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ABSTRACT

This paper builds a Near-field Communication (NFC) based
localization system that allows ordinary surfaces to locate
surrounding objects with high accuracy in the near-field.
While there is rich prior work on device-free localization
using far-field wireless technologies, the near-field is less
explored. Prior work in this space operates at extremely
small ranges (a few centimeters), leading to designs that
sense close proximity rather than location.

We propose TextileSense, a near-field beamforming sys-
tem which can track everyday objects made of conductive
materials (e.g., a human hand) even if they are a few tens of
centimeters away. We use multiple flexible NFC coil antennas
embedded in ordinary and irregularly shaped surfaces we
interact with in smart environments — furniture, carpets, etc.
We design and fabricate specialized textile coils woven into
the fabric of the furniture and easily hidden by acrylic paint.
We then develop a near-field blind beamforming algorithm to
efficiently detect surrounding objects, and use a data-driven
approach to further infer their location. A detailed experi-
mental evaluation of TextileSense shows an average accuracy
of 3.5 cm in tracking the location of objects of interest within
a few tens of centimeters from the furniture.
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1 INTRODUCTION

This paper seeks to build an NFC MIMO beamforming sys-
tem that can accurately localize objects, with or without NFC
capability in the near-field. While there has been rich prior
work on device and device-free localization in the far-field,
for instance, using technologies such as Bluetooth [8], mm-
wave [24], ultrasound [21], RFID [47] and visible light [49],
much less exploration exists in the near-field. However, near-
field technologies have significant advantages that are worth
exploring: (1) their shorter range raises less privacy implica-
tions compared to the far-field counterparts; (2) technologies
such as NFC are ubiquitous in our smart phones as well as
battery-free everyday objects (e.g., credit cards, ID cards,
etc.). The few systems that do explore near-field localization
in prior work are limited, however, in one of two key ways:
(1) First, they only operate at extremely close ranges (e.g.,
few cm), at which point, localization reduces to proximity
sensing [42]. This excludes ranges of tens of centimeters — an
interesting region where both near-field and far-field effects
are in play. (2) Second, most prior near-field localization sys-
tems require rigid coils that can only be mounted on regular
and flat surfaces 25, 34].

This paper aims to use NFC multi-coil beamforming to
detect the presence and location of certain objects of interest
within tens of centimeters — where both near-field and far-
field effects interplay. We seek to sense certain classes of
objects made of conductive material (e.g., objects containing
metal, or human hands) in close proximity (e.g., few tens of
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Figure 1: TextileSense can be integrated into ordinary
furniture (e.g., couch, bed, or carpet). Multiple textile
coils sense the presence and location of conductive ob-
jects within a few tens of centimeters. This opens up
many applications: a) body posture sensing; b) Lost
and found: TextileSense notifies the user where he/she
left a wallet; c) user interface: the blanket serves as a
touchless screen to control home appliances.

centimeters). Our system senses these objects with flexible
textile-friendly coils attached to existing irregularly shaped
home surfaces like a couch or a carpet. We demonstrate
how this opens up several applications for human-computer
interfaces, gesture, and posture sensing (see Fig. 1).

We present TextileSense — a near-field sensing system
for flexible textile surfaces that senses surrounding objects
made of conductive materials. TextileSense’s core includes
multiple textile coil antennas that can be embedded in the
furniture covering and readily hidden by puffy paints. The
coils together operate as a near-field MIMO system and can
manipulate the near-field to recognize objects of interest
at unknown locations across farther distances. We consider
two classes of objects: (1) Tagged non-conductive objects,
such as NFC-enabled credit cards and key fobs, whose iden-
tity and location can be obtained; (2) Untagged conductive
objects, such as human hands and metallic objects, whose
presence and location can be identified. A detailed experi-
mental evaluation on TextileSense shows a 3.6 cm accuracy
in locating NFC tags with various distances and orientations
and a 2.9 cm accuracy in locating human hands. We further
show that TextileSense can operate accurately at a distance
of 20.3 c¢m, a four-fold improvement over the range limit of
5 ¢m of commercial NFC.

TextileSense’s secret sauce is a mechanism to develop a
textile NFC reader with the ability to accurately sense the
location of tagged/untagged objects, within a few tens of cen-
timeters of the furniture, regardless of their position or ori-
entation. To do so, we rely on a familiar wireless technology:
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MIMO. In far-field wireless technologies (e.g., Wi-Fi, cellular,
etc.), MIMO uses multi-antenna radios to collectively beam
signal power towards different spatial directions so as to im-
prove radio coverage and enable advanced location tracking.
However, developing the analogous multi-coil MIMO in the
near-field poses several new challenges. First, to beam en-
ergy accurately and sense an object, one needs to know the
direction; yet, for tag-free objects at unknown locations, this
is unknown a priori, leading to a chicken-or-egg problem.
Second, unlike in the traditional far-field propagation model,
even if we do find the optimal beamforming direction, it may
not directly relate to the location of objects. The rest of this
paper describes how we solve these key challenges to enable
near-field MIMO for NFC.

Detecting Objects Using Near-Field Beamforming: The
first challenge is to address the chicken-or-egg problem: how
to know the direction to beam RF energy without knowing
the object’s location? A natural approach to do so is to ap-
ply a variety of beamforming weights and beam energy to
different subsets of the space within proximity of the NFC
furniture. These beamforming weights must be carefully
chosen to fully cover the space around the furniture, yet min-
imizing the overlap between them to speed up the search.
This calls for precise models on how beamforming weights
in the near-field translate into the spatial patterns of energy.
While such models have been explored in the far-field (e.g.
in the RFID context [44]), doing so for the near-field com-
munication is more complicated. The energized pattern is
not only determined by the set of phase shifts applied across
the array of NFC readers, but also impacted by the location,
orientation, and impedance of the unknown objects.

To address this challenge, TextileSense develops a blind
near-field beamforming algorithm to sense objects in the
near-field with unknown locations, orientation, and impedance.
At a high level, TextileSense uses the magnetic coupling be-
tween the object and the reader to infer the optimal beam-
forming weights to detect its presence, regardless of whether
this object has NFC coils or is made of conductive materials.
Specifically, once the object couples with the reader, it can be
seen as a high impedance load to the transmitter circuit (NFC
reader). In other words, the transmitter circuit should notice
a voltage variation if a load is introduced into the circuit.
The voltage variation will change when the load (e.g. NFC
card, metal, human body, etc.) harvests more energy from
the NFC readers, and this variation can be measured from
the transmitter side. By leveraging this physical principle,
TextileSense uses a gradient-based approach favoring the set
of beamforming weights which introduce large voltage vari-
ation into the transmitter circuit. By repeating this process,
our algorithm converges to the optimal set of beamforming
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weights that sense the presence of objects in proximity. Sec. 4
further details our solution to detect objects.

