictions of the
different models based on their different confidence scores and gives
the appropriate prediction. These models were built and trained
using TensorFlow, with the C API utilized to merge it with Apollo.

Delphi Verification: In order to verify the model for Delphi, the
model was trained on different synthetic datasets and tested against
different I/O metrics. In Sub-figure 3(c), the size of the bubble is the
mean absolute error, the x-axis shows the different datasets it was
tested on. In this figure, different metrics are reflected along the
x-axis, while the y-axis shows the inference cost of a given model for
a particular metric and the size of bubble reflects the mean absolute
error of that model. The figure shows that the model performs well
for the differentI/O metrics and is at least comparable to a model that
has been trained explicitly for the metric. This test is done to show
that Delphi is alow cost model that has been trained on a set of simple
synthetic datasets and can predict metrics it hasn’t been trained for.

4 EVALUATION
4.1 Methodology

4.1.1 Testbed. We ran our experiments on the Ares cluster at the Illi-
nois Institute of Technology [24], consisting of 32 compute nodes and
32 storage nodes interconnected by a 40Gb/s Ethernet network with
RoCE enabled. Each compute node consists of a dual Intel(R) Xeon
Scalable Silver 4114 (i.e.,40 cores per node), 96GB RAM and a local
250GB NVMe. Each storage node has a dual AMD Opteron 2384 (i.e.,8
cores per node), 32GB RAM, a 150GB SATA SSD and 1TB HDD. The
cluster runs on CentOS 7.1 and the MPI library version is MPICH 3.3.2
and use TensorFlow 2.3.1 for training the machine learning models.

4.1.2 Workloads. To evaluate Apollo, we performed two sets of eval-
uations. The first, a set of evaluations of the internal components
of Apollo exploring the three major components: SCoRe, Adaptive
Interval Module, and Delphi. We then evaluate the capabilities of the
data structures and the communication layer. For the second compo-
nent, we evaluate the Dynamic Monitoring Interval by exploring the
system overhead it generates and the accuracy and performance of
the new approach. The final component is Delphi, where we evaluate
the model accuracy of the ML model for other time-series data, and
quantify how it reduces the overhead of monitoring. Finally, we test
Apollo against a monitoring competitor, LDMS, which is widely used
inmany supercomputers [60]. To do so, we will make use of an HCom-
press [19] middleware library use-case which requires I/O informa-
tion and modify it to work under both systems. We then measure
the execution time of applications working under the middleware
system and the overhead generated by the two monitoring services.

4.2 Reducing Telemetry Data Access
Latency While Increasing I/0 Throughput

4.2.1 Operation Analysis. Figure 4 presents the anatomy of oper-
ations in the two types of SCoRe vertex: Fact and Insight. For the

Session: Al for Systems, Systems For Al

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

Table 1: I/O Curators

1/0 Curations Definition

Formalization

Use Cases

Medium Sensitivity to Indicates amount of concurrent I/O a device

Concurrent Access (MSCA) can handle (DevC).
2 Current Device Interference Indicates the degree to which I/0 is being
value (Interference Factor) interfered with.

Performance characteristics of filesystems

3 FSPerformance in the cluster

4 Block hotness measure of how often a block is accessed

5 Device Health The current health of a device

6 Network Health ping time between 2 nodes

7 Device Fault Tolerance Fault tolerance of a device

The health of a device vs the amount of blocks

8 Device Degradation Rate read/written over the lifetime of the device.

9 Node Availability List Ordered list of nodes which are currently online

10 Tier Remaining Capacity The amount of capacity available in a tier

Energy Consumption
per Transfer

Indicates the amount of power a node is taking to

1 perform I/O

12 System Time Request from system (e.g. ‘date’ call or chrono:mow())

13 Device Load Indicates the amount of /O a device is doing

Energy Consumption
Per Transfer

Indicates the amount of power the node is using vs the
amount of I/O the node is doing.

Information about the resources that a particular

job is using

14

15 Allocation Characteristics

NumRegs MaxBW —Real BW

AnT/O scheduler can find the device that is

DeoC MaxBW well-suited for handling concurrent I/0 [31, 33, 53]
RealBW An /O scheduler can find
MaxBW

compression type, block size,
RAID level, #devices, MaxBW

(BlockID, frequency of access)

1-

(timestamp, nodelID-1,
nodelD-2, ping time)

ReplicationLevel
DeviceHealth

NumBadBlocks
TotalNumBlocks

the device that can accept more /0O [31, 33, 53]
DPEs can place data on fast devices or devices
with compression enable [19, 30, 56]
Middleware libraries [30, 20] can use block
hottness to prefetch data appropriately

DPEs can place important

data on healthy devices [30, 56, 59]

DPEs can use this information to place

data in nodes with high network
responsiveness [30, 56, 59]

DPEs can place important data

on more fault-tolerant devices. [30, 56, 59]

device_health DPEs can place important data on devices that are

total_blocks_read+total_blocks_written

(timestamp, list of all the available node)

Y.< "DeviceCapacity;—CapacityUsed;

PowerPerSec
TransfersPersec

(NodelD, system time)
Blk_read/s+Blk_written/s
Blk_read+BIlk_written

power/s
(timestamp, #nodes, distribution
of processes, bytes read/written by jobs)

not expected to degrade anytime soon.[30, 56, 59]
Leader election algorithms need to know

which nodes are currently online [2, 12]

DPEs may decide to drain the data to

a lower tier once a tier reaches a threshold. [30, 56, 59]
Decommission resources that

are not doing a lot of work [27, 40, 32]

Systems that use the system time and calculate drift to
coordinate and use physical time more effectively [28]
DPEs can place data on devices that

are under less stress than others. [30, 56, 59]
Decommission resources that

are not doing a lot of work [27, 40, 32]

