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ABSTRACT
Deep neural networks (DNNs) have been extensively applied to

various fields, including physical-system monitoring and control.

However, the requirement of a high confidence level in physical

systems made system operators hard to trust black-box type DNNs.

For example, while DNN can perform well at both training data and

testing data, but when the physical system changes its operation

points at a completely different range, never appeared in the history

records, DNN can fail. To open the black box as much as possible,

we propose a Physics-Consistent Neural Network (PCNN) for phys-

ical systems with the following properties: (1) PCNN can be shrunk

to physical equations for sub-areas with full observability, (2) PCNN

reduces unobservable areas into some virtual nodes, leading to a

reduced network. Thus, for such a network, PCNN can also rep-

resent its underlying physical equation via a specifically designed

deep-shallow hierarchy, and (3) PCNN is theoretically proved that

the shallow NN in the PCNN is convex with respect to physical

variables, leading to a set of convex optimizations to seek for the

physics-consistent initial guess for the PCNN. We also develop

a physical rule-based approach for initial guesses, significantly

shortening the searching time for large systems. Comprehensive

experiments on diversified systems are implemented to illustrate

the outstanding performance of our PCNN.
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1 INTRODUCTION
With the era of the Internet of Things (IoT) coming to physical

systems, there is an increasing need to extend monitoring and con-

trol to system edges, where traditional monitoring and control are

unavailable. For example, power engineers nowadays try to provide

a similar level of monitoring in its distribution grid when compared

to the legendary transmission system with limited measurements.

Under this situation, traditional system modeling are unavailable

in many physical system edges, and machine learning (ML) tools

are recognized as a viable way to conduct cost-efficient inferences

for system operations in resource-limited areas, the topology esti-

mation of power distribution systems [15, 32].

The mainstream of the ML methods for physical systems utilizes

the universal approximation capacity in the deep neural networks

(DNNs) to learn the data pattern [6]. However, for physical systems

with an evolving operating point, this black box can’t guarantee

the model generalizability. To tackle this issue, sparse regression

and symbolic regression [2, 3, 27] are introduced to recover the

unknown physical equations, thus providing full model general-

izability. In general, their methods utilize DNNs to create a base

of physical symbols and introduce sparse regression to estimate

the coefficients of these symbols. However, these methods usually

assume the full observability of the system, i.e., the meters of the

system are placed at every node. This assumption is often unre-

alistic due to the sensor cost. Considering the incomplete system

observability, the above regression tools will fail since the hidden

quantities with randomness create bias terms for a specific data set.

Thus, in this paper, we try to provide answers to the following

question: can we maximize the recovery of physical system infor-

mation while deploying the universal approximation capability in

other unrecoverable areas? The problem is, in general, hard for ar-

bitrary systems with even unknown bases for the system equation.

However, for a large set of systems with clear physical quanti-

ties, the bases are known. For example, networks constrained via

conservation laws [28] to deliver system flows like power (power

systems), water (hydraulic networks), and kinetic energy (mass-

damper systems). The conservation law further guarantees that

the system equation parameters can be represented as a Lapla-

cian matrix. These Laplacian systems have wide applications on

resource delivery, finding consensus protocols of multi-agent net-

works [22], obtaining solutions of generalized flow problem [4],

and characterizing systems’ coupled oscillator motions [7].

To recover the physical equations of the incompletely-observable

Laplacian systems and maximize the recovery of the physics, the

key is to decompose a DNN model to the linear part with locally

full observability and nonlinear part with high capacity to han-

dle the randomness from hidden quantities. Thus, we propose a

Physics-Consistent Neural Network (PCNN) with a deep-shallow

structure to obtain maximal physical consistency. Firstly, PCNN can

be shrunk to physical equations for sub-areas with full observability.

Under this scenario, only the shallow NN in the PCNN activates.

Secondly, PCNN creates some virtual nodes to represent an unob-

servable area. The deep NN in the PCNN activates in this situation

to approximate the variables of the virtual nodes. Then, physical

quantities related to the virtual nodes are constrained into a safe

range and the local topology of the virtual nodes is guaranteed via

controlling the sparsity of PCNN. In general, PCNN can therefore

represent the physical equation of the reduced network. Finally,

we theoretically prove that the shallow NN in the PCNN is convex
with respect to physical variables, leading to a convex-optimization-

based pre-training for the PCNN to provide the initial guess and

save the training time. We have the following contributions.

