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Abstract. Rank aggregation is widely used in group decision making and many other ap-
plications, where it is of interest to consolidate heterogeneous ordered lists. Oftentimes,
these rankings may involve a large number of alternatives, contain ties, and/or be incom-
plete, all of which complicate the use of robust aggregation methods. In particular, these
characteristics have limited the applicability of the aggregation framework based on the
Kemeny-Snell distance, which satisfies key social choice properties that have been shown
to engender improved decisions. This work introduces a binary programming formula-
tion for the generalized Kemeny rank aggregation problem—whose ranking inputs may
be complete and incomplete, with and without ties. Moreover, it leverages the equiva-
lence of two ranking aggregation problems, namely, that of minimizing the Kemeny-
Snell distance and of maximizing the Kendall-τ correlation, to compare the newly
introduced binary programming formulation to a modified version of an existing integer
programming formulation associated with the Kendall-τ distance. The new formulation
has fewer variables and constraints, which leads to faster solution times. Moreover, we
develop a new social choice property, the nonstrict extended Condorcet criterion, which
can be regarded as a natural extension of the well-known Condorcet criterion and the Ex-
tended Condorcet criterion. Unlike its parent properties, the new property is adequate for
handling complete rankings with ties. The property is leveraged to develop a structural
decomposition algorithm, through which certain large instances of the NP-hard Kemeny
rank aggregation problem can be solved exactly in a practical amount of time. To test the
practical implications of the new formulation and social choice property, we work with
instances constructed from a probabilistic distribution and with benchmark instances
from PrefLib, a library of preference data.

Funding: This work was supported by the U.S. Army Research Office [Grant W911NF1910260] and
the National Science Foundation, Division of Information and Intelligent Systems [Grant
1850355].

Keywords: group decision making • rank aggregation • computational social choice • combinatorial optimization.

1. Introduction
Group decision making has been studied extensively
since the shaping of democratic society. To give equal
rights to each individual, rather than a selected few,
many people have devoted their efforts to develop
fair and consistent systems that aggregate the opin-
ions of several individuals to make egalitarian social
decisions. Eliciting and/or expressing the preferences

over a set of alternatives or candidates as rankings
(e.g., candidate i is in first place, candidate j is in sec-
ond place, etc.) is popular across many decision-
making contexts due in part to the scale-free
characteristics of these evaluations and their efficient
encapsulation of large numbers of pairwise compari-
sons. Therefore, rank aggregation is a common and
widely studied topic in group decision making. A
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famous early result is that of Arrow (1951), who stud-
ied the theoretical implications of the concept of a
social welfare function (SWF), which maps individual
rankings into a single ranking that should represent
the best compromise among the given rankings.
Therein, the authors provided a set of fundamental
conditions that a SWF should satisfy and demonstrat-
ed that they could not be satisfied simultaneously by
any SWF. Despite this “impossibility” result, rank ag-
gregation has been widely used across a number of
practical group decision-making settings. For instance,
Fields et al. (2013) consider a healthcare problem of im-
proving nurse triage and patient prioritization in the
emergency department of a hospital. When there are
more patients waiting in the emergency room than
available resources or staff, it is important to order the
patients based on the severity of their condition. How-
ever, different nurses at times provide differing prioriti-
zation of patients, which can be represented by rank-
ings, and thus it is necessary to resolve the conflicts
among the multiple rankings. As additional examples,
rank aggregation has been applied to evaluate research
proposals (Cook et al. 2007), to judge student paper
competitions (Hochbaum and Levin 2006, Escobedo
et al. 2021), and to improve the annual draft prepara-
tion decision-making process of Major League Baseball
(Streib et al. 2012). Besides decision making, rank ag-
gregation has extensive applicability to other fields,
such as crowdsourcing and human computation
(Steyvers et al. 2009; Mao et al. 2012, 2013; Kemmer
et al. 2020), information retrieval (Farah and Vander-
pooten 2007, Yilmaz et al. 2008), and similarity search
(Fagin et al. 2003, Ye et al. 2016, Gao and Xu 2019). For
example, rank aggregation has been used within the
field of crowdsourcing to derive robust collective esti-
mates related to the order of historical events (Steyvers
et al. 2009), puzzle games based on difficulty (Mao et al.
2012), and images containing dots based on the num-
ber of dots they contain (Kemmer et al. 2020). These
and other applications have demonstrated that robust
rank aggregation methodologies can mitigate the influ-
ence of outliers and thwart manipulation and bias in
practice (Dwork et al. 2001, Lin 2010a). From an opera-
tions research perspective, rank aggregation has been
previously connected to the linear ordering problem
(Martı́ and Reinelt 2011) and the theory of order poly-
topes (see Section 3.3) owing to its inherent

combinatorial nature—thast is, a linear ordering is a
permutation of the candidates (Fiorini and Fishburn
2004, Heiser 2004). Therefore, the rank aggregation
problem is worth discussing in terms of both its poten-
tial impact on core methodological aspects and its prac-
tical benefits in a wide array of applications.

Distance-based and coefficient-based frameworks
are the methodologies mainly used in robust rank ag-
gregation due to their mathematically rigorous (i.e.,
axiomatic) foundations. The distance-based frame-
work seeks a solution that minimizes the cumulative
disagreement with the input rankings, whereas the
coefficient-based framework seeks a solution that
maximizes the cumulative agreement with the input
rankings. Accordingly, these methods are often re-
ferred to as consensus ranking aggregation methods.

Kemeny and Snell (1962) introduced a distance-
based framework founded on a set of intuitive metric
axioms; its associated SWF has been verified to possess
many theoretical and practical benefits. Indeed, the
consensus ranking problem based on the Kemeny-Snell
distance has competitive advantages over other aggre-
gation frameworks. Known widely as Kemeny (rank) ag-
gregation, the objective of this problem is to find a con-
sensus ranking solution, which is defined as a ranking
with the minimum number of pairwise reversals to the
set of input rankings (see Section 2). Assuming that
there are no cycles in the majority’s pairwise preferen-
ces and that the input rankings are complete, Kemeny
aggregation is guaranteed to return the ranking solu-
tion that reflects the majority’s pairwise preferences.
On the other hand, scoring methods are not guaranteed
to do so; for instance, the consensus ranking solution
may not place the Condorcet winner (see Section 5.1) in
first place. Kemeny aggregation has been repeatedly
demonstrated to be less vulnerable to manipulation
than scoring methods and more robust to outliers (Feld
and Grofman 1988, Favardin et al. 2002, Endriss et al.
2016). The satisfaction of this and other key social
choice properties is a fundamental reason that Kemeny
aggregation is preferred over various voting methods.
The Borda count method (de Borda 1781) serves as a
notable example of the vulnerability to outliers of scor-
ing methods. This method, which assigns a score to
each candidate based on the number of opponents it
beats in an evaluation and calculates a final score for
each candidate by summing the scores earned over all
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evaluations, is widely employed, even though it can
yield very inconsistent outcomes (Dummett 1998, Fa-
vardin et al. 2002), especially when the rankings are in-
complete (Moreno-Centeno and Escobedo 2016). We
remark that Kemeny aggregation and various exten-
sions of the Kemeny-Snell distance have been devel-
oped and applied in the area of decision analysis (e.g.,
Dwork et al. 2001, Cook 2006, Moreno-Centeno and Es-
cobedo 2016) to reflect different assumptions about the
judges’ evaluations.

Correlation coefficients provide another framework
to measure agreement between rankings, and they
have been investigated primarily in statistics litera-
ture (e.g., Kendall 1938, Ahlgren et al. 2003, Yilmaz
et al. 2008). Kendall (1938) developed a coefficient-
based framework, which is closely linked to the
Kemeny-Snell distance. The original methodology,
called Kendall-τ, is a nonparametric correlation coeffi-
cient that measures the agreement among strict rank-
ings (i.e., rankings that do not allow ties); it was
extended to handle nonstrict rankings (i.e., rankings
that allow ties) in Kendall (1948). Emond and Mason
(2002) provided another version of Kendall-τ correla-
tion coefficient for nonstrict rankings and demonstrat-
ed that their τ-extended coefficient, τx, returns the
same optimal solutions as the Kemeny aggregation
framework, when the inputs are also complete.

It is important to delve into three special characteris-
tics of rankings addressed in this paper: high dimen-
sion, ties, and incompleteness. Large rank aggregation
problems are prevalent in practice. For example, it is
not uncommon for a federal funding agency to receive
hundreds of submissions to a single program. Cushman
et al. (2015) mentioned that the number of submitted
proposals to the National Science Foundation’s Astrono-
my and Astrophysics Research Grants (AAG) program
was 731 in 2014. As a second example from portfolio de-
cision analysis, Keisler (2004) and Schilling et al. (2007)
considered problems with 500 options and 173 options,
respectively; in the latter, it is mentioned that individual
decision makers had to assess their preferences for more
than 50 alternatives. Furthermore, rank aggregation is
applicable not only to preferential rankings obtained
from human judges but also to a variety of ordinal data
encountered in a wide array of nonhuman contexts such
as bioinformatics, web search engines, and recommen-
dation systems. In bioinformatics, rank aggregation is

used to integrate a long list of genes from genomic ex-
periments and find putative genes for specific diseases,
where a list of genes may consist of thousands of ele-
ments (Lin 2010a,b; Kolde et al. 2012; Marbach et al.
2012; Wald et al. 2012; Mandal and Mukhopadhyay
2017). Rank aggregation can be also used in a meta-
search, where a user query is sent to multiple search en-
gines and then the separate ranked lists from the search
engines are aggregated into a representative collective
list (Dwork et al. 2001, Desarkar et al. 2016). These and
other examples underscore the need to consider large
rank aggregation problems in practical decision analysis
research.

Incomplete rankings are another common occur-
rence across various decision-making contexts. When the
overall number of alternatives to evaluate is large, it may
not be feasible or prudent for any single judge to provide
a complete ranking of these alternatives. Indeed, accord-
ing to Miller’s law (Miller 1956), an average human can
hold in short-term memory and judge properly only 7 6

2 alternatives. In addition to this cognitive limitation,
there are various other constraints (e.g., time) that
would motivate the evaluation of a smaller subset of
the alternatives (i.e., an incomplete ranking). Similarly,
having the flexibility to tie some of the alternatives
(i.e., a nonstrict ranking) may help make an evaluation
task more manageable. In practice, it is common for
groups of alternatives to be perceived as being indis-
tinguishable from one another, and, therefore, it may
not be possible for judges to order them strictly (Ken-
dall 1945). Additionally, in a wide array of contexts, a
set of evaluations may have very few distinct values,
and, hence, the corresponding rankings obtained from
them may have many ties (Fagin et al. 2004).

The main contributions of this paper address these
three special characteristics, which frequently occur
in practice and can make rank aggregation especially
difficult. First, this paper provides a binary program-
ming formulation for nonstrict complete and incom-
plete rankings; note that a large majority of previous
works consider only the case where the input rank-
ings are strict and complete. The formulation is
derived from an equivalent correlation coefficient in-
terpretation of the problem, and its constraints are
shown to be fundamentally connected to the weak
order polytope (see Fiorini and Fishburn 2004), spe-
cifically with its basic family of facet-defining
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inequalities. Second, we define a social choice proper-
ty that allows certain instances that rank a large num-
ber of alternatives and may contain ties to be decom-
posed into smaller subproblems. In addition, we
prove that Kemeny aggregation is consistent with the
newly defined property when the rankings are non-
strict and complete. The property provides several
practical benefits for dealing with large instances of
this problem. Specifically, for certain instances, it en-
sures that some subsets of alternatives will always be
preferred over other subsets—this without having to
perform the aggregation. This has the benefit of al-
lowing decision makers to rule out many irrelevant
alternatives from consideration. It can also help with
the issue of multiple alternative optimal solutions in-
herent in Kemeny aggregation. In particular, decision
makers may validly conclude that a large number of
the alternatives will never occupy the top positions of
any optimal ranking with the use of this property.
Third, the paper performs computational experiments
on a wide range of instances to showcase the practical
benefits of the binary programming formulation and
social choice property. Altogether, our contributions
enable the exact solution and analysis of certain types
of instances with hundreds or thousands of alterna-
tives in a practical amount of time.

