
Apollo: AnML-assisted Real-Time Storage Resource Observer

Neeraj Rajesh, Hariharan Devarajan, Jaime Cernuda Garcia, Keith Bateman, Luke Logan, Jie Ye,
Anthony Kougkas, and Xian-He Sun

Department of Compute Science, Illinois Institute of Technology
{nrajesh,hdevarajan,jcernudagarcia,kbateman,llogan,jye20}@hawk.iit.edu,{akougkas,sun}@iit.edu

ABSTRACT

Applications and middleware services, such as data placement en-

gines, I/O scheduling, and prefetching engines, require low-latency

access to telemetrydata in order tomakeoptimal decisions.However,

typical monitoring services store their telemetry data in a database

in order to allow applications to query them, resulting in significant

latency penalties. This work presents Apollo: a low-latency mon-

itoring service that aims to provide applications and middleware

libraries with direct access to relational telemetry data. Monitoring

the system can create interference and overhead, slowing down raw

performance of the resources for the job. However, having a current

view of the system can aid middleware services in making more

optimal decisions which can ultimately improve the overall perfor-

mance. Apollo has been designed from the ground up to provide

low latency, using Publish–Subscribe (Pub-Sub) semantics, and low

overhead, using adaptive intervals in order to change the length of

time between polling the resource for telemetry data and machine

learning in order to predict changes to the telemetry data between

actual resource polling. This work also provides some high level

abstractions called I/O curators, which can further aid middleware

libraries and applications to make optimal decisions. Evaluations

showcase thatApollo can achieve sub-millisecond latency for acquir-

ing complex insights with a memory overhead of ∼57MB and CPU

overhead being only 7% more than existing state-of-the-art systems.

CCS CONCEPTS

•Computer systems organization→ Real-time system architec-

ture; Client-server architectures; • Information systems→Mul-

tidimensional range search;Hybrid storage layouts.

KEYWORDS

Resource Monitoring, Storage Monitoring, Storage Utilization, HPC

ClusterMonitoring, LowLatencyMonitoring,Real-TimeMonitoring

ACMReference Format:

Neeraj Rajesh, Hariharan Devarajan, Jaime Cernuda Garcia, Keith Bateman,

Luke Logan, Jie Ye,, Anthony Kougkas, and Xian-He Sun. 2021. Apollo: An

ML-assisted Real-Time Storage Resource Observer. In Proceedings of the 30th

International Symposium on High-Performance Parallel and Distributed Com-

puting (HPDC ’21), June 21–25, 2021, Virtual Event, Sweden.ACM, Stockholm,

Sweden, 13 pages. https://doi.org/10.1145/3431379.3460640

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HPDC ’21, June 21–25, 2021, Virtual Event, Sweden

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8217-5/21/06. . . $15.00
https://doi.org/10.1145/3431379.3460640

1 INTRODUCTION

Capturing the status of resources in a computing environment is

as fundamental as using them. Understanding how resources are

used is crucial to users, administrators, and owners for several rea-

sons [54]. For instance, one can achieve a bettermapping of compute

elements to hardware resources, identify performance bottlenecks,

detect faulty hardware, analyze and tune an application’s execution,

enable hardware-based triggers (e.g., raise interrupts on a hardware

condition), and derive accurate client/user pricing based on utiliza-

tion. However, capturing the state of resources accurately and timely

is challenging, especially in a distributed environment [58]. Modern

supercomputer architectures demonstrate complex hardware com-

positions [7, 30, 22] (e.g., multi-tiered storage, compute accelerators,

software-defined networks etc.,) that can overwhelm the underlying

monitoring services. Further, scientific applications [46, 14, 61] run

in large decoupled workflows making it harder for the developers

to keep track of resource utilization across a cluster. There is a wide

variety of monitoring services that capture, store, and provide ac-

cess to telemetry data Ðmeasurement data that describe the state

of a remote resource for a given time window. For example, Gan-

glia [37] provides distributed and federated access to telemetry data,

Lightweight DistributedMetric Service (LDMS) [1] can detect features

and events of user interest on meaningful timescales, TOKIO [36]

collects and analyzes different aspects of a system resources to un-

derstand possible bottlenecks, and lastly,Automatic Library Tracking

Database (ALTD) [21] can track linkage and execution information

of applications. These monitoring services help scientists, system

administrators, and machine owners understand how resources are

allocated, deployed, and utilized across applications and through

time. Through offline analysis of telemetry data, resource monitor-

ing can guide performance tuning, track architectural development,

and even inform future machine purchases or upgrades.

Real-time access to telemetry data is critical to application and

middleware library developers for ensuring behavior correctness

and optimizing performance. For instance, modern multi-tiered dis-

tributed buffering platforms, such as Hermes [30], leverage tier ca-

pacity and load information to guide their data distribution policy.

For every buffering request at a given timestamp, Hermes needs to

know: a) the remaining capacity of the storage tiers to ensure that the

incoming data can fit in the buffers, and b) the load of each participat-

ing buffering node to find the optimal buffering placement scheme.

Similarly, data prefetchers [20, 52] need to know the current prefetch-

ing cache size to optimally fetch new data expected to be read soon

while reducing the cache pollution. As another example, I/O sched-

ulers [31] leverage information about the current load of a resource

to better balance the load across a collection of distributed elements.

For every incoming client connection/request, such algorithms need

to direct traffic to the least busy node. Similarly, an MPI application

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

147

can distribute work across all ranks based on the current CPU and

main memory load on the host machines [1]. Lastly, coordination

mechanisms such as leader election algorithms [45] require the set

of available resources to achieve an optimal point of synchronization

and coordination. Similarly, fault detection techniques [50] require

the set of degrading nodes to successfully predict faults. Further,

malleable storage systems [28] require a list of available resources

to be able to expand their footprint to additional machines. The

above examples highlight how important is to access telemetry data

accurately and timely to achieve optimized and correct solutions.