• We introduce the problem of maximizing physical recovery

for interpretation while minimizing approximating error in

the non-recovery regions.

• We find the solution of PCNN to the problem above and

provide theoretical guarantees for the PCNN for a physics-

consistent solution.

• For speeding up the computation, the physical nodal cat-

egories are used to construct small-scaled but convexified

problems to initialize PCNN.
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• We conduct extensive experiments on diversified physical

systems against many state-of-the-art models to demonstrate

the superiority of our proposed methods.

2 RELATEDWORK
2.1 Provide Interpretability of DNNs
Many kinds of research elaborate on how we can trust the DNNs

via selecting important and explainable features (e.g., the input

neurons) so that human users understand the selected features and

decide if the trained DNN is trustworthy. These approaches can

be categorized into the following groups. (1) The forward meth-

ods make perturbation of the specific input instance to evaluate

the impact on the output. Such perturbation methods include oc-

clusion [33], mutations [34], and input batch marginalization [35].

However, these methods are computationally expensive due to the

large space of input perturbations. (2) The backward approaches

are therefore proposed to only calculate the importance signal from

an output neuron to the previous neurons. The importance signals

typically include the gradient [25], layer-wise relevance [1], and

difference-from-reference [24]. (3) Finally, an optimization-based

method is also proposed to form an explanation model [18] with

interpretable features to locally approximate the trained model. The

feature weight represents its contributions for the user to evaluate.

These methods in general lack the theoretical guarantee to interpret

the physical system connectivity.

2.2 Improve the Generalizability of DNNs
To increase DNNs’ generalizability and prevent overfitting, there

are extensive methods like adding regularization terms, data aug-

mentation, and early stopping. For model regularization, there are

various penalty terms being introduced, e.g., Jacobian regulariza-

tion [10], Kullback–Leibler divergence [31], weight matrix trace

norm [13], and methods like dropout [26]. Another simple and use-

ful approach is to conduct data augmentation [20] to increase the

data size for training via flipping, rotation, scaling, cropping, trans-

lation, etc. Finally, implementing early stopping when training the

DNN helps to avoid over-training and obtain a generalizable model

[16]. Though these methods reduce the model complexity, they can

hardly tackle the evolving physical systems with a continuously-

changing operating point.

2.3 Enhance DNNs with Physics
Physical constraints in physical systems can improve the DNN

performance. These works are typically categorized [30] into (1)

modifying loss functions, (2) quantifying initialization point, (3)

designing the DNN architecture, (4)modeling residual of traditional

physical equations, and (5) implementing a hybrid physics-ML

model. Specifically, adding a physics-based loss function essentially

constrains some variables or parameters into a physical space, e.g.,

the law of energy conservation restricts the heat energy fluxes in

the general lake model [11, 12]. Therefore, the parameter searching

of a DNN will be more efficient, and the solution is reliable with the

physical consistency. Introducing a physical initialization point can

also easily reducing the training time. The obtaining the initializa-

tion usually following in a pre-training scheme with simulated data,

e.g., the pre-training of a driving algorithm in a simulator [23].

Modeling the physical equation residuals or implementing hy-

brid models with both physical equations and ML models can be

seen as the manipulation of physical equations and ML models

like series connection [14] or parallel connection [29]. The physics-

guided architecture design handles the issue via designing a struc-

ture that has interpretable neurons or connections into physical

variables or connections. For example, [9] models the neuron con-

nections as the line connections in power systems. Even though the

above methods usually can’t recover the complete physical equa-

tions. For physical equation recovery, the sparse regression and

symbolic regression are usually introduced [2, 3, 27]. They typically

utilize a DNNmodel to create bases for a physical equation. Further,

a sparse linear regression is added to the DNN to select bases and

estimate the coefficients of the bases.

3 PROBLEM FORMULATION
Many physical networks are graphs naturally, which can be mod-

eled as a directed weighted graph G = {V, E} with V to be the

vertex set and E ⊆ V ×V to be the edge set. Based on the conser-

vation law and system balance equations, the underlying physical

equations of many physical systems can be formulated as [28]:

¤𝒔 = −𝑳 𝜕𝐻
𝜕𝒔

(𝒔), (1)

where 𝒔 represents the storage at the vertices, and ¤𝒔 (𝑡) =
𝑑𝒔 (𝑡 )
𝑑𝑡

represents the rate of the storage at the vertices, i.e., the net injected

flows. 𝑳 is the weighted Laplacian matrix of the graph G for the

system physical parameters, and 𝐻 (𝒔) represents the total stored
energy at vertices. For example, in a hydraulic network, 𝒔 can be the
water volumes at each reservoir and𝐻 (𝒔) are the potential energies
of the water.