The organization of the rest of the paper is as fol-
lows. Section 2 introduces distance metrics for group
decision making and describes the notation used
throughout the paper. Section 3 derives a binary pro-
gramming formulation for the generalized Kemeny

rank aggregation problem. Section 4 summarizes the
computational experiments performed to compare this
new formulation to a modified version of a recently de-
veloped formulation for the Kendall-τ distance. Section
5 introduces a social choice property that is applicable
to nonstrict complete rankings, an associated structural
decomposition algorithm, and the mathematical proof
establishing that the Kemeny optimal ranking aligns
with this new property. Section 6 summarizes a set of
computational experiments for demonstrating the vari-
ous benefits of this new property. Lastly, Section 7 con-
cludes the work and discusses some of the limitations
of the proposed methodologies.

2. Distance Metrics for Decision Making
Distance functions are commonly used in decision
making to measure the disagreement between two sub-
jective evaluations over a set of alternatives. This sec-
tion introduces distance metrics used for rank aggrega-
tion; beforehand, Table 1 lists symbols and notations
used throughout this paper. Kemeny and Snell (1962)
introduced an axiomatic distance for nonstrict complete
rank aggregation, which is denoted as dKS and defined
with respect to ranking vectors a and b as follows:

dKS(a,b) � 1
2

∑n
i�1

∑n
j�1

| sign(ai − aj) − sign(bi − bj) | : (1)

In essence, distance dKS counts the pairwise inver-
sions between rankings a and b. Note that sign(x)
returns 1 if x > 0, 0 if x � 0, and –1 if x < 0. As dis-
cussed in Section 1, dKS possesses certain unique

Table 1. Symbols and Notations

V A set of alternatives (i.e., V � {v1,v2,v3, : : : ,vn}), where vi denotes an alternative i and n is the number of alternatives
Vk The kth subset of alternatives, where Vk ⊆ V, k ≥ 1
P(V) A family of all possible partitions of V (e.g., if {V1,V2} ∈ P(V), then V1⋃V2 � V and V1 ∩ V2 � ∅)
L A set of judges
A A set of input rankings (ordinal-valued evaluations)
aℓ The ranking from judge ℓ (ℓ � 1, 2, 3, : : : , |L|), where aℓ ∈ A
aℓi Rank position of vi in the evaluation from judge ℓ, where ℓ � 1, 2, 3, : : : , |L|
vi � vj vi is preferred over vj (i.e., ai < aj for some ranking a)
vi ≈ vj vi is tied with vj (i.e., ai � aj for some ranking a)
vi�vj vi is preferred over or tied with vj (i.e., ai ≤ aj for some ranking a)
pij The number of judges who prefer vi over vj (i.e., | aℓ ∈ A : aℓi < aℓj

{ }
|)

tij The number of judges who tie vi and vj (i.e., | aℓ ∈ A : aℓi � aℓj
{ }

|)
vi�m vj A majority of judges prefers, rather than disprefers, vi over vj (i.e., pij > pji)
vi≈m vj No majority of judges prefers or disprefers vi over vj (i.e., pij � pji)
vi�Mvj A decisive majority of judges prefers vi over vj (i.e., pij > pji + tij)
vi≈Mvj No decisive majority of judges prefers vi over vj, or vice versa (i.e., tij ≥ |pij − pji|)
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advantages over other rank aggregation methods.
Specifically, dKS uniquely satisfies a set of intuitive ax-
ioms: nonnegativity, commutativity (symmetry), tri-
angular inequality, anonymity, and scaling (Kemeny
and Snell 1962, Cook and Seiford 1978, Cook and
Kress 1985). Additionally, the aggregated outcome
obtained with the Kemeny-Snell distance uniquely
satisfies a set of desirable social choice properties con-
jointly: neutrality, consistency, and the Condorcet
property (Young and Levenglick 1978). It has been
shown that scoring methods (e.g., the Borda count
method, plurality rule, averaging methods) and other
distance-based methods cannot satisfy all of these
properties conjointly (Goodin and List 2006, Brandt
et al. 2016). Moreover, from a statistical perspective,
the optimal solution to Kemeny aggregation has an
interpretation as a maximum likelihood estimator for
a probabilistic model in which individual rankings
are noisy estimates of an underlying true ranking
(Young 1995). These axiomatic grounds and beneficial
aggregation properties provide compelling theoretical
reasons for using the Kemeny-Snell distance for rank
aggregation.

Furthermore, dKS is closely linked with the τx corre-
lation coefficient, introduced by Emond and Mason
(2002) and defined as

τx(a, b) �
∑n

i�1
∑n

j�1αijβij

n(n − 1) ,

where αij (and βij) is the (i, j)-element of the ranking-
matrix αij of a (and b), given by

αij �
1 if ai ≤ aj,
−1 if ai > aj,
0 if i � j:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (2)

Respective matrix representations for incomplete
rankings are defined in Yoo et al. (2020). Whereas the
original τ coefficient (and the corresponding repre-
sentation for dKS) treats a tie as an expression of indif-
ference by assigning it a value of 0 (see Emond and
Mason 2002), τx treats a tie as an expression of posi-
tive agreement by assigning it a value of 1 in the
ranking-matrix. Although τx and dKS have different
treatments of ties, Emond and Mason (2002) proved
that τx is connected to dKS via the following equation:

τx(a,b) � 1− 2dKS(a,b)
n(n− 1) : (3)

Equation (3) illustrates the connection between the
measure of agreement (the correlation coefficient) and
the measure of disagreement (the distance). To recog-
nize this, it is important to explain that τx achieves
values of 1 and −1 when there is complete agreement
and complete disagreement, respectively, between
two rankings a and b. Hence, it can be interpreted
that the expression of τx(a,b) starts from a default as-
sumption of perfect agreement between a and b (i.e.,
a correlation value of 1), and then it subtracts any dis-
agreements between a and b from this perfect agree-
ment, as quantified by dKS(a,b). In the case when i
and j are tied, dKS subtracts 0 (i.e., indifference), as ex-
pected; however, in doing so, τx keeps the default as-
sumption of agreement between i and j (for a detailed
proof of Equation (3), see Emond and Mason 2002).

From this connection, the respective problems give
equivalent optimal solutions, that is,

arg min
r

∑|L|
ℓ�1

dKS(aℓ, r) � arg max
r

∑|L|
ℓ�1

τx(aℓ, r), (4)

where r is a complete ranking and aℓ is the evalua-
tion from judge ℓ ∈ L.

Another distance metric referenced in this paper is the
Kendall distance, which is adapted from the Kendall-τ
correlation coefficient (Kendall 1938), defined as

dτ(a, b) �
∑

1≤i<j≤n
1[(ai−aj)(bi−bj)<0]:

This distance counts the number of pairwise inversions
between a and b and is equivalent to dKS when the rank-
ings are strict, although the distances are scaled differ-
ently. Specifically, when one pair of items has (strict)
opposing preferences, dKS accrues a value of 2 (based on
one of the Kemeny-Snell axioms), whereas dτ accrues a
distance value of 1. Hence, the distances are related by
the equation dKS(a,b) � 2dτ(a,b). Since the original
Kendall-τ distance is defined only for strict rankings,
Brancotte et al. (2015) redesigned the Kendall-τ distance
for nonstrict rankings, which is defined as follows:

dτ′ (a,b)�
∑

1≤i<j≤n
1((ai<aj)∩(bi>bj))⋃((ai>aj)∩(bi<bj))⋃((ai�aj)∩(bi≠bj))⋃((ai≠aj)∩(bi�bj)):

The main difference between dKS and the Kendall-τ
distance for nonstrict rankings is that when one rank-
ing ties two specific alternatives and the other rank-
ing does not, the Kendall-τ distance for nonstrict
rankings returns the same distance as when the two
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rankings have opposite strict preferences. Conversely,
the dKS distance returns half of the distance value in
the former case relative to the latter case.

3. Exact Mathematical Programming
Formulations for Kemeny Aggregation

It is known that finding the consensus ranking is
NP-hard (Good 1975, Bartholdi et al. 1989), even
when there are only four complete rankings to be
aggregated. Considering incomplete ranking inputs
exacerbates these computational difficulties. When
solving the problem via the standard branch-and-
bound algorithm, incompleteness increases solution
symmetry, which is defined as a permutation of the
values of the variables that preserves the set of solu-
tions (Cohen et al. 2005, Liberti 2008). This has the
effect of slowing down the pruning of nodes and, con-
sequently, leads to a larger branch-and-bound tree
(Sherali and Smith 2001). Moreover, incomplete rank-
ing instances may yield a higher number of alternative
optimal solutions than complete ranking instances,
which could also lead to less decisive outcomes (Yoo
et al. 2020). Hence, the vast majority of works to date
have been able to solve only small instances of non-
strict complete rank aggregation problems exactly, or
they have primarily focused on (meta)heuristics
(Davenport and Kalagnanam 2004, Amodio et al. 2016,
D’Ambrosio et al. 2017, Mandal and Mukhopadhyay
2017) and approximation algorithms (i.e., heuristics
with provable performance guarantees) (Fagin et al.
2003, Kenyon-Mathieu and Schudy 2007, Ailon et al.
2008, Ailon 2010). As a notable example, D’Ambrosio
et al. (2017) developed a differential evolution algo-
rithm for Kemeny aggregation, which does consider
nonstrict and incomplete rankings but is not guaran-
teed to return optimal solutions.

In the remainder of this section, we derive a new exact
binary programming formulation that is applicable to
nonstrict complete and incomplete rankings. Before-
hand, we introduce some existing integer programming
formulations for distance-based rank aggregation.

3.1. Integer Programming Formulations for the
Kendall-τ Distance

Cook et al. (2007) developed a binary programming
formulation related to the Kemeny-Snell distance,
and Conitzer et al. (2006) developed an integer

programming formulation related to the Kendall-τ
distance. Because these formulations do not deal with
nonstrict rankings, Brancotte et al. (2015) provided a
revised integer programming formulation for the
Kendall-τ distance, given as follows:

minimize
x

∑
{vi,vj}⊆V

(wj≤i xi<j+wi≤j xj<i+(wi<j+wj<i)xi�j) (5a)

subject to xi<j + xj<i + xi�j � 1 ∀{vi,vj} ∈V, (5b)

xi<k − xi<j − xj<k ≥−1 ∀{vi,vj,vk} ∈V, (5c)

2xi<j+2xj<i+2xj<k+2xk<j−xi<k−xk<i ≥ 0

∀{vi,vj,vk} ∈V,
(5d)

xi<j,xj<i,xi�j ∈ {0,1} ∀{vi,vj} ∈V, (5e)

where wi≤j denotes the number of rankings with
vi�vj and wi<j denotes the number of rankings with
vi � vj. Constraint (5b) ensures that all pairs of alter-
natives are assigned exactly one of the three possible
relative ordinal positions: preferred, dispreferred, or
tied (the first two are strict, and the third is nonstrict).
Constraints (5c) and (5d) enforce transitivity of strict
and nonstrict ordinal relationships. We note that this
formulation’s objective function does not align with
the definition of dKS (see Equation (1)), based on the
different treatment of ties of dτ′ . Using dKS, when
there are two rankings, where one ties vi and vj and
the other one does not, this should return half the dis-
tance compared with when the ordinal relationships
strictly oppose each other. For example, with a1 �
(1, 2), a2 � (1, 1),a3 � (2, 1), this yields dKS(a1,a2) � 1,
whereas dKS(a1,a3) � 2. To solve the Kemeny rank ag-
gregation problem using the formulation of Brancotte
et al. (2015), it is necessary to modify its objective
function to match the treatment of ties of dKS. This is
done in the following proposition.

