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ABSTRACT

Multiplex networks are complex graph structures in which a set of
entities are connected to each other via multiple types of relations,
each relation representing a distinct layer. Such graphs are used
to investigate many complex biological, social, and technological
systems. In this work, we present a novel semi-supervised approach
for structure-aware representation learning on multiplex networks.
Our approach relies on maximizing the mutual information between
local node-wise patch representations and label correlated structure-
aware global graph representations to model the nodes and cluster
structures jointly. Specifically, it leverages a novel cluster-aware,
node-contextualized global graph summary generation strategy for
effective joint-modeling of node and cluster representations across
the layers of a multiplex network. Empirically, we demonstrate that
the proposed architecture outperforms state-of-the-art methods in
a range of tasks: classification, clustering, visualization, and simi-
larity search on seven real-world multiplex networks for various
experiment settings.
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« Computing methodologies — Semi-supervised learning set-
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1 INTRODUCTION

Entities in many real-world problems are related to each other in
multiple ways. Such relations are often modeled as graph-structured
data where the nodes represent entities, and edges between a pair
of nodes represent the interactions between the entities. Learning
representations for such networked data to mine, analyze and build
predictive models has been gaining a lot of traction recently with the
advent of deep learning-based network embedding models [6, 32].

Increasingly such relations are complex, with multiple relation-
ship types linking entities. Such networked data are often naturally
represented as multi-layered graphs [9], where each component
layer focuses on a specific relation type and can involve different
sets of nodes. In this work, we focus on Multiplex networks, a spe-
cial case of multi-layer networks where the graphs in all the layers
share the same set of nodes with distinct relations in different lay-
ers. Such multiplex network structures are observed in numerous
environments such as bibliographic networks, temporal networks,
traffic networks, brain networks, protein-drug-disease interaction,
etc. The involvement of the same set of nodes across multiple types
of relations, distinctive structures in different layers, and the in-
terplay among various layers of networks — makes representation
learning of multiplex networks a challenging task.

Existing multiplex Network Representation Learning (NRL) meth-
ods learn node embeddings that encode the local relational structure
of nodes by using graph convolutions [4, 15, 20] or random walks
[14, 33] within a subgraph centered at the node of interest. Though
there are many powerful models to learn local structures, only a
few works encode global structures [15, 20] even in the case of
the more widely researched simple homogeneous graphs. Global
structural information is encoded in representation learning models
through one of three approaches: (i) clustering constraints [26, 30];
(if) auto-encoding objectives on the adjacency matrix [26, 29, 30] or
node embeddings [3]; and (iii) Mutual Information Maximization
(InfoMax) [25, 28] objectives that maximize the Mutual Informa-
tion (MI) between the representations of local nodes and the global
summary of the graph derived from the local contexts of all the
nodes [20, 23, 25, 28].

Clustering constraints are also often realized with auto-encoding
objectives, that in general, are challenging to scale [26, 30]. In con-
trast to the first two methods, the InfoMax based approaches use
Graph Neural Networks (GNNs) to obtain both local and global
context and are potentially more scalable [20, 23, 28]. However,
InfoMax objectives that encode global information assume a shared
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global graph context for all the nodes despite the fact that, in most
cases, every node has a different global structure rooted at each
node. This calls for a different contextualized global graph represen-
tation for each node (analogous to the notion of personalization).

Contributions. In this work, we propose the first node-contextualized

InfoMax based semi-supervised learning architecture for multiplex
networks. The primary contributions of our work are:

e Motivated by the need for contextualized global graph represen-
tations, we propose a novel joint node and cluster representation
learning model that defines a structure-aware intra-layer graph
context for a node.

o In the semi-supervised setting, the cluster constraints are pro-
vided by the partial label information and are shared across layers
to learn similar clusters across relational layers in terms of label
correlations. To facilitate this, we further constrain the nodes
connected by cross-edges to have similar embeddings, thereby
indirectly influencing the layerwise InfoMax objective to capture
global cluster information across multiple layers.

e We evaluate the model on seven multiplex networks for node
classification, clustering, and similarity search. Our proposed
model achieves the best overall performance outperforming state-
of-the-art methods like DMGI [20], MGCN [4], HAN [31].

o Also, the learned node embeddings lead to well-separated homo-
geneous clusters in t-SNE visualizations.

2 BACKGROUND AND KEY INTUITION
2.1 Notation and Problem Statement

Notation: Let the multi-layer representation of a multiplex net-
work with vertex set, V and relation set, R such that |R| > 1 be
defined by an |R|-layered graph, G = {G1, G2, ..., G|R|}, Where G,=
(V, Ay) with A, being the adjacency matrix for the r? layer corre-
sponding to the r! relation. We generalize the adjacency matrix
notation to include both intra-layer and inter-layer edges between
nodes in different layers by letting A, ) to denote rh layer’s adja-
cency matrix corresponding to its intra-layer edges and A(,s) to
denote the inter-layer edges between layer r and s when r # s. Note
that A, ), A(rg) € R IVIXIVI a5 all the layers share the same set
of nodes, V. Often, the nodes are associated with a feature set, ¥
and the node feature matrix is denoted as X € RIVXI71,
Semi-Supervised Learning Task: Given a multiplex graph, G =
(V,A X), alabel set, Q and set of labeled nodes, £ with ground
truth label assignment matrix, Y € {0, 1}|(V‘X|Q|, the task is to
predict labels for all unlabeled nodes, U = V' \ L. For efficient Semi-
Supervised Learning (SSL) on multiplex networks, it is essential to
learn a low d-dimensional (d < |¥|) node embedding, Z € RIVIxd
that encodes relevant structural and label correlation information
within and across layers, useful for downstream machine learning
tasks such as node classification and clustering.

2.2 Multiplex NRL and InfoMax Objective

Node Representation Learning: Multiplex Network Representa-
tion Learning methods encode useful information for all the nodes
into a low d-dimensional node embedding, Z, € RIVIXd o1 each
layer r and then aggregate information across layer by leveraging
the cross edges, into a joint embedding, Z € RIVIxd,

1235

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Graph Convolutional Networks (GCNs) [8, 24] are widely used
node embedding architectures that encode attribute-based local
structural information from a node’s multi-hop neighborhood. In
the context of multiplex networks, GCNs [20, 28, 36] are used layer-
wise to obtain node embeddings based on the intra-layer edges.
Then, to get a joint node embedding, embeddings from different
node counterparts across layers are aggregated via the cross-edges.