Locating Objects in the Near-Field: Once detected, the
next challenge TextileSense must address is to locate the
objects of interest. A key challenge here is the limited band-
width of NFC as well as the non-applicability of traditional
far-field MIMO location tracking solutions that rely on the
distance between the objects-of-interest and the reader being
farther than one wavelength. To address this, our approach
relies on the fact that unlike the far-field, the near-field expe-
riences significant voltage shifts at readers due to coupling
that can be reliably measured. TextileSense develops a de-
tailed empirical model of the locations of the object based on
the beamforming weights as well as the amplitude of object-
related voltage response as perceived from the readers. Sec. 5
describes the details of our approach.

Building NFC-enabled Flexible Textiles: Finally, Tex-
tileSense should integrate textile-compatible coils to build
NFC-enabled furniture. In collaboration with material sci-
ence researchers, we present a novel solution to fabricate
coils with conductive fabric, which can be woven into the
furniture covering and allows for flexibility and stretchabil-
ity to ensure user comfort. Sec. 6 describes how TextileSense
is informed by experimentation and analysis to ensure the
robustness of its textile coils when subject to bending and
crumpling, and how it models the consequent resonant fre-
quency shift and antenna gain degradation. Further, in Sec. 9,
we discuss the possible security implication of TextileSense .

Applications: TextileSense opens up several applications
which we briefly explain below and evaluate in Sec. 8.6:

o Object Tracking: TextileSense can identify and track the

location of objects of interest already with an NFC coil,
e.g. a credit card. This can be used to both track your
credit card if it is lost, as well as track NFC-tagged ob-
jects at fine-grained accuracy in virtual reality games.
User Interface: TextileSense can also serve as a user
interface that transforms your furniture into a touch-
less screen to control your devices. We evaluate the
specific application of tracking fine-grained gestures
of a human hand.
Body Posture Estimation: TextileSense can detect the
location where the user is seated in the couch and
recognize their body posture relying on the coupling
between the human body and TextileSense.

Limitations: We emphasize a few important limitations
of TextileSense (detailed in Sec. 9): (1) TextileSense cannot
deal with extremely small spacing between multiple objects
that need to be simultaneously discerned (within 1.5 mm)
due to the strong coupling among them; (2) TextileSense’s
performance can be degraded by extreme folds or wrinkles
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of textiles, and our approach explicitly designs solutions
to minimize this degradation. (3) TextileSense NFC readers
require a power source; however, it can readily piggyback
on access to wall power commonly available in configurable
furniture (e.g. reclinable couches).

We implement TextileSense on four software-defined ra-
dios, each connected to an 18 X 18 cm custom conductive
Nylon-based square coil attached to the couch. Our results
show:

o TextileSense achieves an average accuracy of 3.6 cm
in locating passive NFC tags.

o TextileSense achieves an average accuracy of 2.9 cm
in locating a human hand.

o TextileSense achieves a detection range of 20.3 ¢cm
using four software-defined radios in tracking NFC
cards in close proximity, a 4 X improvement compared
to commercial NFC systems.

Contributions: We propose a localization system design
of a MIMO-enabled NFC reader which locates surrounding
NFC tags as well as untagged conductive objects. Our system
achieves few centimeter level location tracking of nearby
tagged and untagged objects and an overall detection range
of 20.3 cm from the textile NFC reader.

Video: https://youtu.be/IeilONQlk_M.

2 NFC FUNDAMENTALS

This section describes the basics of the NFC protocol and the
mechanics of near-field magnetic coupling for both tagged
and untagged objects.

NFC Protocol: According to the ISO 14443 NFC proto-
col, an NFC reader initiates communication by periodically
broadcasting a universal query command to wake up nearby
tags (if any) and solicit responses (standard acknowledgment
and unique IDs). Meanwhile, it inevitably experiences mag-
netic coupling with nearby conducting objects, even if they
do not contain NFC coils.

Magnetic Coupling in NFC: The underlying communi-
cation principle of NFC is based on magnetic coupling. The
NFC reader operates in the 13.56 MHz ISM band. The current
flowing through the coil antenna of the NFC reader generates
a magnetic field that couples with nearby NFC tags or con-
ductive untagged objects. In the rest of this discussion, we
use object to denote either a tagged or untagged object that
magnetically couples with the NFC reader — the underlying
physics remains largely the same. The magnetic coupling
effect transfers energy from the NFC reader to the object
owing to an induced current in the object. In the near-field,
since the strength of magnetic fields decreases rapidly with
distance by its inverse 2 — 3™ power [40], the communication
range of commercial NFC systems is around 5 cm.
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Figure 2: (a) The magnetic coupling between the active
NFC reader and an object of interest can be quanti-
fied as the mutual inductance m. It induces a voltage
Vg across the object’s equivalent circuit. (b) A team of
reader coils couple with a tagged or untagged object.
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Fig. 2 (a) shows a simplified circuit diagram for a single pair
of reader and object, with the latter shown by its equivalent
circuit. Due to the magnetic coupling between the reader and
the object, the current Ir in the reader will induce a voltage
Vg on the object:

Vg = ZrIg = mir (1)

where m is the mutual inductance between the antenna of
the object and the reader at the resonant frequency; Zr and
Ig are the impedance and current induced in the object’s
equivalent circuit.

As the object perceives an induced voltage from the reader,
the current induced also generates its own magnetic field
which changes the voltage across the reader antenna. The
voltage Vr across the reader antenna is written as:

Vr =Vo = Vg = Vo — mlg )

where Vy is the voltage introduced by the object and V; is the
original voltage on the reader antenna without any object
in range. In effect, the object functions as a voltage divider.
Hence, we conclude that when there is less energy delivered
to the nearby object, the voltage on the corresponding NFC
reader antenna will be larger. In the paper, we show how
TextileSense leverages this basic property of NFC to detect
the presence of nearby objects without knowledge of their
orientation, location, and impedance.

3 OVERVIEW

TextileSense aims to detect and locate objects in the proxim-
ity of a multiple-coil textile NFC reader. It specifically aims to
beamform electromagnetic waves in the near-field to detect
the influence of conductive objects.

Approach: TextileSense’s system design is as follows: Tex-
tileSense applies different beamforming weights across mul-
tiple textile coils of an NFC reader, which can alter the mag-
netic field to maximize the influence of conductive objects
(tagged or untagged) in the near-field. It infers the optimal
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set of beamforming weights by measuring the voltage across
multiple reader coils. The underlying principle relies on the
weak magnetic coupling between the object and the reader
coils. As we gradually measure the voltage across multiple
coils corresponding to different beamforming weight vectors,
we can learn the environment and improve the searching
of optimal beamforming vectors to discover various objects
in the near-field. Once TextileSense discovers an object, it
leverages the voltage measurement on the object’s influence
across reader coils with a data-driven model to locate the
object.

