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Abstract—In the conventional robust T -colluding private infor-
mation retrieval (PIR) system, the user needs to retrieve one of
the possible messages while keeping the identity of the requested
message private from any T colluding servers. Motivated by
the possible heterogeneous privacy requirements for different
messages, we consider the (N,T1 : K1, T2 : K2) two-level PIR
system, where K1 messages need to be retrieved privately against
T1 colluding servers, and all the messages need to be retrieved
privately against T2 colluding servers where T2 ≤ T1. We obtain
a lower bound to the capacity by proposing a novel coding
scheme, namely the non-uniform successive cancellation scheme.
A capacity upper bound is also derived. The gap between the
upper bound and the lower bound is analyzed, and shown to
vanish when T1 = T2.

I. INTRODUCTION

Capacity characterizations of the canonical private infor-
mation retrieval (PIR) system and its variants have drawn
considerable attention recently in the information and coding
theory community, for which novel code constructions and
impossibility results have been discovered.

In the canonical PIR model, user privacy needs to be
preserved during message retrieval from replicated servers, i.e.,
the identity of the desired message should not be revealed
to any single server. Specifically, the user is required to
retrieve one of the K messages from N servers, each of
which stores a copy of K messages, such that the identity
of the desired message is not revealed to any single server.
In the PIR capacity characterization problem, the goal is
to identify the minimum download cost, i.e., the minimum
amount of download per-bit of the desired message, the inverse
of which is referred to as the capacity of PIR. The PIR capacity
was characterized in [1]. The extension to provide privacy
against any T -colluding servers was considered in [2]. Various
generalizations to allow homogeneity among users [3], [4],
constraints on the message length [5], [6], and to use coded
or uncoded storage [7]–[19] have been considered.

The main motivation of this work is a crucial aspect that
has not been previously addressed in the literature - the
heterogeneity of the privacy constraints on the messages. That
is, in all existing works, each message is required to be
equally private in the sense that any single server [1], or
any colluding set of T servers [2], is completely ignorant
of the desired message identity. However, the sensitivities
of different types of information are commonly different in
practice. For example, politically biased messages, which may
reflect the user’s political tendency, can be more sensitive than
messages of cooking recipes. The user may ask for a “higher”

privacy level when requesting such politically biased messages
than those of cooking recipes. Therefore, a new and more
general PIR system is duly needed to take into account this
consideration.

We formulate the problem of multilevel private information
retrieval problem. Specifically, the privacy level of a message
set is defined as the maximum allowed number of colluding
servers that the identity of a desired message is kept private
among that message set. We focus on the two-level PIR
system, where some K1 messages out of the K messages
have a higher privacy level of T1, i.e., any colluding set of
T1 servers do not learn anything about which one of the K1

messages is desired, while all the K messages together have a
lower privacy level of T2, i.e., any colluding set of T2 servers
do not learn anything about which one of the K messages is
desired.

A naive approach which can be used as a baseline, is to
treat the system as if it were a homogeneous T1-colluding
private information retrieval system. However, the crux of the
two-level PIR hinges on how to leverage the less stringent
privacy requirement for some messages. Towards this end,
we propose a general scheme that can outperform the naive
baseline scheme by treating the two sets of messages with
distinct privacy levels differently. A capacity lower bound is
also derived, and the gap between the lower bound and the
upper bound is analyzed.

Notations: We adopt the notation i : j , {i, i+1, . . . , j−1, j}.
Denote vector aN , (ai)i∈N for any sequence (a1, a2, . . .)
and N ⊂ N. We use X ∼ Y to indicate the random variables
X and Y following an identical distribution. For any matrix
A[:, :], the first coordinate is for row indices and the second
coordinate is for column indices.

II. PROBLEM FORMULATION

There are a total of K mutually independent messages
W1:K = (W1,W2, . . . ,WK) in the system. Each message is
uniformly distributed over FLq , where Fq is a large enough
finite field and L is the number of q-ary symbols in the
message (i.e., the message length). This is equivalent to

H(W1) = H(W2) = · · · = H(WK) = L, (1)
H(W1:K) = KL, (2)

where (and in the rest of this work) we take base-q logarithm
for simplicity. There are N servers in the system, each of
which stores a copy of all the K messages. Let k∗ ∈ 1 : K



be the identity of the desired message. The process to retrieve
message Wk∗ , for any k∗ ∈ 1 : K, involves three steps:

1. (Query) The user sends a randomized query Q
[k∗]
n to

server n for each n ∈ 1 : N ;
2. (Answer) Each server n, where n ∈ 1 : N , returns an

answer A[k∗]
n to the user;

3. (Recovery) The user recovers the message as Ŵk∗ , using
the queries Q[k∗]

1:N to all the servers and the answers A[k∗]
1:N

from all the servers.