Equation (1) is the foundation for all physical system analysis

in this paper. For example, a subclass of equation (1), the power

flow equations in the power systems, is the basis for power sys-

tem planning, economic dispatch, stability analysis, and protection.

Unfortunately, equation (1) is usually unknown for large systems,

including both the system topology and the edge weights in the

𝑳 matrix. This inspires the parameter estimation studies for the 𝑳
matrix using sensor data in the system.

However, limited sensors in the system pose challenges for the

estimation. Therefore, we denoteV = {O∪H}, whereO represents

the observable node set andH represents the hidden node set. The

measurements of 𝒔, ¤𝒔, and 𝜕𝐻
𝜕𝒔 (𝒔) can be metered or calculated

for observable nodes. Formally, to represent these quantities, we

denote 𝒚 ∈ Y and 𝒙 ∈ X as the random variables on the left hand

side and the right hand side of (1), respectively. Y ⊂ R𝑛×|V |
and

X ⊂ R𝑛×|V |
are the measurement spaces of 𝒚 and 𝒙 , respectively,

and |V| is the cardinality of V . Then, we utilize the subscripts H
and O as partitions of the variables/spaces and correspondingly

denote 𝒚H ∈ YH ⊂ R𝑛×|H |
, 𝒚O ∈ YO ⊂ R𝑛×|O |

, 𝒙H ∈ XH ⊂
R𝑛×|H |

, and 𝒙O ∈ XO ⊂ R𝑛×|H |
. Based on the above definitions,

we convert equation (1) into:[
𝒚H
𝒚O

]
=

[
𝑳HH 𝑳HO
𝑳OH 𝑳OO

]
·
[
𝒙H
𝒙O

]
, (2)
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where we denote {𝒙𝑛O}
𝑁
𝑛=1

⊂ XO and {𝒚𝑛O}
𝑁
𝑛=1

⊂ YO as the 𝑁

samples obtained from meters. Thus, we focus on learning the

mapping from 𝒙O to 𝒚O with the goal of finding a good mapping

and recovering the parameters and the connectivity within nodes

in O , i.e., 𝑳OO for physical consistency. With the definition above,

we have the following problem formulation for this paper.

• Problem: a data-driven physical consistent estimation that

maximizes the physical recovery and approximation in the

unrecoverable areas.

• Input: measurements {𝒙𝑛O}
𝑁
𝑛=1

and {𝒚𝑛O}
𝑁
𝑛=1

from observed

nodes.

• Output: an accurate mapping 𝑓𝜽 such that 𝒚O = 𝑓𝜽 (𝒙O).
Further, partial of the parameters 𝜽𝑝 ⊂ 𝜽 should accurately

approximate the physical parameters, i.e., 𝜽𝑝 ≈ 𝑳O,O for

physical consistence.

This is a non-trivial problem since (1) the hidden variables 𝒙H
cause the systematic bias for the model, deteriorating the accurate

topology andweight recoverywithin observed nodes, (2) there lacks

theoretical guarantee of the approximation 𝜽𝑝 ≈ 𝑳O,O , and (3) even
when we have a good approximation, the model generalizability is

hard to guarantee due to the randomness in 𝒙H .

4 PROPOSED MODEL
The existence of the hidden nodes makes it difficult to directly iden-

tify the topology and the edge weights within observed nodes. Thus,

we propose to separate the whole graph G into |O| unit-graphs
{G𝑖 = {V𝑖 , E𝑖 }} |O |

𝑖=1
with the graph center to be one observable

node and radius to be 1, where we consider the distance between

every two connected vertexes to be 1. We show that each unit graph

can be approximated via an output channel of our PCNN model

and provide the approximation guarantee in Section 5.

4.1 Graph Decomposition
In this subsection, we show different types of unit graphs for further

constructing our PCNN model architecture.

Fully-observable unit-graph (F-Graph): This type of unit

graph contains an observed node with all its 1-distance neighboring

nodes observable. We denote the set of the central nodes in these

unit graphs as F . Therefore, any nodes 𝑖 ∈ F with all of its 1-

distance neighboring nodes, 𝑁𝑒𝑖𝑔ℎ(𝑖), construct a fully-observable
unit graph (F-Graph) G𝑖 = {𝑖 ∪ 𝑁𝑒𝑖𝑔ℎ(𝑖), E𝑖 }. Then, the node 𝑖 is
isloated fromH . Based on equation (2), the topology and parame-

ters of this sub graph can be accurately recovered via a linear layer

of a neural network, i.e., a linear regression.