Challenges: The rest of the paper addresses the key chal-
lenges in designing three main aspects of TextileSense:

(1) Optimal Near-Field Beamforming: First, TextileSense
needs to measure the wireless channel corresponding to the
magnetic coupling of the objects of interest to infer the op-
timal beamforming vector that can best detect this object.
While the channel can be measured indirectly by magnetic
coupling, TextileSense needs to detect objects that are out-
side the range of measurement sensitivity of any single NFC
reader coil. Thus, TextileSense must collaboratively process
signals across all coils to search for potential objects and
amplify the magnetic feedback. While one may measure the
channel of each object individually in the far-field, the in-
duced magnetic field across objects can interfere with each
other in the near-field. Thus, a key to finding the accurate op-
timal beamforming vector for each object is to model and es-
timate the radio environment including the coupling among
multiple objects and the influence of undesired ambient con-
ductors. Sec. 4 describes our approach.

(2) Localization in the Near-field: Second, TextileSense
should localize the object using the voltage measured across
multiple reader coils. At a first glance, we may consider using
traditional far-field localization techniques [23, 46]. However,
in the near-field, modeling the magnetic field under multiple
reader coils is complex and different from the far-field EM
modeling. Thus, we propose a near-field localization algo-
rithm, where a data-driven model captures the relationship
between the voltage measurement across multiple reader
coils and the location of objects while taking the beamform-
ing vectors into account. Sec. 5 details our approach.

(3) Designing Textile Coils for Near-field MIMO: Fi-
nally, we explore how TextileSense designs coils that can
be embedded in textiles. While TextileSense can improve its
performance of localization and coverage by adding more
reader coils, one must consider the physical constraints of
the total available area to deploy a multi-coil system on the
furniture, like on a couch. In addition, TextileSense must
account for distortions such as folding and crumpling of the
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fabric on which coils are attached. Sec. 6 describes how we
mitigate these challenges.

4 NEAR-FIELD BLIND BEAMFORMING

TextileSense provides a near-field MIMO solution that de-
tects the presence of conductive objects whose location,
impedance, and orientation are a priori unknown. We call
this near-field blind beamforming, where blind denotes the
fact that neither do we have prior wireless channel measure-
ments from the objects, nor are we aware of their existence
or location. This leads to a chicken-or-egg problem: to beam
energy to an object, we need its location, which is precisely
what we are aiming to find. Unlike the far-field [44], beam-
forming weights in the near-field under the NFC context
are heavily influenced by the environment, the reader itself,
and the presence of conductive objects. In this section, we
illustrate how this fundamentally changes our approach to
perform blind beamforming.

4.1 Indirect Channel Measurements

In this section, we describe our approach to detect the pres-
ence of passive conductive objects. In the far-field, without
prior knowledge of the object’s location or wireless channels,
the reader would struggle to detect if the object is present
or otherwise. In the near-field, however, a reader may detect
the presence of a conductive object with no energy source.
This is because the object and the reader can magnetically
couple with each other. This coupling effect is captured by
the mutual inductance between the object and the reader,
which is a function of the impedance and location of both
the reader and the object. Thus, the mutual inductance plays
a role in near-field magnetic channels which is similar to the
wireless channel state information in the far-field. We seek to
use this information to find the optimal beamforming vector
that maximizes the amount of energy delivered to the object.
This is critical in improving our location-tracking algorithm
given that the amount of energy absorbed by the object gives
us important cues about the location of the object (see Sec. 5).

To obtain the optimal beamforming vector to an object,
TextileSense needs to measure its near-field magnetic chan-
nel (we deal with multiple objects in Sec. 4.3). Consider a
team of reader coils (see Fig. 2). Mathematically, let us assume
that a team of N reader coils collaboratively beam energy to
one nearby object. The voltage induced by the object at the
ih reader coil can be written as:

N
Véi = mTi Z mTkITk /ZR (3)
k=1
where my, is the mutual inductance between the nearby ob-

ject and the i reader coil, I, is the current in the k' reader
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coil and Zg is the unknown object’s impedance as in the
equivalent circuit in Fig. 2(b). In this equation, Zlkvz L mr
is the voltage introduced to the object by all N reader coils,
and can be represented by Vg. In other words, the voltage
induced at the NFC reader coil is proportional to the mutual
inductance, mr,. Indeed, the magnetic channel my, is critical
in performing optimal beamforming of energy towards the
object. This is because, for optimal beamforming, one needs
to apply a set of weights to the current of transmitted signal
Ir, which can add up the induced signal Vi constructively
at the object. Based on the channel reciprocity, if we know
the channel between the object and each reader coil m7,, one
can write the optimal beamforming vector B* as:

)
mr,

Zi |mT,-|2, i=1,..
where 7 is the conjugate operator.
However, obtaining the magnetic channel mr, directly
from the measured voltage at the reader coil V7, is not straight-
forward. The reason is twofold: (1). The voltage induced at a
certain reader coil is also influenced by the magnetic chan-
nels of other coils. Ideally, one can measure the channel by
making all other reader coils open-circuit, then use a known
impedance of the object with Eqn. 3 and apply B* to beam-
form optimally to the object [12]. However, turning off coils
would reduce the voltage and decrease the system’s effec-
tive range. (2). We typically do not know the impedance of
the object a priori, which influences mr,. The following sec-
tion details how TextileSense infers the object’s voltage with
unknown impedance, location, and orientation.

B ,N] (4)

4.2 Finding Optimal Beamforming Vectors

As explained in the previous section, measuring the precise
voltage induced at the objects purely from the voltage at a
reader coil is challenging due to several unknowns, such as
the impedance of the object and the influence of other coils.
However, even in absence of these quantities, we can make
the following intuitive observation: if the optimal beamform-
ing vector is used across coils to maximize energy delivered
to a specific object, the sum of voltage measured across all
reader coils should reach a minimum. At a high level, this
is because transferring higher net energy to the object will
reduce the net energy available within the readers.

To mathematically see why, we revisit Eqn. 2 and rewrite
it by including the mutual inductance between the reader
coils. We write the voltage at the it reader coil as:

Vr, = Vo, + Z Vi = Vg, = Vro, — Vg,
k#i

()

where: (1) Vp, is the voltage of i reader coil when other
reader coils are open-circuit and no other objects are present
in the near-field, (2) Vr,, is the voltage introduced by nearby
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Figure 3: (a) shows the sum of voltage (normalized) measured across three coils when two of them apply different
beamforming weights with a step of 5° from 0° to 360°. The global minimum represents the beamforming vector
that delivers a maximum amount of power to the nearby object. (b) shows the zoomed-in version in the proximity
of the global minimum. (c) shows the voltage measurements when another object is present in the proximity of

the target object.

reader coils (Vr,, = mr, Ir,, where mr,_is the mutual induc-
tance between the i" reader coil and the k™ reader coil).
These two components can be calculated as known priors,
and we use V7, to represent the sum of them. Therefore, it is
easy to see that the voltage at the object is maximized when
the voltage at the reader is minimized.