Denote the set of all possible queries sent to server n as
Qn. Q[k∗]

n ∈ Qn is a random variable, whose superscript [k∗]
indicates that the query is for retrieving message Wk∗ . The
user has no knowledge of W1:K , and thus the queries are
independent of the messages

I(Q
[k∗]
1:N ;W1:K) = 0, ∀k∗ ∈ 1 : K. (3)

Each symbol of the answer A[k∗]
n , the answer to the query

Q
[k∗]
n , is a sequence of symbols in Fq; denote the number of

symbols of A[k∗]
n as `[k

∗]
n . The answer A[k∗]

n is a deterministic
function of the query Q[k∗]

n and the messages W1:K , that is

H(A[k∗]
n |Q[k∗]

n ,W1:K) = 0, ∀k∗ ∈ 1 : K, n ∈ 1 : N. (4)

The recovered message Ŵk∗ depends on the queries Q[k∗]
1:N as

well as the answers A[k∗]
1:N , that is

H(Ŵk∗ |A[k∗]
1:N , Q

[k∗]
1:N ) = 0, ∀k∗ ∈ 1 : K. (5)

The message should be retrieved correctly, i.e., Wk∗ = Ŵk∗

for all k∗ ∈ 1 : K. Additionally, the system has certain privacy
requirements. To measure user privacy when querying for any
message in a certain set of messages, we first introduce the
definition of privacy level.

Definition 1 (Privacy level). The queries of a scheme have
privacy level T for a set of messages WS , where S ⊆ 1 : K,
if for any T ⊆ 1 : N with |T | = T , for retrieving any message
in WS , the queries to the servers in T have the same joint
distribution, i.e.,

Q
[k]
T ∼ Q

[k′]
T , ∀k, k′ ∈ S. (6)

The notion of privacy level has the following operational
meaning: if WS has privacy level T , then when one of
the messages in WS is retrieved, even if any T of the N
servers collude, the identity of the requested message in WS
remains private, however these colluding servers may be able
to infer that the requested message is in the set WS . It
is straightforward to verify that the set of messages with
higher privacy level automatically has lower privacy levels.
In addition, when the set S is a singleton, if T servers can
infer the desired message is in WS , the identity of the desired
message is known. Thus it is not meaningful to study the
privacy level of WS for singleton S, though we will still allow
it for notational convenience.

In this work, we consider the two-level PIR system. The
system parameters in such a system are (N,T1 : K1, T2 : K)

with T1 ≥ T2 ≥ 1 and 1 ≤ K1 ≤ K. All the messages
W1:K have the default weaker privacy level T2, but the first
K1 messages W1:K1 have an enhanced privacy level T1. We
are interested in the retrieval rate (or simply rate) which is the
number of useful message symbols retrieved per unit download

R ,
L∑N

n=1 E[`
[k∗]
n ]

. (7)

The download cost D is defined as the inverse of R, i.e.,
D , R−1. Schemes with higher achievable rates are preferred,
and the supremum of the achievable rates among all possible
schemes is called the capacity of the system, denoted as C.

III. MAIN RESULT

To introduce the main result, we first provide some new
notation. Denote the number of messages having the weaker
privacy level T2 but not the higher privacy level T1 as

K2 , K −K1. (8)

Define the function D∗N (K,T ) as follows

D∗N (K,T ) , 1 +
T

N
+ · · ·+

(
T

N

)K−1
, ∀T,K,N ∈ N,

(9)

whose inverse is the capacity of the T -colluding PIR system
with N servers and K messages (sometimes simply referred
to as a T -private system). The main result of this work is
summarized in the theorem below.

Theorem 1. The capacity C of the (N,T1 : K1, T2 : K)
two-level PIR system satisfies

RNS ≤ C ≤ R̄, (10)

where

RNS =

(
D∗N (K1, T1) +

(
T1
N

)K1

D∗N (K2, T2)

)−1
, (11)

and

R =

(
D∗N (K1, T1) +

T2
N

(
T1
N

)K1−1

D∗N (K2, T2)

)−1
.

(12)

The bound RNS is obtained by a new coding scheme, which
we refer to as the Non-uniform Successive-cancellation (NS)
coding scheme. The proof for the bound R̄ can be found in
[20]. To further understand these bounds in Theorem 1, define

D = R
−1
, DNS = R−1NS.

