2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

DLIO: A Data-Centric Benchmark for
Scientific Deep Learning Applications

Hariharan Devarajan', Huihuo Zheng?, Anthony Kougkas!, Xian-He Sun!, and Venkatram Vishwanath?

hdevarajan @ hawk.iit.edu, huihuo.zheng @anl.gov, akougkas@iit.edu, sun@iit.edu, venkat@anl.gov
llinois Institute of Technology, Chicago
2Argonne National Laboratory

Abstract—Deep learning has been shown as a successful
method for various tasks, and its popularity results in numerous
open-source deep learning software tools. Deep learning has
been applied to a broad spectrum of scientific domains such
as cosmology, particle physics, computer vision, fusion, and
astrophysics. Scientists have performed a great deal of work
to optimize the computational performance of deep learning
frameworks. However, the same cannot be said for I/O perfor-
mance. As deep learning algorithms rely on big-data volume and
variety to effectively train neural networks accurately, I/O is
a significant bottleneck on large-scale distributed deep learning
training. This study aims to provide a detailed investigation of
the I/0 behavior of various scientific deep learning workloads
running on the Theta supercomputer at Argonne Leadership
Computing Facility. In this paper, we present DLIO, a novel
representative benchmark suite built based on the I/O profiling
of the selected workloads. DLIO can be utilized to accurately
emulate the I/O behavior of modern scientific deep learning
applications. Using DLIO, application developers and system
software solution architects can identify potential I/O bottlenecks
in their applications and guide optimizations to boost the I/0
performance leading to lower training times by up to 6.7x.

Index Terms—deep learning; scientific applications; represen-
tative; benchmark; data intensive; I/O; characterization; Tensor-
flow; data pipeline;

I. INTRODUCTION

In the past decade, deep learning (DL) has been applied
to a wide range of applications [1] with tremendous success.
These include image recognition [2], natural language
processing [3], autonomous driving [4], as well as physical
science domains such as cosmology [5], materials science [6],
[7], and biology [8], [9]. Using DL methods in scientific
applications is beneficial in two meaningful ways: a)
accelerate time-to-results by minimizing the simulation cost,
b) extract patterns out of large datasets where heuristics
cannot. DL methods achieve this by iteratively adjust the
weights within the network to minimize a loss function. At
each training step, the application reads a mini-batch of data,
computes the gradient of the loss function, and then updates
the network’s weights using stochastic gradient descent.
Many new Al hardware (e.g., GPU, TPU, Cerebras, etc.) have
been designed and deployed to accelerate the computation
during the training. However, as the size and complexity of
the data sets grow rapidly, DL training becomes increasingly
read-intensive with I/O being a potential bottleneck [10].
On the other hand, more and more studies on scientific
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DL application are conducted on supercomputers through a
distributed training framework to reduce the training time-to-
solution [11]. Therefore, characterizing the I/O behavior [12]
of DL workloads in high-performance computing (HPC)
environments is crucial to address any potential bottlenecks in
I/O and to provide useful insights to guide I/O optimizations.
Data is the core of all deep learning methods. As the data
volume explodes, efficient data ingestion and processing be-
comes a significant challenge. To address this, the cloud com-
munity has developed several comprehensive DL frameworks
such as TensorFlow [13], Pytorch [14], and Caffe [15] that
encapsulate methods to tune different data access parameters.
These tuning parameters are tailored to heterogeneous cloud
environments [16], including: different data sources and data
representations (e.g., textual formats or custom data formats
such as TFRecord); mechanisms for adjusting worker assign-
ment to read, process, and feed data into a distributed training
process; and finally, hardware-specific optimizations [17],
(e.g., RDMA, GPU-Direct, NVLink etc.,) to enable efficient
data movement within the application. These optimizations
improve data access significantly in these environments.
Studying the behavior of DL applications allows developers
to fine tune their training pipelines. Benchmarks suites have
traditionally been used to drive insights and reason about the
expected performance of applications. In this study, we high-
light three major hurdles in developing such benchmarks. First,
existing DL benchmarks have been focusing on characterizing
the computational capabilities of DL frameworks [18] but
do not address their data management competency. Second,
this compute-centric thinking has led to a lack of a standard
methodology to quantify the benefits of existing data access
optimizations implemented by DL frameworks for efficient
data ingestion in scientific workflows. Third, I/O research and
optimization [19]-[22] for DL applications in HPC requires
the adoption of mini-applications [23] that encapsulate the
data access and processing characteristics of complex scientific
DL workflows. Hence, the existence of mini-applications will
enable fast prototyping and testing of novel and innovative so-
lutions. Hence, a benchmark suite that can encapsulate the data
access behavior of various scientific DL applications is crucial.
In this work, we present DLIO, an I/O benchmark for scien-
tific DL applications. DLIO aims to accurately characterize the
behavior of scientific DL applications and guide data-centric



optimizations on modern HPC systems. To build this bench-
mark, we first characterize the behavior of modern scientific
DL applications currently running on production supercom-
puters at Argonne Leadership Computing Facility (ALCF).
Our approach captures a wide variety of application behaviors,
from different scientific domains, informed by several active
projects such as Argonne Data Science Program (ADSP),
Aurora Early Science Program (ESP), and DOE’s Exascale
Computing Project (ECP). In order to acquire a holistic view
of how data is accessed in DL applications, we utilized both
high-level and low-level I/O profiling tools. DLIO incorporates
the observed I/O behavior in these applications and provides
tunable mechanisms to test and adjust different I/O access
optimizations. Our benchmark suite is validated by statistically
comparing the generated I/O behaviors with the applications.
DLIO uses mini-applications to emulate several DL applica-
tion behaviors. Lastly, DLIO provides a highly tunable data-
generation toolkit that can be used to project the behavior of
DL applications at scale. The contributions of this work are:

1) A comprehensive study of the I/O behavior of eight scien-
tific DL applications on a production supercomputer (III).

