Physical Equation Discovery Using Physics-Consistent Neural
Network (PCNN) Under Incomplete Observability

ABSTRACT

Deep neural networks (DNNs) have been extensively applied to
various fields, including physical-system monitoring and control.
However, the requirement of a high confidence level in physical
systems made system operators hard to trust black-box type DNNs.
For example, while DNN can perform well at both training data and
testing data, but when the physical system changes its operation
points at a completely different range, never appeared in the history
records, DNN can fail. To open the black box as much as possible,
we propose a Physics-Consistent Neural Network (PCNN) for phys-
ical systems with the following properties: (1) PCNN can be shrunk
to physical equations for sub-areas with full observability, (2) PCNN
reduces unobservable areas into some virtual nodes, leading to a
reduced network. Thus, for such a network, PCNN can also rep-
resent its underlying physical equation via a specifically designed
deep-shallow hierarchy, and (3) PCNN is theoretically proved that
the shallow NN in the PCNN is convex with respect to physical
variables, leading to a set of convex optimizations to seek for the
physics-consistent initial guess for the PCNN. We also develop
a physical rule-based approach for initial guesses, significantly
shortening the searching time for large systems. Comprehensive
experiments on diversified systems are implemented to illustrate
the outstanding performance of our PCNN.
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1 INTRODUCTION

With the era of the Internet of Things (IoT) coming to physical
systems, there is an increasing need to extend monitoring and con-
trol to system edges, where traditional monitoring and control are
unavailable. For example, power engineers nowadays try to provide
a similar level of monitoring in its distribution grid when compared
to the legendary transmission system with limited measurements.
Under this situation, traditional system modeling are unavailable
in many physical system edges, and machine learning (ML) tools
are recognized as a viable way to conduct cost-efficient inferences
for system operations in resource-limited areas, the topology esti-
mation of power distribution systems [15, 32].

The mainstream of the ML methods for physical systems utilizes
the universal approximation capacity in the deep neural networks
(DNNis) to learn the data pattern [6]. However, for physical systems
with an evolving operating point, this black box can’t guarantee
the model generalizability. To tackle this issue, sparse regression
and symbolic regression [2, 3, 27] are introduced to recover the
unknown physical equations, thus providing full model general-
izability. In general, their methods utilize DNNSs to create a base
of physical symbols and introduce sparse regression to estimate
the coefficients of these symbols. However, these methods usually

assume the full observability of the system, i.e., the meters of the
system are placed at every node. This assumption is often unre-
alistic due to the sensor cost. Considering the incomplete system
observability, the above regression tools will fail since the hidden
quantities with randomness create bias terms for a specific data set.

Thus, in this paper, we try to provide answers to the following
question: can we maximize the recovery of physical system infor-
mation while deploying the universal approximation capability in
other unrecoverable areas? The problem is, in general, hard for ar-
bitrary systems with even unknown bases for the system equation.
However, for a large set of systems with clear physical quanti-
ties, the bases are known. For example, networks constrained via
conservation laws [28] to deliver system flows like power (power
systems), water (hydraulic networks), and kinetic energy (mass-
damper systems). The conservation law further guarantees that
the system equation parameters can be represented as a Lapla-
cian matrix. These Laplacian systems have wide applications on
resource delivery, finding consensus protocols of multi-agent net-
works [22], obtaining solutions of generalized flow problem [4],
and characterizing systems’ coupled oscillator motions [7].

To recover the physical equations of the incompletely-observable
Laplacian systems and maximize the recovery of the physics, the
key is to decompose a DNN model to the linear part with locally
full observability and nonlinear part with high capacity to han-
dle the randomness from hidden quantities. Thus, we propose a
Physics-Consistent Neural Network (PCNN) with a deep-shallow
structure to obtain maximal physical consistency. Firstly, PCNN can
be shrunk to physical equations for sub-areas with full observability.
Under this scenario, only the shallow NN in the PCNN activates.
Secondly, PCNN creates some virtual nodes to represent an unob-
servable area. The deep NN in the PCNN activates in this situation
to approximate the variables of the virtual nodes. Then, physical
quantities related to the virtual nodes are constrained into a safe
range and the local topology of the virtual nodes is guaranteed via
controlling the sparsity of PCNN. In general, PCNN can therefore
represent the physical equation of the reduced network. Finally,
we theoretically prove that the shallow NN in the PCNN is convex
with respect to physical variables, leading to a convex-optimization-
based pre-training for the PCNN to provide the initial guess and
save the training time. We have the following contributions.

e We introduce the problem of maximizing physical recovery
for interpretation while minimizing approximating error in
the non-recovery regions.

e We find the solution of PCNN to the problem above and
provide theoretical guarantees for the PCNN for a physics-
consistent solution.

e For speeding up the computation, the physical nodal cat-
egories are used to construct small-scaled but convexified
problems to initialize PCNN.
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e We conduct extensive experiments on diversified physical
systems against many state-of-the-art models to demonstrate
the superiority of our proposed methods.