Proposition 3.1. To adopt the treatment of ties of dKS, the
formulation of Brancotte et al. (2015) is modified as follows:

minimize
x

∑
{vi, vj}⊆V

wj<i + 1
2
wj�i

( )
xi<j + wi<j + 1

2
wi�j

( )
xj<i

+ 1
2
(wi<j + wj<i)xi�j

subject to constraints (5b) − (5e):

This modified version is used throughout the ex-
periments to allow for fair comparison.
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3.2. Deriving a New Integer Programming
Formulation

In this section, we leverage the correlation coefficient
interpretation of Kemeny aggregation to derive a new
integer programming formulation that is applicable to
nonstrict complete and incomplete rankings. The key
to this formulation relies on devising a constraint set
that ensures that the values of a matrix induce a com-
plete and consistent set of preferences, that is, a com-
plete and nonstrict ranking. To this end, we develop a
graph-based representation of the ranking-matrix (see
Equation (2)) of a nonstrict complete ranking.

Definition 3.2. Let G � (V,E) be an unweighted directed
graph for representing a nonstrict complete ranking r as
follows: V is the set of nodes (alternatives), and each pair
of nodes is connected by one or two directed edges E ⊆
V × V according to the preference relationship between
each pair of alternatives. It includes the directed edge
(i, j) if ri < rj (i.e., vi � vj), and it includes the directed
edges (i, j) and (j, i) if ri � rj (i.e., vi ≈ vj).

From Definition 3.2, given a nonstrict complete ranking, it
is straightforward to construct its digraph (or matrix) repre-
sentation. However, not every unweighted digraph will cor-
respond to a complete and consistent set of preferences, since
certain ones can induce preference cycles. For example, Fig-
ure 1(a) can be represented via the matrix in Figure 1(b), but
these representations do not yield a nonstrict complete rank-
ing due to the preferential cycle vi � vj, vj � vk, and vk � vi.

Hereafter, we define a ranking-matrix graph as an un-
weighted directed graph that induces a nonstrict com-
plete ranking (i.e., it does not create any preferential
cycles). To identify a ranking-matrix graph structure, cer-
tain conditions are needed. For starters, since the solution
must be a complete ranking, each pair of nodes in Gmust
be connected by at least one directed edge. The following
theorem specifies the remaining conditions for an arbi-
trary unweighted digraph to be a ranking-matrix graph.
To this end, a unicycle is defined as a simple path that
starts and ends on the same vertex in one direction but not

in the reverse direction. A bicycle is defined as a simple path
that starts and ends on the same vertex and can be traversed
in both directions. According to these definitions, a bicycle
and a unicycle are mutually exclusive. Additionally, it is not
possible to have a unicycle of size 2, because, if there exists a
directed edge from i to j and a directed edge from j to i, then
this creates a bicycle. The focus of the theorem and proof is
to prevent graphs with unicycles, since such structures can
be associated with inconsistent sets of preferences (i.e., non-
transitivity). To be more succinct and precise, we denote a
graph without unicycles as a unicycle-free graph and a graph
with at least one unicycle as a unicyclic graph. Figures 2 and
3 show the possible unicycle-free graphs and unicyclic
graphs, respectively, over three alternatives.

Theorem 3.3. Let G � (V,E) be an unweighted directed graph
for representing a nonstrict complete ranking r as follows: V is
the set of nodes (alternatives) and each pair of nodes (i, j) ∈ V is
connected by one or two directed edges; that is, either (i, j) ∈ E or
(j, i) ∈ E if ri < rj (i.e., vi � vj) or (i, j) ∈ E and (j, i) ∈ E if ri � rj
(i.e., vi ≈ vj). Graph G is a ranking-matrix graph if and only if it
does not contain unicycles (i.e., it is a unicycle-free graph).

Proof. See Appendix A.
The results of this theorem and the following corollary

will be used to derive a new integer programming for-
mulation for Kemeny aggregation.

Corollary 3.4. The ranking-matrix S ∈ Z
n×n, along with cor-

responding auxiliary binary variables Y ∈ B
n×n, induce a com-

plete and consistent set of preferences of n alternatives (i.e., a
nonstrict complete ranking) if the following constraints are
satisfied for some setting of S and Y:

sij−skj−sik≥−1 i,j,k�1,: : : ,n; i≠ j≠ k≠ i (6a)

sij+sji≥0 i, j�1,: : : ,n; i< j (6b)
sii�0 i�1, : : : ,n; (6c)

sij−2yij�−1 i,j�1, : : : ,n; i� j (6d)
sij ∈{−1,0,1},yij ∈{0,1} i,j�1, : : : ,n: (6e)

Figure 1. (a) Example of an Unweighted Directed Graph; (b) Matrix Representation of the Digraph

(a) (b)

Note. Not every unweighted digraph (or its matrix representation) yields a complete and consistent set of preferences.
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Proof. For ranking-matrix S � [sij] to represent a complete
and consistent set of preferences, the following conditions
must be met—note that the definition of sij is exactly the
same as the definition of αij given by Equation (2). First, the
diagonal elements must be set to 0, that is, sii � 0, which is
represented by Constraint (6c). The off-diagonal elements
must be nonzero values; specifically, they must be equal to 1
or −1. This is enforced via auxiliary binary variables yij in
Constraint (6d). Moreover, sij and sji cannot both be negative.
Hence, Constraint (6b) restricts at least one of sij and sji to be
positive when i≠ j. Constraint (6e) explicitly states the re-
spective domains of sij and yij.

The proof of Theorem 3.3 explains that to check wheth-
er a unicycle of any length exists within a ranking-matrix
digraph, it is sufficient to verify that no unicycles of
length 3 exist. The possible unicycle-free and unicyclic
and digraphs over three alternatives are shown in Fig-
ures 2 and 3. Each unicyclic graph of size 3 can be ob-
tained by adding a particular directed edge of one of the
unicycle-free graphs shown in Figure 2 or by replacing a
particular directed edge with its reverse directed edge.
This is depicted in Figure 4. Specifically, adding the dot-
ted directed edge or replacing the thick (blue) edge with
the dotted directed edge creates a unicycle. For example,
replacing the thick (blue) edge with the dotted directed
edge in Figure 4(a) and Figure 4(b) yields Figure 3(a) and
Figure 3(b), respectively. Also, adding the dotted directed
edge in Figure 4(b) yields Figure 3(c), which is also a uni-
cyclic graph.

This implies that the unicyclic graphs can be avoided
by eliminating these additional or replacement edges
from occurring. More specifically, as in Figure 4(a) and
(b), whenever there is a directed edge from i to j, but not
one from j to i, which gives that sij � 1, sji � −1, and a di-
rected edge from j to k (with or without one from k to j),
which gives that sjk � 1 (here, the value of skj does not
matter), the edge between i and k should be directed
from i to k (and not in the opposite direction), which
gives that ski � −1. This condition can be written as

sji � −1, sjk � 1⇒ ski � −1: (7)

Moreover, as in Figure 4(c), whenever there is a directed
edge from j to i, but not one from i to j, which gives that
sji � 1, sij � −1, and a directed edge from k to j (with or with-
out one from j to k), which gives that skj � 1 (here, the value
of sjk does not matter), the edge between k and i should be
directed from k to i (and not in the opposite direction),
which gives that sik � −1. This condition can be written as

sij � −1, skj � 1⇒ sik � −1: (8)

Conditions (7) and (8) can be equivalently satisfied via
the following linear constraints:

sji − sjk ≥ ski − 1, (9)

sij − skj ≥ sik − 1: (10)

In fact, the formulation can be further reduced. By
swapping labels i and j in Constraint (10) (since it holds
for any permutation of the labels), we can derive

Figure 2.Unicycle-Free Graphs: (a) G′1; (b) G′2; (c) G′3; and (d)G′4

(a) (b) (c) (d)

Figure 3.Unicyclic Graphs: (a)G′5; (b)G′6; and (c)G′7

(a) (b) (c)
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Constraint (9) (i.e., it is redundant). Therefore, Con-
straints (6a)–(6e) provide the full set of constraints. w

3.3. Deriving a New Binary Programming
Formulation

We develop the first exact integer programming for-
mulation for generalized Kemeny aggregation—that is,
for input rankings that are complete and incomplete,
with and without ties. The formulation is given by

maximize
S

∑
i

∑
j
cijsij

subject to constraints (6a) − (6e),

where [cij] ∈ Z
n×n is the cumulative ranking-matrix of

the input rankings, defined as cij � ∑|L|
ℓ�1α

ℓ
ij, for i, j �

1, : : : ,n (see Equation (2)), when the rankings are com-
plete. When they are incomplete, the cumulative
ranking-matrices defined by Yoo et al. (2020) can be
utilized, which correspond to the incomplete ranking
distances introduced by Dwork et al. (2001) and
Moreno-Centeno and Escobedo (2016). For the for-

mer, it is defined as cij � ∑|L|
l�1 �

αl
ij

n(n− 1), where n is the

total number of alternatives, and, for the latter, it is

defined as cij � ∑|L|
ℓ�1

αℓ
ij

nℓ(nℓ − 1), where nℓ is the number of

alternatives evaluated by judge ℓ. In effect, these ex-
pressions normalize the ranking-matrix values of
each judge according to the total number of alterna-
tives or to the number of alternatives evaluated by
each judge. The formulation can be adapted for other
incomplete ranking measures (distances or correlation
coefficients) that can be summarized via a respective
ranking-matrix.

The generalized Kemeny-aggregation binary pro-
gramming formulation (GKBP) is obtained by
substituting for sij with (2yij − 1) in the integer pro-
gramming formulation, which gives

maximize
y

∑
i

∑
j
cij(2yij − 1) (11a)

subject to yij−ykj−yik≥−1 i, j,k�1,: : : ,n; i≠ j≠ k≠ i

(11b)

yij+yji≥1 i, j�1,: : : ,n; i< j (11c)

yij ∈{0,1} i, j�1,: : : ,n; i≠ j: (11d)

Combining Equation (6d) with the definition of
ranking-matrix [sij] gives the implicit definition of yij,
which represents the ordinal relationship between al-
ternatives vi and vj. Upon inspection, GKBP has n2 −
n variables, whereas the formulation of Brancotte et al.
(2015) has 3

2n
2 − 2n variables; additionally, the new

formulation has n(n−1)(n−2)=2 fewer constraints.
Hence, GKBP has O(n2)-fewer variables and O(n3)-
fewer constraints than the formulation of Brancotte
et al. (2015).