The difference between D and DNS is

DNS −D =
T1 − T2
N

(
T1
N

)K1−1

D∗(K2, T2). (13)

It is seen that this gap diminishes geometrically as K1 grows,
and also vanishes when T1 = T2 as expected. Any (N,T1 :
K,T2 : K) code, i.e., a T1-private code with N servers and K



TABLE I
NS SCHEME IN (N,T1 : K1, T2 : K) = (4, 2 : 2, 1 : 4) FOR RETRIEVING W1

Coding group Server-1 Server-2 Server-3 Server-4
a: (64, 64) a1, a2, a3 a4, a5, a6 a7, a8, a9 a10, a11, a12
b: (24, 12) b1, b2, b3 b4, b5, b6 b7, b8, b9 b10, b11, b12
c: (8, 4) c1 c2 c3 c4
d: (8, 4) d1 d2 d3 d4

a13 + b13 a14 + b14 a15 + b15 a16 + b16
a17 + b17 a18 + b18 a19 + b19 a20 + b20
a21 + b21 a22 + b22 a23 + b23 a24 + b24
a25 + c5 a26 + c6 a27 + c7 a28 + c8
a29 + d5 a30 + d6 a31 + d7 a32 + d8

b, c: (8,4) b25 + c9 b26 + c10 b27 + c11 b28 + c12
b, d: (8,4) b29 + d9 b30 + d10 b31 + d11 b32 + d12

c, d: (24, 12) c13 + d13 c16 + d16 c19 + d19 c22 + d22
c14 + d14 c17 + d17 c20 + d20 c23 + d23
c15 + d15 c18 + d18 c21 + d21 c24 + d24

a33 + b33 + c25 a34 + b34 + c26 a35 + b35 + c27 a36 + b36 + c28
a37 + b37 + d25 a38 + b38 + d26 a39 + b39 + d27 a40 + b40 + d28
a41 + c29 + d29 a42 + c30 + d30 a43 + c31 + d31 a44 + c32 + d32
a45 + c33 + d33 a46 + c34 + d34 a47 + c35 + d35 a48 + c36 + d36
a49 + c37 + d38 a50 + c38 + d38 a51 + c39 + d39 a52 + c40 + d40

b, c, d: (24, 12) b41 + c41 + d41 b42 + c42 + d42 b43 + c43 + d43 b44 + c44 + d44
b45 + c45 + d45 b46 + c46 + d46 b47 + c47 + d47 b48 + c48 + d48
b49 + c49 + d49 b50 + c50 + d50 b51 + c51 + d51 b52 + c52 + d52

a53 + b53 + c53 + d53 a54 + b54 + c54 + d54 a55 + b55 + c55 + d55 a56 + b56 + c56 + d56
a57 + b57 + c57 + d57 a58 + b58 + c58 + d58 a59 + b59 + c59 + d59 a60 + b60 + c60 + d60
a61 + b61 + c61 + d61 a62 + b62 + c62 + d62 a63 + b63 + c63 + d63 a64 + b64 + c64 + d64

messages, is valid for the (N,T1 : K1, T2 : K) PIR system.
The optimal download cost of the former is exactly given by
DT-PIR = D∗N (K,T1). Comparing with this naive approach,
the coding gain of the proposed NS scheme is thus

DT-PIR −DNS =

(
T1
N

)K1

(D∗N (K2, T1)−D∗N (K2, T2)) ,

(14)

which is always non-negative, and strictly positive if and only
if K2 ≥ 2. Note that the strategy of using an (N,T1 : K,T2 :
K) code when a message in WS is requested, and using an
(N,T1 : 1, T2 : K) code for the other messages is not valid,
since this would lead to privacy leakage in the latter case, i.e.,
the information that the requested message is not in S.

IV. THE NON-UNIFORM SUCCESSIVE CANCELLATION
SCHEME

We next provide an example to illustrate the proposed
NS coding scheme, and the details for the general code
construction can be found in [20]. In this example, the two-
level PIR system is specified by the parameters (N,T1 :
K1, T2 : K) = (4, 2 : 2, 1 : 4), i.e., there are 4 servers and 4
messages W1:4, and messages W1:2 have privacy level T1 = 2,

while all messages W1:4 have privacy level T2 = 1. The length
of each message is L = 64 here.