2 RELATED WORK
2.1 Provide Interpretability of DNNs

Many kinds of research elaborate on how we can trust the DNNs
via selecting important and explainable features (e.g., the input
neurons) so that human users understand the selected features and
decide if the trained DNN is trustworthy. These approaches can
be categorized into the following groups. (1) The forward meth-
ods make perturbation of the specific input instance to evaluate
the impact on the output. Such perturbation methods include oc-
clusion [33], mutations [34], and input batch marginalization [35].
However, these methods are computationally expensive due to the
large space of input perturbations. (2) The backward approaches
are therefore proposed to only calculate the importance signal from
an output neuron to the previous neurons. The importance signals
typically include the gradient [25], layer-wise relevance [1], and
difference-from-reference [24]. (3) Finally, an optimization-based
method is also proposed to form an explanation model [18] with
interpretable features to locally approximate the trained model. The
feature weight represents its contributions for the user to evaluate.
These methods in general lack the theoretical guarantee to interpret
the physical system connectivity.

2.2 Improve the Generalizability of DNNs

To increase DNNs’ generalizability and prevent overfitting, there
are extensive methods like adding regularization terms, data aug-
mentation, and early stopping. For model regularization, there are
various penalty terms being introduced, e.g., Jacobian regulariza-
tion [10], Kullback-Leibler divergence [31], weight matrix trace
norm [13], and methods like dropout [26]. Another simple and use-
ful approach is to conduct data augmentation [20] to increase the
data size for training via flipping, rotation, scaling, cropping, trans-
lation, etc. Finally, implementing early stopping when training the
DNN helps to avoid over-training and obtain a generalizable model
[16]. Though these methods reduce the model complexity, they can
hardly tackle the evolving physical systems with a continuously-
changing operating point.

2.3 Enhance DNNs with Physics

Physical constraints in physical systems can improve the DNN
performance. These works are typically categorized [30] into (1)
modifying loss functions, (2) quantifying initialization point, (3)
designing the DNN architecture, (4)modeling residual of traditional
physical equations, and (5) implementing a hybrid physics-ML
model. Specifically, adding a physics-based loss function essentially
constrains some variables or parameters into a physical space, e.g.,
the law of energy conservation restricts the heat energy fluxes in
the general lake model [11, 12]. Therefore, the parameter searching
of a DNN will be more efficient, and the solution is reliable with the
physical consistency. Introducing a physical initialization point can
also easily reducing the training time. The obtaining the initializa-
tion usually following in a pre-training scheme with simulated data,
e.g., the pre-training of a driving algorithm in a simulator [23].

Modeling the physical equation residuals or implementing hy-
brid models with both physical equations and ML models can be
seen as the manipulation of physical equations and ML models
like series connection [14] or parallel connection [29]. The physics-
guided architecture design handles the issue via designing a struc-
ture that has interpretable neurons or connections into physical
variables or connections. For example, [9] models the neuron con-
nections as the line connections in power systems. Even though the
above methods usually can’t recover the complete physical equa-
tions. For physical equation recovery, the sparse regression and
symbolic regression are usually introduced [2, 3, 27]. They typically
utilize a DNN model to create bases for a physical equation. Further,
a sparse linear regression is added to the DNN to select bases and
estimate the coefficients of the bases.

3 PROBLEM FORMULATION

Many physical networks are graphs naturally, which can be mod-
eled as a directed weighted graph G = {V, &} with V to be the
vertex set and & C V X V to be the edge set. Based on the conser-
vation law and system balance equations, the underlying physical
equations of many physical systems can be formulated as [28]:

oH
§=-L—(s), 1)
os
where s represents the storage at the vertices, and $(¢) = dz(tt)

represents the rate of the storage at the vertices, i.e., the net injected
flows. L is the weighted Laplacian matrix of the graph G for the
system physical parameters, and H(s) represents the total stored
energy at vertices. For example, in a hydraulic network, s can be the
water volumes at each reservoir and H(s) are the potential energies
of the water.

Equation (1) is the foundation for all physical system analysis
in this paper. For example, a subclass of equation (1), the power
flow equations in the power systems, is the basis for power sys-
tem planning, economic dispatch, stability analysis, and protection.
Unfortunately, equation (1) is usually unknown for large systems,
including both the system topology and the edge weights in the
L matrix. This inspires the parameter estimation studies for the L
matrix using sensor data in the system.

However, limited sensors in the system pose challenges for the
estimation. Therefore, we denote V = {OUH }, where O represents
the observable node set and H represents the hidden node set. The
measurements of s, $, and %(s) can be metered or calculated
for observable nodes. Formally, to represent these quantities, we
denote y € Y and x € X as the random variables on the left hand
side and the right hand side of (1), respectively. Y C R™IVI and
X c R™IVI are the measurement spaces of y and x, respectively,
and |V| is the cardinality of V. Then, we utilize the subscripts H
and O as partitions of the variables/spaces and correspondingly
denote ygy € Yy ¢ Ry € Yo c RO xg0 € Xy
R™IHI and xy € Xg c R™IH| Based on the above definitions,
we convert equation (1) into:

[yw] _ [Lﬂ(l-{ Lyio

yo| |Lox Loo
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where we denote {x’(’)}nl\]:1 c Xp and {y’é}ln\]=1 C Yp asthe N
samples obtained from meters. Thus, we focus on learning the
mapping from x ¢ to y, with the goal of finding a good mapping
and recovering the parameters and the connectivity within nodes
in O, ie., Lo for physical consistency. With the definition above,

we have the following problem formulation for this paper.

e Problem: a data-driven physical consistent estimation that
maximizes the physical recovery and approximation in the
unrecoverable areas.

e Input: measurements {x'é}ﬁle and {y'b}ﬁ:jz , from observed
nodes.

e Output: an accurate mapping fg such that y, = fop(xp).
Further, partial of the parameters 8, C 8 should accurately
approximate the physical parameters, ie., 8, ~ Lg o for
physical consistence.