Generating local node representation
e
L A ]
mazimize MI(H;,S;)

—[Si = C1+C2+C3 +C4]

Localized graph convolution

Label-aware structure pooling

—

\_/—

Generating a node’s perspective of graph summary

Figure 1: Label correlated structure-aware InfoMax

Encoding Global Information with InfoMax based objective:
While GCNs are powerful models to encode local structures, they
do not encode global contextual information. On that front, recent
efforts in the NRL community have adopted the Mutual Informa-
tion Maximization (InfoMax) objective, initially proposed in image
feature extraction pipelines for learning structurally dependent rich
local and global representations of images — to the graph domain
to learn rich node [20, 28] and graph-level representations [25].
In problems where the data is sampled from a set of graphs, each
data instance is a graph, and the task is to learn a global graph
representation wherein the InfoMax based models learn graph rep-
resentations by maximizing their mutual information (MI) with the
local node representations [25]. In this work, we are interested in
the semi-supervised transductive setting. Given a partially labeled
graph, we look to learn node representations that allow us to pre-
dict labels for the rest of the nodes in the same graph. In this setting,
existing Infomax models learn the local node representations by
maximizing its MI with a single global graph representation [20, 28].
As we argue in the next section, where we describe this work’s
intuition, this single global representation is often inadequate.

From the computational aspect, the mutual information between
two variables can be maximized by leveraging the KL-divergence
between their Joint distribution and the product of marginals. How-
ever, since estimating MI in high dimension and continuous data is
complex, in practice, scalable Neural MI estimators [1] that maxi-
mize a tractable lower-bound are used. Noise Contrastive Estimation-
based (NCE) loss that discriminates samples from a true joint dis-
tribution against a noisy product of marginals (negative samples)
are simple yet effective ways to realize this lower bound. It can
be viewed from the predictive coding perspective, where given a
global-whole representation, the task is to predict a corresponding
local-part representation. This forces the discriminator to provide a
high score to a related pair of local-global representations compared
to unrelated pairs. Henceforth, unless specified otherwise, we adopt
minimizing the NCE loss for this purpose.
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2.3 Key Intuition

In a typical InfoMax based NRL setup, the global context is defined
by all nodes in the graph. Thus, each node in the graph does not have
its own contextual view of the graph. Instead has a shared global
context that is the same for all the nodes, even though they may
be structurally connected differently within the graph. For example,
from the graph in Fig: 1, the red node and blue node belonging to
the same cluster C2 will have different non-local network measures
such as betweenness measure, participation coefficient [5], etc., as
the structure of the (sub)graph centered around these nodes are
differently connected to the rest of the graph since one is in the
center of a cluster, and other is at the end of a whisker.

When a naive global graph summary function such as the aver-
age of all node embeddings is used, the global context for all nodes
becomes the same as their global context is isomorphic. Naively
maximizing the MI of a nodes’ local representations with a shared
global context might bias the model to encode trivial and noisy
information found across all the nodes’ local information. Albeit,
naively defining a different global context for each node, such as a
sub-graph-based approach, will shoot down the original objective
of learning useful shared information from across the graph.

Thus, this calls for a careful design of a contextualized represen-
tation of shared global information that facilitates encoding relevant
non-trivial shared information present across the graph when max-
imizing the MI with the local node information. In Figure 1, even
though the example graph has many clusters, only C1,C2,C3 are
relevant to the blue node i. Therefore, the global context for node
i should be more inclined towards C1, C2, C3 instead of a naive
summary of all candidate clusters. In light of this simple intuition
and motivated by participation scores, we propose a cluster-based
InfoMax objective to learn node representations. The clusters encode
shared global graph information, and the node-specific global context
is obtained by aggregating information from the clusters with which
the node is associated. In particular, for the semi-supervised classi-
fication task, we define label-correlated structure-aware clusters
that jointly learn node and cluster representations by optimizing
the InfoMax principle.

3 PROPOSED METHODOLOGY

In this section, we explain step-by-step our proposed approach to
learning node representations for multiplex networks. The pro-
posed method Semi-Supervised Deep Clustered Multiplex (SSDCM)
in Figure 2 — (i) learns relation-specific node representation that
encodes both local and global information, (ii) enforces cross-edge
based regularization to align all nodes connected across layers to lie
on the same space, then (iii) learns a joint embedding across layers
for all nodes through a consensus regularization and (iv) finally
enables label predictions with this joint embedding.

3.1 Learning Node Representations

The first component of our model learns relation-specific (R) local
node representations, U,. Then these learned node representations
are made aware of their individual global context, S, which summa-
rizes graph level information. We do this by maximizing the mutual
information between them and this can be realized by minimizing
a noise-contrastive estimation such as a binary cross-entropy loss
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as provided in the equation below,

reRieV

N
Omr =y Y (log(®WUEsH) + ) log(1 - DTL. L)) (1)
j=t

where D : R?? - R is a discriminator function that assigns a prob-
ability score to a pair of local-global node representations using
a bi-linear scoring matrix B € RdXd, ie., E(U,i, S;) = U(UriTBS}'),
o being the sigmoid non-linearity. Similar to [20], we learn this
discriminator universally, i.e., the weight is shared across all layers
with an intention to capture local-global representation correla-
tions across the relations. The discriminator gives a local-global
summary a higher value if the local summary is highly relevant to
the global summary and, in contrast, assigns a lower score if the
local summary is less relevant or irrelevant to the global summary.
For every node i in each relation r € R, N negative local summaries
are paired with that node’s contextual global summary to train the
discriminator D. Following [28], we create corrupted local patches
U] for each relation r by row-shuffling the node features X and
passing it through the same local structure encoder.

Having explained the overall structure of our InfoMax objective,
we get into the details of how to learn (a) local node representations,
(b) global node representations, and (c) the clustering strategy that
provides the global context for nodes.

3.1.1
obtain an M-hop local node representations U, with a
Graph Convolutional Neural Network (GCN) encoder €;. GCNs
obtain an M-hop local representation by recursively propagating
aggregated neighborhood information. Let A(”) = A + el
be the intra-layer adjacency matrix for relation r with added e-
weighted self-loops (similar to a Random Walk with Restart (RWR)
probability kernel). Here, we use the normalized adjacency matrix,

1 1
A(r,r) = (D(r?r)A(r,r)D(,fr)
tion kernel, where ]3( r,r) is the diagonal degree matrix of A( rr)-An
M-hop node embedding is obtained by stacking M-layers of GCNs
as in Eqn: 2. The input to the mth GCN layer is the output of the
(m-— 1)th GCN layer, er_l, with the original node features X fed
in as input to the first layer.