Dynamic resource allocator needs

to know the resources provisioned [27, 11]

< ™

/ N N \\
// ///“ \\\‘ \\

// / & Hook 97.5) = Subscribe 42.66%

£ 7 \ \

£ y . Y X \ "

NN Publish 1.75% \] Publish 3892%
N

\ \ Other 0.75% ““ Other 18.43%

\ /,"

\T{talTime: 15.92ms¢ Total Time:0.58 ms £
<ANN N

(a) Composition Fact (b) Composition Insight

Figure 4: Visualization of percentage of time spent on each
internal component

test, we deployed one Fact Vertex representing the capacity metric
and one Insight Vertex, which derives an insight from the Fact Vertex.
The test ran locally on a single node in Ares. We need to have low
overhead for different components of SCoRe and have a service that
can send data with low latency and ensure that the performance is
bounded by the monitoring hook rather than by the queue structure.
We measured the percentage of time spent in different operations for
the Fact Vertex and Insight Vertex. Sub-figure 4(a) shows us that 97.5%
of the time is dominated by the monitoring hook while the publish op-
eration only costs 1.8% on the Fact Vertex and Sub-figure 4(b) shows
the percentage of time spent in different operations for the Insight
Vertex. Note that the “Other” category in this figure showcases a com-
bination of thread management combined with the computation of

153

30% 21.0%
20.8%
3% 2 206%
s H 20.38%
£20% 20.4% 20.26%
] $ 20.2%
315% 13.32% S 20.0%
> E108%
o £ 1.
o10% E 19.6%
5% = 19.4%
19.2%
0% NN 19.0%
IOR Apollo Without Apollo ~ With Apollo

(a) CPU consumption overhead (b) Memory consumption overhead

Figure 5: Apollo resource consumption and overhead

the Insight. We see that SCoRe as a data structure is high performant
while providing low latency and is not a bottleneck for the service.

4.2.2 Overhead Analysis. Although Apollo performs well and can
provide near real-time metric access and adaptive monitoring cost,
it inevitably generates some overhead on the node when collecting
data and serving the middleware layer. Thus, we need to evaluate its
overhead on CPU and Memory to show the impact that it has on the
node. We use IOR to simulate different workloads in two situations:
running IOR without Apollo and running IOR together with Apollo.
At the same time, we use Performance Analysis Tool (PAT) developed
at Intel [3], to track CPU and memory usage of Apollo on different
nodes. The breakdown of CPU usage can be seen in Sub-figure 5(a).
It shows that the Apollo node executables account for 13.32% of the
CPU overhead. The remaining overhead includes the IOR application
that we ran, which accounts for 7.2%, and various monitoring services

Session: Al for Systems, Systems For Al

@ 80K 7 90K

2 70K 2 80K — <

g 60K g 70K N\ N\

g 50K £ 50k N\ \

£ 40K £ \ N\ N\

H KN \
£k N Eaox NN N\

H N N \
E10K N\ £ 10K N N\ NER
F ook NN N \ = oKk N NN

1 2 4 8 16 32 40 40 160 320 640 1.2K
of Monitoring Hooks # of Application Clients

(a) Produce telemetry data to Apollo (b) Consume telemetry data from Apollo

Figure 6: Throughput of write and read Operation

from PAT itself. Of these modules, System Activity Report (SAR) ac-
counts for 4.51%, while PAT as a whole, incorporating SAR, perf, grep,
and ps subsystems, accounts for 27.2%. In light of this, we see that
that Apollo is more lightweight than the PAT tool we used to track
the results, though not as lightweight as the SAR tool, which directly
accesses metrics, or the IOR application workload we ran. A compar-
ison of average memory utilization with and without Apollo can be
seenin Sub-figure 5(b). It shows a very similar memory footprint with
and without Apollo. The memory overhead of Apollo is on average
less than 0.1% of total memory of an Ares node, or about 57MB.

4.2.3 Throughput Analysis. In SCoRe, we need to test its scalability
and performance to establish the upper bound of the performance
of the whole service. To do so we evaluate the performance of the
publish and subscribe operations in different scenarios: scaling the
number of client threads, scaling the metric size, and scaling the
queue thread counts. To evaluate the publish throughput with vary-
ing client threads, we launched a SCoRe instance on a node and
deployed a client with various thread counts ranging from 1 to 40 on
another node. The metric size of the publish operation was set at 16B
with the one queue thread. During the test, each client thread con-
tinuously published 1M events to the SCoRe queue. The results are
shown in Figure 6. Sub-figure 6(a) shows that SCoRe queue reaches
a peak performance of 70K events/s with 16 client threads, beyond
which it starts suffering from performance degradation. This is a sin-
gle node test and increases linearly as we increase number of nodes.

Similarly, we evaluate the throughput of the subscribe operations.
In the first case, we deployed SCoRe with one queue thread on one
node and deployed clients on different nodes. On each node we
launched 40 threads subscribed to a remote queue, we published
16K events of metric size 16B each to the queue in each thread. Sub-
figure 6(b) shows that SCoRe scales well for 32 nodes and does not
cause significant slowdown across the whole service.