Partially-observable unit-graph (P-Graph): this type of area
includes an observed node with at least one of its 1-distance neigh-

boring nodes hidden. We denote the set of the central node set

of these unit graphs as P. Therefore, any node 𝑗 ∈ P with nodes

in 𝑁𝑒𝑖𝑔ℎ( 𝑗) construct a partially-observable sub graph (P-Graph)

G𝑗 = { 𝑗 ∪ 𝑁𝑒𝑖𝑔ℎ( 𝑗), E 𝑗 }. Clearly, 𝑗 has hidden boundary nodes

H∩𝑁𝑒𝑖𝑔ℎ( 𝑗). Thus, we needmore layers instead of a linear layer to

tackle the randomness from 𝒙H∩𝑁𝑒𝑖𝑔ℎ ( 𝑗) , which requires multiple

deep layers. Since the unknown |H ∩𝑁𝑒𝑖𝑔ℎ( 𝑗) | prevents the PCNN
model construction, we aggregate |H ∩𝑁𝑒𝑖𝑔ℎ( 𝑗) | boundary nodes

into 𝐾 virtual nodes for G𝑖 ,∀𝑖 ∈ P, where 𝐾 is a hyper parameter.

We show how to obtain a doable 𝐾 value in Section 5. For G𝑗 , we

Figure 1: Physical system graph model and unit graph de-
composition.

denote the boundary virtual node set to beN𝑗 = { 𝑗𝑘 }𝐾𝑘=1
. Notably,

this modeling of P-Graph is an important reason why the
proposed approach can be better than other methods.

The graph decomposition inspires a deep-shallow design for the

PCNN, as is shown in the following subsection.

4.2 PCNN Structure: Deep-Shallow Hierarchy
For each unit graph, the center node’s output is the sum of all

neighboring nodes’ flow via the corresponding edge due to the law

of conservation. Thus, the structure of the corresponding center

node output channel is determined based on the unit graph type,

together formulating the PCNN architecture. Specifically, we have

the following designs.

F-Graph Layer: We utilize a linear layer to recover the topology

and parameter of F-Graphs.

𝑓𝐹 (𝒙O) = 𝜽𝐹𝒙O , (3)

where 𝜽𝐹 is the weights for the F-Graph layer. F-Graph layer needs

to be pre-trained while other layers are frozen to identify the node

set F . The pre-training can also include a Lasso loss term 𝜆 | |𝜽𝐹 | |0 to
guarantee sparsity, where 𝜆 is the hyper parameter for the penalty

and | | · | |𝑝 is the 𝑙 − 𝑝 norm.

After the pre-training, we obtain 𝑓 0

𝐹
(𝒙O) = 𝜽 0

𝐹
𝒙O . ∀𝑖 ∈ O, the

identification criteria is:

1

𝑁

𝑁∑
𝑛=1

| |𝒚𝑛O [𝑖] − 𝑓 0

𝐹
(𝒙𝑛O) [𝑖] | |2 ≤ 𝜖, (4)

where𝒚𝑛O [𝑖] and 𝑓 0

𝐹
(𝒙𝑛O) [𝑖] are the 𝑖

𝑡ℎ
elements in𝒚𝑛O and 𝑓𝐹 (𝒙𝑛O),

respectively. 𝜖 is a hyper parameter. If equation (4) is satisfied, then

𝑖 ∈ F since no hidden quantities contribute to the 𝒚O [𝑖]. Based on

the obtained F and P = O \ F , we have the following sequential

F-Graph initialization rule: (1) ∀𝑖 ∈ F , initialize 𝜽𝐹 [𝑖, :], the
𝑖𝑡ℎ row of 𝜽𝐹 , i.e., as the corresponding trained values 𝜽 0

𝐹
[𝑖, :]. (2)

∀𝑗 ∈ P,∀𝑖 ∈ F , initialize 𝜽𝐹 [ 𝑗, 𝑖] as the trained value 𝜽 0

𝐹
[𝑖, 𝑗]. (3)
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∀𝑗 ∈ P,∀𝑖 ∈ P, initialize 𝜽𝐹 [ 𝑗, 𝑖] as 0 if 𝑖 ≠ 𝑗 and −∑
𝑘≠𝑗 𝜽𝐹 [ 𝑗, 𝑘]

if 𝑖 = 𝑗 .