On a more fundamental level, GKBP can be con-
nected to the theory of order polytopes. An order pol-
ytope Pn

O is the convex hull of vertices that represent
the possible members of a specific type of binary rela-
tion on n alternatives. Notable examples are the linear
order polytope Pn

LO—the convex hull of binary relations
that are total, irreflexive, and transitive—and the weak
order polytope Pn

WO—the convex hull of binary rela-
tions that are total, reflexive, and transitive—since their
vertices correspond to strict complete rankings and
nonstrict complete rankings, respectively. Previous
works formulated Kemeny aggregation for strict com-
plete rankings as a special case of the formulation of the

Figure 4. (Color online) The Dotted Directed Edge Creates a Unicycle

(a) (b) (c)
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linear ordering problem, whose aim is to find a linear
ordering that maximizes the sum of weights cij in a
weighted directed graph (Newman and Vempala 2001,
Martı́ and Reinelt 2011). The ensuing theoremmakes an
analogous connection between GKBP and the weak or-
der polytope. To the best of our knowledge, this is the
first work to establish such a connection.

Theorem 3.5. The GKBP constraints provide a logically
equivalent formulation of the weak order polytope.

Proof. See Appendix B.
From this theorem, the underpinnings of the GKBP for-

mulation are strengthened through their connection with
the theory of order polytopes. In fact, the GKBP constraints
are equivalent to the basic family of facet-defining inequal-
ities (see Fiorini and Fishburn 2004). This connection gives
the formulation inherent computational advantages, since
the facet-defining inequalities of Pn

WO could help obtain
tighter lower bounds for the Kemeny aggregation problem
within the branch-and-bound algorithm, thereby expedit-
ing solution times (Nemhauser andWolsey 1988).

4. Computational Studies of GKBP
The computational studies compare the performance
of two formulations for rank aggregation: GKBP (For-
mulation (11) in Section 3) and the modified version of
Brancotte et al. (2015) stated in Proposition 3.1. The test
data sets consist of probabilistic instances constructed
based on the concept of Mallows distribution (see Sec-
tion 4.1) and benchmark instances from PrefLib, a li-
brary of preference data (Mattei and Walsh 2013). Prior
to describing the experiments, recall that GKBP finds a
ranking that maximizes agreement quantified accord-
ing to the Kendall τ-extended correlation coefficient,
and the modified Brancotte et al. (2015) model finds a
ranking that minimizes disagreement quantified ac-
cording to dKS. Due to the connection of this distance-
correlation coefficient pairing (see Equation (4)), the
two respective problems are equivalent, which allows
for a fair comparison of their performance.

The experiments were performed on machines
equipped with 36 gigabytes of RAM memory shared
by two Intel Xeon E5-2680 processors running at 2.40
gigahertz (note that all tests are run on the ASU High
Performance Computing Agave Cluster); code was
written in Python, and the formulations were solved
using CPLEX solver version 12.8.0 (IBM Knowledge
Center 2017).

4.1. Instances from Probabilistic Distributions
The formulations are first tested on randomized in-
stances constructed from rankings sampled from a
probabilistic distribution with an underlying ground
truth and an adjustable level of noise/error. This
choice allows for the generation of instances with
differing levels of difficulty, thereby enabling a sys-
tematic comparison of the formulations. Among the
existing options for generating randomized rankings,
the Mallows-φ model (Mallows 1957, Diaconis 1988,
Marden 1996, Critchlow 2012) is the most popular
and has been used similarly in other works (e.g.,
Betzler et al. 2014, Lu and Boutilier 2014, Asfaw et al.
2017, Crispino et al. 2019, Yoo et al. 2020).

The Mallows-φ model is a Kendall-τ distance-
based model (i.e., the Kemeny-Snell distance-based
model when the rankings are strict and complete),
which is parameterized by a “ground-truth” (or refer-
ence) ranking a and “dispersion” φ ∈ (0, 1]. These
parameters are used to quantify the probability of
obtaining a complete ranking a as

P(a) � P(a|a,φ) � φdτ(a,a)

Σ·a∈ΩCφ
dτ(·a,a) ,

where ΩC is the space of complete rankings. When
sampling from this distribution, as φ gets closer to 0,
the generated ranking converges to a; as φ gets closer
to 1, any complete ranking has equal probability of oc-
curring (i.e., this becomes the uniform distribution).
Note that the Mallows’ model can be used to generate
a set of noisy rankings from a ground truth and a giv-
en dispersion parameter that is shared by all of the
rankings. On the other hand, Kemeny aggregation re-
turns the maximum likelihood estimator of a model in
which each judge provides a noisy estimate of one
ground-truth ranking, with each judge possessing the
same dispersion or noise parameter φ. Hence, each
process can be interpreted as being the inverse of the
other. Prior works have developed efficient algorithms
for sampling rankings from the Mallows-φ model
(Doignon et al. 2004, Ceberio et al. 2015, Irurozki et al.
2016). We use a slightly modified version of the re-
peated insertion model of Doignon et al. (2004), which
was originally designed for strict complete rankings.
The next paragraph describes how ties and incom-
pleteness are added to the rankings generated by the

Yoo and Escobedo: New Formulation and Social Choice Property for Kemeny Aggregation
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repeated insertion model, so as to provide suitable in-
stances for testing the featured formulations.

To generate nonstrict rankings, a random number u
is repeatedly drawn from a discrete uniform distribu-
tion U(1,h− 1), where h is the highest-valued (worst)
rank position in the current ranking, say a. The alter-
native in rank position u is tied with the alternative
in the next rank position higher (i.e., worse) than u.
Ties are repeatedly inserted until the number of tied
alternatives reaches or first exceeds a specified thresh-
old, which is set to 0:5n. For example, let a �
(1, 2, 3, 3, 5) and u � 3. The next rank position higher
than u is 5, and v5 is the alternative with this rank.
Therefore, a becomes (1, 2, 3, 3, 3), and the process
stops, because the number of tied alternatives reaches
the threshold (i.e., 3 > 0:5 · 5 � 2:5).

To generate incomplete rankings, we utilize the re-
peated insertion model extension introduced in (Yoo
et al. 2020). This model applies the repeated insertion
model on a subset V′ ⊂ V and then marks the alterna-
tives V\V′ as unranked. Ties are inserted to incomplete
rankings using the same procedure as with complete
rankings but restricted to the alternatives in V′. The
pseudocode for generating nonstrict and incomplete
ranking instances can be found in Appendix D.

4.2. Configurations of Probabilistic Distribution
Experiments

The first set of instances is constructed and guided
based on the concept of Mallows distribution;

specifically, instances are obtained by sampling com-
plete rankings from the Mallows-φ distribution and
inserting ties and/or incompleteness, as described in
the preceding subsection. We first investigate the ef-
fect of varying the dispersion parameter, φ ∈
{0:1, 0:2, : : : , 0:9, 1:0}, and the number of alternatives,
n ∈ {30,60, 90, : : : , 210}; the number of judges is fixed
to 50.

For each of the aforementioned parameter configu-
rations, in all upcoming experiments, the computing
times of each formulation are individually recorded
for 10 corresponding instances, which are summa-
rized via average (AVG) and standard deviation (SD)
values (represented via error bars). When a formula-
tion cannot return an optimal solution within a 600-
second (10-minute) time limit, the relative optimality
gap is recorded (a solution is considered as optimal
when the relative optimality gap is less than or equal
to 0.0001). Note that the relative optimality gap for a
maximization problem is defined as

Relative optimality gap

� best relaxation bound − objective function value for best integer solution
objective function value for best integer solution + 1e − 10

:

For example, for an instance solved with one of the
featured formulations, the objective function value of
the current best integer solution was 0.312 and the
relative optimality gap was 0.842; this indicates that
the objective function value of the optimal solution
could be as high as 0.575. As shown in Figures 5 and

Figure 5. (Color online) Nonstrict Complete Rankings: (a) Computing Times via GKBP; (b) Computing Times via Brancotte et al.
(2015)

(a) (b)

Note. GKBP solves nearly all probabilistic instances within the time limit and significantly faster, even for larger n (note that shading in these
charts denotes the number of alternatives in the instances).
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6, the computing times for some instances exceed 600
seconds; this occurs because CPLEX can be slow to
terminate when a new incumbent solution is found
close to the time limit (IBM Support 2019).

As shown in Figure 5, for nonstrict complete rank-
ing instances, GKBP finds the optimal solution in less
time than the formulation of Brancotte et al. (2015)
for most values of n and φ. In general, for both for-
mulations, computing times increase with the value
of φ and n. GKBP returns the optimal solution for all
instances within the time limit, except for φ � 1:0
with n ≥ 90, whereas Brancotte et al. (2015) are not
able to solve some instances for φ � 0:7 with n � 150,
for φ � 0:8 with n � 210, and most instances for
φ ≥ 0:9. Despite the fact that GKBP found an optimal
solution faster than the model of Brancotte et al. for
most of the tested instances, when both reached the
time limit without an optimal solution, the optimality
gaps of GKBP were at times larger. For example, the
average relative optimality gaps over the 10 instances
with φ � 1:0 and n � 90 were 2.99 for GKBP and 1.00
for the model of Brancotte et al. (2015).

Figure 6 displays the computing times for nonstrict
incomplete ranking instances. Before explaining the
results, we note that the model of Brancotte et al.
(2015) is not originally designed to handle incomplete
rankings, whereas GKBP can handle incomplete rank-
ings using the cumulative ranking-matrices defined
by Yoo et al. (2020). To compare the models under
the same treatment of incomplete rankings, we

normalize dτ′ with the same normalization factor as
dNPKS (see Section 3.3). Compared with complete
rankings, it takes longer to reach optimality for most
values of n and φ. Similar to the prior results, GKBP
reaches optimality in a shorter amount of time than
the model of Brancotte et al. (2015). GKBP attains the
optimal solution except for four instances with φ �
0:9 and n � 180 and 210, and most instances with φ �
1:0 and n ≥ 60, whereas Brancotte et al. (2015) cannot
solve most instances, except those for all φ with n �
30,60, 90, and 120. For example, for an instance with
φ � 0:9 and n � 210, the relative optimality gap of
GKBP is 0.0001, which is considered as optimal,
whereas that of Brancotte et al. (2015) is 1.00. We re-
mark that the performance of the model of Brancotte
et al. (2015) over these instances is worse without the
inclusion of the normalization factor.

4.3. Instances from PrefLib Benchmark Data Set
The second set of instances is selected from the li-
brary of preference data PrefLib (Mattei and Walsh,
2013), specifically the “Order with Ties—Complete
List (TOC)” data set. This benchmark data set consists
of 378 instances with differing numbers of alterna-
tives and rankings (i.e., judges) obtained from various
domains, and they include real-world data (e.g., fig-
ure skating competitions and cross-country skiing
and ski jump championship results). The instances in-
clude results from Formula One racing and human
computation activities, which tend to be relatively

Figure 6. (Color online) Nonstrict Incomplete Rankings: (a) Computing Times via GKBP; (b) Computing Times via Brancotte et al.
(2015)

(a) (b)

Note. The formulation of Brancotte et al. (2015) cannot reach optimality within the time limit for most instances with higher φ and n (note that the
color of these charts denotes the number of alternatives in the instances).
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less subjective and possess a higher level of collective
similarity, as well as data from elections and pure
preferences (e.g., the Sushi data set), which tend to be
more subjective and possess a lower level of collective
similarity. For instance, Milosz and Hamel (2018) esti-
mated the Mallows dispersion parameter φ of the
“Websearch” instance to be 0.0265, which is a rela-
tively low value. Although we do not have informa-
tion on the specific dispersion values apart from this
single instance, PrefLib instances encompass a wide
range of subjectivity, meaning the inputs are expected
to have varying degrees of collective similarity, as
suggested by this discussion.