4.2.4 Latency Analysis. Apollo is required to provide low-latency
access for middleware libraries. Hence, it is very important to quan-
tify how performance varies on increasing the degree of a node and
how it varies when increasing the Hamming Distance between the
source and sink. To quantify the effects of increasing the node degree,
we deployed each node with 40 Fact Curators and an Insight Curator
on a separate node, which subscribes to all the Fact Curators. During
the experiment, we increase the number of nodes between 1 and
16, and measure the client’s latency to pull a new Insight from the
Insight Curator. The results are shown in Figure 7. Sub-figure 7(a),

154

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

2014 27
Eon2 Es
£ £
g 01 §5
'% 0.08 33 % 4
£006 53
2 N 2
8004 82
AW
0.02 \ 1 N
0o \\ 0 s v
40 160 320 640 1 2 4 8 16

Degree of node Hamming Distance

(a) Increasing degree of Insight Vertex (b) Increasing hamming distance between
Insight Vertex

Figure 7: Change in performance when increasing node de-
gree and hamming distance

05 s Accuracy ——Cost 08
0.4 0.4
Tos 03 4

e
3 o
§ 0.2 02©
0.1 0.1
0 AN NN AN AN N 0

Simple AMD Complex
AIMD

Simple AMD Complex Fixed 5s

AIMD

Fixed 5s

RegHACC IrregHACC

Figure 8: Cost and accuracy of fixed and AIMD-based Adap-
tivity Models

which indicates that the latency increases with the increase of degree
of the node until it reaches an upper bound. In addition, the cost of
handling Facts is much lower than that of monitoring the low-level
metrics. To quantify the effects of increasing the Hamming Distance
between source and sink, we first deployed 32 hook nodes and each
node has one hook on the Fact Vertex. Then we launched different
numbers of Insight Curators by increasing the layers of Insight Cu-
rators from 1 to 32. When increasing the layers, each layer relies
on its previous layer. We deployed a client node to pull data from
the top Insight Curator and measured its latency to get the latest
value from the service. Sub-figure 7(b) demonstrates latency results
in increasing the Hamming distance. We observe that the latency
increases when increasing the Hamming distance and notice a spike
in the latency at the maximum possible distance.

4.3 Reducing Overall Cost Of Resource
Monitoring While Increasing Accuracy

4.3.1 Adaptive and Dynamic Monitoring Interval. In order to verify
the performance of our 2 algorithms, we tested them against each
other as well as against static polling methods. We used a HACC write
workload which was tailored with waits to ensure writing 38000
bytes of data to an NVMe every 5 seconds or a random amount of
data between 19000 and 38000 bytes to an NVMe every 5-20 seconds,
and measured the capacity of the NVMe over time. In order to ensure
uniformity, we captured the HACC capacity workload and replayed
it with an emulation, so that there would be minimal issues with time
drift or interference between runs.In this test, we show the accuracy
and costs of various methods of adaptive polling intervals, as well as

Session: Al for Systems, Systems For Al

g

——Apollo without

P~ " 4500
) Delphi
S0 Apolo with 4000 A\
= Delphi 33500 N
o490 ——Baseline € 3000 N
g H N\
S ©2500 N
9230 by N
2 Faoo
AN
8220 © 1500 :§S§
g 1000 N\
0 poygwenorananors 50 N\ N\
NoRBNBRZIRRERREEE o NN N\ W
Time-steps Baseline Without Delphi With Delphi

(a) Change in capacity (b) Cost of monitoring

Figure 9: Apollo on irregular HACC-IO workloads

compare them against static polling intervals. To evaluate this adap-
tive interval, we deploy a Fact Curator with a synthetic monitoring
hook, which replays the regular or irregular (random) HACC dataset
specified above. We test it with a static interval, an adaptive interval
with a rolling average window of size 10 (complex AIMD), and one
without a window, which is equivalent to a window size of one (sim-
ple AIMD). We played 30 minutes for each adaptivity type and com-
pared it for accuracy and cost to the 1 second monitoring trace. Accu-
racy here is the ratio of calls which would match the 1 second monitor-
ing equivalent, where cost is the ratio of the number to the maximum
number monitoring hook calls (1 would be as many calls as a 1 second
monitoring equivalent). Figure 8 describes the cost and accuracy
of the models we tested, with a fixed model of 5 seconds, the sim-
ple AIMD model and the complex AIMD model shown across regular
and irregular HACC capacity workloads. The choice between simple
AIMD and complex AIMD will depend on the workload, and in this
case we see complex AIMD performing very accurately for irregular
workloads compared to a static monitoring interval as well as simple
AIMD, but with an associated cost. The fixed interval does very well
in the regular workload due to it being the ideal interval of choice and
shows that for a regular workload a fixed interval could be optimal
if the conditions are right, while the simple AIMD model performs
alright for the regular workload also, and at significantly lower cost.

4.3.2 Relaxing Measurements through Delphi. We need to quantify
the benefit of using the Delphi model. To do so we compare the ef-
fectiveness of Apollo with and without Delphi and compare them to
a baseline where the capacity was monitored every one second. We
ran HACC-IO under different configurations resulting in regular and
irregular workloads. We measured the change in available capacity,
under baseline or ideal conditions (1 second intervals), then using the
adaptive and dynamic monitoring interval and finally using both the
adaptive and dynamic monitoring interval with the Delphi model.
The cost in Sub-figure 9(b) and 10(b) is calculated by keeping track
of the number of times the monitor hook was called. Since the cost
of calling the hook is mostly constant, higher the number of calls im-
plies higher cost. The change in capacity in Sub-figure 9(a) and 10(a)
shows the change in capacities over the course of irregular and regu-
lar workloads. From Figure 10 and 9 we see that the predictive model
performs reasonably well for a fraction of the cost compared to mon-
itoring as often as possible. This approach provides high resolution
telemetry data at a fraction of the cost with only minimal loss of data.