2) The design and implementation of a modular and flexible
I/O benchmark for scientific DL applications (IV).

3) An illustration of how DLIO can guide software
optimizations to boost application’s I/O performance (V).

II. RELATED WORK

HPC benchmarks for DL have concentrated on measuring
the machine’s computing power. There are several challenges
in the DL domain such as system heterogeneity, the variety of
deep learning workloads, the stochastic nature of approaches,
and the difficulty in designing simple, yet comprehensive,
measurements. Researchers have attempted to highlight these
challenges by incorporating different machines [1], [24] or DL
algorithms [25], [26]. All of these benchmarks focus solely on
capturing the computation aspect of DL workloads on HPC
systems. However, this work aims to capture the I/O behavior
for many scientific DL. workloads so as to propel innovations
and designs. Scientists have [27], [28] characterized the I/O
behavior of deep learning application’s I/O performance
over parallel file systems running in HPC infrastructure.
However, those studies were limited to single node and
Imagenet Benchmark evaluations and characterizations. Our
study aims to provide a deeper dive into various scientific DL
applications in HPC and build a representative benchmark
which can further research and development.

DL in cloud environments inspires more and more inter-
ests from both academia and industry; hence, a series of
benchmarks have been proposed. Fathom [25], BenchNN [29],
DeepBench [30], and MLPerf [31] provides multiple deep
learning workloads and models implemented with Tensor-
Flow. DNNMark [32] is GPU benchmark suites that consists
of a collection of deep neural network primitives. All of
these benchmarks target cloud platforms whereas scientific
workloads are typically run on supercomputing platforms.
Additionally, unlike this work, their focus is to express the
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computation requirements of DL workloads but not the I/O
requirements. Scientists have proposed I/O frameworks [33],
[34] for training deep neural networks by enabling RDMA-
assisted in-situ shuffling, input pipelining and entropy-aware
opportunistic ordering. These frameworks are benchmarked
against the TensorFlow dataset API, and a portable API for
TensorFlow is developed to leverage DeeplO on different
storage systems. However, our work focuses on characterizing
and optimizing existing TensorFlow applications by building a
representative benchmark targeting scientific DL applications.

III. METHODOLOGY

In this section, we aim to understand the I/O behavior in
scientific DL applications. We explore a collection of scientific
deep learning workloads currently running at the Argonne
Leadership Computing Facility (ALCF). These workloads are
selected from various projects, such as Argonne Data Science
Program (ADSP), Aurora Early Science Program (ESP), and
Exascale Computing Projects (ECP). The science domains
represented by the workloads include physics [5], [35], cos-
mology [36], materials science [6], and biology [8], [9]. Many
of the workloads are in active development targeting upcoming
exascale supercomputers. One of the long term goals for
this study is to identify any existing I/O bottlenecks in these
workloads on current production machines and suggest I/O
optimizations for current applications and provide a road map
for future systems. We profile the I/O behavior of eight DL
applications on Theta, the current production leadership-class
supercomputer at ALCF. We utilize the profilers provided by
the DL framework, such as the TensorFlow profiler as well
as low-level I/O profiler such as Darshan, to study the I/O
behavior of applications. These profilers are accompanied
with analysis tools. However, to get a holistic view of the
application, we developed our own Python-based analysis tool,
VaniDL [37], for post-processing the information obtained
from profiling tools and generating high level I/O summary.

A. I/O behavior of scientific Deep learning applications

Hardware: We run the applications on Theta [38]. Theta
consists of 4392 compute nodes and 864 Aries routers
interconnected with a dragonfly network. Each router hosts
four compute nodes, each contains 64 2" generation Intel
Xeon Phi™ processors, code name Knights Landing (KNL).
Each node is equipped with 192 GB of DDR4 and 16 GB
of MCDRAM. In all the studies presented here, we set two
hyper-threads per core for a total of 128 threads per node, and
four MPI processes per node. The datasets are stored in the
HDD-based Lustre file system of size 10 PB with 56 OSTs. We
set the Lustre stripe size to be 1 MB and stripe count to be 48.
The peak read performance the Lustre filesystem is 240 GB/s.
Applications: We target distributed DL workloads. These
include Neutrino and Cosmic Tagging with UNet [5],
Distributed Flood Filling Networks (FFN) for shape
recognition in brain tissue [6], Deep Learning Climate
Segmentation [39], CosmoFlow for learning universe
at scale [36], Cancer Distributed Learning Environment
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Fig. 1. T/O behavior of Cosmic Tagger: Figure a) shows the application
achieved an aggregate bandwidth of 11 MB/s. Figure b) shows that most
requests were made between 2 KB and 6 KB due to the small chunk size set
in the dataset. Figure c) shows 10% of the I/O is hidden behind the compute.