Figure 7 summarizes the distribution of the instan-
ces according to ranges of n (number of alternatives).
As shown in the figure, most instances have n ≤ 65,
but there are a few instances with n ≥ 1, 000.

For this experiment, only the instances with n <
300 are considered; many instances with n > 300 re-
sulted in termination likely due to insufficient memo-
ry. In all, there are 302 instances with 3 ≤ n ≤ 170; for
clarity, the instances are grouped by intervals of 30
over the range of n in Figure 8. The longest comput-
ing time for GKBP is 338.94 seconds when there are
170 alternatives, whereas the time limit is reached
with a relative optimality gap of 0.46, on average, for
Brancotte et al. (2015). From this analysis, it is evident
that GKBP can also solve benchmark problems notice-
ably faster.

5. A Structural Social Choice Property for
Complete Rankings with Ties

To further expedite the solution process of Kemeny
aggregation, this section will devise a structural social
choice property, which enables the decomposition of
certain large problems into a collection of smaller
subproblems.

5.1. The Condorcet Criterion
Condorcet (1785) proposed a social choice property,
which has come to be aptly known as the Condorcet
criterion (CC), that states that if a majority of voters
prefers one alternative in pairwise fashion over all

Figure 7. (Color online) The Number of Alternatives (n) of Most Instances in the PrefLib Data Set Ranges Between 3 and 65
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others, then that alternative alone should obtain the
best position in the voting outcome. Formally, recall-
ing that pij is the number of judges who prefer alter-
native vi over alternative vj, CC can be written as

If ∃vi ∈ V, s:t: pij > pji (i:e:, vi �
m
vj) ∀vj ∈ V\{vi}

⇒ v∗i � v∗j ; or equivalently; r∗i < r∗j ,

where r∗ is the final aggregate ranking and v∗i � v∗j in-
dicates that vi is ranked strictly better than vj in r∗. At
the preliminary screening stage of decision making,
keeping a diverse and large set of candidates, rather
than selecting few candidates, provides decision mak-
ers with broader options. For this reason, CC pro-
vides limited usefulness for decision making, since it
can only identify one winning alternative (i.e., the
Condorcet winner) or one losing alternative (i.e., the
Condorcet loser), when it is satisfied. An extended
version of the Condorcet winner is the Smith set; the
winning (losing) Smith set is the smallest nonempty
set of alternatives that defeats (is defeated by, respec-
tively) every alternative outside the set in a pairwise
election (Smith 1973). Truchon (1998) provided anoth-
er natural extension of CC, called the extended Condor-
cet criterion (XCC). This property requires that if V
can be organized into a partition V :� {V1, : : : ,VK}
∈ P(V), such that all alternatives in subset Vk ∈ V are
pairwise preferred over all alternatives in subset Vk′ ∈
V by a majority (i.e., Vk�mVk′ ), where k < k′, then the
alternatives in Vk must be ranked strictly better than
all alternatives in Vk′ in the optimal ranking. Formal-
ly, this property can be written as

If ∃V :� {V1,V2, : : : ,VK} ∈ P(V), s:t:Vk�m Vk′ ; for 1 ≤ k < k′ ≤ K

⇒ v∗i � v∗j ; or equivalently; r
∗
i < r∗j ; ∀vi ∈ Vk, ∀vj ∈ Vk′ :

Table 2 illustrates how XCC can be applied to the
Kemeny aggregation problem. In the example, since
VXCC :� {{v1,v2}, {v3}, {v4}} is a partition satisfying
XCC, the Kemeny optimal ranking is expected to
place v1 and v2 ahead of v3 and v4, and to place v3
ahead of v4 (the optimal ordering between v1 and v2
cannot be determined from the application of this
property alone). As shown in the table, the Kemeny
optimal rankings (three in this case) are all consistent
with XCC. Note that Kemeny aggregation (as well as
other distance-based methods) may yield more than

one optimal solution (Young and Levenglick 1978,
Dwork et al. 2001). Indeed, Muravyov (2014) ex-
plained that the number of optimal solutions in Ke-
meny aggregation can at times be greater than the
number of input rankings and that these solution
rankings may rank the alternatives in significantly
different ways, which can lead to ambiguity—this is
called the paradox of Kemeny. This is explained to a
great extent by the fact that the Kemeny rank aggre-
gation problem can be characterized as finding the
median ranking among the given set of rankings.
Medians do not need to be unique, and, therefore,
Kemeny optimal rankings are not guaranteed to be
unique as well (Kemeny and Snell 1962).

Although both CC and XCC have been imple-
mented to refine the complexity of Kemeny aggrega-
tion (i.e., providing parameterized complexity with
respect to the number of subsets and the size of sub-
sets in VXCC), they are not appropriate for nonstrict
rankings. In the example showcased in Table 3, we
have that p12 � 5, p21 � 3, t12 � 1, p23 � 5, p32 � 3, t23 �
1, p13 � 3, p31 � 0, and t13 � 6. According to the defi-
nition of XCC, the final optimal solution is expected
to be (1, 2, 3), since VXCC :� {{v1}, {v2}, {v3}} is a parti-
tion satisfying XCC—that is, pij > pji for 1 ≤ i < j ≤ 3.
However, v1, v2, and v3 are tied in the aggregate rank-
ing when optimizing with the Kemeny-Snell distance
and allowing ties. Effectively, this implies that
Kemeny aggregation for nonstrict rankings is not

Table 2. The Kemeny Optimal Solutions Are Consistent
with XCC

a1 a2 a3 a4 a5 a6 a7 a8
Kemeny optimal

rankings

v1 1 2 1 2 1 2 1 2 1 1 2
v2 2 1 2 1 2 1 2 1 1 2 1
v3 3 3 3 4 4 4 3 3 3 3 3
v4 4 4 4 3 3 3 4 4 4 4 4

Table 3. The Optimal Solution Is Not Consistent with CC
and XCC

a1 a2 a3 a4 a5 a6 a7 a8 a9
Kemeny optimal

ranking
XCC

solution

v1 1 1 1 1 1 1 2 2 2 1 1
v2 1 3 3 3 2 2 1 1 1 1 2
v3 3 1 1 1 3 2 2 2 2 1 3
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consistent with XCC. In order to overcome this inade-
quacy, we define a new social choice property in the
ensuing subsection.

5.2. The Nonstrict Extended Condorcet Criterion
and Its Structural Decomposition

To introduce a substitute to XCC that is suitable for
nonstrict rankings, we first define an important con-
cept. We say that a decisive majority prefers an alterna-

tive vi over an alternative vj, written as vi�Mvj, if
pij > pji + tij; that is, the number of people who prefer
vi over vj is greater than the number of people who
prefer vj over vi plus those who tie them. If neither

vi�Mvj nor vj�Mvi, then there is no decisive majority
that prefers vi over vj, and vice versa, written as
vi≈M vj. Similarly, we say that a decisive majority pre-
fers all alternatives in the subset Vk over all alterna-
tives in the subset Vk′ , written as Vk�MVk′ , if pij >
pji + tij, ∀vi ∈ Vk, ∀vj ∈ Vk′ . If neither Vk�MVk′ nor

Vk′ �MVk, then there is no decisive majority that pre-
fers Vk over Vk′ , and vice versa, written as Vk≈MVk′ .

Definition 5.1. Let V :� {V1,V2, : : :VK} s.t. Vk�MVk′ for
1 ≤ k < k′ ≤ K. The nonstrict extended Condorcet criterion
(NXCC) requires that all vi ∈ Vk must precede all vj ∈ Vk′

in the final ranking. That is,

if ∃V :� {V1,V2, : : : ,VK} ∈ P(V), s:t: Vk�MVk′ ,
for 1 ≤ k < k′ ≤ K

⇒ v∗i � v∗j or equivalently; r
∗
i < r∗j ; ∀vi ∈ Vk, ∀vj ∈ Vk′ :

A basic implication of this property is that the more
subsets the partition has, the smaller the sizes of the sub-
problems that need to be solved (since each subset will
tend to have fewer alternatives). Note that when all rank-
ings are strict and complete, NXCC is exactly XCC, be-
cause tij � 0.

To apply NXCC, it is necessary to determine the or-
dered partition of subsets of alternatives—in which
lower-indexed subsets are each preferred over higher-
indexed subsets by a decisive majority—from the data.
This can be done via Algorithm E.1 in Appendix E, which
has a worst-case complexity of O(n2), where n is the num-
ber of alternatives.

The main difference between NXCC and XCC is that
ties are or are not considered, respectively, to determine
the majority’s strict pairwise preferences. Specifically,

XCC does not consider ties to be relevant to the conclu-
sion that vi ∈ Vk should be strictly preferred over all
vj ∈ Vk. On the other hand, NXCC requires that, to ar-
rive at this conclusion, the number of judges who strict-
ly prefer vi over vj should be greater than those who do
not—which includes those who tie them or who strictly
prefer vj over vi. Table 3 illustrates that the outcome of
XCC decomposition is not consistent with Kemeny ag-
gregation for nonstrict rankings. Therein, since t13 >
p13 − p31 (the number of judges who tie v1 and v3 is
greater than the net difference between the number of
judges who have a strict preference), it cannot be con-
cluded that v1 should be ahead of v3 in the final optimal
ranking. Hence, these two alternatives and every other
alternative between them cannot be ordered a priori
into separate subsets, which is the outcome obtained
when NXCC is applied to the example. The ensuing
paragraphs formally prove that the Kemeny optimal so-
lution satisfies NXCC when the rankings are nonstrict
and complete. This is done through Lemma 5.2 and
Theorem 5.3. Beforehand, it is useful to introduce some
additional notation.

Notation 1. The reduced instance associated with two
subsets of alternatives Vk, Vk′ ⊂ V, written as A[k⋃k′] �
A[Vk⋃Vk′ ] is the submatrix induced by rows Vk⋃Vk′ of A.

Similarly, aℓ[k⋃k′] � aℓ[Vk⋃Vk′ ] and r∗[k⋃k′] � r∗[Vk⋃Vk′ ] are the

reduced evaluation from judge ℓ and the optimal reduced
ranking with respect to Vk⋃Vk′ , respectively.

When exactly two alternatives are considered, this no-
tation is modified as follows.

Notation 2. The reduced instance A{i,j} � A{vi ,vj} is the
submatrix induced by alternatives vi and vj. Similarly,
aℓ{i,j} � aℓ{vi ,vj} and r∗{i,j} � r∗{vi ,vj} are the reduced evaluation
from judge ℓ and the optimal reduced ranking with re-
spect to vi and vj, respectively.

Furthermore, the aforementioned notation is combined
to specify the ranking position of single alternatives with-
in a reduced problem space.

Notation 3. The ordinal position of vi in the reduced
evaluation from judge aℓ with respect to Vk⋃Vk′ is de-
noted as aℓi|[k⋃k′].

Using this notation, the cumulative distance between

{aℓ}|L|ℓ�1 and r, accrued by only alternatives vi and vj, can
be written as

∑
ℓ∈Ld(aℓ{i,j}, r{i,j}). Similarly, the distance

between {aℓ}|L|ℓ�1 and r, accrued by all alternatives in Vk

and all alternatives in Vk′ , can be written as∑
ℓ∈Ld(aℓ[k⋃k′], r[k⋃k′]).
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Lemma 5.2. Let V1,V2 ⊂ V with V1 ∩ V2 � ∅. Consider the
reduced aggregation problem consisting of input rankings
A[1⋃2], that is, the part of the evaluations involving only
V1⋃V2. If V1�MV2, then every alternative vi ∈ V1 should
obtain a better position than every alternative vj ∈ V2 in the op-
timal solution to the reduced problem; that is, r∗i|[1⋃2]
< r∗j|[1⋃2], where r

∗
[1⋃2] :� arg minr[1

⋃
2]
∑

ℓ∈Ld(aℓ[1⋃2], r[1⋃2]).
Proof. See Appendix C.

