
DLIO: A Data-Centric Benchmark for

Scientific Deep Learning Applications

Hariharan Devarajan1, Huihuo Zheng2, Anthony Kougkas1, Xian-He Sun1, and Venkatram Vishwanath2

hdevarajan@hawk.iit.edu, huihuo.zheng@anl.gov, akougkas@iit.edu, sun@iit.edu, venkat@anl.gov
1Illinois Institute of Technology, Chicago

2Argonne National Laboratory

Abstract—Deep learning has been shown as a successful
method for various tasks, and its popularity results in numerous
open-source deep learning software tools. Deep learning has
been applied to a broad spectrum of scientific domains such
as cosmology, particle physics, computer vision, fusion, and
astrophysics. Scientists have performed a great deal of work
to optimize the computational performance of deep learning
frameworks. However, the same cannot be said for I/O perfor-
mance. As deep learning algorithms rely on big-data volume and
variety to effectively train neural networks accurately, I/O is
a significant bottleneck on large-scale distributed deep learning
training. This study aims to provide a detailed investigation of
the I/O behavior of various scientific deep learning workloads
running on the Theta supercomputer at Argonne Leadership
Computing Facility. In this paper, we present DLIO, a novel
representative benchmark suite built based on the I/O profiling
of the selected workloads. DLIO can be utilized to accurately
emulate the I/O behavior of modern scientific deep learning
applications. Using DLIO, application developers and system
software solution architects can identify potential I/O bottlenecks
in their applications and guide optimizations to boost the I/O
performance leading to lower training times by up to 6.7x.

Index Terms—deep learning; scientific applications; represen-
tative; benchmark; data intensive; I/O; characterization; Tensor-
flow; data pipeline;

I. INTRODUCTION

In the past decade, deep learning (DL) has been applied

to a wide range of applications [1] with tremendous success.

These include image recognition [2], natural language

processing [3], autonomous driving [4], as well as physical

science domains such as cosmology [5], materials science [6],

[7], and biology [8], [9]. Using DL methods in scientific

applications is beneficial in two meaningful ways: a)

accelerate time-to-results by minimizing the simulation cost,

b) extract patterns out of large datasets where heuristics

cannot. DL methods achieve this by iteratively adjust the

weights within the network to minimize a loss function. At

each training step, the application reads a mini-batch of data,

computes the gradient of the loss function, and then updates

the network’s weights using stochastic gradient descent.

Many new AI hardware (e.g., GPU, TPU, Cerebras, etc.) have

been designed and deployed to accelerate the computation

during the training. However, as the size and complexity of

the data sets grow rapidly, DL training becomes increasingly

read-intensive with I/O being a potential bottleneck [10].

On the other hand, more and more studies on scientific

DL application are conducted on supercomputers through a

distributed training framework to reduce the training time-to-

solution [11]. Therefore, characterizing the I/O behavior [12]

of DL workloads in high-performance computing (HPC)

environments is crucial to address any potential bottlenecks in

I/O and to provide useful insights to guide I/O optimizations.

Data is the core of all deep learning methods. As the data

volume explodes, efficient data ingestion and processing be-

comes a significant challenge. To address this, the cloud com-

munity has developed several comprehensive DL frameworks

such as TensorFlow [13], Pytorch [14], and Caffe [15] that

encapsulate methods to tune different data access parameters.

These tuning parameters are tailored to heterogeneous cloud

environments [16], including: different data sources and data

representations (e.g., textual formats or custom data formats

such as TFRecord); mechanisms for adjusting worker assign-

ment to read, process, and feed data into a distributed training

process; and finally, hardware-specific optimizations [17],

(e.g., RDMA, GPU-Direct, NVLink etc.,) to enable efficient

data movement within the application. These optimizations

improve data access significantly in these environments.