(CANDLE) for cancer research [8], Fusion Recurrent Neural
Net for representation learning in plasma science [9], Learning
To Hamiltonian Monte Carlo (L2ZHMC) [35], and TensorFlow
CNN Benchmarks [40]. These applications are implemented
in TensorFlow and use Horovod for data parallel training.
Tools: We use Darshan (with extended tracing) as our low-
level I/O profiling tool along with the TensorFlow profiler.
Additionally, we process the profiling results using our custom
analytic tool, VaniDL [41] to integrate the low-level Darshan
logs with high-level TensorFlow profiler logs and generate a
holistic I/0O information of the application, such as I/O access
pattern, transfer size distributions for all the I/O operations,
I/0 access timeline, etc. All the results described below are
the outcome of the analysis produced by VaniDL. In order
to see how much overlap there is between compute and I/O,
we align the I/O timeline generated from Darshan profiling
results and the TensorFlow timeline. We use anchors (e.g.,
timestamp to a file) placed within code to align the timelines.
1) Neutrino and Cosmic Tagging with UNet [5]: Cosmic
Tagger is a convolutional network for separating cosmic
pixels, background pixels, and neutrino pixels in a neutrino
dataset. In our benchmark, the application reads 33 GB of the
dataset stored in HDF5 format using the larcv3 [42] library.
The dataset contains 43000 samples, each of which contains
three images of size 1280%2048. The samples are stored in
an HDF5 dataset as sparse data of average size 40 KB with
a standard deviation of 10 KB. The application is run for 150
steps on a single epoch. At each step, each process reads 32
images and perform pre-processing with twelve initial filters.
Figure 1 shows the I/O profile of the application’s behavior.
The application spent 227 seconds on I/O, which is 22% of
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Fig. 2. 1/O behavior of DFFN: Figure a) shows the equal distribution of I/O
between ranks of the application and a bandwidth per rank of 22 MB/s. Figure
b) shows that small accesses (i.e., 100 Bytes) are from the metadata file and
large accesses (i.e., 64 KB) are from the data file. Figure c) showcases the
distinct I/O and computation phases.

the overall time. It reads the whole dataset sequentially with
an average aggregate bandwidth of 11 MB/s. The HDFS file is
opened at the beginning of the training, which triggers Lustre’s
prefetching at the beginning of the file. This results in the
initial high bandwidth seen in Figure 1(a). After this, each pro-
cess continues reading data for each step of the training with an
average bandwidth of 4 MB/s. This relatively low bandwidth
observed can be explained by the transfer-size distribution of
the application. The HDF?5 file is chunked with 2 KB chunk
size. This chunking creates a small I/O unit (2KB and 6KB on
the figure) on the parallel file system which, as known by pre-
vious studies [43], resulting in a sub-optimal performance. Fi-
nally, Figure 1(c) shows the compute and I/O timeline obtained
by merging Darshan tracing with TensorFlow profiler tracing.
It is found that the application uses a single thread for I/O and
multiple threads for computation. At each step, the I/O occurs
before the computation starts. Part of the I/O overlaps with the
compute. Out of 227 seconds of I/O, 23 seconds was hidden
behind compute. This accounts for 10% of the overall I/O time.

2) Distributed Flood Filling Networks (DFFN) [6]: DFFN
is a recurrent 3D convolutional network for segmenting com-
plex and large shapes of neurons from a brain tissue’s raw
image. In our benchmark, the application reads a dataset of
2.28 GB from a HDFS5 file. The I/O is performed using the
h5py python library. The data is stored in two files: one
contains real data and the other contains metadata associated
with the dataset (e.g., size of samples, location of samples
within the dataset, etc.). The training dataset consists of 18678
samples, each of size 32x32x32. The samples are read by the
application with 4096 fields of view. The application runs for
400 steps in one epoch. At each step, each process reads a
batch of 32 images.

Figure 2 shows the behavior of the DFFN application. Every
process in the application reads the 1/3™ of the dataset (i.e.,
overall I/O of 363 GB) randomly in 67.858 seconds (i.e.,
18 % of the overall time). The dataset was read by the
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Fig. 3. I/O Behavior of CosmoFlow: Figure a) shows that the application
achieves a bandwidth of 36 GB/s. Figure b) shows the average bandwidth
achieved per rank within the application is 750 MB/s. Figure c) shows that
I/0 and compute completely overlap within the application.

application (512 ranks) with an aggregate bandwidth of 11
GB/s [Figure 2(a)]. The application reads this dataset with
the distribution of the transfer size centers at two places
[Figure 2(b)], one at about 64 KB (for reading images), the
other at about 100B (for reading metadata). A chunk size of
64KB is used in the data file. That is why the transfer size
for reading images is about 64 KB. This dataset is accessed
randomly due to shuffling and then a batch of images is read.
Finally, Figure 2(c), shows the merged timeline of compute
and I/O within the application. In this case, we do not see
overlap between I/O and compute.

3) Cosmoflow Benchmark [36]: CosmoFlow is a 3D con-
volutional neural network model for studying the features
in the distribution of dark matter. The application reads a
dataset of size 2 TB, which consists of 1024 TFRecord files.
The dataset is accessed using TensorFlow’s t f£.data APIs.
Each TFRecord file consists of 262,144 samples, each of size
128x128x 128 x4. The application runs for four epochs with
256000 steps. The batch size is one. That is, each process
reads one image from the dataset at each step.