Theorem 5.3. Kemeny aggregation satisfies NXCC when the
inputs are nonstrict and complete.

Proof. Define the partition V � {V1,V2, : : : ,VK}, where
Vk � {vk1,vk2, : : : ,vk|Vk |} and assume that Vk�MVk′ for every
k,k′, where 1 ≤ k < k′ ≤ K. Let r∗ be a Kemeny optimal
ranking. In order to prove that Kemeny aggregation satis-
fies NXCC when rankings are nonstrict and complete—
which means that all elements in Vk should precede all ele-
ments in Vk′ in r∗—the Kemeny-Snell distance between Vk

and Vk′ can be calculated for all k < k′. To this end, the cu-
mulative Kemeny-Snell distance is expanded as follows:∑

ℓ∈L
d(aℓ, r∗) �∑|V|−1

i�1

∑|V|
j�i+1

∑
ℓ∈L

d(aℓ{i,j}, r∗{i,j})

�∑K
k�1

∑K
k′�1

∑|Vk |

i�1

∑|Vk′ |

j�1

∑
ℓ∈L

d(aℓ{i,j}, r∗{i,j})

� ∑K
k�1

∑|Vk |−1

i�1

∑|Vk |

j�i+1

∑
ℓ∈L

d(aℓ{i,j}, r∗{i,j})︸︷︷︸
within subset Vk (intrasubset distances)

+ ∑K−1
k�1

∑K
k′�k+1

∑|Vk |

i�1

∑|Vk′ |

j�i

∑
ℓ∈L

d(aℓ{i,j}, r∗{i,j})︸︷︷︸
between subsets Vk and Vk′ (intersubset distances)

:

If all vi ∈ Vk can be proved to be strictly preferred or
strictly dispreferred over all vj ∈ Vk′ in the optimal solu-
tion, for all k < k′, then this guarantees an optimal or-
dered partition V � {V1,V2, : : : ,VK}, with V1 � V2 � : : :

� VK; the ordering of the alternatives within each subset
(i.e., between vi,vi′ ∈ Vk) can be performed in a subse-
quent step and is ignored for the rest of the proof. We can
derive the following bound on the optimal cumulative in-
tersubset distances:

min
r∗

∑K−1
k�1

∑K
k′�k+1

∑
ℓ∈L

d(aℓ[k⋃ k′], r
∗)

≥∑K−1
k�1

∑K
k′�k+1

min
r∗[k
⋃

k′]

∑
ℓ∈L

d(aℓ[k⋃ k′], r
∗
[k⋃ k′]): (12)

The optimal solutions from the right-hand side of In-
equality (12) correspond to the K(K− 1)=2 optimal re-
duced orderings of all subset pairs from {V1,V2, : : : ,VK}
∈ V, which can produce preference cycles (i.e., contradic-
tions) when combined. For example, assuming that
vi ∈ V1,vj ∈ V2,vk ∈ V3, the optimal solutions to the re-
duced problems can be r∗i|[1⋃2] < r∗j|[1⋃2], r

∗
j|[2⋃3] <

r∗k|[2⋃3] and r∗k|[1⋃3] < r∗i|[1⋃3]. On the other hand, the opti-
mal solution from the left-hand side of Inequality (12)
gives a Kemeny optimal ordering of the K subsets. In oth-
er words, the collection of right-hand-side two-subset
subproblems can be interpreted as a relaxed version of
the left-hand-side rank aggregation problem. The relaxed
problem does not enforce the preference transitivity be-
tween all subset orderings. However, when the optimal
solutions to the two-subset optimal reduced orderings
yield a combined solution that is feasible to the left-hand-
side problem, an optimal solution for the original rank
aggregation problem has been found, since the objective
values will also be equal.

By Lemma 5.2, when Vk�MVk′ , the optimal solution to
the reduced problem induced by each pair Vk and Vk′

places every alternative vi ∈ Vk ahead of every alternative
vj ∈ Vk′ , for all k < k′. Hence, the two-subset orderings can
be combined into a K-subset partial ordering V∗ � {V1,
V2, : : : ,VK} with V1 � V2 � : : : � VK, without contradic-
tions or preferences cycles. In particular, the combined
solution to the reduced subproblems is feasible to the
original problem and r∗i < r∗j , where vi ∈ Vk, vj ∈ Vk′ , for all
k < k′, giving an optimal partial ranking of all alternatives
in V. Hence, Kemeny aggregation satisfies NXCC when
the rankings are nonstrict and complete. w

Besides offering significant potential computational
advantages, NXCC brings various practical benefits
for decision making. This includes the ability to focus
on the most relevant alternatives. It is usually not
known a priori which alternatives will be the ones to
occupy the top, middle, or bottom positions in the
consensus ranking; the exact positions are ultimately
revealed through the aggregation process. One excep-
tion by which it may be possible to know such infor-
mation ahead of time is through the application of
the NXCC property developed in this work. In partic-
ular, NXCC takes advantage of the pairwise compari-
son information to determine whether there exist
subsets of alternatives that will always be preferred
over other subsets of alternatives. By determining the
NXCC partition, decision makers can focus on the
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exact ordering of the alternatives contained in just the
top and/or bottom subsets. That is, alternatives that
belong to subsets in the middle of the partition can
be dropped from consideration while formally
guaranteeing that the relative ordering of the remain-
ing alternatives will not be affected. An additional
related benefit is the ability to certifiably rule out cer-
tain outcomes, even when the consensus ranking is
not unique. That is, even if an instance may have
multiple alternative optimal solutions but only one is
obtained by the exact solution method, the NXCC de-
composition would guarantee that alternatives in
higher-indexed subsets will never be ranked ahead of
alternatives in lower-indexed subsets. Put otherwise,
it could help determine that many alternatives will
never occupy the top positions of any optimal
ranking.

6. Computational Studies of NXCC
Decomposition

The purpose of this experiment is to provide an esti-
mate of how NXCC could improve the computing
time of Kemeny aggregation via partitioning and
bring about other practical benefits. To highlight the
practicality of the property, this work experiments on
the PrefLib benchmark data set consisting of 378 in-
stances described in Section 4.3. During the experi-
ment, the following information is recorded: (1) the
existence of a Condorcet winner and loser, (2) wheth-
er the partition is nontrivial after the decomposition
(i.e., |V| ≥ 2, where |V| is the number of subsets in the
partition), and (3) the size of the winning Smith set
and the losing Smith set (see Section 5.1); Table 4 and
Figure 9 display this information. Checking the exis-
tence of a Condorcet winner and the size of the win-
ning and losing Smith sets are two indicators of the
effectiveness of NXCC. In particular, a smaller win-
ning Smith set helps to narrow down the winners or
most relevant candidates. Likewise, a larger losing

Smith set helps decision makers rule out many irrele-
vant alternatives, since the complement of the losing
Smith set becomes smaller. In addition, practitioners
are often most interested in the alternatives that ob-
tain the top positions. For instance, in a recommenda-
tion system, it is more important to suggest a set of
items that is most likely to be preferred (i.e., top alter-
native sets), rather than suggesting the middle or
least-preferred items (Davidson et al. 2010). The fol-
lowing analysis helps better understand and quantify
the practical benefits of NXCC decomposition.

More detailed information about the Smith sets is
visualized in Figure 9, which shows the cumulative
distribution of the proportion of instances in the data
set with respect to the percentage of alternatives in
the winning Smith set and the losing Smith set. Spe-
cifically, each bar graph represents the number of in-
stances whose Smith set contains at most x% of the
total number of alternatives. For example, Figure 9(a)
shows that approximately 58% of instances have a
small winning Smith set (i.e., at most 0:1n alternatives
in the winning Smith set); in particular, at most 10%
of the alternatives (i.e., 0:1n alternatives) are con-
tained in the winning (top) Smith set for the majority
of the instances with more than 80 alternatives (col-
ored in light blue in the graph). Moreover, Figure
9(b) shows that approximately 60% of the instances
have a large losing Smith set; in particular, more than
90% of the alternatives are contained in the losing
(bottom) Smith set for instances with more than 80 al-
ternatives (colored in light blue in the graph). From
these observations, we conclude that NXCC decom-
position can significantly simplify the identification of
relevant candidates from these benchmark instances.

Next, we test the computational benefits of the
decomposition. To do so, this study compares the
computing times of solving the full (nondecomposed)
instances (see the computing time of solving these in-
stances in Figure 8) and solving the decomposed in-
stances. The latter include the partitioning time and
the time of solving the subproblem for each subset in
sequential manner. The experiment was conducted
on the PrefLib instances with a nontrivial partition
(i.e., |V| ≥ 2) and n ≤ 300 (because CPLEX could not
solve nondecomposed instances with more alterna-
tives); the number of instances that meet these condi-
tions is 177. Table 5 shows the relative improvement in

Table 4. NXCC Helps Identify the Most Relevant
Candidates in the Instances from the PrefLib Data Set

Key instance characteristics Proportion of instances

Condorcet winner 191 out of 378 (50.53%)
Condorcet loser 62 out of 378 (16.40%)
Nontrivial partition (|V| ≥ 2) 230 out of 378 (60.85%)
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computing time (i.e., reduction in computing time),
which is defined as follows:

(time to solve full (nondecomposed)problem)
−∑(time to solvedecomposed subproblems)

(time to solve full (nondecomposed)problems) ×100%:

As shown in Table 5, the computing time is re-
duced when a higher number of subsets is obtained
after the decomposition. For example, when |V| � 4,
the computing time is reduced by 72%, on average,
whereas the computing time is reduced by 25% on
average when |V| � 2. If each subset was solved by
multiple processors at the same time, then the com-
puting time could be further reduced. Hence, using
distributed computing resources, the more finely de-
composed V is, the faster that large instances could
be solved with the combination of GKBP and NXCC.
It is pertinent to point out, however, that most of the
benchmark instances with less than 150 alternatives
can be solved within a minute using GKBP (without
decomposition). To further assess the potential com-
putational improvements of NXCC, we also apply the
decomposition algorithm to nonstrict complete rank-
ing instances generated using the procedure

described in Section 4.1. Here, we restrict n to larger
values, specifically n ∈ {90,120,150,180, 210}, and gen-
erate 10 instances for each value. Moreover, we fix
φ � 0:8, since this is the setting after which certain in-
stances cannot be solved to optimality by GKBP with-
in 10 minutes (see Figure 5(a)). In other words, such
instances are relatively difficult, but they can still be
solved by GKBP within a reasonable amount of time.

Table 6 shows the (absolute) improvement in com-
puting time, which is calculated as the difference
between the time to solve full (nondecomposed)
problems and the cumulative time to solve decom-
posed subproblems (i.e., the numerator in the relative
improvement calculation).

As shown in Table 6, after applying NXCC, com-
puting times improve significantly for every n; most
strikingly, decomposed instances with 210 alternatives
are solved within a few seconds after decomposition,
but the original nondecomposed instances were not
solved within 600 seconds (note that nondecomposed
instances with 210 alternatives are not solved within
the time limit, meaning the absolute improvement is
at least what is shown on the table). We surmise that
NXCC is more effective in these instances, because
they are moderately difficult to solve.