Encoding: To retrieve a message, the answers are formed in
three steps, and the queries are simply the encoding matrix for
these answers. Assume for each (n, k) pair where n ≥ k, an
MDS code in Fq is given and fixed, and we refer to it as the
(n, k) MDS code. The coding structure is illustrated in Table
I and Table II, for the retrieval of W1 and W4, respectively.
The coding steps can be understood as follows:

1) Precoding: Let S1, S2, S3, and S4 be four random ma-
trices, which are independently and uniformly drawn
from the set of all 64 × 64 full rank matrices over Fq;
these matrices are known only to the user. The precoded
messages W ∗1:4 are

W ∗1 = S1W1; W ∗2 = S2W2;

W ∗3 = S3W3; W ∗4 = S4W4. (15)

2) Group-wise MDS coding: The precoded messages are
partitioned into non-overlapping segments, and each seg-
ment is MDS-coded under certain (n, k) parameters, the
result of which is referred to as a coding group. These
MDS-coded symbols for the four messages are denoted as



TABLE II
NS SCHEME IN (N,T1 : K1, T2 : K) = (4, 2 : 2, 1 : 4) FOR RETRIEVING W4

Coding group Server-1 Server-2 Server-3 Server-4
d: (64, 64) d1 d2 d3 d4
a: (16, 4) a1, a2, a3 a4, a5, a6 a7, a8, a9 a10, a11, a12
b: (16, 4) b1, b2, b3 b4, b5, b6 b7, b8, b9 b10, b11, b12
c: (16, 4) c1 c2 c3 c4

a29 + d5 a30 + d6 a31 + d7 a32 + d8
b29 + d9 b30 + d10 b31 + d11 b32 + d12
c13 + d13 c16 + d16 c19 + d19 c22 + d22
c14 + d14 c17 + d17 c20 + d20 c23 + d23
c15 + d15 c18 + d18 c21 + d21 c24 + d24

a, b : (16, 4) a13 + b13 a14 + b14 a15 + b15 a16 + b16
a17 + b17 a18 + b18 a19 + b19 a20 + b20
a21 + b21 a22 + b22 a23 + b23 a24 + b24

a, c: (16,4) a25 + c5 a26 + c6 a27 + c7 a28 + c8
b, c: (16,4) b25 + c9 b26 + c10 b27 + c11 b28 + c12

a37 + b37 + d25 a38 + b38 + d26 a39 + b39 + d27 a40 + b40 + d28
a41 + c29 + d29 a42 + c30 + d30 a43 + c31 + d31 a44 + c32 + d32
a45 + c33 + d33 a46 + c34 + d34 a47 + c35 + d35 a48 + c36 + d36
a49 + c37 + d38 a50 + c38 + d38 a51 + c39 + d39 a52 + c40 + d40
b41 + c41 + d41 b42 + c42 + d42 b43 + c43 + d43 b44 + c44 + d44
b45 + c45 + d45 b46 + c46 + d46 b47 + c47 + d47 b48 + c48 + d48
b49 + c49 + d49 b50 + c50 + d50 b51 + c51 + d51 b52 + c52 + d52

a, b, c: (16,4) a33 + b33 + c25 a34 + b34 + c26 a35 + b35 + c27 a36 + b36 + c28

a53 + b53 + c53 + d53 a54 + b54 + c54 + d54 a55 + b55 + c55 + d55 a56 + b56 + c56 + d56
a57 + b57 + c57 + d57 a58 + b58 + c58 + d58 a59 + b59 + c59 + d59 a60 + b60 + c60 + d60
a61 + b61 + c61 + d61 a62 + b62 + c62 + d62 a63 + b63 + c63 + d63 a64 + b64 + c64 + d64

a1:64, b1:64, c1:64, d1:64, respectively. In the tables, these
coding groups are distinguished using different colors,
with the corresponding MDS parameters given in the first
column. For example, the red coding groups in Table I for
both b25:28,33:36 and c9:12,25:28 are obtained by encoding
4 pre-coded symbols in W ∗2 and W ∗4 , respectively. In each
coding group, the coded symbols are ordered and sequen-
tially placed in the tables, indicated by their subscripts.

3) Forming pre-coded message sums: The summations of
the MDS-coded messages are formed accordingly, which
can be seen clearly from Table I and Table II.

Decoding and correctness: The coding structure is layered,
where in each layer the number of summands in each down-
loaded symbol is the same. From top to bottom, the number of
summands increases from 1 to 4. The symbols of interference
messages in each coding group are placed in two adjacent
layers, where the signals (i.e., the summation of the symbols
of interference messages) in the top layer can decode the
interference signals in lower layer due to the common linear
MDS code.