Studying the behavior of DL applications allows developers

to fine tune their training pipelines. Benchmarks suites have

traditionally been used to drive insights and reason about the

expected performance of applications. In this study, we high-

light three major hurdles in developing such benchmarks. First,

existing DL benchmarks have been focusing on characterizing

the computational capabilities of DL frameworks [18] but

do not address their data management competency. Second,

this compute-centric thinking has led to a lack of a standard

methodology to quantify the benefits of existing data access

optimizations implemented by DL frameworks for efficient

data ingestion in scientific workflows. Third, I/O research and

optimization [19]–[22] for DL applications in HPC requires

the adoption of mini-applications [23] that encapsulate the

data access and processing characteristics of complex scientific

DL workflows. Hence, the existence of mini-applications will

enable fast prototyping and testing of novel and innovative so-

lutions. Hence, a benchmark suite that can encapsulate the data

access behavior of various scientific DL applications is crucial.

In this work, we present DLIO, an I/O benchmark for scien-

tific DL applications. DLIO aims to accurately characterize the

behavior of scientific DL applications and guide data-centric

81

2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

978-1-7281-9586-5/21/$31.00 ©2021 IEEE
DOI 10.1109/CCGrid51090.2021.00018

optimizations on modern HPC systems. To build this bench-

mark, we first characterize the behavior of modern scientific

DL applications currently running on production supercom-

puters at Argonne Leadership Computing Facility (ALCF).

Our approach captures a wide variety of application behaviors,

from different scientific domains, informed by several active

projects such as Argonne Data Science Program (ADSP),

Aurora Early Science Program (ESP), and DOE’s Exascale

Computing Project (ECP). In order to acquire a holistic view

of how data is accessed in DL applications, we utilized both

high-level and low-level I/O profiling tools. DLIO incorporates

the observed I/O behavior in these applications and provides

tunable mechanisms to test and adjust different I/O access

optimizations. Our benchmark suite is validated by statistically

comparing the generated I/O behaviors with the applications.

DLIO uses mini-applications to emulate several DL applica-

tion behaviors. Lastly, DLIO provides a highly tunable data-

generation toolkit that can be used to project the behavior of

DL applications at scale. The contributions of this work are:

1) A comprehensive study of the I/O behavior of eight scien-

tific DL applications on a production supercomputer (III).

2) The design and implementation of a modular and flexible

I/O benchmark for scientific DL applications (IV).

3) An illustration of how DLIO can guide software

optimizations to boost application’s I/O performance (V).

II. RELATED WORK

HPC benchmarks for DL have concentrated on measuring

the machine’s computing power. There are several challenges

in the DL domain such as system heterogeneity, the variety of

deep learning workloads, the stochastic nature of approaches,

and the difficulty in designing simple, yet comprehensive,

measurements. Researchers have attempted to highlight these

challenges by incorporating different machines [1], [24] or DL

algorithms [25], [26]. All of these benchmarks focus solely on

capturing the computation aspect of DL workloads on HPC

systems. However, this work aims to capture the I/O behavior

for many scientific DL workloads so as to propel innovations

and designs. Scientists have [27], [28] characterized the I/O

behavior of deep learning application’s I/O performance

over parallel file systems running in HPC infrastructure.

However, those studies were limited to single node and

Imagenet Benchmark evaluations and characterizations. Our

study aims to provide a deeper dive into various scientific DL

applications in HPC and build a representative benchmark

which can further research and development.

DL in cloud environments inspires more and more inter-

ests from both academia and industry; hence, a series of

benchmarks have been proposed. Fathom [25], BenchNN [29],

DeepBench [30], and MLPerf [31] provides multiple deep

learning workloads and models implemented with Tensor-

Flow. DNNMark [32] is GPU benchmark suites that consists

of a collection of deep neural network primitives. All of

these benchmarks target cloud platforms whereas scientific

workloads are typically run on supercomputing platforms.