Table 5. Applying GKBP for Each Subset After Partitioning
Reduces the Computing Time by at Least 25%

|V| 2 3 4 5–10 11–20 21–30

Number of instances 72 33 20 21 12 19
Relative improvement 25% 44% 72% 65% 67% 96%

Table 6. The Effectiveness of NXCC Is More Prominent on
Larger, More Difficult Instances

n 90 120 150 180 210

(Absolute) improvement(s) 12.12 47.31 125.84 269.35 560.42+
Standard deviation(s) 0.50 3.60 29.60 72.41 207.23

Figure 9. (Color online) Cumulative Distribution: (a) Winning Smith Set Size; (b) Losing Smith Set Size
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Note. NXCC yields small winning Smith sets and large losing Smith sets for more than 50% of the instances (note that the color legend of these
charts serves to group the tested instances according to the range of number of alternatives they consider).
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7. Conclusion
This paper develops a new binary programming
formulation and a new social choice property for
generalized Kemeny aggregation. The major benefit
of the generalized Kemeny-aggregation binary pro-
gramming formulation is that it is applicable to a wide
variety of ordinal preferences, including complete and
incomplete rankings, with and without ties. Additional-
ly, it has fewer variables and constraints compared
with a closely related integer programming formula-
tion for the generalized Kendall-τ distance, leading to
computational savings, as demonstrated by the fea-
tured set of experiments. Furthermore, the paper intro-
duces a computationally expedient social choice prop-
erty, which, unlike the original Condorcet criterion and
the extended Condorcet criterion, aligns with the Ke-
meny consensus ranking when there are ties in the
inputs.

The connection to the facet-defining inequalities of
the weak order polytope of the binary programming
formulation and the structural decomposition enabled
by the novel social choice property demonstrate the
theoretical rigor of the proposed exact approaches.
Moreover, results of the featured experiments on ran-
domized instances and benchmark data show their
substantial computational advantages. Through their
combination, certain instances that could only be
solved approximately can now be solved exactly,
even when the input evaluations are relatively nonco-
hesive and/or contain hundreds of alternatives.

The proposed methodologies for rank aggregation
can be applied to many practical settings where high-
dimensional rankings that may be strict or nonstrict
and complete or incomplete may be encountered. For
example, they could be used to aggregate evaluations
of research proposals, entries into a paper competition,
journal rankings, and many other applications that re-
quire the evaluation of a long list of alternatives. In
such cases, the input evaluations are likely to be non-
strict and/or incomplete (see, e.g., Cook et al. 2010, Es-
cobedo et al. 2021). In addition to group decision-
making situations, the presented methodologies could
be beneficial for various nonhuman decision-making
contexts that seek to reconcile long heterogeneous or-
dered lists, such as in metasearch and bioinformatics
(see, e.g., Lin 2010b, Mandal and Mukhopadhyay

2017). Using the social choice property inspired decom-
position along with the GKBP binary programming
formulation, decision makers may be able to solve cer-
tain large rank aggregation problems exactly.

The generalized Kemeny-aggregation binary pro-
gramming formulation can be applied to complete
and incomplete rankings with ties; however, the non-
strict extended Condorcet criterion is only applicable
to complete rankings with ties. For example, when
rankings include too much incomplete information
(i.e., many pairs of alternatives are not compared), it is
not reasonable to use the current definition of a deci-
sive majority, since, for it to be useful, it would require
one same preference relation to be made by more than
half of judges for each pair of items. If, for example,
only 2 of 10 judges evaluate two specific alternatives
and their preferences agree on these two alternatives,
then it is hard to say that there exists a decisive majori-
ty, because more than three-fourths of judges do not
evaluate those two alternatives. Thus, in testing the
newly defined social choice property along with the
decisive majority, this paper only focuses on complete
rankings. Future work will involve more computation-
al experiments to test the performance of a suitable so-
cial choice property for incomplete rankings encoun-
tered in real-world applications, including human
computation (e.g., Mao et al. 2013, Kemmer et al. 2020)
and wireless sensor networks (e.g., Fishbain and
Moreno-Centeno 2016, Skolfield et al. 2020). Moreover,
to enhance the computational speed of Kemeny aggre-
gation, parallel programming and/or valid inequalities
(e.g., Doignon and Fiorini 2001, Escobedo and Yasmin
2021) will be further explored.

Appendix A. Proof of Theorem 3.3

Theorem 3.3. Let G � (V,E) be an unweighted directed graph
for representing a nonstrict complete ranking r as follows: V is
the set of nodes (alternatives) and an each pair of nodes i,j ∈ V
is connected by one or two directed edges; that is, either (i, j) ∈
E or (j, i) ∈ E, if ri < rj (i.e., vi � vj), or (i, j) ∈ E and (j, i) ∈
E, if ri � rj (i.e., vi ≈ vj). Graph G is a ranking-matrix graph if
and only if it does not contain unicycles (i.e., it is a unicycle-
free graph).

Proof. Let G′ � (V′,E′) be a subgraph of G; that is,
V′ ⊆ V, E′ � (V′ × V′) ∩ E. A bicycle exists whenever, for
every adjacent pair of nodes ik, ik+1 in a path i1, i2, i3, : : : , ip,
we have (ik, ik+1) ∈ E′ and (ik+1, ik) ∈ E′, for
1 ≤ k ≤ p− 1 < |V′|. Clearly, when there exists a bicycle in
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G′, it means that every alternative included in the bicycle
is tied. That is, when there exist directed cycles i1, i2, : : : ,
ip−1, ip, i1 and i1, ip, ip−1, : : : , i2, i1 with distinct nodes i1, i2,
: : : , ip−1, ip ∈ V′, we have i1 ≈ i2 ≈ : : : ≈ ip. Hence, whenever
a graph of size 3 has a bicycle, it leads to a valid setting
for the corresponding ranking-matrix entries. Specifically,
this gives that aiℓ ,iℓ′ � 1, aiℓ′ ,iℓ � 1 for all iℓ, iℓ′ ∈ {i1, i2, : : : , ip},
where iℓ ≠ iℓ′ .

Recall that we can focus on a graph of length 3 or great-
er, since a graph of size 2 cannot contain a unicycle. More-
over, to check if these cycles exist in a digraph having at
least one directed edge between every pair of nodes, it is
sufficient to concentrate on finding unicyclic triads (i.e.,
unicycles of size 3), as a preference graph without unicy-
clic triads cannot have any higher-order unicycles (Gass
1998). Hence, |V′| � 3 from this point, without loss of gen-
erality. To continue, Figure 2 lists distinct isomorphic clas-
ses of unicycle-free digraphs of size 3, whereas Figure 3
lists distinct isomorphic classes of unicyclic digraphs of
size 3. Even though more unicyclic and unicycle-free
graphs of size 3 are possible, it is only necessary to consid-
er three respective isomorphic classes given in Figures 2
and 3; all other graphs can be represented by permuting
the labels of the given graphs (see Figure A.1 as an
example).

For Figure 3(a), because vi � vj, vj � vk, and vk � vi, the
preference relation includes the cycle vi � vj � vk � vi,
which does not yield a proper ranking of three alterna-
tives). For Figure 3(b), because vi � vj, vj ≈ vk, and vk � vi,
the preference relation includes the cycle vi � vj ≈ vk � vi,
which also does not yield a complete and consistent set of
preferences. For Figure 3(c), because vi � vj, vj ≈ vk, and
vk ≈ vi, the preference relation vi � vj ≈ vk ≈ vi is not a con-
sistent set of preferences. Therefore, the graphs with a
unicycle do not yield a complete and consistent set of
preferences, meaning they cannot correspond to a ranking.
Using proof by exhaustion, we have demonstrated that
graph G is a ranking-matrix graph if and only if it is a
unicycle-free graph. w

Appendix B. Proof of Theorem 3.5

Theorem 3.5. The GKBP constraints provide a logically
equivalent formulation of the weak order polytope.

Proof. Fiorini and Fishburn (2004) provide a binary pro-
gramming formulation for Pn

WO. For i, j ∈ {1: : :n}, decision
variable xij is defined as

xij � 1 if i�j (i:e:, i is not preferred to j)
0 otherwise:

{
These decision variables have an oppositely aligned

interpretation as those of GKBP in terms of preferential in-
formation. Specifically, when yij � 1 in GKBP, this indi-
cates that the solution regards i as being preferred over j
or tied with j (i.e., an expression of agreement). On the
other hand, when xij � 1 in Pn

WO, this indicates that the so-
lution regards i as not being preferred to j, which implicit-
ly indicates a dispreference and/or ties (i.e., seemingly
both an expression of agreement and disagreement). When
yij � 0 in GKBP, this indicates that the solution regards i
as being dispreferred over j (i.e., an expression of dis-
agreement). On the other hand, when xij � 0 in Pn

WO, this
indicates that the solution regards i as being preferred to j
(i.e., an expression of agreement). The decision variables
in the weak order polytope can be also represented via a
ranking-matrix graph. When xij � 1, there is one directed
edge (j, i) or there are two directed edges (i, j) and (j, i);
there is one when xji � 0, and there are two when xji � 1.
The constraints for Pn

WO are given as

xij ≤ 1, (A.1a)

xij + xji ≥ 1, (A.1b)

xik − xij − xjk ≥ −1: (A.1c)

By substituting xij with yji, the constraints become

yji ≤ 1, (A.2a)

yji + yij ≥ 1, (A.2b)

yki − yji − ykj ≥ −1: (A.2c)

Notice that the combination of Inequalities (A.2a) and
(A.2b) gives the domain of yij. Inequality (A.2b) matches
with Constraint (11c) in GKBP. Furthermore, Constraints
(A.2a)–(A.2c) hold for any permutation of the labels; there-
fore, changing i to j, j to k, and k to i yields

yij − ykj − yik ≥ −1: (A.3)

Inequality (A.3) is the same as Constraint (11b) in GKBP.
Therefore, the constraints of GKBP provide a logically
equivalent formulation of the weak order polytope. w

Appendix C. Proof of Lemma 5.2

Lemma 5.2. Let V1,V2 ⊂ V with V1 ∩ V2 � ∅. Consider the
reduced aggregation problem consisting of input rankings
A[1⋃2], that is, the part of the evaluations involving only

V1⋃V2. If V1�MV2, then every alternative vi ∈ V1 should ob-
tain a better position than every alternative vj ∈ V2 in the

Figure A.1. Isomorphically Equivalent Digraphs ofG′6
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k i
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optimal solution to the reduced problem, that is, r∗i|[1⋃2]
< r∗j|[1⋃2], where r

∗
[1⋃2] :� arg minr[1⋃2]

∑
ℓ∈Ld(aℓ[1⋃2], r[1⋃2]).

Proof. We pror∗[1⋃2] be a Kemeny optimal ranking to the
reduced problem involving only V1 and V2, and assume
that r∗i|[1⋃2] ≥ r∗j|[1⋃2], for at least one alternative pair vi, vj,

where vi ∈ V1,vj ∈ V2—that is, there exists at least one al-
ternative in V1 that is tied or dispreferred over at least one
alternative in V2. Additionally, denote the ranking where
all alternatives in V1 are preferred over all alternatives in
V2 by r∗[1⋃2].