Figure 3 shows the behavior of the CosmoFlow application.
The application ran for 431 seconds, out of which 12% (.e.,
51 seconds) was spent on I/O. During the whole benchmark,
the application read 8 TB of data with a bandwidth of
36 GB/s [Figure 3(a)]. Each process of the distributed
TensorFlow training reads eight files completely with a
bandwidth of 756 MB/s [Figure 3(b)]. The transfer size for
each request is 256 KB, which is the default in TFDataset
APIs. Figure 3(c) shows the merged timeline of I/O and
compute within CosmoFlow. This request size on Lustre (with
stripe size of 1 MB), results in higher bandwidth for next
consecutive calls with higher bandwidth. Initially, as there is
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Fig. 4. 1/O Behavior of CANDLE: Figure a) shows the aggregate bandwidth
achieved of 8 GB/s for the applications. Figure b) depicts the distribution of
I/0 (i.e., 700 MB) and the achieved bandwidth (28 MB/s) across ranks. Figure
¢) shows the merged timeline of I/O and compute, which shows that I/O and
compute do not overlap in the application.

no model computation, TensorFlow data pipeline performs I/O
frequently. Once the model computation starts, the count of
requests per second reduces. This results in a lower aggregate
bandwidth as shown in the figure. The application uses eight
threads per process for computation (only two are shown in
the figure) and four threads for the I/O data pipeline. The I/O
data pipeline consists of two parts: I/O and data preprocessing.
Figure 3(c) shows the data pipeline takes 23% of the overall
time and preprocessing takes 11% of the time. Finally, the
application completely overlaps its /O with compute.

4) Cancer Distributed Learning Environment
(CANDLE) [8]: CANDLE is a 1D convolutional network
for classifying RNA-seq gene expression profiles into normal
or tumor tissue categories. The application reads 700 MB
dataset stored in CSV format using the Pandas framework.
The dataset is divided into train and test dataset with a total
of 1120 records. Each record contains 65536 columns of
32 bit floating-point numbers. The application run over 60
epochs with a batch size of 20 records.

Figure 4 shows the I/O behavior of the application. The
application ran for 290 seconds, out of which 36% was spent
on reading the test and train dataset. Each process reads
the whole dataset in-memory row-by-row from the CSV file
with an aggregate bandwidth of 8 GB/s [Figure 4(a)]. The
application reads the entire training dataset to the memory at
once and then performs training. This is possible as the size of
the dataset size is 700 MB; hence, it can fit easily into memory.
As the dataset grows, the current pandas CSV load would fail,
and the application would have to do out of core training.
Each process reads the whole dataset with a bandwidth of
28 MB/s [Figure 4(b)] with a transfer size of 256 KB (size
of each row). Figure 4(c) shows the merged timeline of I/O
and compute for the whole application. We can observe that
the application uses eight computation threads (6 shown here)



1750000

w
=3

1500000
> 1250000
H
$ 1000000

N
=)

g
£ 750000

-
=)

500000

Aggregate Bandwidth (GB/s)

250000

o
© &

T + : ; 0
100 200 300 400 0

Timeline (sec)
(a) I/0O bandwidth timeline.

|05

1000
Transfer Size in KB

2000 3000 4000

(b) Transfer Size distribution.

3155
Exe Ex
ot

[310
ExeExe
ot

E ExeExe
t o

Exe Ex

/o

/

Compute

(c) Compute and I/O timeline.

Fig. 5. I/O behavior of FRNN: Figure a) shows the aggregate bandwidth of 28
GB/s. Figure b) shows that distribution of transfer size is highly concentrated
near small accesses on metadata files and large accesses near data files. Finally,
Figure c) shows the lack of overlap between computation and I/O.

with one thread for performing I/O, with no overlap between
the computation and I/O.

5) Fusion Recurrent Neural Net (FRNN) [9]: FRNN is
a deep learning model for disruption prediction in tokamak
fusion plasmas. It accesses data in the Numpy array (NPZ)
format using Numpy APIs. The total size of the dataset is 6
GB, which is divided into 2800 signal files. Each file is 2 MB
in size and contains 1024 samples, each of size 2 KB. The
application uses 1M samples with 100 estimates in a random
forest model with a maximum depth of 3. It uses an RBF
kernel with three hidden layers and a learning rate of 0.1. Each
training step is fed with a batch of 1024 samples per-rank.

Figure 5 shows the I/O behavior of the application. The
application runs for 436 seconds, out of which 23% of the
time is spent on I/O. Every process reads the dataset for
28 GB across the application with a bandwidth of 28 GB/s.
The data is read from the signal files before each training
step is executed [Figure 5(a)]. The application makes many
requests on the signal shots file, which is the metadata of the
signal files. Hence, we observe in Figure 5(b) many small I/O
accesses. The large accesses in the Figure (around 4 MB) are
from the data files. The Figure 5(c) shows the merged timeline
of I/O and computation. It can be observed, the application
uses eight threads for computation (one shown here), and
multiple threads are used within the app for I/O. Additionally,
the data is read before each step of the training, and there is
no overlap between computation and I/O.

6) Imagenet Benchmark [40]: Tt is an image classification
benchmark which contains implementations of several popular
convolutional models such as resnet50, inception3, vggl6, and
alexnet. It accesses a dataset of images in the TFRecord for-
mat. The dataset consists of 1024 files with each file containing
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Fig. 6. I/O behavior of Imagenet: Figure a) shows the aggregate bandwidth
of 32 GB/s achieved by the application. Figure b) shows the distribution of
accesses per file made by the TensorFlow data pipeline. Finally, Figure c)
shows the complete overlap of I/O and computation.

1024 sample images of size 256 KB. The images are serialized
using protocol buffers. The application feeds images with a
batch size of 32. The alexnet model is trained with 100 steps.