For rule 2, ∀𝑗 ∈ P,∀𝑖 ∈ F , if 𝑖 𝑗 ∈ E, the approximated 𝜽 0

𝐹
[𝑖, 𝑗]

for channel 𝑖 is an accurate estimation of the true weight of line

𝑖 𝑗 , while the estimation 𝜽 0

𝐹
[ 𝑗, 𝑖] for channel 𝑗 is inaccurate due to

the hidden flows from hidden nodes to node 𝑗 . If 𝑖 𝑗 ∉ E, we have
𝜽 0

𝐹
[𝑖, 𝑗] ≈ 0.

For rule 3, ∀𝑗 ∈ P,∀𝑖 ∈ P, if 𝑗 ≠ 𝑖 , the true weight of line 𝑖 𝑗

can either be 0 when 𝑖 𝑗 ∉ E or not be accurately estimated in the

F-Graph layer. Thus, we initialize 𝜽𝐹 [ 𝑗, 𝑖] to be 0 for both cases and

estimate the weight of line 𝑖 𝑗 in other layers of the PCNN. If 𝑗 = 𝑖 ,

the diagonal elements sum the weights with negative signs of all

lines from 𝑗 to F ∩ 𝑁𝑒𝑖𝑔ℎ( 𝑗) so that all the flows through these

lines are well estimated. The only flows that need to be further

explored lie in the edges to hidden nodes.

N-Approximation Layers: The initialization of F-Graph gives

an accurate approximation of edge weights among nodes in the

F-Graph. For edge weights in the P-Graph G𝑗 , F-Graph initializa-
tion rule 3 can’t deliver an accurate parameter estimation due to

the hidden quantities.

Thus, for G𝑗 , we model the contributions of hidden nodes via 𝐾

virtual nodesN𝑗 as mentioned before. Though the input samples of

the virtual nodes are unknown, we can approximate them using the

observed nodes’ input and a deep neural network (N-Approximation

Layers) 𝑓𝑁 : 𝒙N = 𝑓𝑁 (𝒙O), where N =
⋃ |P |
𝑗=1

N𝑗 represents the

total set of virtual nodes.

P-Graph Layer: For a P-Graph G𝑗 , the flows from nodes F ∩
𝑁𝑒𝑖𝑔ℎ( 𝑗) are identified in the F-Graph Layer. Thus, we only need

to consider the flows from N𝑗 ∪ 𝑁𝑒𝑖𝑔ℎ( 𝑗). Since we know the

measurements from N𝑗 , we build another linear layer (P-Graph

Layer) such that:

𝒚O − 𝑓𝐹 (𝒙O) = 𝑓𝑃 (𝒙N∪O) = 𝜽𝑃𝒙N∪O , (5)

where 𝑓𝐹 (𝒙O) represents the output from the F-Graph Layer, 𝒙N∪O =

[𝒙N ; 𝒙O] is the concatenation of 𝒙N and 𝒙O , and𝜽𝑃 ∈ R |O |×|N∪O |

is the weight matrix of the P-Graph Layer.

Though for any node 𝑗 , P-Graph Layer only models flows from

N𝑗 , the variable at node 𝑗 , 𝒙O [ 𝑗] is still utilized to calculate the

flow from node 𝑗 . Thus, we extend the mapping to the format of

𝑓𝑃 : X |N∪O | → Y |O |
to integrate the layer to the PCNN. We

develop the following sequential P-Graph initialization rule: (1)
∀𝑗 ∈ P,∀𝑘 ∈ N , if 𝑘 ∈ N𝑗 initializes 𝜽𝑃 [ 𝑗, 𝑘] from the optimal

solution of a set of convex optimizations proposed in the next section.
If 𝑘 ∉ N𝑗 , initialize 𝜽𝑃 [ 𝑗, 𝑘] to be 0. (2) ∀𝑗 ∈ P,∀𝑘 ∈ N ,∀𝑖 ∈ O,
if 𝑗 = 𝑖 initialize 𝜽𝑃 [ 𝑗, 𝑖] to be −∑

𝑘∈N 𝜽𝑃 [ 𝑗, 𝑘]. If 𝑗 ≠ 𝑖 , initialize
𝜽𝑃 [ 𝑗, 𝑖] to be 0. (3) ∀𝑖 ∈ F ,∀𝑘 ∈ N ∪ O, initialize 𝜽𝑃 [𝑖, 𝑘] to be 0.