This is a non-trivial problem since (1) the hidden variables x¢;
cause the systematic bias for the model, deteriorating the accurate
topology and weight recovery within observed nodes, (2) there lacks
theoretical guarantee of the approximation 8, ~ Lo ¢, and (3) even
when we have a good approximation, the model generalizability is
hard to guarantee due to the randomness in x¢.

4 PROPOSED MODEL

The existence of the hidden nodes makes it difficult to directly iden-
tify the topology and the edge weights within observed nodes. Thus,
we propose to separate the whole graph G into |O| unit-graphs
{Gi = {V;, Si}}ll.fll with the graph center to be one observable
node and radius to be 1, where we consider the distance between
every two connected vertexes to be 1. We show that each unit graph
can be approximated via an output channel of our PCNN model

and provide the approximation guarantee in Section 5.

4.1 Graph Decomposition

In this subsection, we show different types of unit graphs for further
constructing our PCNN model architecture.

Fully-observable unit-graph (F-Graph): This type of unit
graph contains an observed node with all its 1-distance neighboring
nodes observable. We denote the set of the central nodes in these
unit graphs as . Therefore, any nodes i € ¥ with all of its 1-
distance neighboring nodes, Neigh(i), construct a fully-observable
unit graph (F-Graph) G; = {i U Neigh(i), &;}. Then, the node i is
isloated from H. Based on equation (2), the topology and parame-
ters of this sub graph can be accurately recovered via a linear layer
of a neural network, i.e., a linear regression.

Partially-observable unit-graph (P-Graph): this type of area
includes an observed node with at least one of its 1-distance neigh-
boring nodes hidden. We denote the set of the central node set
of these unit graphs as #. Therefore, any node j € £ with nodes
in Neigh(j) construct a partially-observable sub graph (P-Graph)
Gj = {j U Neigh(j),E;}. Clearly, j has hidden boundary nodes
HNNeigh(j). Thus, we need more layers instead of a linear layer to
tackle the randomness from x¢nNeign(j), Which requires multiple
deep layers. Since the unknown |H N Neigh(j)| prevents the PCNN
model construction, we aggregate |H N Neigh(j)| boundary nodes
into K virtual nodes for G;, Vi € P, where K is a hyper parameter.
We show how to obtain a doable K value in Section 5. For G}, we
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Unit Graph Decomposition

Figure 1: Physical system graph model and unit graph de-
composition.

denote the boundary virtual node set to be Nj = {jji }le. Notably,
this modeling of P-Graph is an important reason why the
proposed approach can be better than other methods.

The graph decomposition inspires a deep-shallow design for the
PCNN, as is shown in the following subsection.

4.2 PCNN Structure: Deep-Shallow Hierarchy

For each unit graph, the center node’s output is the sum of all
neighboring nodes’ flow via the corresponding edge due to the law
of conservation. Thus, the structure of the corresponding center
node output channel is determined based on the unit graph type,
together formulating the PCNN architecture. Specifically, we have
the following designs.

F-Graph Layer: We utilize a linear layer to recover the topology
and parameter of F-Graphs.

fr(xp) = 0rxo, 3

where OF is the weights for the F-Graph layer. F-Graph layer needs
to be pre-trained while other layers are frozen to identify the node
set . The pre-training can also include a Lasso loss term A||0F||o to
guarantee sparsity, where A is the hyper parameter for the penalty
and || - ||p is the [ - p norm.

After the pre-training, we obtain flg(xo) = GOFxO. Vi € O, the
identification criteria is:

N
%Z ] - R[]l < e @
n=1

where y’g) [i] and f}? (x'(’)) [i] are the i*" elements in y'é and fF(x'é),
respectively. € is a hyper parameter. If equation (4) is satisfied, then
i € ¥ since no hidden quantities contribute to the y [i]. Based on
the obtained ¥ and P = O \ ¥, we have the following sequential
F-Graph initialization rule: (1) Vi € ¥, initialize Or[i,:], the
ith row of O, i.e., as the corresponding trained values 0% [i,:].(2)
Vj € P,Vi € F, initialize Of[j, i] as the trained value GOF[i, jl. (3)
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Vj € P,Vi € P, initialize Op[j,i] as 0if i # j and — Y rx; O [j, k]
ifi=j.

Forrule 2,Vj e P,Vie 7,if ij € &, the approximated 0%[1', Jjl
for channel i is an accurate estimation of the true weight of line
ij, while the estimation OOF [j, 1] for channel j is inaccurate due to
the hidden flows from hidden nodes to node j. If ij ¢ &, we have
6% (i, j] = 0.