Additionally, unlike this work, their focus is to express the

computation requirements of DL workloads but not the I/O

requirements. Scientists have proposed I/O frameworks [33],

[34] for training deep neural networks by enabling RDMA-

assisted in-situ shuffling, input pipelining and entropy-aware

opportunistic ordering. These frameworks are benchmarked

against the TensorFlow dataset API, and a portable API for

TensorFlow is developed to leverage DeepIO on different

storage systems. However, our work focuses on characterizing

and optimizing existing TensorFlow applications by building a

representative benchmark targeting scientific DL applications.

III. METHODOLOGY

In this section, we aim to understand the I/O behavior in

scientific DL applications. We explore a collection of scientific

deep learning workloads currently running at the Argonne

Leadership Computing Facility (ALCF). These workloads are

selected from various projects, such as Argonne Data Science

Program (ADSP), Aurora Early Science Program (ESP), and

Exascale Computing Projects (ECP). The science domains

represented by the workloads include physics [5], [35], cos-

mology [36], materials science [6], and biology [8], [9]. Many

of the workloads are in active development targeting upcoming

exascale supercomputers. One of the long term goals for

this study is to identify any existing I/O bottlenecks in these

workloads on current production machines and suggest I/O

optimizations for current applications and provide a road map

for future systems. We profile the I/O behavior of eight DL

applications on Theta, the current production leadership-class

supercomputer at ALCF. We utilize the profilers provided by

the DL framework, such as the TensorFlow profiler as well

as low-level I/O profiler such as Darshan, to study the I/O

behavior of applications. These profilers are accompanied

with analysis tools. However, to get a holistic view of the

application, we developed our own Python-based analysis tool,

VaniDL [37], for post-processing the information obtained

from profiling tools and generating high level I/O summary.

A. I/O behavior of scientific Deep learning applications

Hardware: We run the applications on Theta [38]. Theta

consists of 4392 compute nodes and 864 Aries routers

interconnected with a dragonfly network. Each router hosts

four compute nodes, each contains 64 2nd generation Intel

Xeon PhiTM processors, code name Knights Landing (KNL).

Each node is equipped with 192 GB of DDR4 and 16 GB

of MCDRAM. In all the studies presented here, we set two

hyper-threads per core for a total of 128 threads per node, and

four MPI processes per node. The datasets are stored in the

HDD-based Lustre file system of size 10 PB with 56 OSTs. We

set the Lustre stripe size to be 1 MB and stripe count to be 48.

The peak read performance the Lustre filesystem is 240 GB/s.

Applications: We target distributed DL workloads. These

include Neutrino and Cosmic Tagging with UNet [5],

Distributed Flood Filling Networks (FFN) for shape

recognition in brain tissue [6], Deep Learning Climate

Segmentation [39], CosmoFlow for learning universe

at scale [36], Cancer Distributed Learning Environment

82

[11] Y. Kwon and M. Rhu, “Beyond the memory wall: A case for memory-
centric hpc system for deep learning,” in 2018 51st Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO). IEEE, 2018,
pp. 148–161.

[12] H. Devarajan, A. Kougkas, P. Challa, and X.-H. Sun, “Vidya: Performing
Code-Block IO Characterization for Data Access Optimization,” in 25TH

IEEE International conference on High Performance Computing, data,

and analytics, no. 2640-0316, 2018, pp. 255–264.

[13] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} symposium on operating

systems design and implementation ({OSDI} 16), 2016, pp. 265–283.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Advances

in neural information processing systems, 2019, pp. 8026–8037.

[15] J. Gu, Y. Liu, Y. Gao, and M. Zhu, “OpenCL caffe: Accelerating and
enabling a cross platform machine learning framework,” in Proceedings

of the 4th International Workshop on OpenCL, 2016, pp. 1–5.

[16] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint

arXiv:1603.04467, 2016.

[17] V. Leon, S. Mouselinos, K. Koliogeorgi, S. Xydis, D. Soudris, and
K. Pekmestzi, “A TensorFlow Extension Framework for Optimized
Generation of Hardware CNN Inference Engines,” Technologies, vol. 8,
no. 1, p. 6, 2020.