Local Node Representations. For each relation r € R, we
e RIVIxd

), as the GCN’s neighborhood aggrega-

X2 =X
X" = PReLU(A () X' W) )
Uy = xM

where W™ is learnable weight matrix for the m™ GCN layer cor-
responding to the ' multiplex layer. Assuming all GCN layers’
outputs to be of the same dimension d, we have X" € RIVIXd and
w" e RdXd, except for the first GCN layer, whose weights are
W? € RI71X4_The final M-hop GCN representation for each rela-

tion, r is treated as that relation’s local node embedding, U, = Xﬁw .

3.1.2  Contextual Global Node Representations. We learn a contex-
tualized global summary representation, S: for each node i, and
for every relation r € R. In this work, we first capture a global
graph level summary by learning K clusters in each relation. Then
we leverage these learned clusters to provide a contextual global
node summary for all the nodes based on the learned node-cluster
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associations. We explain the steps in a top-down manner. We first
explain how we obtain a contextualized global graph representation
given clustering information, and in the following subsection, we
explain how to obtain the clusters.

Across all multiplex layers, we learn K clusters in each relation
r € R. We encode the clustering information with relation-specific
K cluster embeddings, C, = {C}, C%, Cf} with C’rc € R4 and
node-cluster assignment matrix, H, € RIVIXK_ Given the learned
relation-wise clustering information (C,, H,) and local node rep-
resentations, Uy, we compute the contextual global node repre-
sentation for a node i as a linear combination of different cluster
embeddings, Cf weighted by that node’s cluster association scores
HE[k],Vk € [1,K] as mentioned in below.

K
St =) HikICF 3)
k=1

3.1.3 Clustering. We now describe how to learn clusters that cap-
ture useful global information for a node across all relations. Specif-
ically, we aim to capture globally relevant label information that
can enrich local node representations for the semi-supervised node
classification task when jointly optimized for the MI between them
across relations. To achieve this, we adapt Mitra et al. [18]’s Non-
Negative Matrix Factorization formulation to learn label-correlated
clusters to a Neural Network setup as follows.

Cluster Embedding: We randomly initialize the set of cluster
embeddings C, for each relation r and allow them to be updated
based on the gradients from the model’s loss.

Cluster Assignment: We obtain the node-cluster assignment
matrix, Hy, by computing the inner-product between node embed-
dings and cluster embeddings. We then pass it through a softmax
layer to obtain normalized probability scores of cluster-memberships
for each node, see Eqn: 4.

Hi[k] = SoftMax(UZ.Ck") (@)

Non-overlapping Clustering Constraint: To enforce hard
cluster membership assignments, we regularize the cluster assign-
ment H, with block-diagonal constraints. Specifically, we ensure
the block size to be one, and the resulting orthogonality constraint
enforces less overlap in node assignments between every pair of
clusters. This constraint is expressed as a loss function below.

®)

Global Label-homogeneous Clustering Constraint: To cap-
ture globally relevant information for each relational graph, we
group nodes based on an aspect — enforcing homogeneity within
clusters. Precisely, we capture global label-correlation information
with a similarity kernel, S € RIVIXIVI and cluster nodes accord-
ing to it. The label similarity kernel is defined between the labeled
nodes LasS = Y[ r].Y| ) T We use a masking strategy to consider
only the label information of training nodes for enforcing this.

T 2
DOrthogonal = ”Hr H, - IKHF

We now use a Laplacian regularizer to enforce smoothness on
the cluster-assignments according to the label-similarity kernel S
as given in the equation below,

OLearn = Tr(H} A(S)Hy) (6)
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where A(S) is the un-normalized Laplacian of the similarity kernel.
The above Laplacian smoothing constraint enforces nodes with
similar labels to lie in the same/similar clusters.

Note that since this is shared across relations, it enforces simi-
lar clustering to be learned across relations. The learned clusters
can still vary based on the relation-specific node embeddings, thus
capturing global shared context across diverse graph structures.
More importantly, notice that the label-similarity kernel can con-
nect nodes that may be far away by a distance longer than the local
(M) multi-hop context considered and even can connect two nodes
that are not reachable from each other.

In the entire pipeline, cluster learning is facilitated by the fol-
lowing loss function: Ocyys = (OrLearn + DOrthogonal)

3.2 Cross-relation Regularization

Since each multiplex layer encodes a different relational aspect of
nodes, it is not straightforward to treat the inter-layer edges the
same way as intra-layer edges to aggregate information from cross-
linked neighbors. Also, the representation for nodes in different
layers lies in different spaces and is not compatible with a naive
aggregation of information via cross-edges.

Previous works, incorporated inter-layer (cross-graph) edge in-
formation into the learning procedure by adopting either cross-
graph node embedding regularization [12, 19] or clustering tech-
niques [15]. Since, in our case, we have the same clustering con-
straints enforced across layers, we opt to regularize embeddings of
nodes connected by cross edges to lie in the same space.

Ocross = Z ”O(r,s) Ur _A(r,s) US“%‘

r,seR

(7)

o =
(r.s)
row-wise entries for node i are all-zero

where O, ) € RIVXIVlisa binary diagonal matrix, with
)

= 1 otherwise if the bipartite association exists.This reg-

0 if the corresponding A

and O
(r.s)
ularization aligns the representations of nodes that are connected

by cross-edges to lie on the same space and be closer to each other.

3.3 Joint embedding with Consensus
Regularization

Having obtained rich node representations that incorporated local,
global and cross-layer structural information at every relational
layer, we need a mechanism for aggregation of nodes’ different
relation-specific representations into a joint embedding. Since dif-
ferent layers may contribute differently to the end task, we use an
attention mechanism to aggregate information across relations as,

. exp(L .Ui) . .
Ir = rLr.Ui’ vt=) %'
Zr’E‘R exp( r’ r) reR

where L, is the layer-specific embedding and 9} is the impor-
tance of layer r for node i. The importance score is computed by
measuring the dot product similarity between the relational node
embedding U} and learned layer embedding L, .

Additionally, to obtain a consensus embedding [20], we leverage
the corrupted node representations U, : r € R that we computed
for InfoMax optimization in Eqn: 1. A consensus node embedding

(®)

Z € RIVI*d s ]earned with a regularization strategy that minimizes
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Relation-specific node
representation learning via GCN.