For rule 3,Vj € P,Vi € P, if j # i, the true weight of line ij

can either be 0 when ij ¢ & or not be accurately estimated in the
F-Graph layer. Thus, we initialize OF| j, i] to be 0 for both cases and
estimate the weight of line ij in other layers of the PCNN. If j = i,
the diagonal elements sum the weights with negative signs of all
lines from j to ¥ N Neigh(j) so that all the flows through these
lines are well estimated. The only flows that need to be further
explored lie in the edges to hidden nodes.
N-Approximation Layers: The initialization of F-Graph gives
an accurate approximation of edge weights among nodes in the
F-Graph. For edge weights in the P-Graph G}, F-Graph initializa-
tion rule 3 can’t deliver an accurate parameter estimation due to
the hidden quantities.

Thus, for G, we model the contributions of hidden nodes via K

virtual nodes N; as mentioned before. Though the input samples of
the virtual nodes are unknown, we can approximate them using the
observed nodes’ input and a deep neural network (N-Approximation
Layers) fn: xny = fn(xp), where N = Ulfll
total set of virtual nodes.
P-Graph Layer: For a P-Graph Gj, the flows from nodes # N
Neigh(j) are identified in the F-Graph Layer. Thus, we only need
to consider the flows from N; U Neigh(j). Since we know the
measurements from N, we build another linear layer (P-Graph
Layer) such that:

Nj represents the

Yo — fr(x0) = fe(xnyuo) = Opxnu0> (5

where fr(x ) represents the output from the F-Graph Layer, x 50 =
[x Ar; x 0] is the concatenation of x oy and xp, and Op € RIOIXINUO|
is the weight matrix of the P-Graph Layer.

Though for any node j, P-Graph Layer only models flows from
Nj, the variable at node j, xg[j] is still utilized to calculate the
flow from node j. Thus, we extend the mapping to the format of
fr: XINVOI _, Y10l o integrate the layer to the PCNN. We
develop the following sequential P-Graph initialization rule: (1)
Vj € P,Vk € N, if k € Nj initializes 0p[j, k] from the optimal
solution of a set of convex optimizations proposed in the next section.
If k ¢ Nj, initialize Op[j, k] to be 0. (2) Vj € P,Vk € N,Vi € O,
if j = i initialize @p[}, i] to be — Yxecn Op[j. k]. If j # i, initialize
Oplj,i] tobe0.(3) Vi € F,Vk € N U O, initialize 0p[i, k] to be 0.

For rule 1,Vj € P,Vk € N, if k € Nj, the initial guess repre-
sents a good approximation for the weight of edge jk. In our next
section, we propose a set of convex optimizations to obtain the
optimal solution that both minimizes the squared loss and satisfies
physical parameter constraints. We will theoretically prove that
within these constraints, a globally optimal solution with zero loss
for the noiseless data can be achieved due to convexity. If k ¢ N,
edge jk does not exist so that the initial value of 6p[j, k] is 0. For
rule 2, Vj € P,Vk € N we sum the weight of jk (zero if jk does
not exist) with a negative sign. Thus, the flow at line jk can be

Direct Path

[xo]

!
N\

N

F-Graph Layer
fr(zo) = Orzo!

P-Graph Layer
fr(znuo) = 0pzNU0

N-Approximation Layers
zy = fn(zo)

zyvo = [z To]
Figure 2: The design of the PCNN.
calculated. For rule 3, we don’t consider the flows from ¥ so that
the related weights are set as 0s.

The optimization also brings good estimation values for x p,
thus inducing the N-Approximation initialization rule: Initial-
ize parameters in f(x ) via pre-training the network of fy using
input data from x and estimated data of x s from the proposed
convex optimizations in the next section. In conclusion, we show
our proposed PCNN model in Fig. 2. The formulation is as follows:

Yo = fo(x0) = fr(x0) + fp([fn(x0);x0]). (6)

Though we have good initial parameters for the PCNN, the
retraining of the PCNN as a whole is still required for an end-to-
end optimization to minimize the total loss. Finally, the complete
algorithm for the pre-training and the retraining process can be
summarized in Algorithm 1.

Algorithm 1: Training Algorithm for PCNN

Function Train-PCNN
Input: Measurements {x" }erzl and {y”}ln\]: ; from

observed nodes, threshold ¢;

Pre-train the F-Graph Layer using Lasso regression;

Obtain ¥ set using criteria (4) with €;

P=0\7F;

Initialize O using F-Graph initialization rule;

Solve the proposed optimization in equation (7) using
Algorithm 2;

Initialize Op using P-Graph initialization rule;

Initialize parameters in the deep layers fy(x ) using
N-Approximation initialization rule;

Retrain PCNN using BP algorithm;

Output: PCNN model;

end

5 PHYSICS-CONSISTENT INITIALIZATION
USING CONVEX OPTIMIZATION

The proposed PCNN embraces the deep-shallow structure where

the deep NN approximate the hidden variable, and the shallow NN

formalizes all the variables into the physical-equation representa-

tion. Specifically, each output channel represents a nodal balance
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equation. In this section, we verify that our initialization rules for
the F-Graph and P-Graph Layers can provide a physics-consistent
solution. We first define this solution as follows.

Definition 5.1 (Physics-consistent solution). A physics-consistent
solution (PCS) for the weights of F-Graph and P-Graph Layers and
the output of the N-Approximation Layer brings 0 loss for the
noiseless data and lie within the physically constrained region.