[18] P. Malakar, P. Balaprakash, V. Vishwanath, V. Morozov, and K. Ku-
maran, “Benchmarking machine learning methods for performance
modeling of scientific applications,” in 2018 IEEE/ACM Performance

Modeling, Benchmarking and Simulation of High Performance Com-

puter Systems (PMBS). IEEE, 2018, pp. 33–44.

[19] H. Devarajan, A. Kougkas, and X.-H. Sun, “HFetch: Hierarchical Data
Prefetching for Scientific Workflows in Multi-Tiered Storage Environ-
ments,” in 2020 IEEE International Parallel and Distributed Processing

Symposium (IPDPS). IEEE, 2020, pp. 62–72.

[20] ——, “HReplica: A Dynamic Data Replication Engine with Adaptive
Compression for Multi-Tiered Storage,” in 2020 IEEE International

Conference on Big Data (Big Data), 2020, pp. 256–265.

[21] A. Kougkas, H. Devarajan, and X.-H. Sun, “I/O acceleration via multi-
tiered data buffering and prefetching,” Journal of Computer Science and

Technology, vol. 35, no. 1, pp. 92–120, 2020.

[22] ——, “Hermes: a heterogeneous-aware multi-tiered distributed I/O
buffering system,” in Proceedings of the 27th International Symposium

on High-Performance Parallel and Distributed Computing, 2018, pp.
219–230.

[23] O. B. Messer, E. D’Azevedo, J. Hill, W. Joubert, M. Berrill, and
C. Zimmer, “MiniApps derived from production HPC applications
using multiple programing models,” The International Journal of High

Performance Computing Applications, vol. 32, no. 4, pp. 582–593, 2018.

[24] J.-H. Tao, Z.-D. Du, Q. Guo, H.-Y. Lan, L. Zhang, S.-Y. Zhou, L.-J. Xu,
C. Liu, H.-F. Liu, S. Tang et al., “B ench ip: Benchmarking intelligence
processors,” Journal of Computer Science and Technology, vol. 33, no. 1,
pp. 1–23, 2018.

[25] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, and D. Brooks, “Fathom:
Reference workloads for modern deep learning methods,” in 2016

IEEE International Symposium on Workload Characterization (IISWC).
IEEE, 2016, pp. 1–10.

[26] W. Gao, F. Tang, L. Wang, J. Zhan, C. Lan, C. Luo, Y. Huang, C. Zheng,
J. Dai, Z. Cao et al., “AIBench: an industry standard internet service
AI benchmark suite,” arXiv preprint arXiv:1908.08998, 2019.

[27] F. Chowdhury, Y. Zhu, T. Heer, S. Paredes, A. Moody, R. Goldstone,
K. Mohror, and W. Yu, “I/O characterization and performance evaluation
of beegfs for deep learning,” in Proceedings of the 48th International

Conference on Parallel Processing, 2019, pp. 1–10.

[28] S. Pumma, M. Si, W.-C. Feng, and P. Balaji, “Scalable Deep Learning
via I/O Analysis and Optimization,” ACM Transactions on Parallel

Computing (TOPC), vol. 6, no. 2, pp. 1–34, 2019.

[29] T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Lipasti, A. Nere,
S. Qiu, M. Sebag, and O. Temam, “BenchNN: On the broad potential
application scope of hardware neural network accelerators,” in 2012

IEEE International Symposium on Workload Characterization (IISWC).
IEEE, 2012, pp. 36–45.

[30] S. Narang and G. Diamos, “DeepBench,” 2016.

[31] P. Mattson, V. J. Reddi, C. Cheng, C. Coleman, G. Diamos, D. Kanter,
P. Micikevicius, D. Patterson, G. Schmuelling, H. Tang et al., “MLPerf:
An industry standard benchmark suite for machine learning perfor-
mance,” IEEE Micro, vol. 40, no. 2, pp. 8–16, 2020.