Encoding cluster assumption of SSL.
Relation-specific cluster learning.

Cluster aware graph summary
generation. Learning via InfoMax.

o .

S embeddings Positive & corrupted O

k=l [ — °

5 features for a node >

Q

< O
Py v 3
¢ 2 > B
5 = Cluster Clusi:f y 8 O
3 5 embeddings MEMBEIShip 3 .
[ /o .
o Cluster learning 8 Bl—llr]ear b o
3 E scoring Sl
o - ) . 3 g 8 e} -
@ Weighted linear combination @5 s S 5
S : g g
© Node 3 % 2 o §
= g embeddings Positive & corrupted - ) & e
= ! features for a node Bi-linear z
= scorin =
9] 8 9 o
x 2 °
z S Cluster 3 )
@ £ Cluster . g =
g S embeddings ] 1)
S 3 @ o
> Cluster learning g ()

CIE R —— O
23 { )
Weighted linear combination %5

Consensus
Cross-graph regularization. regularization.
Attention based aggregation. Supervision loss.

Figure 2: Semi-Supervised Deep Clustered Multiplex (SSDCM) with structure-aware graph summary generation

node

Explanation of used color-codes. Green: True node embeddings, Red: Corrupted node

beddings, Blue: Final

beddings. Orange: Learned cluster membership for nodes,

Purple: Label information. The color-coded grouping of nodes in relational layers of the example multiplex network denotes different clusters.

the dis-agreement between Z and attention-weighted aggregated
true node representations U, while maximizing the dis-agreement
between combined corrupted node representations U (re-using the
same attention weights). The final consensus node embedding Z is
generated as,

~ 2
Ocons = I1Z-Ull% - 1Z-TUllr 9

3.4 Semi-Supervised Deep Multiplex Clustered
InfoMax

We predict labels Y for nodes using their consensus embeddings
Z. We project Z into the label space using weights Wy € RAx1QI
and normalize it with o, a softmax or sigmoid activation function
for multi-class and multi-label tasks respectively. The prediction
function is learned by minimizing the following cross-entropy loss,

1 A
DSup = _m Z Z YigInYiq (10)
ieLgeQ
Y = o(ZWy)

Finally, the overall semi-supervised learning process to obtain rich
node representations that capture local-global structures in a multi-
plex network is obtained by jointly optimizing the equation below
that optimizes different necessary components. We leverage hyper-
parameters «a, f, ¥, {, 0 to fine-tune the contributions of different
terms.

O = a=Omr+ B+ Ocross +Y * Ocons + { * Ocius + 0 * Osup (11)

Empirically, we find that our objective function is not very sensi-
tive to variation in «, f values. Therefore, we fix their values as
a = 1.0, = 0.001. Finally, we only tuned variables y, {, 8 in the
above objective function to analyze the contributions of network,
cluster, and label information. We discuss this further in Table 10
of Appendix A.3.1.
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4 RELATED WORKS

Here, we discuss related representation learning literature focused
on multiplex networks.

Network Representation Learning (NRL). Network Repre-
sentation Learning (NRL) methods for multiplex networks use dif-
ferent learning paradigms such as matrix factorization [12]; random-
walk based objectives [14, 33] and graph neural network architec-
tures [4, 15, 20].

NRL models for multiplex networks have aimed at capturing
different aspects of this multi-layered data. Modeling multi-layer
data might require one to capture local [12, 17] and global network
structures [15, 20] within each layer; leverage cross-layer edges
[4,12,17, 19] between layers; encode node features [4, 20]; integrate
information from multiple layers into a unified feature space [14,
33]; Optimize for single objective [24, 31] or jointly optimize for
different objectives at different layers [4, 15].

Global context-based NRL. In general, random-walk-based
methods and GCNss are limited to capturing k-hop local contexts
of nodes only. While matrix factorization methods embed the en-
tire graph, they are neither scalable nor powerful than the other
two. Only a few studies capture the global structures into node
embedding learning in both homogeneous and multiplex networks.

GUNets [3] introduced pooling and unpooling operations on
multi-graphs for homogeneous networks. Its prominence-based
node pooling captures the global graph structures and local graph
structures using learnable projection vectors and GCNs. Deep Multi-
Graph Clustering (DMGC) [15] is the first NRL study to learn global
structures for multilayer networks explicitly. It proposes an atten-
tive unsupervised mechanism to encode the cluster structures into
multi-graphs based on a similarity-based cluster kernel.

InfoMax based NRL. Deep Multiplex Graph Infomax (DMGI)[20]
employs the InfoMax principle for multiplex networks. It jointly
maximizes the MI between the local and global graph patches across
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the layers of a multiplex graph. It does so by learning a universal
discriminator that discriminates positive and negative patch pairs
across the relational layers. Simultaneously, it employs a regular-
ization strategy that attentively aggregates the learned relation-
specific node representations by reusing negative node representa-
tions used for learning the discriminator weights. HDGI [23] is a
work similar to DMGI, aimed at heterogeneous networks. It adopts
a semantic attention mechanism to aggregate metapath influenced
node embeddings and discriminator-based learning strategy.

Semi-Supervised Learning (SSL). State-of-the-art methods
MGCN [4], DMGI [20] are examples of SSL frameworks for multi-
layer/ multiplex networks. MGCN proposes a layered graph convo-
lution neural (GCN) architecture to preserve the within layer and
cross-layer network structures by leveraging a cross-entropy loss
function in each network layer. DMGI - though originally proposed
as an unsupervised method, inculcates a semi-supervised variant
that explicitly guides the learning of layer attention weights. We
have HAN [31] and RGCN [24] from the domains of heterogeneous
and knowledge graphs, respectively. HAN proposes a GNN architec-
ture based on hierarchical node-level and metapath-level attention
mechanisms. In contrast, RGCN proposes a graph convolution-
based message passing framework facilitating effective weight shar-
ing to avoid overfitting on rare relations.

In Table 1, we summarize competing methods in terms of im-
portant aspects of a multi-graph that they are designed to cap-
ture. These methods either lack strategies for 1) capturing global
structural information: or 2) aggregating node information across
different counterparts of the same node from different layers, 3)
capturing useful structures. Even if there are global NRL methods
like DMGIL, DMGC, GUNets — they either use a naive mean-pooling
approach for acquiring global graph representations or unsuper-
vised clustering criteria/ importance pooling strategy to capture
global graph structures that might not be useful given the end task
is concerned. Our framework, SSDCM, differs in that we build upon
a semi-supervised structure-aware version of InfoMax — which is
first-of-its-kind to the best of our knowledge. Our objective is to
learn global-structure enhanced node representations suitable for
node-wise tasks capturing all aspects of multiplex graphs.