Based on the definition, the solutions for the F-Graph Layer can
be obtained via a linear Ordinary Least Square (OLS) to optimize
0r in (3). The solutions for the P-Graph Layer and the output
of the N-Approximation Layer can be obtained via the following
optimization.

Specifically, we treat one P-Graph G;,Vj € P as an example.
Based on our initialization rules, the weight of ji, Vi € F N Neigh(j)
has been quantified in the F-Graph Layer. Thus, we only need to
discuss the weight of jk, Vk € Nj N Neigh(j). We denote wy as the
weight of line jk, and wy. is one element in the parameter matrix
0p in the P-Graph Layer. Further, we let p, := y'é [j] - flg(x'é) [j]
as the nth sample net flow from N, where the estimation of the
net flow is guaranteed via accurate parameter estimation of the
F-Graph Layer. Similarly, we let x™ := x7, [ j] as the nth input mea-
surement of node j. Finally, we denote xZ as the n'" approximated

kth

virtual node in ;. Thus, xl’; is are-

alization of one element in x'}v. Here we eliminate the index j in wy,

nodal measurements for the

Pn, x™ and x,li for simplicity. To find a good physics-consistent ini-
tialization, we propose to treat wy and x,li as variables and formalize
the following optimization ]P);(

N K
mn L= ) (pp— Y we(x" —xM))?
] ; ! kzzl ¢ )

N K
st Awp Axg bz Heey € Cko

where L is the loss and we eliminate the index j, K for simplicity.
Ck represents for K virtual nodes, the feasible region under a set
of physical constraints. For example, the tolerance of the nodal
devices requires x!* to have positive minimum and maximum values.
Further, the capacity of the line jk limits the maximum values of
the flow on that line, i.e., |wg (x™ — xl’C’)l has an upper bound. It can
be easily proven that under the above constraints, C is convex. We
assume this convexity holds in general for all the proposed physical
constraints.

To prove the PCS can be obtained via the above optimizations,
we prove the existence of the PCSs in the subsequent section.

5.1 Existence of the solution

Proor. F-Graph Layer has the feasible solution of the ground-
truth physical grid parameters.

As for P-Graph Layer and N-Approximation Layer, we denote
the PCS as {wg, {J?Z}lel}llle in equation (7). For node j, we assume
there are M number of true hidden nodes connecting j with line jm
parameter as by, 1 < m < M and true input nodal measurements
as xJ, V1 < n < N for the nt? sampling time. Since we assume the
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PCS produces 0 loss, we have the following equations:

K M
Zwk(x" — i) = Z bp(x" —x™)¥1<n< N
k=1 m=1 (8)

_ -n\N K
st AW {% m Feny € Ck

It’s obvious that when M = K, {b, {x;‘n}ﬁle}%zl is a PCS. How-
ever, since equation (8) is under-determined, multiple PCSs exist
within Ck, even when K # M. To find one of these solutions, we
show in the next subsection that the problem IP;( is convex under
certain assumptions, and we can iteratively increase K and solve
P}( to obtain one PCS. O

5.2 Model Convexity

We have the following proofs for the model convexity for the pre-
training of the F-Graph and P-Graph Layers.

Proor. For F-Graph Layer, the pre-training is an ordinary least
square optimization, which implies convexity.

For P-Graph Layer, the optimization P}( is in (7). Since Cx is
convex, we only need to consider the convexity of the loss function.
Thus, We construct the Hessian matrix of the loss function with
the following elements:

L X oL ol
= 2(x? —x™?2, —— = 2(x™ — x™) (x — x™),
Pwy Z (o ) W owy, Z (xh ) (% )
n=1 n=1
K
oL n n n n aL 2
sz(p”_zwl(x —x) —wi(x" = x)), szwk’
kX 1=1 k
oL oL oL
——— =2(x —x"wp, —— = 2wpwp, ——= =0
n k > n..n ’ n..m
oWy oxy ox X, ox; X,
We study the positive-definiteness of the Hessian matrix Ho with
respect to the variable vector [wy, - - - , wg, x%,x% S ,x}(, x%, S ,xljg

It’s clear that Hy[1 : K, 1 : K] is positive semi-definite, since this
Hessian matrix Ho[1 : K, 1 : K] represents a linear least square loss.
On the other hand, if we conduct a Gaussian elimination process
to iteratively prove the positive semi-definiteness, we need to itera-
tively prove the first entry of each eliminated matrix is positive. Due
to the positive semi-definiteness of Hy[1 : K, 1 : K], it’s obvious
that during the first K — 1 eliminations, all the first entries of the
eliminated matrices are positive, i.e., H;(1,1), -+, Hg_1(1,1) > 0.
Thus, we focus on the impacts of eliminations on diagonal entries
after the previous K numbers.

Specifically, for the ith Gaussian elimination, we can evaluate
the diagonal element of the eliminated matrix as:

(Hi—1(1L,h+1))(H;—1 (1,1 + 1))
H;—1(1,1)

5

Hi(Lh) = Hi_ (I+ 1L, h+1) -

)
where 1 < I < (N+ 1)K —i.