Figure 6 shows the I/O behavior of the Imagenet application.
The application has a total runtime of 2757 seconds, out of
which 15% was spent on performing I/O. The application
reads the whole dataset with a bandwidth of 32 GB/s 6(a).
The files are read on-demand during the training, and hence
the samples per file access are not uniformly distributed
among the files 6(b). The files are selected at random but
are accessed sequentially. The data transfer size of the request
is 256 KB, which is the default for TFDataset APIs. Similar
to CosmoFlow, this application also has a higher aggregated
bandwidth initially, and then request per second reduces once
the model computation starts. Figure 6(c) shows the merged
timeline of I/O and computation within the application. The
application uses four threads for compute and two threads for
data pipeline (i.e., I/O plus preprocessing). The overall data
pipeline takes 28% of the overall time of the application. As
can be observed, the I/O is completely overlapped with the
compute of TensorFlow training.

7) Deep Learning Climate Segmentation Benchmark [39]:
The Climate Segment benchmark is based on the Exascale
Deep Learning project for Climate Analytics, which com-
prises multiple deep learning models for different climate data
projects such as AR detection, Storm tracking, and Semantic
segmentation. The application generates its training dataset in
memory based on a stats file. At the end of the training, it
creates a JSON file that contains the summary of the model
and its tuned hyper-parameters. The application runs for one
epoch with 1200 steps and a batch size of one sample. We
observe that the application does not perform much I/O. It
initially reads a 4 KB HDFS5 file over 50 operations of 500
bytes in size. Then the benchmark shows training and, each



rank writes the model parameters to a 4 MB JSON file. The
stat file is read randomly during the application’s lifetime.

8) L2ZHMC Algorithm with Neural Network [35]: This
application uses the Learning To Hamiltonian Monte Carlo
(L2HMC) algorithm to generate gauge configurations for
LatticeQCD. L2HMC provides a statistically exact sampler
that can quickly converge to the target distribution (fast burn-
in), produce uncorrelated samples (fast mixing), efficiently mix
between energy levels, and is capable of traversing low-density
zones to mix between modes (often difficult for generic HMC).
The application generates data synthetically and performs the
training. During training, it performs checkpointing of the
model for restart purposes. The checkpoint files are written
in TensorFlow using STDIO, which uses a single operation
to write the files. The application runs over 150 steps with
a batch size of 32 records per training step. It checkpoints
the model data in every 50 steps. As the application generates
data synthetically in memory, the only I/O within the app is
during the checkpoint. The checkpoint data is written with
STDIO interface. The checkpoint writes four files of several
megabytes in size. The write time is less than 1% of the total
execution time. This checkpointing is performed by the root
process of the distributed TensorFlow training.

IV. DEEP LEARNING I/O BENCHMARK

The DLIO benchmark [44] is aimed at emulating
the behavior of scientific deep learning applications. The
benchmark is delivered as an executable that can be configured
for various I/O patterns. It uses a modular design to incorporate
more data formats, datasets, and configuration parameters. It
emulates modern scientific deep learning applications using
Benchmark Runner, Data Generator, Format Handler, and I/O
Profiler modules. These modules utilize state-of-the-art design
patterns to build a transparent and extensible framework. The
DLIO benchmark has been designed with the following goals.

1) Accurate: DLIO should be an accurate representation of
selected scientific deep learning applications. It should
incorporate all the I/O behavior seen in various config-
urations of applications. Additionally, It should act as a
mini-application that can precisely mimic the I/O behavior
of scientific deep learning applications.

Configurable: DLIO should be easily configurable for
different scenarios required by the user. These include
features such as the ratio-of-computation to I/O, available
threads for I/O, data operators (e.g., decoding, shuffling,
and batching), and mechanism to feed data into training.
Extensible: DLIO benchmark should allow adding
custom data directories and enable easy extensions to the
benchmark to incorporate different data formats or data
generation algorithms. These changes should not affect
the basic benchmark operations.

2)

3)

A. Architecture

Figure 7 shows the high-level design of the DLIO
benchmark. The user runs the benchmark executable with
command-line arguments (i.e., different I/O configurations).
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The arguments are parsed and extracted into configurations
for the benchmark. The extracted configurations are passed
to the Configuration Manager, which is first initialized with
default benchmark values and then updates itself with the
incoming configurations. At this stage, incompatible/incorrect
configurations would be thrown as error back to the users.
Once the configurations are validated and applied, the
benchmark runner is invoked. The runner initializes prepared
data (if needed) and then starts the profiling session. Once
the session has started successfully, the benchmark Run () is
invoked, which runs the benchmark. In the run phase, we run
the benchmark for e epochs. During each epoch, the whole
data is read once using n steps. During an epoch, checkpoint
operations are performed every c steps as well. Additionally,
an inter-step computation is performed to emulate computation
and I/O phases by deep learning application. Finally, once
the benchmark run finishes, the finalize is called, which stops
the profiler, saves its results, and exits the benchmark.

B. Benchmark Configurations

The benchmark configurations are motivated by the I/O be-
havior observed in Section III. We describe the configurations
present in the benchmark below:

1) Interface: The benchmark supports popular data format
interfaces that were observed in various scientific deep
learning applications. These interfaces include TensorFlow
data format (i.e., TFRecord), hierarchical data format
(i.e., HDF5), textual data format (i.e., CSV), and finally,
scientific array format (i.e., NPZ). These data formats
are accompanied by their own I/O interface to load and
access the data. This is designed using the Format Handler
component in the design.