Methods Comparison _
A|la|Z|=|&|0 &
attributes VIV V| v
¢ | within-network | v |V |V |V |V |V |/
g cross-network | v/ - |V - |V
&' [ labels Vvl
a global structure | v | v/ V|V
aggregation VR VAR V4 v

* Dash marks denote Not Applicable (NA).

Table 1: Coverage of multiplex network features.

5 EXPERIMENTAL SETUP

Datasets. We evaluate our proposed algorithm SSDCM on a va-
riety of datasets as mentioned in Table 2, from diverse domains,
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Dataset Layers Nodes Edges(Total) Features Labels
ACM [31] 5 7427 24536689 767 5
DBLP [31] 4 4057 17976710 8920 4
SLAP [35] 6 20419 8207130 2695 15
IMDB-MC [20] 2 3550 80216 2000 3
IMDB-ML [21] 3 18352 2505797 1000 9
FLICKR [15] 2 10364 506051 - 7
AMAZON [20] 3 17857 2194389 2395 5

Table 2: Statistics of datasets (Refer to Table 9, Appendix A.3.2 for details)

containing — both multi-class and multi-label datasets, as well as,
attributed and non-attributed datasets. Refer to Table 9, Appen-
dix A.3.2 for additional dataset details.

Baselines. We chose State-Of-The-Art (SOTA) competing methods
applicable to a diverse range of multi-graph settings. The compared
methods can be roughly categorized into the following classes:
multi-layered network-based embedding approaches — DMGC,
MGCN; multiplex network embedding — DMGI; heterogeneous
network embedding — HAN; multi-relational network embedding
— RGCN; pooling method in multi-graph setting — GUNets.
Evaluation Strategy. We use a random sampling strategy to split
the nodes into train, validation, and test set. We choose one-third of
the labeled examples as train nodes. We keep the validation set size
as half of the train set size. Thus, half of the total nodes are kept
for evaluation purposes as test-set. Our experimental setup is sum-
marized in Table 10, Appendix A.3.1. For the methods applicable
to non-attributed graphs, namely, RGCN and DMGC - we imple-
ment attributed versions. For RGCN, we customized the relational
GCN to take node features as input. For DMGC that uses relation-
specific autoencoders to reconstruct the layer adjacencies, we input
another array of feature-specific autoencoders. The feature-based
autoencoders jointly learn a common hidden node representation
along with the relational autoencoders and reconstruct layers’ node
features. To set up attributed NRL methods for FLICKR, we lever-
age the layer adjacencies as node features. We simply obtain the
average of layer node embeddings as final representations for the
methods with no specific node embedding aggregation strategy.
We provide additional details of our analysis to facilitate replicabil-
ity of results in Appendix A.3. We also provide our code !.

6 RESULTS

We demonstrate the effectiveness of the proposed framework on
four tasks, namely, node classification, node clustering, visualiza-
tion, and similarity search. The details of the task-specific experi-
ment setup, along with insights on results, are discussed below.

6.1 Node Classification

For semi-supervised methods, we use the predicted labels directly to
compute the node classification scores based on ground-truth. We
train a logistic regression classifier on the learned node embeddings
of the training data for unsupervised methods and report the perfor-
mance of the predictor on the test node embeddings averaged over
twenty runs. We report the test-set performance that corresponds
to the best validation-set performance for a fair comparison. Micro-
F1 and Macro-F1 scores are reported as node classification results
in Tables [3, 4] respectively. From Tables [3, 4], it is clear SSDCM

!https://github.com/anasuamitra/ssdem
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Micro-F1 | ACM  DBLP SLAP FLICKR AMAZON IMDB-MC IMDB-ML

DMGC 42.822  84.684 29.819 50.308 69.716 56.278 44.765
RGCN 39.118  83.514  26.914 82.69 72.957 62.542 49.802
GUNets | 46.428 87.124  32.985 87.607 77.177 52.508 43.988
MGCN 52.458  87.003  29.563 91.307 84.083 63.384 48.059
HAN 77.441  85.989  30.976 89.478 83.77 62.353 47.117
DMGI 81.205  89.43 30.03 91.225 89.422 65.21 53.413
SSDCM | 88.324 94.988 33.597 96.261 92.195 67.796 54.055

Table 3: Node classification results: Micro-F1 scores (%)

Macro—Fl‘ ACM DBLP SLAP FLICKR AMAZON IMDB-MC IMDB-ML

DMGC 39.679  83.279  21.581 46.122 64.013 54.699 29.122
RGCN 38.665 82.86 24.119 81.47 68.323 62.17 45.285
GUNets 41433  86.426  18.807 85.708 74.332 51.039 27.591
MGCN 46.853  85.462  25.717 91.07 82.349 62.876 38.821
HAN 78.009  85.154  25.413 89.174 82.344 61.891 35.181
DMGI 80.802  88.828  24.854 91.928 88.114 65.066 48.122
SSDCM | 88.571 94.681 28.072 96.147 91.973 67.803 51.756

Table 4: Node classification results: Macro-F1 scores (%)

is the best performing model on all the datasets, by a significant
margin. In comparison, DMGI gives the second-best performance
on most datasets except on SLAP and FLICKR (for Micro-F1 scores).

6.2 Node Clustering

NMI-N ‘ACM DBLP SLAP FLICKR AMAZON IMDB-MC IMDB-ML

DMGC | 0421 0532 0245 0488 0.468 0.185 0.076
RGCN | 0324 0559 024 0715 0.405 0.193 0.102
GUNets | 0.65 0742 0251  0.758 0.519 0.108 0.036
MGCN | 041 0738 0278 076 0528 0.195 0.033

HAN | 0939 066 0278  0.639 0.519 0.178 0.055
DMGI | 0837 0.682 0275  0.644 0.568 0.194 0.056
SSDCM | 0.947 0819 0284  0.822 0.635 0.223 0.085

Table 5: Node clustering results: NMI scores

We only cluster the test nodes to evaluate performance on the
node clustering task. We give the test node embeddings to the
clustering algorithm as input to predict the clusters. We run each
experiment ten times and report the average scores in Table 5. K-
Means and Fuzzy C-Means algorithms are used to predict clusters
in multi-class and multi-label data, respectively. For multi-label
data, we take the top ¢ number of predicted clusters, where q is
the number of classes that a node is associated with, to compare
against the set of ground-truth clusters. We evaluate the obtained
clusters against ground truth classes and report the Normalized
Mutual Information (NMI) [16] scores. We use Overlapping NMI
(ONMI) [11] for overlapping clusters to evaluate the multi-label
datasets. Here we consider two kinds of clustering to demonstrate
the effectiveness of our method. One is node clustering through
clustering algorithms that takes final node embeddings as input. We
refer to this clustering score as NMI-N. Another is directly predict-
ing clusters from the cluster membership matrices learned during
the optimization process and comparing it to the ground-truth to
evaluate the clustering performance. The latter score, referred to
as NMI-C, is only applicable to SSDCM and DMGC. From Table 5,
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we can see that except on IMDB-ML, SSDCM outperforms all the
competing methods on the clustering task. It beats the second-
best performing model by 0.037, across all datasets on average — a
significant improvement.