In this study, we highlight some critical features of distributed

monitoring services. First, to make optimal decisions, applications

need near-real time access to telemetry data that accurately reflect

the current status of the monitored resources. Typically, existing

monitoring services use file systems or relational databases to store

telemetry data. However, these storage backends were not designed

to provide any additional functionality for time-series datasets, and

thus, do not efficiently support the I/O characteristics of a moni-

toring service: fast ingestion of monitoring events and low-latency

random access of historical data. Second, telemetry data (i.e., raw

metrics from hardware) often cannot be utilized by the application

directly [6]. Additional processing and data transformations typi-

cally occur to produce higher-level information about the status of

a distributed computing environment. For example, a typical query

might be: get the total remaining capacity of a subset of nodes in a

cluster that are equipped with tier 1 storage devices. These type of

questions demand an advanced querying engine to achieve complex

data transformations, such as metric aggregation, filtering, or order-

ing. Since these operations are executed on-demand [26], a further

increase in access latency is expected. Parallel query resolution and

efficient pre-processed enriched metadata can alleviate this issue

and offer a higher level of sophistication in telemetry data. Third, re-

source monitoring is costly due to the additional overhead of polling

the resources and the potential interference with the running ap-

plication. High-resolution monitoring (i.e., high polling frequency)

may lead to increased accuracy of capturing the status of resources

but with an additional cost. In contrast, by relaxing the resolution,

monitoring services trade accuracy with performance. One way to

better balance this, is to use a dynamic Ð instead of a static Ð polling

frequency. In other words, a monitoring service should tighten the

frequency of resource polling when a significant change in status

is detected and relax it otherwise. Lastly, general purpose monitor-

ing services such as Ganglia [37] have a very wide scope of what

kind of resources they can monitor. Even though this is a great ca-

pability, generality may hurt the accuracy, resolution, and quality

of monitoring data (i.e., breadth and depth of low-level hardware

metrics). Domain-specific monitoring is necessary when one wishes

to acquire a curated set of information of a certain type of a resource.

To address the above challenges, we introduce Apollo, an ML-

assisted, real-time, and low-latency monitoring service. Apollo fo-

cuses on monitoring the storage subsystem of a distributed com-

puting environment, but ideas presented here can be easily repli-

cated for other domains as well. Apollo supports fast ingestion and

low-latency access to metrics by a custom distributed data struc-

ture, called Storage Condition Report (SCoRe), that leverages a data

streamingapproachandapublish-subscribedeliveryparadigm.With

ScoRe as its internal repository of collected metrics, Apollo uses an

advanced query engine that can resolve queries in parallel and in-

situ while maintaining a highly curated list of I/O-specific metrics.

Since Apollo is a storage resources observer, a comprehensive list

of I/O Insights is presented to help guide optimizations in I/O sched-

uling, data placement, and workload distribution. These insights

can further motivate application and middleware library developers

to build new resource-aware algorithms that would improve the

performance [43]. Lastly, to lower the cost ofmonitoringwhilemain-

taining high accuracy ofmonitoring information, Apollo first adopts

a dynamic monitoring approach where measurement intervals are

relaxed or tightened based on the change in state. To further improve

the responsiveness and accuracy of the collected metrics, Apollo

adopts a newmachine learning model, called Delphi, that is trained

to provide predicted values of a metric within polling periods. The

combinationof SCoRe, I/O Insights, andDelphi allowsApollo to offer

a highly flexible service that provides high-resolution information

to resource-aware applications with low system overhead. Apollo

demonstrates the following contributions:

(1) Stalemonitoring data is useless data! It is critical for teleme-

try data to be delivered on time to accurately capture the current

status of the resources. To address this, this paper presents the

design and implementation of SCoRE (ğ3.2), a fast ingestion and

low-latency data structure optimized for telemetry data.

(2) Raw monitoring data is useless data! Low-level hardware

counters demonstrate limited value to application developers

and require specialized knowledge to extract meaningful infor-

mation about the monitored resource. To address this, this paper

presents a collection of highly curated I/O Insights (ğ3.3 that

transform rawmetrics into high-level user-friendly knowledge.

(3) Acostlymonitoring service is useless!High-resolutionmon-

itoring leads to increased accuracy of telemetry data but demon-

strates high overheads. To lower the cost of resource monitoring

while maintaining high accuracy of telemetry data, this paper

presents two key ideas: a) dynamic polling frequency (ğ3.4.1),

Apollo adapts its polling frequency based on a configurable

threshold in change in status. b) Delphi predictive model (ğ3.4.2),

Apollo usesML techniques to forecast intermediatemetric values

within polling periods.