155

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

N
8

——Apollo without

& 0 2000
a Delphi 1800
222 Apollo with Delphi N
— N
2, w1600 N
Sons i £ N\
4 Baseline < 1400 N
g 3 1200 N
F222 [3) NN
o = 1000 NN
2220 B s00 N
2 8 N
= 60 N\
5218 N
g N
z W N
<216 200 N N
°S$888ﬁ88§§3§§§ 0 AN A\
TAaMYOR0eoROIRR Baseline Without With Delphi
Time-steps Delphi

(a) Change in capacity (b) Cost of monitoring

Figure 10: Apollo on regular HACC-IO workloads

Delphi lelo oo
° ° °)
0.08 =
§ e, %o) o0 o 02
< 0.06 L ® e . [] . -04
E ® -063
>
g 004 -08 &
o
g 0.02 -10
-12
0.00 U
Baseline-LSTM lel0

Inference Time in sec
o
°
L

Figure 11: Delphi model vs the baseline model

We need to ensure that we have created a general enough model
that predicts based on time-series patterns as is verified on Sub-
figure 3(c). This final model is used to predict the metrics collected.
Delphi is then compared against different LSTM models (the base-
line) that we trained on their specific datasets. The time it takes to
train the Delphi model is roughly 15 minutes vs 3 to 5 hours for the
baseline models. In this figure, the size of the bubble is the root mean
squared error, the color correlated with the R? value and the centre
of the bubble on the y-axis corresponds to the inference time of the
corresponding model for a metric. We started by collecting data
using SAR [41] while running different workloads using FIO [10].
We collected different metrics per drive and partition every second
using the “-dbp -P ALL 1” flags on an NVMe, SSD and HDD. We
then trained an LSTM model for each of the collected metrics with
over 10K collected data points of the dataset and used the other
60K to test the model. We similarly tested Delphi with the different
metrics collected. To compare them on their architecture, the Del-
phi has a total of 50 parameters, of which 14 are trainable and the
rest are non-trainable. By contrast, the baseline LSTM model has
71,851 parameters, all of which are trainable. From Figure 11 we ob-
serve that the Delphi model can be used on any periodic nonrandom
time-series-like data, compared to the baseline models that can only
provide respectable inference for the specific metric they are trained
for. Note that if a bubble is not clearly visible, the root mean square
value of that model is very low and it has a high R? value.

4.4 Real Workloads

Session: Al for Systems, Systems For Al

7 04 Apollo = LDMS ,U?UA07 Apollo = LDMS
Eoss « Eo06
N @
g 03 N £ 0.05
20.25 N I
2 N
302 N 50
o N -
$015 Y § 0.03
- N
g o N\ ae .
“o0s \ o1 o\
o s NN NN o N A
1 2 4 8 16 2 4
of client nodes Query Complexity

(a) Average latency of requests when scal-(b) Query Execution time comparison
ing when scaling query complexity

Apollo =LDMS

Average CPU Overhead
RN R]

N
N N N
N \ N

Monitor Client Storage PAT

(c) Average CPU overhead per process in
the 16 node evaluation

Figure 12: Comparison of Apollo and LDMS

4.4.1 Apolloand LDMS. A comparison ofthe performance of Apollo
to that of competitors under real situations is important to demon-
strate the advantages Apollo offers. For these tests, we benchmark
Apollo’s performance against the LDMS monitoring service, as it
presents a similar but simplified Insight Layer mechanism which
allows the service to aggregate results from multiple nodes.

Our service is designed to provide telemetry data to a middleware
library or an application. For demonstration purposes, in these tests
we use a hierarchical data placement engine [30, 19] as the example
middleware library. The middleware accepts I/O requests from an
application and makes a decision over what storage layer to place the
data on. In our tests, the middleware has access to four storage layers,
local memory, local NVMe, a remote shared Burst Buffer (BB) over
SSDs and a Parallel File System over HDDs. We designed our test with
a greedy placement model placing data in the fastest non-full tier.

In order to operate optimally, the middleware service requires
an accurate view of the status of the storage resources on the nodes
in the cluster to execute the placement of the request. In the ex-
periments, we measured the execution time of the resource query
performed by the middleware data. A resource query canbe visualized
in Algorithm 4.4.1 and it is created by combining (UNION operator)
of the result of different table accesses. We define the complexity of a
query as the number of queried tables which shows the how SCoRe
can parallelize the query across different nodes in the cluster.

156

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

1.8k 3.5k
3.0k
2.5k
2.0k
1.5k
1.0k
0.5k
0.0k

w1/0 Time @1/0 Time

W System State Query

m System State Query
BD-CATS
mVPIC

| mSystem State Query

w Apollo

sec)

6K =

K
2K
0K B

PFS w.oApollo w Apollo

VPIC+
BD-CATS

ime|

PFS

w.0

Apollo PFS w.oApollo w Apollo

Replication Engine

VPIC | Placement Engine Montage Prefetching Engine

(a) Apollo + DataPlacement (b) Apollo + Data Prefetch-(c) Apollo + Data Replica-
Engine ing Engine tion Engine

Figure 13: Apollo aiding middleware libraries

1 SELECT MAX(Timestamp), metric
2 FROM pfs_capacity

3 UNION

4 SELECT MAX(Timestamp), metric
5 FROM node_1_memory_capacity

6 UNION

7 SELECT MAX(Timestamp), metric
8 FROM node_2_availability

9 ...,

’

Resource query example

In Sub-figure 12(a), we observe the change in average execution
time when querying the monitoring service while scaling the number
of nodes managed by the middleware service from 1 to 16. The mid-
dleware makes use of a static query complexity of 3 (the Parallel File
System (PFS) is assumed to always have space). In Sub-figure 12(b),
we see that the change in average execution time of querying the
monitor service when scaling the query complexity from 1 to 8 (with
the number of nodes managed by the monitoring service) is main-
tained at 16 nodes in all tests. In Sub-figure 12(c), we compare the
overhead of Apollo and LDMS when executing it at maximum scale
of 16 nodes with a query complexity of 3. From Figure 12, we observe
that the latency of Apollo is 3.5x lower than LDMS while only having
an overhead of only 7%. For most cases the increase in overhead can
be considered to be negligible considering the lower latency and the
adaptive interval which ensures we have a more accurate view of
the resources on the node while balancing overhead.