In Table I, for each coding group, the total number of inter-
ference signals placed in two adjacent layers and the top layer

follow the ratio (2 : 1) = (8 : 4) = (24 : 12). For example,
8 interference signals in the red coding group are placed in
the second and third layers, where 4 downloaded symbols
b25:28 + c9:12 in the second layer can decode b33:36 + c25:28
in the third layer, because b, c are encoded by the same linear
(8, 4) MDS code. Consequently, a33:36 can be recovered. It
can be verified that a1:64 can all be recovered either directly
or in this fashion. By symmetry, W2 can be retrieved similarly.

In Table II, for each coding group, the numbers of inter-
ference signals of each coding group placed in two adjacent
layers and the top layer have the ratio 4 : 1. For example, 16 in-
terference signals in red coding groups are placed in the second
and third layers, where any 4 of the 12 downloaded symbols
a13:24 + b13:24 in the second layer can decode a37:40 + b37:40
in the third layer because a, b are encoded by the same linear
(16, 4) MDS code. Consequently, d25:28 can be recovered. It
can be verified that d1:64 can all be recovered either directly,
or in this fashion. By symmetry, W3 can be retrieved similarly.

Privacy: The coding pattern, i.e., the manner of forming pre-
coded message sums, is the same for the retrieval of any
message in W1:4. Since it is a linear code, the coded symbols
can be generated by the corresponding coding matrices. From



Table I, it is seen that the coding matrix of the coded symbols
of any message from any two servers has full row-rank. For
examples, the coded symbols a’s in server-1 and server-2
can be generated by a full row rank coding matrix using the
message W1, due to the pre-coding and the group-wise MDS
coding. By applying Lemma 1 below, the messages W1:2 thus
have privacy level 2. The 1-privacy for all the messages can
be seen in a similar manner.

Lemma 1 (Statistical effect of full rank matrices [2]). Let
S1, S2, . . . , SK ∈ Fα×αq be K random matrices, drawn inde-
pendently and uniformly from all α×α full-rank matrices over
Fq . Let G1, G2, . . . , GK ∈ Fβ×βq be K invertible square ma-
trices of dimension β×β over Fq . Let I1, I2, . . . , IK ∈ Nβ×1

be K index vectors, each containing β distinct indices from
[1 : α]. Then

(G1S1[I1, :], G2S2[I2, :], . . . , GKSK [IK , :])
∼ (S1[1 : β, :], S2[1 : β, :], . . . , SK [1 : β, :]), (16)

where the notation S[I, :] is used to indicate the submatrix of
S by taking its rows in I.

Performance: The total number of downloaded symbols is
116 and the message length is 64. Thus the rate is RNS =
64
116 = 16

29 . The optimal scheme for 2-private systems has rate
8
15 < RNS.

Remark: The construction resembles the scheme in [2], but it
allows non-uniform coding structure to leverage the require-
ments of two levels of privacy. Due to the homogeneity of the
privacy requirements for all the messages in T -private systems,
the MDS coding parameters for each coding group are chosen
to be (N,T ). In the proposed scheme for the (N,T1 :
K1, T2 : K) system, there is symmetry among servers, and
also symmetries among W1:K1 and among WK1+1:K but
not across all the messages. Thus when retrieving message
Wk∗ with k∗ ∈ 1 : K1, the ratio of the MDS parameters
(n, k) in each coding group of the undesired messages need
to be chosen as (N,T1), while as for message Wk∗ with
k∗ ∈ K1 + 1 : K, the MDS coding parameters in each coding
group would be (N,T2). However, since N/T1 < N/T2, with
the same retrieval pattern, there exists certain slack in the
placement pattern when retrieving Wk∗ with k∗ ∈ K1+1 : K.
For example, the red coding group in Table II only needs 4
symbols in layer-2 to decode the remaining symbols in both
layer-2 and layer-3, yet 12 symbols are retrieved and available
directly in layer-2.

V. CONCLUDING REMARKS

We considered two-level private information retrieval sys-
tems, and provided a capacity lower bound by proposing a
novel code construction and a capacity upper bound. In the
extended version [20] of this work, we provide another coding
scheme which is referred to the non-uniform block cancella-
tion scheme (NB). The NB scheme is able to outperform the
NS scheme in certain (N,T1 : K1, T2 : K) regimes. However,
the lower bounds and the upper bound do not match in general.

Moreover, in the extended version we show that the upper
bound R̄ is not tight in general by providing a stronger upper
bound for the special case of (3, 2 : 2, 1 : 3).

We suspect the proposed code constructions can be further
improved to yield better lower bounds, which we leave as a
future work. Other possible future work includes extensions
to mutlilevel PIR with more than two privacy levels, and the
joint design of multilevel PIR and the storage codes.
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