At this point, we can formulate an optimization problem
that finds the beamforming weights that minimize the net
reader voltage. Assume the space of beamforming vectors has
J discrete elements B; (j = 1,..., J), and VT];_ (i=1,..,N)isthe
voltage of the it reader coil when the beamforming vector
Bj is applied. Let VTjo,- be the initial voltage of the i reader
coil when the beamforming vector B, is applied without any
object present. Specifically, we write VT{ = VTjo,- - V}g . Our
objective is to find the beamforming vector that delivers a
maximum amount of energy to the nearby object. Given that
we assume only one object is in the near-field for now, we
can obtain the optimal beamforming vector as follows:

N
Jj* = argmin ) {17 | ©)
i=1

Our analysis shows that for arrays of coils, the space of
beamforming weights is locally convex. For example, we
analyze a three-coil system with one nearby object while ap-
plying various beamforming weights across two coils. Fig. 3
plots the sum of the voltage measurement on three coils. It
shows a global minimum that delivers maximized energy to
the object (see the zoomed-in version in Fig. 3 (b)). Hence, we
use Stochastic Gradient Descent to perform the optimization.
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4.3 Beamforming to Multiple Objects

While our discussion so far considers only one object in the
near-field, this section deals with the case of multiple objects.
In traditional far-field beamforming, multiple objects do not
pose a problem, since they do not influence each other. How-
ever, in the near-field, multiple objects can potentially couple
with each other at the same time. TextileSense therefore has
to consider multiple objects — if not, the voltage measured
from the reader coils will not optimally beam energy to all
objects. To see why, we revisit our example in Fig. 3 (b), add
another object, and measure again the sum of the voltage
across three coils corresponding to different beamforming
weights, as shown in Fig. 3 (c). We notice that the consequent
voltage map varies considerably from the single-object case.

While prior work in the near-field in wireless charging [37]
can charge multiple mobile phones, it does not guarantee to
deliver optimized energy to individual receivers; Hence, it
cannot guarantee to detect all objects in the near-field.

As a result, TextileSense must account for multiple objects
and decouple their influence on the voltage across reader
coils. It then finds the optimal beamforming vector for each
object in the near-field. We further note that a simple exhaus-
tive search is too time-consuming to be practical. Therefore,
TextileSense needs to maximize the total number of objects
found under a limited overall time budget.

TextileSense’s high-level approach to do so relies on the
voltage measurements from multiple reader coils, and it pro-
gressively detects objects in the near-field. It then uses this
information to update its optimization algorithm.

Discovering Objects: Our approach to discover objects
initializes by assuming the presence of a single object in
hope of finding a response. We then utilize any response we
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receive, particularly from nearby objects to infer the presence
of other objects. Specifically, we leverage the fact that the
responses from nearby objects are impacted by the coupling
between objects that are farther away.

To model the coupling among multiple objects, we revisit
Eqn. 3 and rewrite the voltage induced by the object r (r =
1, ..., Q) at the reader coil i when the beamforming vector B;
is applied as:

induced voltage at the object r

N
v =m, (Y my, I D mr )2 ()
k=1 q#r
————

voltage from nearby objects
N
J _ J
I = Y mu I Zg (©)
k=1

where Z, and Z; are the unknown impedance for the object
r and g (in their equivalent circuit representations); I%k is the

current in the k™ reader coil when the j-th beamforming

vector is applied; I. is the corresponding current in the ob-
q

ject g; mr,, is the mutual inductance between the i reader
coil and the object r; m Rgr is the mutual inductance between
the object r and the object q. Now, we can write the volt-
age at the i reader coil as VT];_ = VTjo,- - 2?:1 V,'l.j when the
beamforming vector B; is applied.

At this point, we aim to estimate the channel information
for each potential object. We set an upper bound Q for the
number of potential objects in the near-field. For an N-coil
system and R potential objects in the near-field, there are
N % Q unknown mutual inductance between the objects and
the reader coils, (g) unknown mutual inductance among the
objects, and Q unknown impedance of the objects. While
there are N = Q + (g) + Q unknown parameters, we can
resolve them by applying (N = Q + (g) + Q)/N different
sets of beamforming weights since we obtain N equations
from each reader coil every time we apply one beamforming
vector. For example, with four coils and five potential objects,
we need to apply 9 different sets of beamforming weights.
While the equations are non-linear, we use Powell’s hybrid
algorithm [30] to solve them. We evaluate our approach with
a four-coil system and four potential objects in Sec. 8.5.

Choosing Beamforming Vectors: There are many pos-
sible combinations of beamforming vectors to be applied
for estimating the channel of potential objects. TextileSense
needs to favor the beamforming vector which delivers a
larger amount of energy to these objects. In Sec. 4.2, we for-
mulate an optimization problem to find the beamforming
weights that minimize net voltage. TextileSense leverages
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the beamforming weights along the gradient to estimate the
magnetic channels by solving the non-linear equations.

Improving Object Count Estimates: A key to accurately
estimating the potential conductive objects in the near-field
is to set an appropriate upper bound of the number of them.
TextileSense adaptively tunes the upper bound Q based on
the responses from tagged objects in the environment, if
available, which provide accurate channel information. We
always start estimating the number of objects with an initial
Q.If there is no response from a tagged object when we apply
the estimated channel for potential objects, we increase Q by
one. As we gradually receive responses, we can progressively
fine-tune our estimates of these parameters with increasing
accuracy. In our experiment, we set the initial value of Q
to be 5. With this approach, we can decouple the influence
from multiple objects on the voltage of the reader coils and
calculate the optimal beamforming vector for each object.

4.4 Tagged vs. Untagged Objects

Telling Apart Tagged vs. Untagged Objects: Untagged
objects that are conductive and close to the reader will also
couple with our coil antennas. Note that TextileSense models
the magnetic channels for both tagged and untagged objects
in an identical way. In Sec. 4.3, TextileSense estimates the
magnetic channels for all potential objects. With the optimal
beamforming, TextileSense can discover them in the near-
field. Of these objects, NFC tags actively harvest energy in
the near-field and can therefore provide a response. We treat
the non-responsive objects as the untagged conductors.