4.4.2 Middleware Service with Apollo. Awareness of the status of
storage resources is vital to the performance of middleware libraries.
In this experiment, we aim to demonstrate the impact of resource-
awareness on middleware libraries for real applications. To show
this, we run various applications with 2560 processes using different
middleware libraries. We run the VPIC-IO [15] kernel, which writes
32MB per process at each time step for 16 time steps. BD-CATS [44]
reads the data generated by VPIC-IO. Lastly, Montage [8] is a col-
lection of MPI programs comprising an astronomical image mosaic
engine that reads 10MB of data per process at each time step for
16 time steps. We showcase three different middleware libraries:
a Hierarchical Data Placement Engine (HDPE) [30], Hierarchical Data
Prefetching Engine (HDFE) [20] and a Hierarchical Data Replication
Engine (HDRE) [23], all of which are parts of the Hermes middle-
ware ecosystem [30]. The HDPE writes data in fast buffering targets,

Session: Al for Systems, Systems For Al

allowing the data to be ingested quickly. By default, it utilizes a round-
robin data distribution policy for data placement, which can lead
to cases where the buffering targets are full and need to be flushed
before the new data can be ingested. The HDFE prefetches data from
the PFS and stores them in fast prefetching caches, which also utilize
a round-robin distribution policy. However, this can result in unnec-
essary evictions when a prefetching cache is full, leading to data stalls
when an application attempts to read the evicted data. With Apollo,
the HDPE and HDFE can maintain an insight that utilizes metrics
tracking the remaining capacity of the different buffering targets or
prefetching caches in a list sorted by bandwidth. Therefore, it can
guarantee that, for every operation, the data is placed into buffering
targets and prefetching caches that have enough capacity, reducing
the number of flushes, evictions, and data stalls. The HDRE places
replicas of data into different replication sets to allow for higher fault
tolerance, reliability, and data availability. By default, this replication
engine uses a round-robin data distribution policy to distribute data.
This can lead to data stalls if the replication set is out of free space or
is too remote from the source. With Apollo, the replication engine
can maintain a metric that tracks the remaining capacity of each
replication set and the network latency between all the nodes. These
metrics can be used to create an insight where replication sets with
high remaining capacities and lower network latency are prioritized.
We configure each of the middleware libraries to store up to 96GB
in NVMe drives and 1TB in Burst Buffers.

From Figure 13, we observe that Apollo can aid various middle-
ware libraries and boost their performance between 10% and 20%.
These experiments do not cover every possible use-case for Apollo,
but they are indicative of the potential Apollo has to take away the
burden of gathering telemetry data efficiently and opens up the
opportunity for a new paradigm of systems that are more resource-
aware. In Sub-figure 13(a), we see that the HDPE reduces the I/O time
of VPIC by 2.3x over simply writing to the PFS. In addition, Apollo
is able to improve the performance of the HDPE by 18% over the
round-robin policy. By knowing the current capacity of the different
buffering targets, the HDPE is able to place data more intelligently
among the targets, resulting in fewer flushes and data stalls. Simi-
larly, for Sub-figure 13(b), we see that the HDFE reduces the I/O time
of Montage by 33% over simply reading from the PFS and that Apollo
is able to improve the performance of the HDFE by an additional 16%
over the round-robin policy. This is because, by knowing the current
capacity of the different prefetching caches, the HDFE can place data
in caches that have enough capacity, resulting in fewer evictions
and unnecessary data stalls. Lastly, in Sub-figure 13(c), we see that
the HDRE increases the I/O time for VPIC, but decreases the I/O time
for BD-CATS, over simply interacting with the PFS. This is because
the HDRE writes 3x the amount of data, resulting in worse write
performance for VPIC. However, the additional replicas increase the
availability of data, improving read performance for BD-CATS. By
using Apollo, the performance of both VPIC and BD-CATS using
the HDRE improves by ~ 12% by placing replicas into replication sets
that have enough capacity to hold the replicas, avoiding unnecessary
data stalls. In each of these cases, the applications incur a small (< 1%)
overhead by querying Apollo for the current system state. However,
this overhead is outweighed by the benefit to I/O time.

157

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

5 RELATED WORK

To gain insights about the resource requirements of applications and
the resource utilization, numerous resource monitoring tools have
been developed recently to provide meaningful information. Gan-
glia [37] and LDMS [1] are two widely used tools in HPC community.
Ganglia is a scalable distributed monitoring service for high perfor-
mance computing systems, which is based on a hierarchical design
aimed at federating clusters and aggregating their state. LDMS is
a scalable and lightweight monitoring service for large-scale com-
puting systems and applications introduced to monitor the low-
level metrics and provide useful information to guide development
without increasing monitoring overhead and impacting applica-
tion performance. However, both of them are focusing much on the
scalability and maintaining low performance overhead rather than
providing low latency data access and high accuracy telemetry data.
In one hand, they utilize a user defined fixed interval to collect the
low-level metric data. And there always has a trade-off between
monitoring cost and accuracy when selecting the interval value. If
a coarse-grained interval (one minute or longer) is chosen, it would
have low cost but the inaccurate value. If a fine-grained interval
(two seconds or lower) is selected, the telemetry data value is more
accurate but it also increases the overhead of monitoring. Apollo
resolves this problem by using an adaptive and dynamic monitoring
interval, which could reduce the overall cost of resource monitor-
ing. To increase the accuracy, Apollo utilizes Delphi, a machine
learning model, which could generate predicted value between two
measuring intervals. In the other hand, LDMS store the monitoring
information into MySQL or flat file storage, and similarly Ganglia
uses RRDtool (Round Robin Database) to store and visualize the
historical telemetry data, which increases the data access latency. In
this work, SCoRe, a distributed data store based on a graph structure
utilizing an embarrassingly parallel Pub-Sub streaming paradigm, is
utilized to transfer and store telemetry data. This ultimately reduces
the telemetry data access latency while increasing I/O throughput.