2 BACKGROUNDANDMOTIVATION

2.1 ExistingMonitoring Services

Resource monitoring is vital to know how the system resources are

used. It isdoneextensively inHighPerformanceComputing (HPC) [37,

1] and Cloud environments [62]. These services are aimed to pro-

vide system administrators with visualizations of the resource status

and enable offline analysis. As of late, middleware services and dis-

tributed applications [30, 20, 19, 29, 52] can make use of telemetry

data to aid them in their decisions. These services always need an

up-to-date view of the system resources, be it remaining capacity or

load on a storage resource or the overall load of a node in the system,

to make optimal decisions. However, the existing monitoring tools

cannot provide a recent view of the system for these applications

and middleware services to make optimal decisions, as monitoring

services have been designed from a system administrator perspec-

tive or from the perspective of a scientist looking to optimize their

code. In order for monitoring to be effective for these applications

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

148

and services, they need a constantly updated view of the system at a

much higher resolution than existing tools; otherwise it it can lead to

sub-optimal decisions. To support this high resolution monitoring,

existing data stores need to be capable of ingesting and querying

large amounts of data from these middleware services. Currently,

this telemetry data is stored in a centralized database [13, 9], like

PostgreSQL and Neo4J. This, however, is ineffective and can lead to

bottlenecks as they cannot support the high ingestion and querying

requirements of this high resolution resource monitoring needed

by middleware services and applications. This shift in the need for

monitoring from a user-centric view to an application-centric view

motivates us to create a new type of I/O backend for monitoring

purposes that can support high ingestion and querying rates using

a Pub-Sub paradigm and using a decoupled and embarrassingly par-

allel architecture that can keep up with the monitoring demands of

middleware services and other applications.

Inevitably, resource monitoring creates overheads. There is a

trade-off between the monitoring overhead and the resolution of

monitoring. Coupledwith the increasedmonitoring needs ofmiddle-

ware services and applications that need a fresh view of the system,

there should be a balance between monitoring and the overhead it

creates.Usingafixed time interval, asproposedbyEugenetal. [9] and

Vishwanath et al. [55], has 2 main problems. A small monitoring in-

terval caneither lead tounwanted interferenceon the systemandcan

ultimately slowdown the job running.Whilewith a largemonitoring

interval the information collected can be too stale for applications

andmiddleware services to effectivelymakeoptimal decisions. Since,

there is a trade-off between accuracy and cost. As I/O has significant

bursty behavior and is known to be generated in phases [38], thismo-

tivates us to adopt an adaptive and dynamicmonitoring interval that

can shrink the interval when the system is dynamic, keeping track of

the changes in the system, and stretch the interval when the system

is static, within a threshold, reducing the cost of monitoring when

there is no major change happening to the system. This reduces the

overall overhead of monitoring based on the changes in the system.

As hardware has gotten more and more powerful over the years,

there has been a surge in the use of machine learning techniques to

aid various applications [61, 5, 48]. Thesemodels provide predictions

which provide valuable insights of what could happen. Additionally,

telemetry data can be represented as a time-series and so machine

learning techniques [47] and time-series analysis [42] can be used to

create amachine leaningmodel that can further reduce the overhead

of polling the system for monitor data by using this model to predict

values between polling intervals, further reducing the overhead of

monitoring while providing high resolution telemetry data. There is

a motivation to reduce the overall overhead of high resolution mon-

itoring by using adaptive intervals to balance the cost of monitoring

andmaintaining an updated view of the system. There is also a moti-

vation to use a machine learning model where the cost of prediction

is lower than the cost of polling the system. These two techniques

will be used to reduce the overall cost ofmonitoring the systemwhile

simultaneously providing high resolution telemetry data.

2.2 Predicting Time-series Data

Telemetry data is time-series data which can be modeled usingMa-

chine Learning (ML) techniques such as Deep Long short-termmem-

ory (LSTM) models [47]. These models aim to capture the different

intricacies of the features using a cell which stores values over ar-

bitrary time intervals and use input, output, and forget gates to

regulate the flow of information into and out of the cell. There are

other models that use Convolutional Neural Networks (CNNs) [48]

which take advantage of the hierarchical pattern in data and create

more complex patterns using smaller, simpler patterns. They have

been shown towork aswell as Recurrent Neural Networks (RNNs) for

time-series forecasting [5]. However, these models are unsuitable in

environments that have limited resources and consequently for en-

vironments that have low overhead requirements [39]. Additionally,

thesemodels are extremely specific to the individualmetrics they are

trained on and often expensive in inference. These characteristics

make them unsuitable for building a low-latencymonitoring service.

This work proposes a novel methodology to create a lightweight

and effective model by using understanding of time-series datasets

fromMorill et. al. and neural network models catered to lowering

the requirements for low overhead environments.

3 APOLLO

Applications and middleware services require telemetry data pro-

vided by monitoring services in order to determine data placement,

perform synchronization, manage resources, etc. To do so, they

require low-latency access to metrics in order to make informed

decisions based on a highly-detailed view of the cluster. Addition-

ally, modern middleware services require aggregations of metrics to

derive valuable insights to drive optimization decisions. To this end,

Apollo is a near-real-time monitoring service which is tailored to

serve highly concurrent queries generated by middleware services.

Moreover, Apollo provides I/O-specific insightswhich are curated to

meet the complex storage status demands ofmodernmiddleware ser-

vices [30, 29]. Apollo’s design encompasses the following principles:

a) Reducing telemetry data access latency while increasing

I/O throughput:Apollo aims to provide middleware services with

low-latency access to monitoring metrics in order to give them the

latest view of the cluster status. That is, Apollo should utilize a

decoupled and embarrassingly parallel computation paradigm to

enable near-real-time maintenance/serving of telemetry data. Ad-

ditionally, middleware services require high-level I/O metrics [30,

29] aggregated at different levels to perform their tasks efficiently.

Hence, Apollo should provide a framework where low-level I/O

metrics (e.g., disk queue size, disk capacity, etc.) can be efficiently

converted into high-level insights (e.g., load of the storage resource,

or total remaining capacity of an NVMe tier). b) Reducing overall

cost of resource monitoring while increasing accuracy:mon-

itoring status for a distributed and multi-tenant cluster is complex

due to the change in optimal granularity of monitoring over time.