If we assume N is sufficiently large, Ho(k, k) = erY:l 2(xg -
x™)2,V1 < k < K. The non-zero flow of line jk (recall j is the index
of the center node of G;) implies xZ —x™ # 0. Namely, Hy(k, k)
is a sufficiently large positive number. More specifically, equation
(5.2) implies that Vb > K,Ho(1,1 + b) < Hg(1,1). Therefore,
the elimination process in equation (9) indicates that Hy (b, b) > 0.
However, we need to consider the values of H1(1,b) and H1(1,1) to
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continue the iteration. Due to the triangle inequality, we know that
Hq(1,1) > 0 given x7 # x} for any 1 < n < N.If N is sufficiently
large, we can claim that H;(1, 1) has a sufficiently large positive
accumulation value, compared to a fixed value of Hj(1, b). Thus,
we have H1(1,1) > H(1,b). Repeating the above eliminations for
K times and we have Hg(b+1-K,b+1—-K) > 0.

Then, for the rest of b — K eliminations, the diagonal element
Hg4q(1,1),VY1 < a < b—K is not sufficiently large. However, since
the off-diagonal Hg14(1,b+ 1 — (K + a)) = 0 always hold during
the Gaussian eliminations, we can still guarantee Hg4(b + 1 —
(K+a),b+1—- (K+a)) > 0. Finally, the elimination will end up
with Hp(1,1) > 0.

In general, the above iteration process proves the positivity of
each first entry of the eliminated matrices, indicating the positive
semi-definiteness of the Hessian matrix and the convexity of our
problem IP’;( O

5.3 Model solving algorithm
The process above presents for a P-Graph G;,Vj € P, the existence
of the PCS for some Ks and the convexity of IP’;( for any K. Thus, we

propose to iteratively solve ]P% and evaluate if the solution is a PCS.
Since the real-world data is not noiseless, we employ a threshold
€1 for the evaluation. Then, the algorithm is shown in Algorithm 2
for the PCS for P-Graph Layer and N-Approximation Layer.

Algorithm 2: Training Algorithm for {]Pf'(}, VieP

Function Train—P;;
Input: Measurements {x"}ﬁl\]=1 and {y”}nN=1 from
observed nodes, threshold €1, and P;
K=1;
forall j=1to |P| do
while L{( > €1 do
Use gradient descent method to solve Pé;
Evaluate L{O i.e., the loss of IP’;(
K=K+1;
end
end
Obtain the PCS as the optimal solutions of the above
optimizations;
Output: A PCS for weights in the P-Graph Layer and
outputs of the N-Approximation Layer;

end

6 EXPERIMENT
6.1 Dataset Description

In our experiment, we introduce power systems, mass-damper
systems, hydraulic networks, and the graph of large systems from
the University of Florida (UF) sparse matrix collection [5] as the
underlying physical system for model training and comparison.
Specifically, the dataset descriptions are as follows.

IEEE Power Systems and PJM Load Data. IEEE provides stan-
dard power system models, including the grid topology, parameters,

and generation models, etc., for accurate simulations on the power
domain. The model files and the simulation platform, MATPOWER
[19], are based on MATLAB. In this experiment, we incorporate
IEEE 19-, 30-, 57-, 69-, and 85-systems for testing. To conduct the
simulation, the load files are required as the input to the systems.
Thus, we introduce real-world power consumptions in PJM Inter-
connection LLC (PJM) data [21]. The load files contain hourly power
consumption in 2017 for the PJM RTO regions. With the above data,
MATPOWER produces the system states of voltage angle ¢ and
system input active power flow p, indicating the linearized power
flow equations p = L4¢, a special case for the general physical sys-
tem formulation in (1), where L4 is the weighted Laplacian matrix
(i.e., the susceptance matrix) of the electric system.
Mass-damper system data. The mass-damper systems can be
represented with the physical equation § = ~DRDT M~1q, where
q is the vector of momenta of the masses, D is the incidence matrix
of the graph, R is the diagonal matrix of the damping coefficients
of the damper attached to the edges, and M is the diagonal mass
matrix [28]. Using MATLAB, we simulate the dynamic process of
the mass-damper system with 10 buses and obtain q and q.

UF sparse matrix-based system. The UF sparse matrix collec-
tion provides a lot of large sparse matrix-based networks. In this
experiment, we utilize the 2003-bus system to test.

Therefore, we have three different systems, providing testing on
10-, 19-, 57-, 69-, 85-, and 2003-node networks. To consider different
system observability, we change the ratio of the number of the
observed nodes to that of the total nodes y € {0.1,---,0.9}.

6.2 Benchmark Models

To fully investigate the strong interpretability and generalizability
of our PCNN, we compare our proposed PCNN with other advanced
DNN models. Specifically, we have the following benchmark models
for comparison.

e Resnet [8]. Deep Residual Network creates a shortcut con-
nection to pass the deep information directly to the shal-
low layers. Such a skip-connection effect not only helps to
avoid gradient vanishing issues in the training phase, but
also contributes to the model generalization ability since the
low-complexity features are connected to the output, thus
decreasing the model complexity [17].

e SINDYs [2, 3]. The sparse identification of nonlinear dy-
namics (SINDy) utilizes the sparse regression technique to
recover the parameters of the physical systems, while the
base of the regression can be selected via DNNs. In our ex-
periments, we consider systems with a fixed symbolic base
(i.e., we know H(s) in equation (1)) is fixed due to the prior
knowledge, and we eliminate the DNN part for simplicity.