File Access Pattern: Among the deep learning applica-
tions, files are accessed using an independent I/O interface
(i.e., POSIX) or using collective I/O interfaces (i.e., MPI-
I0). Independent I/O can be further classified into multiple
processes reading multiple files or multiples processes
reading a single shared file. These two patterns depend on
how the dataset is generated and partitioned for the training

2)



process. For collective /O, we utilize coordinated data
access using MPI-I/O collective calls across processes.

3) Data Access Pattern: In most cases of scientific deep
learning applications, data is read sequentially and con-
secutively from the dataset. In certain cases, each process
might perform data shuffling where the process would first
jump to a monotonically increasing random offset and
then read a batch of records. These two data access pattern
encompasses the behaviors of all observed DL applications.

4) T/O Types: There are primarily two I/O behaviors within

scientific deep learning applications. First, the data is

read before training. Second, for every c steps, the model

checkpoint is written in the filesystem. The latter is a

straightforward process where five files (two 1KB, one

4KB, one 64KB, and one 4MB file) are written. The
former includes either reading the complete dataset into
memory or partially on-the-fly. Since this data access
is achieved based on the data format used, the Format

Handler APIs enable this feature.

Transfer Buffer: The transfer buffer size is the unit

in which I/O is performed within the application. For

TFRecord, the transfer buffer size is set during the

TensorFlow API call, which is defaulted to 256 KB.

For other data formats, this variable depends on the

record-size X batch-size.

5

~

C. Implementation Details

The DLIO benchmark is implemented in python (version
3.6). The extensible parts of the benchmark, such as
Configuration Manager and Format Handler, utilize factory
patterns to enable simple interfaces that can be implemented
to extend the benchmark functionality. The implementation of
DLIO uses existing I/O interfaces of various data formats such
as TFRecord, HDF5, CSV, and NPZ. Additionally, we include
profiler packages such as Darshan and TensorFlow profiler
to enable profiling within the benchmark. The computations
within the benchmark are emulated using busy waiting loops,
to emulate the overlap of computation and I/O accurately.

V. EVALUATIONS

A. Methodology

Testbed: We ran the scientific deep learning applications on
the Theta supercomputer [38]. We run the TensorFlow frame-
work on CPUs with two hyper threads available for a total of
128 threads per node. The datasets are stored in the Lustre file
system with stripe size of 1 MB and stripe count of 48. The
peak read performance the Lustre filesystem is 240 GB/s.
Software Used: We use Darshan (with extended tracing) and
TensorFlow profiler to measure the I/O performance of the
benchmark. Additionally, we use the VaniDL analyzer tool.
We use TensorFlow 2.2.0 with Horovod 0.19.5 for distributed
training. Additionally, we use NumPy version 1.19.1, h5py
version 2.10.0, and mpidpy version 3.0.3.
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Transfer Size Diffe Difference Overall

Similarity

1/O time #files

Difference | Difference | hooeSS | Access

Difference | Difference Median Average Median Average

Application

Imagenet 0.18 0.07 -0.01 -0.01 0.00 0.00 -0.65 -0.53 0.96

Cosmic Tagger -0.05 0.00 0.15 0.13 -0.38 0.31 0.32 0.42 0.97

Cosmoflow -0.10 -0.34 0.37 0.27 0.00 0.71 0.00 0.26 0.95

FFN -0.07 0.00 0.03 0.09 -0.29 -0.40 0.00 -0.10 0.94

CANDEL -0.19 0.00 -0.06 -0.06 0.00 -0.40 -0.07 -0.68 0.97

FRNN -0.15 0.02 -0.13 -0.13 -0.37 -0.02 0.03 -0.08 0.94

Fig. 8. DLIO Similarity with Real Applications: shows a cosine similarity.
The factors (normalized) used for similarity are overall I/O time (in seconds),
data read (in bytes), transfer size distribution, achieved bandwidth per oper-
ation (in MB/s), percentage of sequential and consecutive accesses, and the
number of files read. The figure shows a correlation of 94% for all apps.

B. Benchmark Verification

In this section, we test if our designed benchmark can
represent the real application’s I/O behavior. To achieve
this, we run our benchmark with a workload similar to
their application counterpart (as observed in Section III) and
calculate the similarity between the two runs (i.e., DLIO
benchmark and real application). To calculate the similarity,

we use the cosine similarity metric S = TANEN AI?\.|J\BB\|’ where

A — A R. — B;

Ay = (AL B B, = AT (AT B The parameters for
11

calculating similarity include overall I/O time (in seconds),
amount of data written (in bytes), transfer size distribution
(such as min, max, mean, and median), achieved bandwidth
per operation (in MB/s), percentage of sequential and consec-
utive accesses, and the number of files read. For each of the
metric, we normalize the data using max for each parameter.
We run the similarity test on a 128-node configuration and
calculate the above metrics across all the processes.

Figure 8 shows the results. We see the DLIO benchmark,
in all cases, achieves over 90% similarity in I/O behavior.
The difference is given by mf;‘ggejizz;g IL)IL?O). This
similarity validates that the DLIO benchmark is an accurate
representation of the real applications. The loss of 3-6%
similarity is because all applications have a distribution of
transfer request sizes, which is represented as a median
request size within the benchmark.

C. Optimizations using DLIO Benchmark

In the last sub-section, we showcased how the DLIO can
accurately represent the real application’s I/O behavior. We
can use this to exhaustively test optimizations on the DLIO
benchmark, which can be later transferred to the real applica-
tion. Based on the underlying configuration of the application,
we identify several opportunities for optimization within the
workload. We explore the values for each optimization to
understand their quantitative effect on the workload. We run
the optimizations test on an eight-node configuration and
calculate the metrics across all the processes.