How well can we detect Untagged Conducting Objects?
An important factor that decides how well TextileSense can
sense a conductive object is how effectively it resonates
with the NFC frequency of operation. We note that different
shapes, volumes, and materials of conductors lead to various
resonant frequencies. For example, water, mobile phones,
computer monitors, and even the human body have distinct
resonant frequencies. Our NFC signal is at 13.56 MHz, which
may not resonate equally well with all classes of objects. Any
mismatch lowers the mutual inductance between the reader
coil and the object, leading to a small voltage variation at the
reader. We explicitly evaluate different classes of conductive
objects sensed by TextileSense in Sec. 8.3.

Modeling Fleeting Conductors: While our optimization
problem models objects that are static, objects that were com-
puted in the past may no longer exist at the same location in
the future. To account for this, TextileSense tracks the mag-
netic channel of discovered objects. Note that as conductive
objects couple with nearby objects, their movement changes
the channel of these objects. Thus, TextileSense adaptively
tracks the optimal beamforming vectors of the objects based
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on the voltage feedback from the reader coils. Specifically,
TextileSense monitors the variation of the measured voltage
across the reader coils, which indicates that the magnetic
channels have been changed. Algorithm 1 presents the de-
tails of the complete workflow of TextileSense.

Algorithm 1 TextileSense Algorithm

B’ « Initialized as @ > Optimal beamforming set
Q « Initialized as 1 » Upper bound of potential objects
B; < Randomly Initialized Beamforming Weights
Loop:

tforj=1,..,(N=«Q+ (%) +Q)/N do

2. Apply Bj to the N reader coils

3: [VTij Ji=1,. .~ < VOLTMEASUREMENT > Sec. 4.1
4. if any response from tagged objects (if any) then
5: Add the optimal beamforming vector B; into B*
6: Q=0+1 > Tune upper bound
7. Bjy1 < UPDATEBEAMFORMERS(B;,B;_1) > Sec. 4.2
8: end for
9: B* « OBJECTEsTIMATION(VT) > Sec. 4.3
10: foreach B} € B.,r=1,.. Q do
11:  Apply B} to the N reader coils
12:  Localize object r > Sec. 5
13:  endif
14: end for

5 NEAR-FIELD LOCALIZATION

This section describes how TextileSense enables an array
of reader coils to locate our objects of interest around the
TextileSense-enabled furniture. While TextileSense so far
presents a blind beamforming algorithm to detect the ob-
jects of interest at unknown locations, it needs to infer their
locations with various distances and orientations based on
their channel responses. TextileSense leverages an efficient
data-driven localization algorithm using the amplitude of
the voltage induced across our coil antennas. We choose to
model amplitude rather than phase given the low frequency
of operation and bandwidth of NFC. Further, the near-field
offers more dramatic variations in voltage amplitudes com-
pared to the far-field due to magnetic coupling.
TextileSense’s Localization Approach: From our experi-
ments, we find that a near-field multi-coil system like Tex-
tileSense exhibits significant coupling effects among its coils,
making their individual electromagnetic field diverge from
standard path loss models in complex ways; the coupling ef-
fects also change with the location, orientation, and impedance
of the object of interest. Rather than building a complex ana-
lytical model to account for these varying factors, we design
a data-driven approach that empirically measures the rela-
tionship between the voltage and the objects’ location.
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We consider the 3-D space within the range of 20 cm and
assume all objects of interest will be detected within this
coverage with TextileSense’s blind beamforming algorithm
in Sec. 4. To localize the objects of interest, we measure the
voltage across the reader coils with the optimal beamforming
weights for a particular object. Our localization algorithm
consists of two stages: (1) Designing our empirical model;
(2) Performing localization. Below we describe its details.

(1). Designing the Voltage vs. Location Model: We take
a data-driven approach and collect the coil voltage V at dif-
ferent object locations as a one-time step prior to the deploy-
ment of TextileSense. Specifically, we discretize the space
of interest into a 3-D grid with a fixed gap between two
consecutive grid points. We carefully select a set of grid
points so that they effectively sub-sample our space of inter-
est, and we put objects on these selected points to measure
the voltage across all reader coils, after applying the opti-
mal beamforming weights as described in Sec. 4. Note that
V = (v1,0y, ...,0N), where N is the number of reader coils.
Once data is collected, we create a model that maps the
voltage measurements V to 3-D locations. We use standard
statistical curve/surface fitting methods instead of machine
learning models, given that they perform robustly and to
avoid overfitting. Theoretically, the strength of the surround-
ing EM field of an individual antenna is usually modeled to
be a fading pattern as the distance increases; traditionally, in
the far-field, an antenna is used as a point source. However,
these are not true in the near-field, since the communication
range of the coil is comparable with the dimension of the coil.
For TextileSense, the path loss model varies across different
antennas and also within the aperture of individual antennas.
Yet, it should still exhibit a certain fading pattern when the
distance increases. Thus, TextileSense proposes a two-step
fitting model to generate the voltage map in the 3-D space.
First, TextileSense models the path loss with line fitting
along the z-axis for individual series of grid points with
the same values of x and y (see the red arrows in Fig. 4
(a)). Specifically, the number of curve models corresponds
to the number of sample points on the xy-plane. With these
curve models, TextileSense is able to estimate V with any
z value, i.e., the distance to the coil plane, as long as the
point lies on the red arrows in Fig. 4. Our next step is to
interpolate V at any point on the 2-D xy-plane grid. This
is done by surface fitting (see the blue plane in Fig. 4 (a)).
Specifically, we discretize the z-axis with a smaller step size
(e.g., 0.1 cm or more fine-grained), and for every z value, we
fit a surface given the estimates on the corresponding 2-D
grid. By such, TextileSense now effectively stores a bank of
{(v1, 02, ..., oN), (x,y,2) } pairs that records the voltage esti-
mates in our space of interest. This can then be used to per-
form localization. Note that the voltage-to-location model are
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Figure 4: (a) TextileSense’s localization algorithm with four coils. (b) Magnetic radiation pattern of a flat Textile-
Sense coil. The bottom small figures show the radiation strength from Top and Right view. (b) Magnetic radiation
pattern of a curved TextileSense coil with 90° bending angle.

only created once before deploying TextileSense. We evalu-
ate TextileSense’s performance under various environments,
such as the bending scenario in Sec. 8.2.

(2). Object Localization: To locate the object, we first mea-
sure the voltage across the reader coils, and then compare
the measurement with the voltage-to-location model to de-
termine the optimal position (x, y, z) based on standard L,
norm on the voltage vector. We compare this position esti-
mate with the true position of an object when we examine
TextileSense’s localization accuracy in Sec. 8.

6 TEXTILE COIL FABRICATION

This section describes our methods to design and fabricate
textile coils. Specifically, we discuss: (1). the design of coil
pattern that maximizes the radiation characteristics within
the constraints of the available area, while remaining ro-
bust to bending and crumpling; (2). fabrication methods that
integrate textile coils on the furniture.