¢ DNNs with Dropout Method [26]. Dropout method ran-
domly disables neurons in training, thus preventing the neu-
rons from over co-adapting and increasing the model gener-
alizability.

e DeepLIFT [18, 24]. DeepLIFT is an advanced model to select
important features of a well-trained DNN via calculating the
importance signals from output to the input features. In this
experiment, we calculate the SHAP (SHapley Additive exPla-
nations) values of features in the trained DNN via DeepLIFT
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[18]. Thus, we can select the important features and evaluate
the model interpretability.

6.3 Model Evaluations

We propose the following metrics to evaluate the generalizability
and interpretability of PCNN and benchmark models.
Generalizability. We conduct 5-fold cross-validation to evaluate
the model generalizability. Mean square error (MSE) of the valida-
tion set is used to evaluate the model performance of predicting
Yo-

Parameter estimation. We utilize all the data to estimate the
system parameters. To evaluate the model performance, we consider
the following two aspects: (1) for lines among node set O, both
the line weight estimation error and the connectivity should be
evaluated. Since the connectivity can be converted to the sparsity
of the Laplacian matrix, we utilize the so-called normalized Total
Vector Error (nTVE) [15] to evaluate the difference between the
estimated I and the true Laplacian matrix L:

IIL - Llj2

nTVE =100 X ———=
[[L]]2

(10)

(2) for lines between O to N, the connecivity is known so we use
percent difference (PE) to evaluate the error between the estimated
w and the true weight w for one line: PE = 100 X Wow
Interpretability. The model interpretability determines the critical
input features with respect to each output channel. For Resnet
and DNNs with Dropout method, we utilize DeepLIFT [18] for
important feature selection. For our proposed PCNN, the sparsity
of O illustrates the estimated topology within O. Thus, for each
i € O, the inputs in the neighboring nodes in the estimated unit
graph are the important features. For the SINDy method, we denote
input features with non-zero coefficients for one output feature as
its important features.

In general, we denote the indices of the estimated important
features as Import(i) for the i output and the ground true indices
are Neigh(i) U {i}. Thus, we introduce the measure h(%):

IXNY]
Xuy’

X 100%, J(X,Y) =

b= Z ](Import(j),lzf)eigh(j) v
jeo 0]
where J(+,-) is the so-called Jaccard index.

6.4 Results for Model Generalizability

In our experiments, we test different systems with changing y
to comprehensively compare the model generalizability among
different methods. 5-fold cross-validation is conducted. The results
are shown in Fig. 3a to 3g. We find that for each trial, our PCNN
always achieves the lowest MSE value in the validation dataset.
Further, the MSE of our PCNN decreases as y increases, while for
other methods, the MSE increases.

The lowest generalization error comes from (1) the well-extracted
local governing equations that are generalizable to different datasets
and (2) the physical constraints that enable the physical variables
to be within the physical range. Secondly, the increasing of sensor
penetration (y) leads to more physical parameters to be captured,
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Figure 3: The MSE value for different testing systems.

thus decreasing the MSE further. However, for other methods with-
out physical consistency, MSE will increase due to the growth of
the output dimensionality.

6.5 Results for Network Parameter Estimation

In this subsection, we show the second function of our PCNN,
i.e., estimating the edge weights to construct the underlying phys-
ical equations. For the line parameters and connectivity among
observed nodes O, we calculate the nTVE(%) for evaluation. The
comparison is between our PCNN and the SINDy since other DNN’s
can’t estimate the physical equation parameters.

The result is shown in Table 1. Generally, our PCNN far outper-
forms the SINDy method for all systems when y < 0.5. Empirically,
the PCNN’s nTVE is around 10% ~ 25% of the SINDy’s nTVE. When
y increases, the performance of the PCNN and SINDy will become
closer. However, PCNN’s nTVE still only covers around 40% ~ 60%
of SINDy’s nTVE. The reasons are as follows. (1) PCNN employs
a testing criterion in equation (4) to decompose O into F and P.
Then, the initialization rule of the PCNN can enable the shared
weights between # and P to always be accurately estimated in the
pre-training of the F-Graph. For the SINDy method, however, the
shared weight estimation incurs errors due to hidden quantities.
(2) when y < 0.5, the hidden nodes are dominant so that PCNN
performs much better than SINDy. (3) when y is increasing, the
number of hidden nodes decreases so that the inaccurate estimation
of the shared weights in SINDy decreases, forcing PCNN and SINDy
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Table 1: nTVE(%) error of parameter estimation for PCNN and SINDy methods.