6.3 t-SNE Visualizations

We also visualize the superior clusterability of SSDCM’s learned
node representations for the FLICKR and AMAZON dataset in
Figure 3 using t-Distributed Stochastic Neighbor Embedding (t-SNE)
[27] visualization. The color code indicates functional classes for
respective datasets. We choose the node embeddings that gave the
best performance in node classification scores for all the competing
methods. We can see that all the semi-supervised methods yield
interpretable visualizations indicating clear inter-class separation.
Among them, SSDCM obtains compact well-separated small clusters
of the same class labels, which appear to be visually better-separated
than the rest of the methods. We see similar trends in visualization
for other datasets also (not shown here).

6.4 Node Similarity Search

In a similar setup to [20], we calculate the cosine similarity scores
of embeddings among all pairs of nodes. For a query node, the rest
of the nodes are ranked based on the similarity scores. We then
retrieve top K = {5, 10, 20, 50, 100} nodes to determine the fraction
of retrieved nodes with the same labels as the query node, averaged
by K. For multi-label graphs, instead of exact label matching, we use
the Jaccard similarity to determine the relevance of the query and
target nodes’ label set. We compute this similarity search score for
all nodes as a query and report the average. The similarity search
results get a significant boost under our framework since our encod-
ing of the SSL clusters puts nodes with similar labels together in the
same cluster. Whereas DMGC’s clustering criterion, DMGI’s global
pooling, and GUNet’s node importance based pooling criterion —
do not demonstrate a similar benefit. From Tables [3, 4], we see for
SLAP and two versions of IMDB movie networks the classification
score of the competing methods are close. But in similarity search,
we can differentiate SSDCM as the best performing model among
all. DMGI is the second-best performing model in node similarity
search, similar to the node classification results. GUNets and DMGC
are seen to perform worse than the rest.

7 ANALYSIS

Herein we conduct an array of drill down experiments to shed light
on the key components of our proposed SSDCM framework.

7.1 Novelty of cluster-based graph summary

Micro-F1 Scores ‘IMDB_MC ACM  DBLP AMAZON FLICKR

SSDCM [global pool] 65.942 84.176  91.592 90.62 92.698
SSDCM [top-K pool] 63.908 84.218  90.683 90.34 93.714
SSDCM [SAG pool] 66.574 83.176  92.859 90.878 93.015
SSDCM [ASAP pool] 66.365 85.064  91.782 90.844 94.689
SSDCM [cluster aware
graph summary]

67.796 88.324 94.988 92.195 96.261

Table 6: Novelty of cluster-based graph summary
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(a) RGCN

(b) GUNets (c) MGCeN

(d) HAN (e) DMGI (f) sspcm

Figure 3: t-SNE Visualization of node embeddings on FLICKR (top), AMAZON (bottom) for all the SSL methods

Please refer to Section: 5 for the candidate methods for which the t-SNE visualizations are plotted here. The color codes indicate functional classes (FLICKR: 7, AMAZON: 5).
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Figure 4: Comparing similarity search results

In Table 6, we delve deeper into how good the cluster-aware
graph summary representation (Equation 3) is for the universal
discriminator (Equation 1). We consider alternative SOTA pool-
ing methods — Top-K [3], SAG [34] and ASAP [22] for generating
graph summaries in the SSDCM framework. Top-K pool realizes
node importance based pooling strategy via learning a projection
vector. In comparison, the SAG pool improves upon the former by
encoding structural information from graphs using GNNs. Adaptive
Structure Aware Pooling (ASAP) is a new SOTA method that con-
siders the cluster structures from graphs. It proposes a self-attentive
GCN architecture Master2Token to learn clusters and uses a cluster
fitness-based scoring strategy to pool underlying graph structures
in phases ? These pooling strategies generate a common graph
summary for the whole graph, which is fed to the discriminator
along with the node embeddings. On the contrary, our cluster-
aware graph summary has a node’s perspective, i.e., the global
graph summaries vary from node to node based on its associated
cluster structures. For the nodes that share membership under a
common set of clusters, the structure-aware graph summaries are

2We use the Pytorch Geometric [2] library for candidate pooling methods.
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similar. That makes the universal discriminator more powerful for
discriminating the local and global patch pair representations from
the false pairs across the relations.

Here, we keep SSDCM’s cluster learning component intact and
use various pooling strategies to train the discriminator. The dis-
criminator, thus, does not have any relation to the learned clusters
and uses a common global summary paired with each node. In
Table 6, we see, structure-aware pooling methods are beneficial.
We see that the pooling variants with SSDCM have better perfor-
mance than DMGI’s best-reported performance (Table 3), mainly due
to learning of the clusters and using advanced pooling strategies in
place of DMGI’s mean-pooling. Empirically, we observe that SS-
DCM with the alternative pooling variants struggle to converge
consistently. However, SSDCM with a cluster-based graph sum-
mary does not suffer from similar convergence issues. Our proposed
architecture in the last row outperforms all the candidate pooling
techniques significantly on every dataset, depicting the effectiveness
of our cluster-aware graph summary representations.

7.2 Effect of various regularizations

e ) | IMDB-MC FLICKR ACM
omparison

‘ Micro-F1 ~ NMI-N | Micro-F1 ~ NMI-N | Micro-F1 ~ NMI-N
SSDCM 67.796  0.22325 | 96.261  0.82171 | 88.324  0.94650
SSDCM—cross 66.613 020451 | 94182 079671 | 86371 091611
SSDCM—cons 66.069 020138 | 91836  0.73658 | 84.889  0.88139
SSDCM—(cons+cross) | 64.971  0.18735 | 88374 071629 | 83.961  0.85420

Table 7: Effect of cross and consensus regularizations
’+” and ’-’ sign denote augmentation or elimination of the components followed.