Initially, choose an arbitrary alternative vi ∈ V1. Then,
the Kemeny-Snell distance between vi and every alterna-
tive vj ∈ V2 is calculated as∑

vj∈V2

∑
ℓ∈L

d(aℓ{i,j}|[1⋃2], r
∗
{i,j}|[1⋃2])

� 1
2

∑
vj∈V2

∑
ℓ∈L

|sign(aℓi|[1⋃2] − aℓj|[1⋃2]) − sign(r∗i|[1⋃2] − r∗j|[1⋃2])|:

Without loss of generality, a coefficient 1/2 can be ig-
nored in the remainder of the proof, because it is a cons-
tant term that only affects the objective-value scaling.
Moreover, since there are three possible ordinal relation-
ships between vi and vj in r∗, we have that

∑
ℓ∈L

d(aℓ{i,j}, r∗{i,j}) �

∑
ℓ∈L

|sign(aℓi − aℓj ) − (−1)| � 2pji + tij if r∗i < r∗j∑
ℓ∈L

|sign(aℓi − aℓj ) − 0| � pij + pji if r∗i � r∗j∑
ℓ∈L

|sign(aℓi − aℓj ) − 1| � 2pij + tij if r∗i > r∗j

0 otherwise:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Therefore, the distance between vi and all vj ∈ V2 can be
factored as∑

vj∈V2

∑
ℓ∈L

d aℓ{i,j}|[1⋃2], r
∗
{i,j}|[1⋃2]

( )
� ∑

vj ∈ Vk′

s:t:r∗i|[1⋃2] > r∗j|[1⋃2]

(2pij + tij) + ∑
vj ∈ Vk′

s:t:r∗i|[1⋃2]� r∗j|[1⋃2]

(pij + pji)

+ ∑
vj ∈ Vk′

s:t:r∗i|[1⋃2] < r∗j|[1⋃2]

(2pji + tij):

From the assumption that V1�MV2 for all vi ∈ V1 and
vj ∈ V2, because pij > pji + tij, we can derive the following
inequalities involving the second (r∗i � r∗j ) and third (r∗i > r∗j )
aforementioned cases:

2pji + tij < pij + pji,

2pji + tij < 2pij + tij,

which results in the following relationship:∑
vj ∈Vk′

s:t:r∗i|[1⋃2] > r∗j|[1⋃2]

(2pij + tij) + ∑
vj ∈Vk′

s:t:r∗i|[1⋃2]� r∗j|[1⋃2]

(pij + pji)

+ ∑
vj ∈ Vk′

s:t:r∗i|[1⋃2] < r∗j|[1⋃2]

(2pji + tij) >
∑
vj∈V2

(2pji + tij):

That is,∑
vj∈V2

∑
ℓ∈L

d(aℓ{i,j}|[1⋃ 2], r
∗
{i,j}|[1⋃ 2]) >

∑
vj∈V2

∑
ℓ∈L

d(aℓ, r∗{i,j}|[1⋃ 2]),

which means that the optimal ranking r∗, where vi is tied or
dispreferred over some alternatives in V2, returns a longer
cumulative distance than the ranking r∗, where vi is pre-
ferred over all vj ∈ V2. This contradicts the assumption that
r∗ is the optimal ranking, since it does not return the short-
est cumulative distance. Therefore, if V1�MV2, then assign-
ing vi with a better ranking position than all alternatives
vj ∈ V2 returns a strictly shorter distance than a ranking
where alternative vi is tied with or dispreferred over an ar-
bitrary alternative vj; that is, r∗i|[1⋃2] < r∗j|[1⋃2], ∀vj ∈ V2. Since
vi was chosen arbitrarily, this holds for all alternatives in
V1. Hence, if V1�MV2, then every alternative vi ∈ V1 should
obtain a better position than every alternative vj ∈ V2 in the
optimal solution. w

Appendix D. Pseudocode of Generating Nonstrict
Complete and Incomplete Rankings

Algorithms D.1 and D.2 describe how nonstrict complete
and incomplete ranking instances are constructed and
guided based on the concept of Mallows distribution. Be-
fore introducing the algorithms, we provide needed defini-
tions. Let a−1 be an alternative ordering induced from
rankings by sorting the alternatives from best to worst, ac-
cording to their ranks. For example, for a � (1, 5, 2, 4, 3),
a−1 � (v1,v3,v5,v4,v2). Extending this notation, a−1(i) speci-
fies the ith highest ranked alternative in a (Doignon et al.
2004); in the aforementioned example, a−1(3) � v5. When a
is a nonstrict ranking, the alternative ordering is obtained
by putting alternatives with the same rank position into
preference equivalence classes; for example, for a � (1, 3,
3, 1, 5), a−1 � (〈v1,v4〉, 〈v2,v3〉,v5). Additionally, a−1|Va

is an
alternative ordering that is projected to the alternatives in
Va, where Va is an alternative set that is evaluated by a.
Finally, UniformDist(L, U) denotes the discrete uniform
distribution, where L and U are the minimum and maxi-
mum values of the distribution.
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Algorithm D.1. (Generating Nonstrict Complete Rankings)
Input: Dispersion: φ, reference alternative ordering: a−1
Output: A set of nonstrict complete rankings

1: for i � 1, 2, : : : , |V| do
2: for j � 1, 2, : : : , i do
3: a−1(j) ← a−1(i) with probability: pij � φi−j= (1+φ

+: : : +φi−1)
4: while (the number of alternatives involved in ties) ≤ 0:5n do

5: u←UniformDist(1,h− 1), where h is the worst (highest-
ranked) position in a

6: v← a−1(u+ 1), and then av ← u

Algorithm D.2. (Generating Nonstrict Incomplete Rankings)
Input: Dispersion: φ, alternative set for a: Va, projected
reference alternative ordering: a−1|Va

Output: A set of nonstrict incomplete rankings
1: for i � 1, 2, : : : , |Va | do
2: for j � 1, 2, : : : , i do
3: a−1(j) ← a−1(i)|Va

with probability: pij � φi−j=(1+φ

+: : : +φi−1)
4: for i � 1, 2, : : : , |V| do
5: if vi ∈ Va then

6: ai ← rank position of vi in a−1

7: else

8: ai ←•
9: while (the number of alternatives involved in ties) ≤ 0:5n do

10: u←UniformDist(1,h− 1), where h is the worst (highest-
ranked) position in a

11: v← a−1(u+ 1), and then av ← u

Appendix E. Pseudocode of
Decomposition Algorithm

Algorithm E.1. (Decomposition Algorithm)
Input: {pij}, {pji}, {tij}
Output: An ordered partition of subsets V � {V1,V2, : : : ,VK}

1: V � {{v1}}
2: for i � 2, 3, : : : , |V| do
3: if (∃vj ∈ V1 s.t. tij ≥ |pij − pji|), or
4: (∃vj ∈ V1 s.t. pij > pji + tij and ∃vj′ ∈ V1\{vj} s.t.

pj′ i > pij′ + tij′ ) then
5: Put vi in V1 and k← 2
6: else if ∀vj ∈ V1 s.t. pij > pji + tij then
7: Insert vi before V1, increment the index of subsets

after Vσ(i) by 1, and k← 3
8: else if ∀vj ∈ V1 s.t. pji > pij + tij then
9: Insert vi after V

1, increment the index of subsets after
Vσ(i) by 1, and k← 3

10: while k ≤ |V| do
11: if (∃vj ∈ Vk s.t. tij ≥ |pij − pji|), or
12: (∃vj ∈ Vk s.t. pij > pji + tij and ∃vj′ ∈ Vk\{vj} s.t.

pj′ i > pij′ + tij′ ) then

13: Merge subsets from Vσ(i) to Vk

14: Decrease the index of subsets after Vk by k− σ(i)
and k← σ(i) + 1

15: else if ∀vj ∈ Vk s.t. pij > pji + tij then
16: k← k+ 1
17: else if ∀vj ∈ Vk s.t. pji > pij + tij then
18: if |σ(i) − k| � 1 and |Vσ(i)| � 1 then

19: Move Vσ(i) after Vk and increment the index
of subsets after Vσ(i) by 1

20: else

21: Merge subsets from Vσ(i) to Vk

22: Decrease the index of subsets after Vk by
k− σ(i) and k← σ(i) + 1

Note. σ(i) is the index of the subset containing vi.

Note that this decomposition algorithm has a worst-case
complexity of O(n2), which is explained as follows. At iter-
ation i – 1, the algorithm inserts vi before, within, or after
the existing subsets in the working partition
V � {V1,V2, : : : ,Vκ(i)}, where κ(i) is the number of subsets
prior to the iteration. To determine its precise point of in-
sertion, vi is compared at most to the alternatives in all
subsets from V1 to Vκ(i), which takes at most (i− 1) com-
parisons, each of which is assumed to take constant time.
This has to be done for i � 2, : : : ,n. Therefore, the algo-
rithm requires at most n(n− 1)=2 such comparisons, result-
ing in a worst-case complexity of O(n2).
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Finance Appliquées, Université Laval, Québec, Canada.

Wald R, Khoshgoftaar TM, Dittman D, Awada W, Napolitano A
(2012) An extensive comparison of feature ranking aggregation
techniques in bioinformatics. 13th Internat. Conf. Inform. Reuse
Integration (IRI) (IEEE, Piscataway, NJ), 377–384.

Ye M, Liang C, Yu Y, Wang Z, Leng Q, Xiao C, Chen J, Hu R (2016)
Person reidentification via ranking aggregation of similarity
pulling and dissimilarity pushing. IEEE Trans. Multimedia
18(12):2553–2566.

Yilmaz E, Aslam JA, Robertson S (2008) A new rank correlation coef-
ficient for information retrieval. Proc. 31st Annual Internat. ACM
SIGIR Conf. Res. Development Inform. Retrieval (ACM, New
York), 587–594.

Yoo Y, Escobedo AR, Skolfield JK (2020) A new correlation coeffi-
cient for comparing and aggregating non-strict and incomplete
rankings. Eur. J. Oper. Res. 285(3):1025–1041.

Young HP, Levenglick A (1978) A consistent extension of Condor-
cet’s election principle. SIAM J. Appl. Math. 35(2):285–300.

Young P (1995) Optimal voting rules. J. Econom. Perspect. 9(1):51–64.

Yeawon Yoo is a postdoctoral fellow in the Department of
Applied Mathematics and Statistics and at the SNF Agora In-
stitute at Johns Hopkins University. She earned her PhD in

Yoo and Escobedo: New Formulation and Social Choice Property for Kemeny Aggregation
24 Decision Analysis, 2021, Articles in Advance, pp. 1–25, © 2021 INFORMS

https://www.ibm.com/support/pages/cplex-optimization-studio-v128
https://www.ibm.com/support/pages/cplex-optimization-studio-v128
https://www.ibm.com/support/pages/apar/RS03137
https://www.ibm.com/support/pages/apar/RS03137


Industrial Engineering from Arizona State University, Tem-
pe, Arizona, in 2021. She graduated magna cum laude from
Pohang University of Science and Technology (POSTECH)
in South Korea with a BS in industrial and management en-
gineering in 2016. She has previously worked as an intern at
Los Alamos National Laboratory. Her research interests lie
in a broad and dynamic set of problems related to group de-
cision making, crowdsourcing, political science, and society.

Adolfo R. Escobedo is an assistant professor in the School of
Computing and Augmented Intelligence, Arizona State Universi-
ty. He earned his PhD in industrial and systems engineering
from Texas A&M University, College Station, Texas, in 2016. His
research interests are in the theory and application of mathemati-
cal programming and computing. His applications of interest in-
clude the design and analysis of algorithms for group decision
making, computational social choice, and crowdsourcing.

Yoo and Escobedo: New Formulation and Social Choice Property for Kemeny Aggregation
Decision Analysis, 2021, Articles in Advance, pp. 1–25, © 2021 INFORMS 25


	s1
	s2
	s3
	s3A
	s3B
	s3C
	s4
	s4A
	s4B
	s4C
	s5
	s5A
	s5B
	s6
	s7