6.1 Textile Coil Material and Fabrication

Textile Coil Material: There are primarily two types of
conductive fabric: (1). intrinsically conductive fibers; (2). non-
conductive substrates, which are then coated with an elec-
trically conductive element such as copper and silver. A key
trade-off that dictates our choice of conductive fabrics to
build our coil antennas is the balance between high conduc-
tivity and low parasitic capacitance. Intrinsically conductive
fibers have better conductivity; yet, woven conductive fibers
tend to have large parasitic capacitance due to the spacing
between individual thread of fibers that is negative to the
performance of coils. In this case, we choose Nickel-Copper
fabric as the conductive textile. This conductive textile sheet
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is made of copper and nickel coated nylon ripstop fabric and
has an acrylic adhesive layer for a better transfer.

Textile Coil Fabrication: The conductive textile sheet is
attached to a 0.4 mm flexible acrylic sheet as the flexible
substrate. A laser prototyping system (LPKF U3) is then used
to cut the textile sheet into the desired coil shape. The laser
scanning parameters are carefully selected to cut through
the textile sheet without damaging the acrylic substrate.

6.2 Textile Coil Design

Our objective is to design a coil geometry with an optimized
antenna gain within the furniture’s limited area. In this pa-
per, we particularly consider one side of the couch as the
designed area to deploy our system (See Fig. 8(d). To achieve
an optimized antenna gain, TextileSense needs to consider
the trade-off between the trace width and the number of
loops. We model the Q-factor of an inductor to capture the
efficiency of our coil antenna. Specifically, the Q-factor can be
represented as the ratio of the inductance L to the resistance
R of a coil at a given frequency. Note that the inductance and
the resistance of the coil antenna is a function of the trace
width and the number of loops. We then use the trace width
and the number of loops as the unknown parameters to em-
pirically optimize for the Q-factor. Our evaluation shows that
the optimal design of the textile coil uses 9 turns of loops, 8
mm trace width of each loop and 2 mm gap between loops.
We note that the available deployment area depends on the
furniture. Our approach can be used to design the optimal
configuration for various sizes of the furniture.

6.3 Textile Bending and Crumpling

Fig. 4 (b) shows the simulated magnetic field of our textile
coil without bending (flat). We note that it has high radia-
tion strength and its radiation pattern is perfectly symmetric.
However, when the textile coils are deployed on the furniture
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Figure 5: (a) Bending Angle vs. Resonant Frequency / Gain Degradation: As we bend the coil, its resonant frequency
shifts higher, and its antenna gain at 13.56 MHz degrades. (b) and (c) show the system components.

like a couch, it may not always remain flat. This section de-
scribes the effect of bending and crumpling on TextileSense’s
performance, as measured by degradation in antenna gain.

Bending and Crumpling Effect: We first study the impact
of bending on TextileSense’s performance when deployed on
a couch. We use bending angle to model the bending effect.
The bending angle can be represented as 8 = %, where
W is the length of the square coil, and R is the radius of an
imaginary cylinder to which the antenna is bent. For example,
Fig. 4 (c) shows the radiation strength of the coil with 90°
bending angle. We notice that the overall radiation strength
suffers from degradation due to bending. This is because
when we bend the coil antenna, the resonant frequency of
the antenna shifts towards a higher frequency, hence the
gain of the coil decreases. We then evaluate the resonant
frequency shift and the antenna gain degradation across
different bending angles from 20 to 110° (see Fig. 5 (a)). We
notice that the resonant frequency shift and antenna gain
degradation is quasi-linear with different bending angles. We
see a 0.2 MHz resonant frequency shift and a 6 dB antenna
gain decrease with a 110° bending angle. Also, we model the
crumpling of a coil using multiple cylinders with different
bending angles. We show that our coil antenna has a 9 dB
antenna gain degradation and 0.24 MHz resonant frequency
shift when curved by two imaginary cylinders, both with
110° bending angles, from below and above, respectively.
TextileSense mitigates the gain degradation by using our
near-field beamforming algorithm. In Sec. 8, we evaluate the
robustness of our system with certain bending angles.

7 IMPLEMENTATION

NFC Readers and Tags: TextileSense uses four USRP N210
with BasicTX/LFTX daughterboards operating as the NFC
reader. We feed one LNA [3] and one customized coil antenna
to the antenna port of each USRP. The overall transmitted
power of our setup is within FCC regulations. All USRPs are
synchronized with the same GPS disciplined clock which
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removes the frequency and timing offset among USRPs. We
use Mifare Classic 1K tags for tagged object evaluation.

Voltage Measurements: TextileSense measures the volt-
age of reader coils with commercial available detectors [29]
and AD8302 [1]. All detectors connect to an Arduino Due
development board with a 12-bit Analog to Digital Converter.

TextileSense Software: TextileSense runs a real-time beam-
forming search and localization algorithm. It implements
an in-house simplified ISO 14443 NFC protocol that can
query and apply anti-collision mechanisms to nearby ob-
jects in UHD/C++ including phase and amplitude updates.
Our source code for the TextileSense algorithm is fully im-
plemented in Python.

Textile Coil Antenna: We designed square coil antennas
that resonate at 13.56 MHz. We fabricated coil antennas using
Cu/Ni-based conductive textiles. In our evaluation, we use
four customized coil antennas which have 9 turns, 8 mm
trace width and 2 mm gap (see Fig. 5), and we deploy them
on the couch (Fig. 8(d)).

Ground Truth and Baseline: We report accuracy of range
and localization in centimeters. To obtain the ground truth,
we use a Bosch GLM50 laser rangefinder with an accuracy
of 1.5 mm. We also compare TextileSense with two baseline
systems: (1) A multi-coil localization based system that does
not perform near-field beamforming and instead processes
the voltage of individual coils separately. We then use our
proposed localization approach as described in Sec. 5 to cre-
ate a voltage-to-location model for this baseline. We show
how this system offers poorer range and localization perfor-
mance. (2) A large single-coil system that spans the same
total area as that of the multi-coil system. Given that this is
a single coil system, it cannot perform localization, and can
only detect objects. We demonstrate how this system offers
poorer detection range due to the inability to beamform.
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objects are present.