10-bus 19-bus 30-bus

57-bus

69-bus 85-bus 2003-bus

y PCNN SINDy PCNN SINDy PCNN SINDy PCNN SINDy PCNN SINDy PCNN SINDy PCNN SINDy

°

0.1 69 381 4.5 23 32 89 73 169 65 648 31 139 89 399
0.2 51 317 3.6 21 33 83 65 198 68 723 34 121 74 421
0.3 56 265 6.3 24 30 81 78 156 68 614 24 118 61 406
0.4 43 198 3.3 18 27 78 71 153 54 598 19 123 59 385
0.5 45 118 2.9 15 27 72 72 145 79 470 16 121 78 335
0.6 62 97 4.4 12 23 61 64 132 76 423 13 104 66 299
0.7 41 65 0.95 7.3 12 55 52 122 69 327 9.8 96 64 301
0.8 37 72 0.89 5.1 8.8 29 47 98 43 211 10 93 59 276
0.9 18 32 0.73 4.8 9.5 21 34 94 22 108 10 71 57 283
to have closer performance. Secondly, we observe in Table 1 that 1201 —=5 = wn st lne 13
for 19-bus system, PCNN and SINDy have relatively small nTVE 100 ° . _:c”d” o -
compared to other systems. This is because 19-bus system is radial = —o b o o o o °
so that a hidden node will only cause errors within one line for line § 80l e
parameter estimation. 2 [ PE keeps decreasing when ratio decreases |
Finally, we study the weight estimation between nodes in  and é 60
N Essentially, our PCNN gives an equivalent estimation within the 5 ° [High PE when ratio > 60% ]
physical ranges to create an equivalent network to the true network. ? oo
This equivalence is not the same as the ground truth. Thus, the error IRLEAIIT °
calculation for lines between £ and N is generally meaningless. 8 2" [oychance PE < 20%
However, intuitively, the equivalent network will be closer and Ot ° °
0 10 20 30 40 50 60 70 80 90

closer to the true network when the prior physical constraints are
smaller and smaller in the PCNN model. The above trend is worth
studying to numerically illustrate the PCNN’s improvement when
knowing more knowledge of the physical constraints.

Specifically, we utilize 19-bus system as an example. As is shown
in Fig. 4, we target at the estimation of wi and wy. The true values
are 26.42 and 10.89, respectively. Then, we gradually decrease the
physical ranges of w1 and wy from [0, 100] and [0, 100] to [25,30]
and [10, 15] and calculate the PE(%) errors.

The result is shown in Fig. 4. In the x-axis, we set the base area to
be Sp = 100 and use the ratio of % to represent the level of physical
constraints for a constraint area S. In the y-axis, we plot the PE(%)
error for wy (green square) and wy (blue circle). We find that when
the ratio is decreasing, the error will decrease. More specifically,
When the ratio is larger than 60%, the errors in most of the testing
scenarios are higher than 40%. When the ratio is less than 10%, the
errors are less than 21%. This region can be a good indicator of how
much we need to know about the prior to enabling the estimation
to approach the ground truth. Finally, we find that there are points
when the ratio is high while the error is small. They are caused by
chance when we do the optimization in equation (7) and randomly
choose the initial points of w; and wy that are close to the true
points.

6.6 Results for Model Interpretability
To test the model interpretability, we set y = 0.5 and calculate the

measure h in (6.3) under different scenarios, as is shown in Table 2.

Our PCNN can always obtain 100% interpretable features, which
show that the estimated topology within O is correct. The perfect

Ratio(%) of the constraint region

Figure 4: The PE% of the line weight estimation with respect
to different physical constraint areas.

Table 2: The h(%) value for different methods in different
systems.

PCNN SINDy ResNeT Droprout
10-BUS 100 100 74.0 524
19-BUS 100 93.2 69.0 36.7
30-BUS 100 92.9 71.9 31.3
57-BUS 100 85.3 57.4 12.8
85-BUS 100 85.7 73.8 23.8
2003-BUS 100 75.4 73.8 23.8

performance essentially comes from the sparsity control when
pre-training the F-Graph Layer. For SINDy method, the sparsity
control also exists, thus yielding high h values. However, the hidden
quantities bring some incorrect connectivity and prevent the h to
be 100%. For the other two DNNs, i will decrease about 30% ~ 80%
due to the complex correlations in the NN model.

6.7 Results of Dynamic Simulation

We further demonstrate the quality of the estimated virtual grid
from PCNN via implementing the dynamic simulation for the
ground-truth grid and the virtual grid. Specifically, we utilize the
10-bus mass-damper system as an example. The ground-truth grid
and the virtual grid are shown in Fig. 5. We set the initial velocity
x0 € R1%¥1 for the ground-truth grid. Then, we input the data of x?)
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Figure 5: The dynamic simulation using the ground-truth
grid and the virtual grid from PCNN.

to the well-trained PCNN and output x(/)V in the N-Approximation
Layer, where O = {1,2,3} and N = {nj,ny} in this experiment.
Subsequently, we can conduct the dynamic simulation for the two
grids, where the virtual grid’s parameters are learned from the
PCNN. The result is shown in Fig. 5. We find that the simulation
curve has an overall small difference and the ratio of the maximum
velocity difference to the base velocity (1m/s) is 4.61%.

7 CONCLUSION

We propose a Physics-Consistent deep Neural Network (PCNN)
to discover physical equations for the Laplacian systems under in-
complete observability. PCNN can be shrunk to physical equations
automatically for fully-observable areas, reduce hidden nodes to
virtual nodes to create a reduced grid, and maintain the physical
ranges and topology of the reduced grid with the deep-shallow
PCNN structure and physical constraints. Finally, we provide a
theoretical guarantee to find a good initial guess of the PCNN to
save the searching time. Extensive experiments are conducted in
the power, mass-damper, and UF sparse matrix systems.
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