Here we compare the results of SSDCM without cross regular-
ization with SSDCM to understand the influence of this factor. We
see that removing cross-edge based regularization from the layer-wise
node embeddings degrades the performance of the SSDCM consider-
ably, especially on FLICKR and ACM. Next, we verify the usefulness
of learning a final consensus node embedding from the attention-
aggregated positive and corrupted node embeddings. Recall that
our universal discriminator learns to discriminate between true
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local-global patches from the corrupted ones with the intuition
that the corrupted embeddings seek to improve the discriminative
power of the resulting embeddings. We see that the consensus regu-
larization indeed plays an essential role in enriching the final node
embeddings — an observation similar to DMGI’s. From Table 7, we
see that the consensus embeddings improve the performance of
Micro-F1 scores by a maximum of 4.425% on FLICKR, followed
by 3.435%, 1.558% improvements on ACM, IMDB-MC respectively.
SSDCM—(cons+cross) gives the worst performance among all the com-
pared variations. The reasons behind this are self-explanatory —
a) no cross-edges to align the relational node representations to
each-other, b) it lacks in a discriminative capacity.

8 CONCLUSION

In this study, we propose a semi-supervised framework for repre-
sentation learning in multiplex networks. This framework incor-
porates a unique InfoMax based learning strategy to maximize the
MI between local and contextualized global graph summaries for
effective joint modeling of nodes and clusters. Further, we use the
cross-layer links to impose further regularization of the embed-
dings across the various layers of the multiplex graph. Our novel
approach, dubbed SSDCM, improves over the state-of-the-art over
a wide range of experimental settings and four distinct downstream
tasks, namely, classification, clustering, visualization, and similarity
search, demonstrating the proposed framework’s overall effective-
ness. In the future, we hope to extend this work in a couple of ways.
First, we hope to improve the scalability of the approach — per-
haps by leveraging a graph coarsening and refinement strategy[13]
within SSDCM. Second, we propose to see if the ideas we have
presented can be generalized for other types of multi-layer graphs
(i-e., not just multiplex networks).
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A APPENDIX
A.1 Ablation study
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Figure 5: Ablation study of cluster learning components

Variants Micro F1  MacroF1 NMI-N NMI-C
SSDCM (OL : FT) 85.584 84.83 0.889 0.518
SSDCM (OL : TF) 84.795 83.907 0.868 0.391
SSDCM (OL: TT) 88.324 88.571 0.947 0.651

Symbol meanings — A: cluster assignment, L: cluster learning, O: cluster orthogonality. T:
True, F: False — denotes absence or presence of respective terms.

Table 8: Impact of various cluster learning components

In Table 8, we study the impact of cluster related terms on the end-
task performances by removing the relevant terms in two binary
combinations. In OL: FT and OL: TF configurations, we remove the
cluster orthogonality term and the semi-supervised cluster learning
term, respectively. Removing the cluster learning term significantly
impacts the NMI N and C scores by reducing the performance by
0.079 and 0.26 points. This configuration moderately affects the F1
scores. Removing the orthogonality term affects the classification
performances with 2.74%, 3.771% reductions in Micro and Macro
F1 scores. These reductions are less than the performance drops
gotten from removing the cluster learning term in the case of F1
scores but still play a significant role. The cluster learning term is
seen to be more useful than the cluster orthogonality term for learning
the cluster membership matrix.

In Figure 5, we consider two possible combinations, namely, clus-
ter assignment (Eqn 4)-learning (Eqn 6)-orthogonality (Eqn 5) as
LO: FT and TF (T: True, F: False), for dissecting the cluster learn-
ing objective. We perform a range search to see under which set-
tings the best classification performances is achieved by varying a
particular cluster related term in a range while removing or keep-
ing the rest of the terms intact. The terms are varied in range of
€ {0.005,0.001,0.05,0.01,0.1,0.3,0.5,0.7, 1,3,5}. In FT configura-
tion, cluster orthogonality is varied in the absence of the cluster
learning term. It gives best performance for values € {0.05,0.3}.
Over a higher range of values, the performances become less fluctu-
ating. In TF configuration, cluster learning is varied in the absence
of cluster orthogonality. At 0.01 it gives the best performance in
terms of Micro and Macro F1 for ACM. Again, an upward trend in
performances can be seen for values € [1 —5].
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Figure 6: Varying number of clusters

Number of clusters K is varied for FLICKR, IMDB-MC and ACM. i) Micro, Macro F1
scores (on right), ii) NMI using node embeddings and cluster memberships (on left) are
plotted. Best performances of DMGI (no cluster learning) are — a) for FLICKR, NMI-N:
0.644, b) for IMDB-MC, Micro-F1: 65.210, Macro-F1: 65.066, and c) for ACM, Micro-F1:
81.205, Macro-F1: 80.802, NMI-N: 0.837

A.2 Varying number of clusters

Here we study SSDCM’s sensitivity towards varying the number of
clusters K. We also verify whether there is a need to learn the cluster
structures at all. We take the optimal hyper-parameter combination
and vary the number of clusters in the range [2 — 20] and [2 — 30]
for FLICKR, IMDB-MC, ACM, respectively. Compared to DMGI’s
best performance scores, clear differences can be seen in Figure 6 for
SSDCM that speaks to the effectiveness of learning clusters to enrich
node embeddings.

We plot the NMI-N and NMI-C scores (mean and layer-wise
cluster memberships) while varying K for FLICKR. We see less
perturbation in NMI-N scores than NMI-C scores here. As K goes
higher, the layer-wise and mean cluster membership based NMI
scores increase before flattening at K = 20. For IMDB-MC, We can
see Micro F1 scores are best at K = Q = 3, i.e., when the number of
classes and clusters are the same. For ACM, varying K improves
Micro and Macro F1 scores at K € {2,3} < (Q = 5), i.e.,, when
SSDCM learns high-level clusters. Even when K > Q, i.e., when
SSDCM learns small clusters of same class data. We see a gradual
improvement in both the NMI scores for ACM when k € [9 — 30].
NMI-N and NMI-C tend to give different NMI scores. The possible
interpretation of this performance difference lies in the fact that -
in NMI-N, the K-Means algorithm applied to the node embeddings
of considerable hidden dimensions (d = 64) and the NMI scores are
calculated for ground truth clusters. Whereas, cluster memberships
H are of comparatively low dimensions (K), and in NMI-C, we
directly use the learned cluster membership probabilities to derive
the NMI scores.