[32] S. Dong and D. Kaeli, “Dnnmark: A deep neural network benchmark
suite for gpus,” in Proceedings of the General Purpose GPUs, 2017, pp.
63–72.

[33] Y. Zhu, F. Chowdhury, H. Fu, A. Moody, K. Mohror, K. Sato, and W. Yu,
“Entropy-aware I/O pipelining for large-scale deep learning on HPC
systems,” in 2018 IEEE 26th International Symposium on Modeling,

Analysis, and Simulation of Computer and Telecommunication Systems

(MASCOTS). IEEE, 2018, pp. 145–156.
[34] K. Serizawa and O. Tatebe, “Accelerating Machine Learning I/O by

Overlapping Data Staging and Mini-batch Generations,” in Proceedings

of the 6th IEEE/ACM International Conference on Big Data Computing,

Applications and Technologies, 2019, pp. 31–34.
[35] D. Levy, M. D. Hoffman, and J. Sohl-Dickstein, “Generalizing

Hamiltonian Monte Carlo with Neural Networks,” arXiv preprint

arXiv:1711.09268, 2017.
[36] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows, J. Arnemann,

L. Shao, S. He, T. Kärnä, D. Moise, S. J. Pennycook et al., “Cos-
moFlow: Using deep learning to learn the universe at scale,” in SC18:

International Conference for High Performance Computing, Networking,

Storage and Analysis. IEEE, 2018, pp. 819–829.
[37] H. Devarajan, “VaniDL: DL analyzer tool,” 2020.
[38] ALCF, “Theta Machine Overview,” 2020. [Online]. Available:

https://www.alcf.anl.gov/support-center/theta/theta-thetagpu-overview
[39] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips,

A. Mahesh, M. Matheson, J. Deslippe, M. Fatica et al., “Exascale
deep learning for climate analytics,” in SC18: International Conference

for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2018, pp. 649–660.

[40] Tensorflow, “TensorFlow benchmarks,” 2018. [Online]. Available:
https://github.com/tensorflow/benchmarks

[41] H. Devarajan and H. Zheng, “VaniDL Analyzer for Deep Learning
Workloads,” 2020. [Online]. Available: https://github.com/hariharan-
devarajan/vanidl

[42] DeepLearnPhysics, “LArCV (Version 3),” 2020. [Online]. Available:
https://github.com/DeepLearnPhysics/larcv3

[43] S. Saini, J. Rappleye, J. Chang, D. Barker, P. Mehrotra, and R. Biswas,
“I/O performance characterization of Lustre and NASA applications on
Pleiades,” in 2012 19th International Conference on High Performance

Computing. IEEE, 2012, pp. 1–10.
[44] H. Devarajan, “DLIO: Scientific Deep Learning I/O Bench-

mark,” 2020. [Online]. Available: https://github.com/hariharan-
devarajan/dlio benchmark

[45] H. Devarajan, A. Kougkas, L. Logan, and X.-H. Sun, “HCompress:
Hierarchical Data Compression for Multi-Tiered Storage Environments,”
in 2020 IEEE International Parallel and Distributed Processing Sympo-

sium (IPDPS). IEEE, 2020, pp. 557–566.
[46] H. Devarajan, A. Kougkas, and X.-H. Sun, “Ares: An Intelligent, Adap-

tive, and Flexible Data Compression Framework,” in 2019 IEEE/ACM

International Symposium in Cluster, Cloud, and Grid Computing (CC-

Grid 2019), 2019.
[47] A. Kougkas, H. Devarajan, X.-H. Sun, and J. Lofstead, “Harmonia: An

interference-aware dynamic I/O scheduler for shared non-volatile burst
buffers,” in 2018 IEEE International Conference on Cluster Computing

(CLUSTER). IEEE, 2018, pp. 290–301.

91