6 CONCLUSION AND FUTURE WORK

This paper has proposed Apollo, alow latency ML assisted middleware-
centric monitoring service. It addresses the low latency requirements
of middleware libraries using Pub-Sub semantics and can serve data
with latency around 0.1ms. It provides a current view of the system
resources using adaptive measurement intervals which have been
shown to improve the overall accuracy of telemetry data collected
compared to static intervals. It further reduces the overhead of mon-
itoring using Delphi, Apollo’s ML model that is fast to train, causes
significantly less interference, and can predict any nonrandom time-
series data. This paper introduced some I/O Curators to present high-
level metrics that can aide middleware libraries in their decision. It
also shows how middleware libraries can use Apollo to offset some
of the overheads in decision making while being resource aware. Fi-
nally, it shows that, compared to state-of-the-art monitoring libraries
like LDMS, Apollo provides lower latency with only 7% extra over-
head while maintaining a recent view of the system resources. The
experiments shown for Apollo are indicative of the potential in opti-
mizing the collection of telemetry data and show how it can aid mid-
dleware libraries to make more optimal decisions. The source code is

Session: Al for Systems, Systems For Al

available at https://github.com/scs-lab/Apollo for the different com-
ponents in Apollo. We acknowledge that some of the I/O Curators
will need to be tweaked by the user to ensure that the metrics accu-
rately describe what is needed by the middleware library. We could
also improve the adaptive interval heuristic by using a more intricate
heuristic metric inspired by entropy changes in physics [16]. We
could also improve the way monitoring is done using KProbes [55],
which can further reduce the minimum monitoring bound.

ACKNOWLEDGMENT

This work is supported by National Science Foundation under OCI-
1835764 and CSR-1814872.

REFERENCES

(1]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gentile, S.
Monk, N. Naksinehaboon, J. Ogden, et al. 2014. The lightweight distributed
metric service: a scalable infrastructure for continuous monitoring of large scale
computing systems and applications. In SC’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 154-165.

A Arghavani, E Ahmadi, and A. Haghighat. 2011. Improved bully election algo-
rithm in distributed systems. In ICIMU 2011: Proceedings of the 5th international
Conference on Information Technology & Multimedia. IEEE, 1-6.

2020. Asonje/pat: performance analysis tool. Intel, (2020). https://github.com/
asonje/PAT.

G. Awate, S. Bangare, G Pradeepini, and S Patil. 2018. Detection of alzheimers
disease from mri using convolutional neural network with tensorflow. arXiv
preprint arXiv:1806.10170.

S. Bai, J. Z. Kolter, and V. Koltun. 2018. An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling. arXiv preprint
arXiv:1803.01271.

F.Beneventi, A. Bartolini, C. Cavazzoni, and L. Benini. 2017. Continuous learning
of hpc infrastructure models using big data analytics and in-memory processing
tools. In Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017.1EEE, 1038-1043.

J. Bent, G. Grider, B. Kettering, A. Manzanares, M. McClelland, A. Torres, and
A. Torrez. 2012. Storage challenges at los alamos national lab. In 2012 IEEE 28th
Symposium on Mass Storage Systems and Technologies (MSST). IEEE, 1-5.

G. Berriman, J. Good, A. Laity, and M Kong. 2008. The Montage image mosaic
service: custom image mosaics on-demand. Astronomical Data Analysis Software
and Systems ASP, 394, 2.

E. Betke and J. Kunkel. 2017. Real-time i/o-monitoring of hpc applications with
siox, elasticsearch, grafana and fuse. In High Performance Computing. J. M.
Kunkel, R. Yokota, M. Taufer, and J. Shalf, editors. Springer International Pub-
lishing, Cham, 174-186. IsBN: 978-3-319-67630-2.

J. Bhimani, J. Yang, Z. Yang, N. Mi, Q. Xu, M. Awasthi, R. Pandurangan, and
V. Balakrishnan. 2016. Understanding performance of i/o intensive container-
ized applications for nvme ssds. In 2016 IEEE 35th International Performance
Computing and Communications Conference (IPCCC). IEEE, 1-8.

L. Bindschaedler, J. Malicevic, N. Schiper, A. Goel, and W. Zwaenepoel. 2018.
Rock you like a hurricane: taming skew in large scale analytics. In Proceedings
of the Thirteenth EuroSys Conference, 1-15.

A.Biswas and A. Dutta. 2016. A timer based leader election algorithm. In 2016
Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and
Trusted Computing, Scalable Computing and Communications, Cloud and Big
Data Computing, Internet of People, and Smart World Congress (UIC/ATC/Scal-
Com/CBDCom/IoP/SmartWorld). IEEE, 432-439.

S Bohm, C. Engelmann, and S. L. Scott. 2010. Aggregation of real-time system
monitoring data for analyzing large-scale parallel and distributed computing
environments. In 2010 IEEE 12th International Conference on High Performance
Computing and Communications (HPCC). IEEE, 72-78.