8 RESULTS
8.1 Accuracy of Inferring Power Transfer

Method: In this section, we evaluate whether TextileSense’s
beamforming approach can correctly estimate the trans-
ferred power to the objects of interest, a key primitive that
stems from beamforming and is required for localization. We
evaluate the accuracy in inferring the power transferred to
the object and compare it to the single-coil system with the
same antenna gain and transmitted power. In this experiment,
we use four-coil TextileSense to infer the power delivered to
one object by measuring the corresponding power induced
across all the reader coils. Specifically, we use a receiver coil
with a similar impedance and geometry as a potential object
(e.g., NFC tag). We then connect the receiver coil to a high-
resolution power monitor to obtain our ground truth. We
deploy the receiver coil over various locations and distance
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up to 50 cm from the reader coils. We infer the power deliv-
ered to the receiver coil using TextileSense’s approach: we
run the searching algorithm of TextileSense to identify one
beamforming vector which delivers the maximum amount
of energy to the receiver coil. We then calculate the error in
the actual delivered power versus the estimated power, and
output the normalized error. For the single-coil system, we
assume a known impedance of the receiver coil and calculate
the power delivered to the receiver coil directly from the
measured power at the reader coil.

Results: Fig. 6 (a) shows the normalized error of estimated
power along different distances between the reader coils and
the receiver coil for both TextileSense and the single-coil
baseline. TextileSense has a mean error of 4.2% in inferring
the amount of power delivered to the object. As expected, we
notice a gradually increasing power inference error and stan-
dard deviation as the distance to the receiver coil increases.
We note that our evaluation board has a 12-bit ADC which
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could limit the resolution of the measured power. Compared
to the single-coil baseline, TextileSense achieves a much
higher accuracy of power inference at the same distance.
This is because of the gain of beamforming which amplifies
minute power variation of the receiver coil even when it is
far away from the readers. This helps TextileSense detect the
objects in close proximity.

8.2 Localization under Bending

Method: We deploy our system in both the ideal scenario
when the coils are flat, and the bent scenario when the coils
are bent at 60°. Note that TextileSense takes a data-driven
approach to collect the voltage levels at different object lo-
cations prior to deployment of the system. We evaluate the
localization performance under the ideal scenario and the
bent scenario. In the evaluation, we consider NFC-enabled
objects.

Results: Fig. 6 (b) shows the localization accuracy of Tex-
tileSense under ideal (flat) and bent scenarios. Interestingly,
TextileSense has a better localization performance under
bending. This is because TextileSense’s data-driven system
was calibrated only under the bent scenario. While one of the
natural limitations of TextileSense’s localization algorithm
is that its performance degrades when the coil is bent, this
drop in accuracy is limited. Overall, TextileSense’s approach
is robust to significant bending. We note that all remaining
experiments are conducted under the bent scenario.

8.3 Tagged vs. Non-tagged Location
Accuracy

We evaluate the impact of various types of objects on the
localization performance of TextileSense. In the experiments,
we consider (1) tagged object: NFC tags, (2) non-tagged ob-
ject: human hands and a metallic case (10 X 8 X 5 cm).

Method: We note that, from our experiments, TextileSense
can achieve a maximum detection distance of 20.3 cm, 7.5
cm, and 5 cm for NFC tag, human hand, and metallic case,
respectively. Thus, we deploy our objects of interest at over
200 various locations within the coverage area of the max-
imum detection distance. Our goal is to detect the object
at unknown locations and estimate its 3-D location using
TextileSense’s localization algorithm. Further, we compare
TextileSense’s performance of localizing one NFC-tagged
object with a naive approach (the multi-coil baseline), where
each reader coil monitors the voltage individually.

Results: Fig. 6 (c) plots the localization accuracy for dif-
ferent objects with various distances to the reader coils. As
we expected, the localization error increases with the dis-
tance. Overall, TextileSense achieves an average accuracy of
3.57cm, 2.9679 cm, and 0.8956 cm for NFC tag, human hand,
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and metallic case, respectively. We note that TextileSense
outperforms the multi-coil baseline, which has significantly
poorer detection range (2 and 12 cm for metallic and NFC-
tagged objects) and location accuracy (16 cm in average).
This shows that in the absence of near-field beamforming,
both the detection range and localization accuracy are worse,
even if multiple coils are employed.

We note that counter-intuitively, NFC tags have modestly
lower localization accuracy compared to human hands. This
is owing to each NFC tag’s smaller form-factor compared to
the other objects considered. We also note that the detection
range of the system with untagged objects is lower, given
that they do not benefit from the coding gain of NFC tags.
We note that the standard deviation of the localization error
increases as an untagged object (e.g., human hand) moves
farther away from the reader coils, an effect expected due to
the degradation of its coupling with the reader coils.

8.4 Impact of Object Orientation

We evaluate the impact of object orientations on the de-
tection distance and localization accuracy of TextileSense.
We compare TextileSense’s performance with the single-coil
baseline that has the same total transmitted power.

Method: We use the reader coil plane as the reference plane
and place one object (e.g., an NFC tag) at various locations
with different elevation and azimuth angles w.r.t. the refer-
ence plane. In our experiments, the initial orientation of the
object is facing the reader coil, defined as 0° in elevation and
0° in azimuth. We rotate the object with its elevation and
azimuth angle varying from 0° to 90° in steps of 45°.

Results: Fig. 7 (a) and Fig. 7 (b) shows the results of the
maximum detection distance and the localization accuracy
with different object orientations. We observe that as we
rotate the object along the azimuth and elevation, the sys-
tem performance drops. We note that this is because the
cross-sectional area between the reader coils and the object
decreases due to its own rectangular form factor. However,
our localization error at even the poorest object orientations
remains in the range of 2 to 6 cm. Note that we do not report
the localization error for the single-coil baseline given that
it lacks the ability to triangulate the tag position.

In terms of object detection range, TextileSense signifi-
cantly outperforms the single-coil baseline by 2x. We high-
light that TextileSense’s extended detection range stems from
TextileSense’s near-field beamforming solution that alters
the distribution of the EM field to deliver maximized energy
to the object. From our experiments, we show an average of
14% in relative distance deviation (the ratio of distance de-
viation to the average distance across various orientations)
for TextileSense and an average of 25% relative distance
deviation for the single-coil baseline. Hence, TextileSense
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has better resilience and stability in the range performance
across various object orientations compared to the single-coil
baseline.

8.5 Impact of Number of Objects

We evaluate the impact of the number of objects placed in the
close proximity on the system performance from two aspects:
maximum detection distance and localization accuracy. In
the experiment, we use NFC-tagged objects as an example
to test the performance, given that the tags’ ID will be useful
in confirming which and how many objects were identified.

Method: We deploy up to four NFC-tagged objects within
a range of 25 cm from the reader coils. We consider various
spacings among multiple NFC-tagged objects from 0 (put
together) to 30 cm while placed along various orientations.