Apollo aims to use an adaptive and dynamic interval (i.e., the interval

of monitoring changes over time) to adapt to this dynamic nature of

the cluster and reduce the cost of monitoring while also providing

high resolution telemetry data when needed. Additionally, Apollo

also uses a machine learning model called Delphi to increase the

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

149

resolution of monitoring by predicting intermediate values and can

hence further reduce the overall cost of monitoring.

3.1 High Level Architecture

Sub-figure 1 (a) presents the overall architecture of Apollo. Apollo’s

core responsibility is to provide an end-to-end infrastructure to to

maintain and serve the current status of the Cluster/Application

Resources. To achieve this goal, Apollo utilizes SCoRe to enable

low-latency accesses to telemetry data. SCoRe is a distributed data

structure represented as a Directed Acyclic Graph (DAG) of vertices,

where each vertex collects Information from Apollo. Information is

characterized into two types: Fact and Insight, they are stored as a

tuple along with (timestamp, fact/insight, predicted/measured(0/1)).

A Fact is the smallest unit within Apollo. Facts represent the value

of a given Metric that has been captured from a particular hardware

or software resource. The Fact Vertices hook into different cluster

resources and extract Metrics from them. An Insight is a high-level

combination of one or more Facts and/or Insights. Some examples

of Insights include the total availablememory in the cluster, the aggre-

gated CPU performance of a group of compute nodes, the remaining

capacity of SSD drives, etc. Users can also instrument their code and

register/unregister custom Fact and Insight vertices during the run-

time of their application. In the figure, Fact Vertices are the sources

whereas Insight Vertices form the Sinks and Inner Vertices of SCoRe.

TheVertices of SCoRe are distinct processes in the cluster that create,

store, and serve their Information. Middleware services queryApollo

through the use of theApollo Query Engine (AQE), which resolves

queries into multiple accesses within SCoRe. The Insight and Fact

Vertices utilize the stream-paradigm [51] for data movement. This

paradigm enables the overlap of operations within vertices with the

Information movement within Apollo.

Sub-figure 1 b) presents the flowof Information through the afore-

mentioned vertices of SCoRe. It starts from the Fact Verticeswhich

capture Metrics from Cluster/Application Resources. This data flow

is labeled as łCreatež in the figure. The Fact Vertices capture these

Metrics with an adaptive and dynamicmonitoring interval using the

Monitor Hook (1). The Monitor Hook sends this Metric to the Fact

Builder, which converts theMetric into a Fact. This Fact is linearized

and published (2) onto the Fact Queue, a simple queue. The Facts are

ordered by timestamp, making them linearizable and removing the

need for a priority queue. Facts from the Fact Queue can be consumed

by an Insight Vertex to generate new Insights (3). The Insight Vertex

can consume Facts (3) and/or other Insights (4) and convert them into

new Insights in the Insight Builder. Similar to a Fact Vertex, the In-

sight Vertex pushes Insights (5) into an Insight Queue, which later can

be consumed directly (6). Each Fact and Insight vertex holds a ded-

icated, in-memory queue and Archiver, which is both efficient and

scalable and stores the queue in a log. TheMonitorHooks and Insight

Builder are enhanced with an ML inference model, called Delphi,

that predicts Facts for Fact Vertices and Insights for Insight Vertices

between themonitoring intervals to increase the granularity of mea-

surements, which further increase the resolution of the telemetry

data. Time granularity differences betweenmetrics motivate the use

of a pull mechanism in order to achieve low-latency and durable re-

sults, eachmetric in a node is stored in a unique queue, as in-memory

queues are scalable and efficient. Finally, the middleware services

can query Apollo via the AQE, which uses algorithms similar to

state-of-the-art query engines such as Presto [49], converts a client

query into multiple Information access calls which are served by the

Query Executor of that Vertex. The executor parses the queue (or the

persisted log for evicted entries) using timestamp-based indexing

to perform the requested queries. This translates to highly parallel

and decoupled access to information within the Apollo service.

3.2 Improved Storage Layer

3.2.1 Storage Condition Report (SCoRe). SCoRe is the core data

structure of Apollo. It is a distributed data store based on a graph

structure, and serves data with low latency. Its main responsibilities

are to collect the telemetry data, maintain facts, generate insights,

and service various middleware libraries or clients. The distributed

graph design structure uses a Pub-Sub communication fabric that

enables it to support highly concurrent telemetry data access with

low latency. It uses libuv [34] for asynchronously setting and ma-

nipulating intervals between monitoring hook accesses, and Redis

Streams [25] formaintaining telemetry data in a queue andproviding

the Pub-Sub communication paradigm.

SCoRehas twokeycomponents: FactVerticesand InsightVertices.

Thevertices are implementedusing concurrent lock-free queues [18].

Facts are collected and then added into its queue. Fact Vertices act

as the source in SCoRe. The Insight Vertex builds insights and adds

them to its queue, similar to the fact vertex. Facts and Insights are

added only if there is a change from their previous value. Once

in the queue, the Fact or Insight can be serviced immediately.The

distributed graph-based design of SCoRe can be mathematically

modeled to calculate its time complexity. Let 𝑓 (𝑋) be a function used

to calculate an Insight using the Information vector𝑋 .ℎ is the height

of the DAG and𝑉 be the number of vertices. Each parameter 𝑥𝑖 ∈𝑋

can have a Hamming Distance up to ℎ from the vertex generating

the insight. Thus, in the worst case, the cost of propagating insights

from the source to destination is O(𝑝∗ℎ), where 𝑝 ≤𝑉 .

Figure 2 showcases a simple use case of SCoRe, where a mid-

dleware service desires information about the total storage space

available in all nodes of the cluster. Each compute node possesses an

NVMe and SSD device. Each storage node contains anHDD. As such,

twoFactVerticesgetdeployed ineverycomputenodeandone ineach

storage node. The Fact Vertices monitor the available space on the

mount point for both storage devices and add the Facts into their re-

spective queues. A similar deployment is made on the storage nodes.