P. Boyle, M. Chuvelev, G. Cossu, C. Kelly, C. Lehner, and L. Meadows. 2017.
Accelerating hpc codes on intel (r) omni-path architecture networks: from
particle physics to machine learning. arXiv preprint arXiv:1711.04883.
S.Byna, J. Chou, O. Rubel, H. Karimabadi, W. S. Daughter, et al. 2012. Parallel I/O,
analysis, and visualization of a trillion particle simulation. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis. IEEE, 1-12.

Y. Cao, W.-w. Tung, J. Gao, V. A. Protopopescu, and L. M. Hively. 2004. Detecting
dynamical changes in time series using the permutation entropy. Physical review
E, 70, 4, 046217.

D.-M. Chiu and R. Jain. 1989. Analysis of the increase and decrease algorithms

158

(18]

(19]

[21]

[22]

(23]

[27]

(28]

[29]

(30]

[31]

(34]

(35]

[36]

(39]

[40]

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

for congestion avoidance in computer networks. Computer Networks and ISDN
systems, 17,1, 1-14.

H. Devarajan, A. Kougkas, K. Bateman, and X. H. Sun. 2020. Hcl: distributing
parallel data structures in extreme scales. In 2020 IEEE International Conference
on Cluster Computing (CLUSTER), 248-258. por: 10.1109/CLUSTER49012.2020.
00035.

H. Devarajan, A. Kougkas, L. Logan, and X.-H. Sun. 2020. Hcompress: hierar-
chical data compression for multi-tiered storage environments. In 2020 [EEE
International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 557-
566.

H. Devarajan, A. Kougkas, and X.-H. Sun. 2020. Hfetch: hierarchical data prefetch-
ing for scientific workflows in multi-tiered storage environments. In 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 62-72.

M. Fahey, N. Jones, B. Hadri, and B. Hitchcock. 2010. The automatic library
tracking database. Proceedings of the Cray User Group.

A. Fuchs and D. Wentzlaff. 2018. Scaling datacenter accelerators with compute-
reuse architectures. In 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 353-366.

A.K.H. Devarajan and X. Sun. 2020. Hreplica: a dynamic data replication engine
with adaptive compression for multi-tiered storage. In 2020 IEEE International
Conference on Big Data (Big Data).

IIT. 2019. Ares cluster. http://www.cs.iit.edu/~scs/resources.html#content6- 8p.
Accessed: 2019-04-24. (2019).

2020. Introduction to redis streams - redis. redislabs, (2020). https://redis.io/
topics/streams-intro.

R. Izadpanah, B. A. Allan, D. Dechev, and J. Brandt. 2019. Production applica-
tion performance data streaming for system monitoring. ACM Transactions on
Modeling and Performance Evaluation of Computing Systems (TOMPECS), 4, 2,
1-25.

X.Ji,B. Yang, T. Zhang, X. Ma, X. Zhu, X. Wang, N. El-Sayed, J. Zhai, W. Liu, and
W. Xue. 2019. Automatic, application-aware i/o forwarding resource allocation.
In 17th { USENIX} Conference on File and Storage Technologies ({FAST} 19), 265~
279.

A. Kougkas, H. Devarajan, K. Bateman, J. Cernuda, N. Rajesh, and X.-H. Sun.
[n. d.] Chronolog: a distributed shared tiered log store with time-based data
ordering. Proceedings of the 36th International Conference on Massive Storage
Systems and Technology (MSST 2020).

A. Kougkas, H. Devarajan, J. Lofstead, and X.-H. Sun. 2019. Labios: a distributed
label-based i/o system. In Proceedings of the 28th International Symposium
on High-Performance Parallel and Distributed Computing (HPDC ’19). ACM,
Phoenix, AZ, USA, 13-24. 1sBN: 978-1-4503-6670-0. poI: 10.1145/3307681.
3325405. http://doi.acm.org/10.1145/3307681.3325405.

A. Kougkas, H. Devarajan, and X.-H. Sun. 2018. Hermes: a heterogeneous-aware
multi-tiered distributed i/o buffering system. In Proceedings of the 27th Inter-
national Symposium on High-Performance Parallel and Distributed Computing,
219-230.

A. Kougkas, H. Devarajan, X.-H. Sun, and J. Lofstead. 2018. Harmonia: an
interference-aware dynamic i/o scheduler for shared non-volatile burst buffers.
In 2018 IEEE International Conference on Cluster Computing (CLUSTER). IEEE,
290-301.

C.Li, Y. Wang, Y. Chen, and Y. Luo. 2019. Energy-efficient fault-tolerant replica
management policy with deadline and budget constraints in edge-cloud envi-
ronment. Journal of Network and Computer Applications, 143, 152-166.

W. Liang, Y. Chen, and H. An. 2019. Interference-aware i/o scheduling for data-
intensive applications on hierarchical hpc storage systems. In 2019 IEEE 21st
International Conference on High Performance Computing and Communications;
IEEE 17th International Conference on Smart City; IEEE 5th International Confer-
ence on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 654-661.

2020. Libuv/libuv: cross-platform asynchronous i/o. libuv, (2020). https://github.
com/libuv/libuv.

J.Lin, S. Williamson, K. Borne, and D. DeBarr. 2012. Pattern recognition in time
series. Advances in Machine Learning and Data Mining for Astronomy, 1, 617-645,
3.

G. K. Lockwood, N. J. Wright, S. Snyder, P. Carns, G. Brown, and K. Harms.
2018. TOKIO on ClusterStor: Connecting standard tools to enable holistic I/O
performance analysis. Technical report. Lawrence Berkeley National Lab.(LBNL),
Berkeley, CA (United States).

M. L. Massie, B. N. Chun, and D. E. Culler. 2004. The ganglia distributed moni-
toring system: design, implementation, and experience. Parallel Computing, 30,
7,817-840.