1) TFRecord Workloads: Imagenet and Cosmoflow
benchmark utilize t £ . data APIs to read TFRecord data from
the file system. The TensorFlow data pipeline provides three
optimizations to improve the performance of the data pipeline,
namely: a) Transfer Buffer Size: the granularity of I/O (in
bytes) to be performed on each request. b) Read Parallelism:
the number of threads per process to be used to perform a
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Configurations: Each image is 256 KB in size with a batch size of 512 images. Figure a) showcases the optimal bandwidth of 2 GB per sec at a transfer size
of 1 MB (aligned to Lustre stripe size). Figures b) and c) show a read and preprocessing parallelism is best at eight threads.
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Fig. 11. Neutrino and Cosmic Tagging with UNet Optimizations: Configura-
tion: Each image is 50 KB in size with a batch size of 32 images. Figure a),
we see an increase in I/0O bandwidth at 64 KB chunk size. Figure b), we see
the performance is best with gzip at compression level 4. Figure c¢) shows on
a single node that increasing chunk size for large dataset which cannot fit in
memory degrades performance after ideal chunk size.

parallel reading. Finally, c) Preprocessing Parallelism: the
number of threads per process to utilize for parallelizing
data operations such as decoding and transformations. Note,
in real-applications the model computations might utilize
certain number of threads. We should set the I/O threads
while considering exiting computation threads. We run the
DLIO configurations of Imagenet and Cosmoflow with each
of these parameters, calculate the overall time (in seconds),
and bandwidth achieved per operation. We present the results
in Figures 9 and 10, where the x-axis represents the values of
the metric tested, the y-axis shows time elapsed in seconds,
and the y2-axis shows the bandwidth achieved in MB/s.

In Figures 9(a) and 10(a), we observe the achieved band-
width increases as we increase the the data transfer size. This
bandwidth increase is because the Lustre file system can serve
bigger requests with higher bandwidth than multiple smaller
requests. This behavior can be seen for both the applications
where 1 MB of transfer size achieves the best bandwidth of
around 2 GB/s for both applications, resulting in the lowest
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I/O times. This results into a performance improvement of
1.25x and 1.32x for Imagenet and Cosmoflow over the default
value of 256 KB which is set within TensorFlow Data Pipeline.
However, we observe that the improvement trends vary slightly
of the two applications where Imagenet has a much steeper rise
and fall than Cosmoflow. This is because the record size and
batch size match the 1 MB transfer buffer size precisely for
Imagenet as opposed to Cosmoflow, where it’s a multiple of
several Megabytes. The transfer size should be set to be a mul-
tiple of record-size, batch-size, and the Lustre stripe unit. This
will enable the applications to get a batch of images through
one or more stripes and enable efficient reading from the PFS.

In sub-figures 9(b) and 10(b), we see that as we increase
the number of threads for reading files per process, the time
taken to read decreases and then starts increasing again. This
is because increasing the number of reading threads initially
increases parallelism but later introduces metadata interference
on the Lustre filesystem, which starts hurting the performance.
In both cases, we see read parallelism of 8 threads gives
the ideal read performance of 2 GB/s read bandwidth. This
would result in a performance improvement of 1.2x for both
applications over the default value of one thread.

In sub-figures 9(c) and 10(c), we see that as we increase the
number of threads to parallelize data preprocessing, the time
taken by the application decreases. After a point in both appli-
cations (specifically eight threads), the read time becomes con-
stant. This is because, at eight threads per process, the prepro-
cessing task is parallelized and is fast enough for an efficient
data pipeline. This results in a performance gain of 66% and
4% in Imagenet and Cosmoflow over default value of 1 thread.

2) HDF5 Workloads: The Neutrino and Cosmic Tagging
with UNet and Distributed Flood Filling Networks applications
utilize the HDFS interface to perform I/O. This data format
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the best performance achieved with gzip at compression level 4.

represents a collection of images stored within the dataset of
an HDFS file. The HDFS file natively supports two data access
optimizations: a) Dataset Chunking: where a dataset is divided
into fixed-sized chunks and I/O is performed on the chunk
granularity from the file system, and b) Data Compression: the
HDFS5 library supports several data compression libraries with
different compression levels such as GZip, and LZF. We run
the DLIO benchmark with different parameters of these two
optimizations and showcase the results in Figure 11 and 12. In
these figures, the x-axis shows the various configurations of the
two optimizations tested, the y-axis shows the time elapsed in
seconds, and y2-axis shows the bandwidth achieved in MB/s.

In Figure 11(a) and 12(a), we observe that as we increase
the chunk size, the I/O time reduces, after which it becomes
constant. For both the applications, we see a steep increase in
bandwidth at 64 KB and 32 KB for Cosmic Tagger and FFN,
respectively. This is due to the alignment of record length
of image and batch size with the chunk size and the stripe
size of the Lustre file system. A chunk size of the application
should be set equal to the size of the image/record times the
batch size. This will enable an efficient reading pattern within
the application. Additionally, the Lustre stripe size should
be a multiple of the chunk size, to enable aligned I/O and
efficient locality caching. This ideal chunk size boosts both
applications’ performance by almost 96x. Finally Figure 11(c)
shows that increasing chunk size for small datasets does not
degrade the performance even when shuffling is enabled. This
is because the dataset can fit in compute nodes memory.
However, for shuffling of samples with large datasets (i.e.,
datasets that cannot fit in the memory of a compute node)
we see a degradation in I/O performance (i.e., performance
reduction of 6.7x for 4 MB) after 64 KB chunk size.