The middleware can then request through AQE the status of any

individual device. Additionally, four Insight Vertices are deployed in

the cluster, where three of them are in charge of subscribing to the in-

dividual streams of all devices in the same node and aggregating data

for their Insights into their respective Insight Vertices. The final In-

sightVertexwill subscribe to theother InsightVertices andcontinually

generate a combined view of the total space available in the cluster.

3.3 I/O Insight Curation

Middleware services [30, 29, 28] require I/O-specific insights in or-

der to make data placement, computation placement, and resource

allocation decisions. Insights have been curated from popular I/O

algorithms that can be categorized into: Performance, Energy, Ac-

cess, andWorkflow info. These insights aremotivated from a variety

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

150

allowing thedata tobe ingestedquickly. Bydefault, it utilizes a round-

robin data distribution policy for data placement, which can lead

to cases where the buffering targets are full and need to be flushed

before the new data can be ingested. TheHDFE prefetches data from

the PFS and stores them in fast prefetching caches, which also utilize

a round-robin distribution policy. However, this can result in unnec-

essary evictionswhenaprefetching cache is full, leading todata stalls

when an application attempts to read the evicted data. With Apollo,

the HDPE and HDFE can maintain an insight that utilizes metrics

tracking the remaining capacity of the different buffering targets or

prefetching caches in a list sorted by bandwidth. Therefore, it can

guarantee that, for every operation, the data is placed into buffering

targets and prefetching caches that have enough capacity, reducing

the number of flushes, evictions, and data stalls. The HDRE places

replicas of data into different replication sets to allow for higher fault

tolerance, reliability, and data availability. By default, this replication

engine uses a round-robin data distribution policy to distribute data.

This can lead to data stalls if the replication set is out of free space or

is too remote from the source. With Apollo, the replication engine

can maintain a metric that tracks the remaining capacity of each

replication set and the network latency between all the nodes. These

metrics can be used to create an insight where replication sets with

high remaining capacities and lower network latency are prioritized.

We configure each of the middleware libraries to store up to 96GB

in NVMe drives and 1TB in Burst Buffers.

From Figure 13, we observe that Apollo can aid various middle-

ware libraries and boost their performance between 10% and 20%.

These experiments do not cover every possible use-case for Apollo,

but they are indicative of the potential Apollo has to take away the

burden of gathering telemetry data efficiently and opens up the

opportunity for a new paradigm of systems that are more resource-

aware. In Sub-figure 13(a),we see that theHDPE reduces the I/O time

of VPIC by 2.3x over simply writing to the PFS. In addition, Apollo

is able to improve the performance of the HDPE by 18% over the

round-robin policy. By knowing the current capacity of the different

buffering targets, the HDPE is able to place data more intelligently

among the targets, resulting in fewer flushes and data stalls. Simi-

larly, for Sub-figure 13(b), we see that theHDFE reduces the I/O time

ofMontage by 33% over simply reading from the PFS and that Apollo

is able to improve the performance of theHDFE by an additional 16%

over the round-robin policy. This is because, by knowing the current

capacity of the different prefetching caches, theHDFE can place data

in caches that have enough capacity, resulting in fewer evictions

and unnecessary data stalls. Lastly, in Sub-figure 13(c), we see that

theHDRE increases the I/O time for VPIC, but decreases the I/O time

for BD-CATS, over simply interacting with the PFS. This is because

the HDRE writes 3x the amount of data, resulting in worse write

performance for VPIC. However, the additional replicas increase the

availability of data, improving read performance for BD-CATS. By

using Apollo, the performance of both VPIC and BD-CATS using

theHDRE improves by∼12% by placing replicas into replication sets

that have enough capacity to hold the replicas, avoiding unnecessary

data stalls. In each of these cases, the applications incur a small (<1%)

overhead by querying Apollo for the current system state. However,

this overhead is outweighed by the benefit to I/O time.

5 RELATEDWORK

To gain insights about the resource requirements of applications and

the resource utilization, numerous resource monitoring tools have

been developed recently to provide meaningful information. Gan-

glia [37] and LDMS [1] are twowidely used tools inHPC community.

Ganglia is a scalable distributed monitoring service for high perfor-

mance computing systems, which is based on a hierarchical design

aimed at federating clusters and aggregating their state. LDMS is

a scalable and lightweight monitoring service for large-scale com-

puting systems and applications introduced to monitor the low-

level metrics and provide useful information to guide development

without increasing monitoring overhead and impacting applica-

tion performance. However, both of them are focusing much on the

scalability and maintaining low performance overhead rather than

providing low latency data access and high accuracy telemetry data.

In one hand, they utilize a user defined fixed interval to collect the

low-level metric data. And there always has a trade-off between

monitoring cost and accuracy when selecting the interval value. If

a coarse-grained interval (one minute or longer) is chosen, it would

have low cost but the inaccurate value. If a fine-grained interval

(two seconds or lower) is selected, the telemetry data value is more

accurate but it also increases the overhead of monitoring. Apollo

resolves this problem by using an adaptive and dynamic monitoring

interval, which could reduce the overall cost of resource monitor-

ing. To increase the accuracy, Apollo utilizes Delphi, a machine

learning model, which could generate predicted value between two

measuring intervals. In the other hand, LDMS store the monitoring

information into MySQL or flat file storage, and similarly Ganglia

uses RRDtool (Round Robin Database) to store and visualize the

historical telemetry data, which increases the data access latency. In

this work, SCoRe, a distributed data store based on a graph structure

utilizing an embarrassingly parallel Pub-Sub streaming paradigm, is

utilized to transfer and store telemetry data. This ultimately reduces

the telemetry data access latency while increasing I/O throughput.