S.Méndez, D. Rexachs, and E. Luque. 2012. Modeling parallel scientific applica-
tions through their input/output phases. In 2012 IEEE International Conference
on Cluster Computing Workshops. IEEE, 7-15.

P. Molchanov, A. Mallya, S. Tyree, . Frosio, and J. Kautz. 2019. Importance
estimation for neural network pruning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 11264-11272.

D. Molka, D. Hackenberg, R. Schone, and M. S. Miiller. 2010. Characterizing
the energy consumption of data transfers and arithmetic operations on x86- 64

Session: Al for Systems, Systems For Al

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

processors. In International conference on green computing. IEEE, 123-133.

F. Moradi, C. Flinta, A. Johnsson, and C. Meirosu. 2017. Conmon: an automated
container based network performance monitoring system. In 2017 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM). IEEE, 54-62.
J. P. Morrill. 1998. Distributed recognition of patterns in time series data. Com-
munications of the ACM, 41, 5, 45-51.

A. Netti, M. Miiller, C. Guillen, M. Ott, D. Tafani, G. Ozer, and M. Schulz. 2020.
Dcdb wintermute: enabling online and holistic operational data analytics on hpc
systems. In Proceedings of the 29th International Symposium on High-Performance
Parallel and Distributed Computing, 101-112.

M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. Luki¢, V. Roytershteyn,
M. J. Anderson, Y. Yao, P. Dubey, et al. 2015. BD-CATS: big data clustering at
trillion particle scale. In SC’15: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 1-12.
M. M. Rahman and A. Nahar. 2010. Modified bully algorithm using election
commission. arXiv preprint arXiv:1010.1812.

T. Ronconi et al. 2020. From cosmic voids to collapsed structures: hpc methods
for astrophysics and cosmology.

A. Sagheer and M. Kotb. 2019. Time series forecasting of petroleum production
using deep Istm recurrent networks. Neurocomputing, 323, 203-213.

S. Selvin, R Vinayakumar, E. Gopalakrishnan, V. K. Menon, and K. Soman. 2017.
Stock price prediction using Istm, rnn and cnn-sliding window model. In 2017 in-
ternational conference on advances in computing, communications and informatics
(icacci). IEEE, 1643-1647.

R. Sethi, M. Traverso, D. Sundstrom, D. Phillips, W. Xie, Y. Sun, N. Yegitbasi,
H. Jin, E. Hwang, N. Shingte, et al. 2019. Presto: sql on everything. In 2019 IEEE
35th International Conference on Data Engineering (ICDE). IEEE, 1802-1813.

J. Sloan, R. Kumar, and G. Bronevetsky. 2012. Algorithmic approaches to low
overhead fault detection for sparse linear algebra. In IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2012). IEEE, 1-12.

R. Stephens. 1997. A survey of stream processing. Acta Informatica, 34,7, 491-
541.

159

(52]

(58]

[59]

[60]

[61]

(62]

HPDC ’21, June 22-25, 2021, Virtual Event, Sweden.

P.Subedi, P. Davis, S. Duan, S. Klasky, H. Kolla, and M. Parashar. 2018. Stacker: an
autonomic data movement engine for extreme-scale data staging-based in-situ
workflows. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 920-930.

S. Thapaliya, P. Bangalore, J. Lofstead, K. Mohror, and A. Moody. 2016. Manag-
ing i/o interference in a shared burst buffer system. In 2016 45th International
Conference on Parallel Processing (ICPP). IEEE, 416-425.

S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos. 2014. Management of an
academic hpc cluster: the ul experience. In 2014 International Conference on High
Performance Computing & Simulation (HPCS). IEEE, 959-967.

V Vishwanath, W Feng, M Gardner, and J Leigh. 2006. A high-performance
sensor for cluster monitoring and adaptation. EVL technical document.

T. Wang, S. Byna, B. Dong, and H. Tang. 2018. Univistor: integrated hierarchical
and distributed storage for hpc. In 2018 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 134-144.

W. Wang. 2003. Modelling condition monitoring intervals: a hybrid of simulation
and analytical approaches. The Journal of the Operational Research Society, 54, 3,
273-282. 15SN: 01605682, 14769360. http://www.jstor.org/stable/4101621.

V. M. Weaver. 2015. Self-monitoring overhead of the linux perf_ event perfor-
mance counter interface. In 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 102-111.

J. Xia, D. Guo, L. Luo, and G. Cheng. 2020. Topology-aware data placement
strategy for fault-tolerant storage systems. IEEE Systems Journal.

B. Yang, X. Ji, X. Ma, X. Wang, T. Zhang, X. Zhu, N. El-Sayed, H. Lan, Y. Yang,
J. Zhai, et al. 2019. End-to-end i/0 monitoring on a leading supercomputer. In
16th { USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 19), 379-394.

S.R. Young, D. C. Rose, T. Johnston, W. T. Heller, T. P. Karnowski, T. E. Potok,
R. M. Patton, G. Perdue, and J. Miller. 2017. Evolving deep networks using hpc.
In Proceedings of the Machine Learning on HPC Environments, 1-7.

2020. Zabbix. Zabbix, LLC, (2020). https://www.zabbix.com/.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Existing Monitoring Services
	2.2 Predicting Time-series Data

	3 Apollo
	3.1 High Level Architecture
	3.2 Improved Storage Layer
	3.3 I/O Insight Curation
	3.4 High Accuracy With Low Monitoring Cost

	4 Evaluation
	4.1 Methodology
	4.2 Reducing Telemetry Data Access Latency While Increasing I/O Throughput
	4.3 Reducing Overall Cost Of Resource Monitoring While Increasing Accuracy
	4.4 Real Workloads

	5 Related Work
	6 Conclusion and Future Work