Results: Fig. 7 (c) shows the mean and standard deviation
of the maximum detection distance and the localization accu-
racy versus the number of NFC-tagged objects. As expected,
the mean of detection distance and localization accuracy
decreases with more objects (an average of 0.75 cm detection
distance and 0.95 cm localization accuracy drop per object).
The dip is due to weak coupling among adjacent objects.
Yet, the dip is not substantial because TextileSense optimizes
the energy delivery one object at a time. The high variance
is due to the short spacing among the objects. We observe
that TextileSense, in some experiments, achieves a higher-
than-expected maximum detection distance when multiple
objects are present. We believe this stems from the fact that
adjacent objects could act as passive relays to other objects,
which allows for better efficiency in energy delivery. We
also find that closely packed NFC-enabled objects within 1.5
mm of each other generate strong interference, which makes
them struggle to harvest enough energy to make responses.
Further, even if they harvest enough energy, their signals
are much more likely to collide at the NFC readers.
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8.6 Applications

Object Tracking: We show the CDF of the tracking ac-
curacy of tagged and untagged objects in Fig. 8 (a) and (c),
respectively. TextileSense is able to locate a tagged object
within a median accuracy of 2.84 cm. Consider the case where
a wallet/watch is accidentally left on the couch. TextileSense
is able to quickly detect this situation through its algorithm
and notify the user. Further, our system can potentially sup-
port gaming such as augmented and virtual reality where
the location of objects needs to be known. We show that
TextileSense can detect the location of an NFC tagged plush
toy on the TextileSense couch.

User Interface: A TextileSense furniture can be potentially
used as a touchless screen, and we evaluate this possibility
in Fig. 8 (b). TextileSense can locate a human hand with a
median error of 1.53 cm when the user puts his/her hand in
close vicinity, making it a promising candidate for touchless
screen interfaces. With its ability to locate a human hand,
TextileSense can thus track a user’s hand once its presence
is detected. The user can move his/her hand to form fine-
grained gestures, and TextileSense is expected to perform
consistent localization to keep tracking and analyzing. We
show that the user can finely adjust TV volume by waving
the hand over different locations on top of furniture. Here’s a
video of our system in action : https://youtu.be/IeilONQlk M.

Pose Estimation: TextileSense can also be used to sense
the user when the user sits on the couch. Specifically, it can
track the location of the user and also the posture of the user.
We demonstrate that our system can sense the user’s posture
- lying or sitting on the couch with 91.3% accuracy.

9 DISCUSSION

Security and Privacy Implications: We note that Textile-
Sense can detect and locate tags as well as objects within
close proximity (few tens of centimeters) of the TextileSense
furniture. We believe the relatively short range of the system
limits privacy risks. We also note that it can facilitate reading
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NFC tags at about a four-fold higher distance compared to
traditional commercial NFC, which is a potential security
vulnerability. While security is beyond the scope of this pa-
per, past solutions [11, 32, 35] that protect NFC tags from
malicious scanning can limit the scope of such attacks.

Evaluation of Limitations: We emphasize a few impor-
tant limitations of our solution: (1) Our evaluation in Sec. 8.5
considers up to four NFC-tagged objects with up to 30 cm of
spacing. However, TextileSense cannot deal with extremely
small spacing (< 1.5 cm) due to the strong coupling between
the objects themselves. (2) TextileSense’s performance de-
grades due to bending, particularly acute bending, as we
evaluate in Sec. 8.2, although it continues to perform at an
accuracy of few centimeters.

Cost, Power and Scalability: We consider three factors:
(1) Cost: While we prototype TextileSense using multiple
USRPs in this paper, our proposed architecture can be eas-
ily adapted to a commercial NFC reader module by using
low-cost off-the-shelf phase shifters [2] (less than $25) and
textile coil antennas. (2) Power: The power consumption of
such a TextileSense system would be less than 100-200 mW,
because of the high efficiency of the wireless power trans-
fer in the near-field. (3) Scalability: Our evaluation shows
TextileSense can detect and localize four NFC tags placed
in close proximity. While tag signal collisions might be a
potential challenge if there are many NFC tags in the range
of TextileSense, the problem can be mitigated using the anti-
collision scheme in the NFC protocol that only queries one
tag at a time by leveraging the tag’s unique ID.

Advantages compared to RFID localization systems:
TextileSense supports locating both NFC-tagged objects and
untagged conductive objects (e.g., human hand or metal),
while traditional RFID localization systems focus on locating
RFID tags. Further, TextileSense focuses on an indoor smart
home environment where NFC technologies are much more
ubiquitous than RFID, such as contactless key fobs, credit
cards, ID cards, mobile phones, etc.

10 RELATED WORK

Magnetic Induction: The underlying physics of Textile-
Sense relies on the magneto-inductive principle, which is
primarily used as the method for wireless power transfer
[5, 41]. Prior work has used relays [7, 10, 20, 38, 39] and
multi-antenna systems [12, 37, 45] to improve wireless power
transfer based on magnetic induction. Recent work also uses
near-field MIMO to improve communication throughput [18].
While past solutions focus on power delivery and channel
capacity, we build a practical textile MIMO system in the
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commercial NFC context for object localization and user
interface for future building infrastructure.

Wireless Sensing: We have seen rich literature on using
various wireless technologies to sense our surrounding envi-
ronment. Past work has proposed Wi-Fi based device-free
approach for localization [22], imaging [16], gesture clas-
sification [4] and material recognition [48]. Recently, pas-
sive RFID tags have been embedded in daily objects like
clothing to enable a shape-aware environment [14, 15]. Ad-
ditionally, recent work [34] proposes locating a customized
coil-mounted receiver in the near-field without beamforming
optimal energy and therefore operates at very short range
(few cm). This paper instead focuses on detecting and locat-
ing ordinary conductive objects and NFC-enabled objects in
close proximity to the TextileSense furniture.

Smart Fabrics and Materials: Recent work has shown
that ordinary fabrics and soft materials are imbued with sens-
ing properties, such as recognizing speech [43], detecting
temperature [27], pressure [36], humidity [19], body geome-
tries [28], and activities [13, 17, 26, 31, 33]. Most of these
wearable technologies are enabled by connecting off-the-
shelf sensors and other circuit components using textile con-
ductive fabrics and threads. Textile antennas for passive NFC
and RFID tags [6] are also proposed for body centric and
wearable applications. While recent work [9, 42] uses flexible
conductive threads for object tracking, the sensing distance
for NFC-tagged object is limited up to 3 cm. In contrast, Tex-
tileSense builds the first textile MIMO systems for proximate
object detection and localization up to 20.3 cm.

11 CONCLUSION

This paper designs TextileSense, an NFC-based system that
locates objects (tagged or untagged) in the surroundings
using multiple textile coils. TextileSense senses the voltage
variation of its transmitter coils induced by proximate ob-
jects to detect them and identify their location. We optimize
the geometry of the coils and fabricate them to remain ro-
bust to fabric bending and crumpling. Through extensive
experiments, we demonstrate cm-level localization of both
tagged and untagged objects in the near-field.
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