In Figure 11(b) and 12(b), we observe that applying
compression, in most cases, reduces the overall time elapsed
as it reduces the amount of I/O that is performed. However,
there is a trade-off between how much compression is applied
in both applications and the reduction of I/O. As we can
see, a compression level of 4 and 5 achieve the lowest time
elapsed for the two applications. This results in a performance
gain of 1.35x over no compression for both the applications.
If we choose a heavier compression ratio, the decompression
time outweighs the benefit gained by reducing I/O, resulting
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Fig. 13. Applying Optimization: We apply the optimization explored from
benchmark to actual application. Both applications show a similar effect as the
benchmark. Figure a) shows Cosmoflow with a speedup of 1.33x for transfer
size of 1 MB, 12% for using 8 read threads, and 8% for 8 preprocessing
threads. Figure b) shows Cosmic Tagger with a speedup of 8x by changing
chunk size to 1 MB and a speedup of 1.35x for utilizing gzip level 4.

in worse performance than not compressing or lightly
compressing. In general, the effectiveness of data compression
depends on the distribution of data within the dataset [45],
[46] which has to be fine-tuned for each application.

D. Real Application Optimization

On exploring optimizations with DLIO for various
applications, We showcase two examples of applying them
back to the real application. We choose CosmoFlow as a
representative of the TensorFlow Data Pipeline workload and
Cosmic Tagger as a representative of the HDF5 workload.
We apply the optimizations we explored for both applications
directly and observe its impact on I/O performance.
Specifically, we apply CosmoFlow with optimization of
transfer size of 1 MB (aligned to the Lustre’s stripe size) and
select read threads and preprocessing to be eight threads. For
Cosmic Tagger, we re-align the dataset with a new chunk size
of 1 MB and apply the GZip compression of level 4. These
values are derived directly from the previous section.

Figure 13 shows the results. The results of the optimization
for both applications are similar to the results in the DLIO
benchmark. For Cosmoflow, we observe that the transfer size
of 1 MB optimizes the I/O time by 1.33x, whereas adding
additional read threads and computation threads improve data
access by 12% and 7%, respectively. Similarly, for Cosmic
Tagger re-aligning the chunk size from 4KB to 1MB gives a
speedup of 8x over the I/O access. Additionally, utilizing gzip
with compression level 4 can optimize I/O access by 1.35x
(consistent with the DLIO benchmark optimizations). These
results show the ability of DLIO to accurately represent
the scientific DL workloads and a cheap mechanism to test
optimization, which can be later transferred to the applications.

E. DLIO Benchmark Scaling

This sub-section uses the ideal configuration parameters (in-
cluding the optimizations) from the previous section and scales
our benchmark code from 128 nodes to 2048 nodes. We use
four processes per node. Hence, we scale our processes from
512 to 8096 processes. In each of the cases, we measure the
overall time elapsed in seconds. We can categorize the six ap-
plications into one file per process and a single shared file case.
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Fig. 15. Shared File applications: We perform strong scaling of application,
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the performance is improved. However, the performance is limited by the
contention on metadata due uncoordinated data access.

1) One File Per Process: In this category, we have
Imagenet Benchmark, Cosmoflow Benchmark, and Fusion
Recurrent Neural Net application. In each of these cases,
we keep the overall data the same and scale the number of
processes (i.e., strong scaling). In each of these applications
the files are divided equally among the methods. Hence,
when we increase the number of processes, the number of
files per process (i.e., the amount of I/O) decreases linearly.
Therefore, for all the cases, as shown in Figure 14, we see
the time sub-linearly decreases with an increasing number of
processes. In multiple files per process case, there is an equal
division of files among processes, and hence the overall time
will decrease. We see that the applications’ I/O scale linearly.

2) Shared File Per Process: In this category, we have
Cosmic Tagger Application, Distributed FFN, and CANDEL
Benchmark. In all of these cases, the processes access a
single shared file and train over a portion of the data. The
size of dataset is fixed (i.e., strong scaling). The results are
shown in Figure 15. We observe an increase in performance
(i.e., decrease in time) on strong scaling the applications.
However, the decrease of time is not close to the ideal as seen
in multi-file case. This is because when multiple processes
access a shared file, the interference of reading the metadata
starts dominating the overall I/O time [47]. This is due to lack
of any co-ordination between data access. We tested to verify
that the metadata contention is only present in larger scales.

VI. CONCLUSIONS

The emergence of deep learning (DL) techniques has
dramatically improved scientific exploration and discoveries.
Scientists have studied the computational aspects of DL appli-
cations in scientific domains in great detail. However, the I/O
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behavior is not well understood yet. As DL applications con-
sume massive amounts of data, understanding the patterns with
which they perform I/O is crucial for the overall efficiency of
the process. In this work, we characterize different aspects
of I/0 across several scientific DL applications. We provide
a detailed methodology and analysis to describe this behav-
ior. Additionally, we propose a Deep Learning I/O (DLIO)
benchmark , which encapsulates all the different aspects of DL
applications under one hood. Our results showcase our DLIO’s
accuracy and how it can be utilized to optimize the I/O be-
havior of applications by 1.35x through existing optimizations
in the TFRecord and HDF5 libraries. Finally, we showcase
how the I/O access in scientific formats such as HDF5 do not
scale well due to their lack of optimizations in DL space. We
envision building a middleware solution that would accelerate
I/0O for scientific data formats in DL applications.
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