6 CONCLUSIONAND FUTUREWORK

ThispaperhasproposedApollo, a lowlatencyMLassistedmiddleware-

centricmonitoring service. It addresses the low latency requirements

of middleware libraries using Pub-Sub semantics and can serve data

with latency around 0.1ms. It provides a current view of the system

resources using adaptive measurement intervals which have been

shown to improve the overall accuracy of telemetry data collected

compared to static intervals. It further reduces the overhead of mon-

itoring using Delphi, Apollo’s MLmodel that is fast to train, causes

significantly less interference, and can predict any nonrandom time-

series data. This paper introduced some I/OCurators to present high-

level metrics that can aide middleware libraries in their decision. It

also shows howmiddleware libraries can use Apollo to offset some

of the overheads in decision making while being resource aware. Fi-

nally, it shows that, compared to state-of-the-artmonitoring libraries

like LDMS, Apollo provides lower latency with only 7% extra over-

head while maintaining a recent view of the system resources. The

experiments shown for Apollo are indicative of the potential in opti-

mizing the collection of telemetry data and show how it can aid mid-

dleware libraries tomakemore optimal decisions. The source code is

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

157

available at https://github.com/scs-lab/Apollo for the different com-

ponents in Apollo. We acknowledge that some of the I/O Curators

will need to be tweaked by the user to ensure that the metrics accu-

rately describe what is needed by the middleware library. We could

also improve the adaptive interval heuristic by using amore intricate

heuristic metric inspired by entropy changes in physics [16]. We

could also improve the way monitoring is done using KProbes [55],

which can further reduce the minimummonitoring bound.

ACKNOWLEDGMENT

This work is supported by National Science Foundation under OCI-

1835764 and CSR-1814872.

REFERENCES
[1] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gentile, S.

Monk, N. Naksinehaboon, J. Ogden, et al. 2014. The lightweight distributed
metric service: a scalable infrastructure for continuousmonitoring of large scale
computing systems and applications. In SC’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 154ś165.

[2] A Arghavani, E Ahmadi, and A. Haghighat. 2011. Improved bully election algo-
rithm in distributed systems. In ICIMU 2011: Proceedings of the 5th international
Conference on Information Technology &Multimedia. IEEE, 1ś6.

[3] 2020. Asonje/pat: performance analysis tool. Intel, (2020). https://github.com/
asonje/PAT.

[4] G. Awate, S. Bangare, G Pradeepini, and S Patil. 2018. Detection of alzheimers
disease frommri using convolutional neural network with tensorflow. arXiv
preprint arXiv:1806.10170.

[5] S. Bai, J. Z. Kolter, and V. Koltun. 2018. An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling. arXiv preprint
arXiv:1803.01271.

[6] F. Beneventi, A. Bartolini, C.Cavazzoni, andL. Benini. 2017. Continuous learning
of hpc infrastructure models using big data analytics and in-memory processing
tools. InDesign, Automation & Test in Europe Conference & Exhibition (DATE),
2017. IEEE, 1038ś1043.

[7] J. Bent, G. Grider, B. Kettering, A. Manzanares, M. McClelland, A. Torres, and
A. Torrez. 2012. Storage challenges at los alamos national lab. In 2012 IEEE 28th
Symposium on Mass Storage Systems and Technologies (MSST). IEEE, 1ś5.

[8] G. Berriman, J. Good, A. Laity, andM Kong. 2008. The Montage image mosaic
service: custom imagemosaics on-demand.Astronomical Data Analysis Software
and Systems ASP, 394, 2.

[9] E. Betke and J. Kunkel. 2017. Real-time i/o-monitoring of hpc applications with
siox, elasticsearch, grafana and fuse. In High Performance Computing. J. M.
Kunkel, R. Yokota, M. Taufer, and J. Shalf, editors. Springer International Pub-
lishing, Cham, 174ś186. isbn: 978-3-319-67630-2.

[10] J. Bhimani, J. Yang, Z. Yang, N. Mi, Q. Xu, M. Awasthi, R. Pandurangan, and
V. Balakrishnan. 2016. Understanding performance of i/o intensive container-
ized applications for nvme ssds. In 2016 IEEE 35th International Performance
Computing and Communications Conference (IPCCC). IEEE, 1ś8.

[11] L. Bindschaedler, J. Malicevic, N. Schiper, A. Goel, and W. Zwaenepoel. 2018.
Rock you like a hurricane: taming skew in large scale analytics. In Proceedings
of the Thirteenth EuroSys Conference, 1ś15.

[12] A. Biswas and A. Dutta. 2016. A timer based leader election algorithm. In 2016
Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and
Trusted Computing, Scalable Computing and Communications, Cloud and Big
Data Computing, Internet of People, and Smart World Congress (UIC/ATC/Scal-
Com/CBDCom/IoP/SmartWorld). IEEE, 432ś439.

[13] S Bohm, C. Engelmann, and S. L. Scott. 2010. Aggregation of real-time system
monitoring data for analyzing large-scale parallel and distributed computing
environments. In 2010 IEEE 12th International Conference on High Performance
Computing and Communications (HPCC). IEEE, 72ś78.

[14] P. Boyle, M. Chuvelev, G. Cossu, C. Kelly, C. Lehner, and L. Meadows. 2017.
Accelerating hpc codes on intel (r) omni-path architecture networks: from
particle physics to machine learning. arXiv preprint arXiv:1711.04883.