A.3 Reproducibility

A.3.1 Baselines. InTable 10, we give the details of hyper-parameter
range search for all the competing methods — which is self-explanatory.



Research Track Paper

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

Intra-Layer

Nodes Layers Node Types Relations Edges Features Weighted Directed Multi-Class Classes
ACM [31] 7427 5 PAPER (P) PAP 118453 767 True False True 5
Author (A) PAIAP 8353678  Paper Title Conference (C)
Proceeding (V) PSP 14997105 & Abstract
Institute (I) PVP 1048129
Subject (S) PP 19324
DBLP [31] 4057 4 AUTHOR (A) APA 11113 8920 True False True 4
Paper (P) APAPA 40703 Paper Title Research Field (F)
Conference (C) APCPA 5000495 & Abstract
Term (T) APTPA 12924399
SLAP [35] 20419 6 GENE (G) GPG 832924 2695 True False True 15
Gene Ontology (O) GTG 606974 Gene Ontology Gene Family (F)
Pathway (P) GDCDG 36190 Description
Compound (C) GOG 6371558
Tissue (T) GDG 14988
Disease (D) GG 344496
IMDB-MC [20] | 3550 2 Movie (M) MAM 66428 2000 True False True 3
Actor (A) MDM 13788 Movie Plot Movie Genre (G)
Director (D) & Summary
IMDB-ML [21] | 18352 3 Movie (M) MAM 1455381 1000 True True False 9
Actor (A) MDM 923173 Movie Plot Movie Genre (G)
Director (D) MEM 127243 & Summary
Actress (E)
FLICKR [15] 10364 2 Uskr (U) Friendship 390938 NA True True True 7
Tag-similarity 115113 Social Group (G)
AMAZON [20] | 17857 3 Propuct (P) Co-purchase 1501401 2395 True False True 5
Co-view 590961 Product Product Category (C)
Similar 102027 Description
Table 9: Dataset statistics
Methods ‘ Experiment setup & hyper-parameter range
HAN [31] 12 coefficient={0.0001, 0.0005, 0.001, 0.005}, learning rate={0.0001, 0.0005, 0.001, 0.005}, attention heads={1,2,4,8}, metapath attention dimension=128
MGCN [4] network & label coefficient={0.01, 0.1, 1.0, 10.0}, 12 coefficient={0.0005, 0.005}, learning rate={0.0005, 0.001, 0.05, 0.01}, stacked GCNs=2
RGCN [24] 12 coefficient={0.0005, 0.005}, learning rate={0.0005, 0.001, 0.05, 0.01}, no of bases=no of relations, number of hidden layers=2
GUNETS [3] | 12 coefficient={0.0001, 0.001}, learning rate={0.01, 0.05, 0.001, 0.0005}, depth={3, 4, 5}, pool ratio={0.2, 0.4, 0.6, 0.8}
DMGC [15] network coefficient={1.0, 0.8, 0.6, 0.4}, cross reg.={0.2, 0.4, 0.6, 0.8}, 12 coef=0.0001, learning rate={0.0005, 0.001, 0.05, 0.01}, stacks in AutoEncoder=2
DMGI [20] network & label coefficient={0.001, 0.01, 0.1, 1.0}, 12 coefficient={0.0001, 0.001}, learning rate={0.0001, 0.0005, 0.001, 0.005}
SSDCM network, label & cluster coefficient={0.001, 0.01, 0.1}, 12 coefficient=0.0001, cross regularization=0.001, learning rate={0.0001, 0.0005, 0.001, 0.005}
Default to All hidden units=64, epochs=10000, patience=20, attention heads=2, non-linearity=prelu, no of clusters=no of classes, € = 3.0, GCN layers = 2,

validation set based hyperparameter tuning, features=adjacency for non-attributed graphs, no node aggregation strategy=mean-pooling.

Table 10: Experiment setup & hyper-parameter range search for competing methods

A.3.2  Datasets. Here in Table 9, we provide the detailed statistics
of the datasets used for evaluation. We have used two versions of
the IMDB dataset, one multi-class version IMDB-MC as used in
DMG]I, and, another multi-label version IMDB-ML from the Col-
umn Networks (CLN) [21]. In both versions, movie features are
extracted from movie plot summary with movie genres as func-
tional classes. We used multiplex versions of bibliographic datasets
ACM and DBLP. For ACM [31], we extracted papers of five con-
ferences 3 and created a multiplex network that includes layers
of paper nodes connected by co-authors, similar subjects, similar
venues, co-authors belonging from the same institutes, and cita-
tion relationships. Here, the task is to classify them according to
the conferences as they are published. DBLP [31] is a multiplex
network of authors. The authors are classified by their field of
research-interests #. In both the bibliographic datasets, the terms
extracted from the paper title and abstract are used as local features
for the nodes under consideration. In SLAP [10, 35], multiple lay-
ers of interactions characterize a gene — including tissue-specific,

3Conferences = KDD’,"WWW’, °SIGIR’, *SIGMOD’, *CIKM’]
4Fields = [Data Mining (DM), Artificial Intelligence (AI), Computer Vision (CV), Natural
language Processing (NLP)].
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biological pathways involved, disease associations, phylogenetic
profile, gene expression, chemicals involved to treat associated dis-
eases, etc. Each gene has ontology related terms associated with it
as attributes, and it can belong to any of the most frequently occur-
ring fifteen gene Families (F). We have AMAAZON [7, 20], which is
originally multiplex in nature, i.e., the multiplexity is not inferred
from composite relations. This network is extracted from the prod-
uct review metadata of the Amazon website. Target instances, i.e.,
products exhibit also-bought, also-viewed, and similar-to - three
layers of relations among them. Most frequently occurred terms
are extracted from product title as node features. The task is to
classify the products into any product categories °>. FLICKR [15] is
a non-attributed multiplex social network of users (U) who belong
to various communities of interest. It has a friendship layer and a
tag similarity-based connection layer among the users. A user is
categorized based on their membership to any of the social groups.
In all the datasets mentioned in Table 9, cross-layer edges link two
nodes in different layers if they refer to the same node.

SProduct Categories in AMAZON Multiplex Network = [’Appliances’, ’Automotive’,
"Patio Lawn & Garden’, "Pet Supplies’, "Home & Kitchen’]
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