[15] S. Byna, J. Chou, O. Rubel, H. Karimabadi,W. S. Daughter, et al. 2012. Parallel I/O,
analysis, and visualization of a trillion particle simulation. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis. IEEE, 1ś12.

[16] Y. Cao,W.-w. Tung, J. Gao, V. A. Protopopescu, and L. M. Hively. 2004. Detecting
dynamical changes in time series using the permutation entropy. Physical review
E, 70, 4, 046217.

[17] D.-M. Chiu and R. Jain. 1989. Analysis of the increase and decrease algorithms

for congestion avoidance in computer networks. Computer Networks and ISDN
systems, 17, 1, 1ś14.

[18] H. Devarajan, A. Kougkas, K. Bateman, and X. H. Sun. 2020. Hcl: distributing
parallel data structures in extreme scales. In 2020 IEEE International Conference
on Cluster Computing (CLUSTER), 248ś258. doi: 10.1109/CLUSTER49012.2020.
00035.

[19] H. Devarajan, A. Kougkas, L. Logan, and X.-H. Sun. 2020. Hcompress: hierar-
chical data compression for multi-tiered storage environments. In 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 557ś
566.

[20] H.Devarajan,A.Kougkas, andX.-H.Sun.2020.Hfetch:hierarchicaldataprefetch-
ing for scientific workflows in multi-tiered storage environments. In 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 62ś72.

[21] M. Fahey, N. Jones, B. Hadri, and B. Hitchcock. 2010. The automatic library
tracking database. Proceedings of the Cray User Group.

[22] A. Fuchs and D.Wentzlaff. 2018. Scaling datacenter accelerators with compute-
reuse architectures. In 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 353ś366.

[23] A. K. H. Devarajan and X. Sun. 2020. Hreplica: a dynamic data replication engine
with adaptive compression for multi-tiered storage. In 2020 IEEE International
Conference on Big Data (Big Data).

[24] IIT. 2019. Ares cluster. http://www.cs.iit.edu/~scs/resources.html#content6-8p.
Accessed: 2019-04-24. (2019).

[25] 2020. Introduction to redis streams - redis. redislabs, (2020). https://redis.io/
topics/streams-intro.

[26] R. Izadpanah, B. A. Allan, D. Dechev, and J. Brandt. 2019. Production applica-
tion performance data streaming for systemmonitoring. ACM Transactions on
Modeling and Performance Evaluation of Computing Systems (TOMPECS), 4, 2,
1ś25.

[27] X. Ji, B. Yang, T. Zhang, X. Ma, X. Zhu, X.Wang, N. El-Sayed, J. Zhai, W. Liu, and
W. Xue. 2019. Automatic, application-aware i/o forwarding resource allocation.
In 17th {USENIX} Conference on File and Storage Technologies ({FAST} 19), 265ś
279.

[28] A. Kougkas, H. Devarajan, K. Bateman, J. Cernuda, N. Rajesh, and X.-H. Sun.
[n. d.] Chronolog: a distributed shared tiered log store with time-based data
ordering. Proceedings of the 36th International Conference on Massive Storage
Systems and Technology (MSST 2020).

[29] A. Kougkas, H. Devarajan, J. Lofstead, and X.-H. Sun. 2019. Labios: a distributed
label-based i/o system. In Proceedings of the 28th International Symposium
on High-Performance Parallel and Distributed Computing (HPDC ’19). ACM,
Phoenix, AZ, USA, 13ś24. isbn: 978-1-4503-6670-0. doi: 10 . 1145 / 3307681 .
3325405. http://doi.acm.org/10.1145/3307681.3325405.

[30] A. Kougkas, H. Devarajan, and X.-H. Sun. 2018. Hermes: a heterogeneous-aware
multi-tiered distributed i/o buffering system. In Proceedings of the 27th Inter-
national Symposium on High-Performance Parallel and Distributed Computing,
219ś230.

[31] A. Kougkas, H. Devarajan, X.-H. Sun, and J. Lofstead. 2018. Harmonia: an
interference-aware dynamic i/o scheduler for shared non-volatile burst buffers.
In 2018 IEEE International Conference on Cluster Computing (CLUSTER). IEEE,
290ś301.

[32] C. Li, Y. Wang, Y. Chen, and Y. Luo. 2019. Energy-efficient fault-tolerant replica
management policy with deadline and budget constraints in edge-cloud envi-
ronment. Journal of Network and Computer Applications, 143, 152ś166.

[33] W. Liang, Y. Chen, and H. An. 2019. Interference-aware i/o scheduling for data-
intensive applications on hierarchical hpc storage systems. In 2019 IEEE 21st
International Conference on High Performance Computing and Communications;
IEEE 17th International Conference on Smart City; IEEE 5th International Confer-
ence on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 654ś661.

[34] 2020. Libuv/libuv: cross-platform asynchronous i/o. libuv, (2020). https://github.
com/libuv/libuv.

[35] J. Lin, S. Williamson, K. Borne, and D. DeBarr. 2012. Pattern recognition in time
series.Advances in Machine Learning and DataMining for Astronomy, 1, 617-645,
3.

[36] G. K. Lockwood, N. J. Wright, S. Snyder, P. Carns, G. Brown, and K. Harms.
2018. TOKIO on ClusterStor: Connecting standard tools to enable holistic I/O
performanceanalysis.Technical report. LawrenceBerkeleyNationalLab.(LBNL),
Berkeley, CA (United States).

[37] M. L. Massie, B. N. Chun, and D. E. Culler. 2004. The ganglia distributed moni-
toring system: design, implementation, and experience. Parallel Computing, 30,
7, 817ś840.

[38] S. Méndez, D. Rexachs, and E. Luque. 2012. Modeling parallel scientific applica-
tions through their input/output phases. In 2012 IEEE International Conference
on Cluster ComputingWorkshops. IEEE, 7ś15.

[39] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz. 2019. Importance
estimation for neural network pruning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 11264ś11272.

[40] D. Molka, D. Hackenberg, R. Schöne, and M. S. Müller. 2010. Characterizing
the energy consumption of data transfers and arithmetic operations on x86- 64

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

158

processors. In International conference on green computing. IEEE, 123ś133.
[41] F. Moradi, C. Flinta, A. Johnsson, and C. Meirosu. 2017. Conmon: an automated

container based network performance monitoring system. In 2017 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM). IEEE, 54ś62.

[42] J. P. Morrill. 1998. Distributed recognition of patterns in time series data. Com-
munications of the ACM, 41, 5, 45ś51.

[43] A. Netti, M. Müller, C. Guillen, M. Ott, D. Tafani, G. Ozer, and M. Schulz. 2020.
Dcdbwintermute: enabling online and holistic operational data analytics on hpc
systems. In Proceedings of the 29th International SymposiumonHigh-Performance
Parallel and Distributed Computing, 101ś112.

[44] M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. Lukić, V. Roytershteyn,
M. J. Anderson, Y. Yao, P. Dubey, et al. 2015. BD-CATS: big data clustering at
trillion particle scale. In SC’15: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 1ś12.

[45] M. M. Rahman and A. Nahar. 2010. Modified bully algorithm using election
commission. arXiv preprint arXiv:1010.1812.

[46] T. Ronconi et al. 2020. From cosmic voids to collapsed structures: hpc methods
for astrophysics and cosmology.

[47] A. Sagheer and M. Kotb. 2019. Time series forecasting of petroleum production
using deep lstm recurrent networks.Neurocomputing, 323, 203ś213.

[48] S. Selvin, R Vinayakumar, E. Gopalakrishnan, V. K. Menon, and K. Soman. 2017.
Stock price prediction using lstm, rnn and cnn-slidingwindowmodel. In 2017 in-
ternational conference on advances in computing, communications and informatics
(icacci). IEEE, 1643ś1647.

[49] R. Sethi, M. Traverso, D. Sundstrom, D. Phillips, W. Xie, Y. Sun, N. Yegitbasi,
H. Jin, E. Hwang, N. Shingte, et al. 2019. Presto: sql on everything. In 2019 IEEE
35th International Conference on Data Engineering (ICDE). IEEE, 1802ś1813.

[50] J. Sloan, R. Kumar, and G. Bronevetsky. 2012. Algorithmic approaches to low
overhead fault detection for sparse linear algebra. In IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2012). IEEE, 1ś12.

[51] R. Stephens. 1997. A survey of stream processing.Acta Informatica, 34, 7, 491ś
541.

[52] P. Subedi, P.Davis, S.Duan, S. Klasky,H.Kolla, andM.Parashar. 2018. Stacker: an
autonomic data movement engine for extreme-scale data staging-based in-situ
workflows. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 920ś930.

[53] S. Thapaliya, P. Bangalore, J. Lofstead, K. Mohror, and A. Moody. 2016. Manag-
ing i/o interference in a shared burst buffer system. In 2016 45th International
Conference on Parallel Processing (ICPP). IEEE, 416ś425.

[54] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos. 2014. Management of an
academic hpc cluster: the ul experience. In 2014 International Conference on High
Performance Computing & Simulation (HPCS). IEEE, 959ś967.

[55] V Vishwanath, W Feng, M Gardner, and J Leigh. 2006. A high-performance
sensor for cluster monitoring and adaptation. EVL technical document.

[56] T. Wang, S. Byna, B. Dong, and H. Tang. 2018. Univistor: integrated hierarchical
and distributed storage for hpc. In 2018 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 134ś144.

[57] W.Wang. 2003.Modelling conditionmonitoring intervals: a hybrid of simulation
and analytical approaches. The Journal of the Operational Research Society, 54, 3,
273ś282. issn: 01605682, 14769360. http://www.jstor.org/stable/4101621.

[58] V. M.Weaver. 2015. Self-monitoring overhead of the linux perf_ event perfor-
mance counter interface. In 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 102ś111.

[59] J. Xia, D. Guo, L. Luo, and G. Cheng. 2020. Topology-aware data placement
strategy for fault-tolerant storage systems. IEEE Systems Journal.

[60] B. Yang, X. Ji, X. Ma, X. Wang, T. Zhang, X. Zhu, N. El-Sayed, H. Lan, Y. Yang,
J. Zhai, et al. 2019. End-to-end i/o monitoring on a leading supercomputer. In
16th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 19), 379ś394.

[61] S. R. Young, D. C. Rose, T. Johnston, W. T. Heller, T. P. Karnowski, T. E. Potok,
R. M. Patton, G. Perdue, and J. Miller. 2017. Evolving deep networks using hpc.
In Proceedings of the Machine Learning on HPC Environments, 1ś7.

[62] 2020. Zabbix. Zabbix, LLC, (2020). https://www.zabbix.com/.

Session: AI for Systems, Systems For AI HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

159

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Existing Monitoring Services
	2.2 Predicting Time-series Data

	3 Apollo
	3.1 High Level Architecture
	3.2 Improved Storage Layer
	3.3 I/O Insight Curation
	3.4 High Accuracy With Low Monitoring Cost

	4 Evaluation
	4.1 Methodology
	4.2 Reducing Telemetry Data Access Latency While Increasing I/O Throughput
	4.3 Reducing Overall Cost Of Resource Monitoring While Increasing Accuracy
	4.4 Real Workloads

	5 Related Work
	6 Conclusion and Future Work