For rule 1, ∀𝑗 ∈ P,∀𝑘 ∈ N , if 𝑘 ∈ N𝑗 , the initial guess repre-

sents a good approximation for the weight of edge 𝑗𝑘 . In our next

section, we propose a set of convex optimizations to obtain the

optimal solution that both minimizes the squared loss and satisfies

physical parameter constraints. We will theoretically prove that

within these constraints, a globally optimal solution with zero loss

for the noiseless data can be achieved due to convexity. If 𝑘 ∉ N𝑗 ,

edge 𝑗𝑘 does not exist so that the initial value of 𝜽𝑃 [ 𝑗, 𝑘] is 0. For

rule 2, ∀𝑗 ∈ P,∀𝑘 ∈ N we sum the weight of 𝑗𝑘 (zero if 𝑗𝑘 does

not exist) with a negative sign. Thus, the flow at line 𝑗𝑘 can be

Figure 2: The design of the PCNN.
calculated. For rule 3, we don’t consider the flows from F so that

the related weights are set as 0s.

The optimization also brings good estimation values for 𝒙N ,

thus inducing the N-Approximation initialization rule: Initial-
ize parameters in 𝑓𝑁 (𝒙O) via pre-training the network of 𝑓𝑁 using

input data from 𝒙O and estimated data of 𝒙N from the proposed

convex optimizations in the next section. In conclusion, we show

our proposed PCNN model in Fig. 2. The formulation is as follows:

𝒚O = 𝑓𝜽 (𝒙O) = 𝑓𝐹 (𝒙O) + 𝑓𝑃 ( [𝑓𝑁 (𝒙O); 𝒙O]) . (6)

Though we have good initial parameters for the PCNN, the

retraining of the PCNN as a whole is still required for an end-to-

end optimization to minimize the total loss. Finally, the complete

algorithm for the pre-training and the retraining process can be

summarized in Algorithm 1.

Algorithm 1: Training Algorithm for PCNN

Function Train-PCNN
Input: Measurements {𝒙𝑛}𝑁

𝑛=1
and {𝒚𝑛}𝑁

𝑛=1
from

observed nodes, threshold 𝜖 ;

Pre-train the F-Graph Layer using Lasso regression;

Obtain F set using criteria (4) with 𝜖 ;

P = O \ F ;

Initialize 𝜽𝐹 using F-Graph initialization rule;
Solve the proposed optimization in equation (7) using

Algorithm 2;

Initialize 𝜽𝑃 using P-Graph initialization rule;
Initialize parameters in the deep layers 𝑓𝑁 (𝒙O) using
N-Approximation initialization rule;
Retrain PCNN using BP algorithm;

Output: PCNN model;

end

5 PHYSICS-CONSISTENT INITIALIZATION
USING CONVEX OPTIMIZATION

The proposed PCNN embraces the deep-shallow structure where

the deep NNs approximate the hidden variable, and the shallow NN

formalizes all the variables into the physical-equation representa-

tion. Specifically, each output channel represents a nodal balance
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equation. In this section, we verify that our initialization rules for

the F-Graph and P-Graph Layers can provide a physics-consistent

solution. We first define this solution as follows.

Definition 5.1 (Physics-consistent solution). A physics-consistent

solution (PCS) for the weights of F-Graph and P-Graph Layers and

the output of the N-Approximation Layer brings 0 loss for the

noiseless data and lie within the physically constrained region.

Based on the definition, the solutions for the F-Graph Layer can

be obtained via a linear Ordinary Least Square (OLS) to optimize

𝜽𝐹 in (3). The solutions for the P-Graph Layer and the output

of the N-Approximation Layer can be obtained via the following

optimization.

Specifically, we treat one P-Graph G𝑗 ,∀𝑗 ∈ P as an example.

Based on our initialization rules, the weight of 𝑗𝑖,∀𝑖 ∈ F ∩𝑁𝑒𝑖𝑔ℎ( 𝑗)
has been quantified in the F-Graph Layer. Thus, we only need to

discuss the weight of 𝑗𝑘,∀𝑘 ∈ N𝑗 ∩𝑁𝑒𝑖𝑔ℎ( 𝑗). We denote𝑤𝑘 as the

weight of line 𝑗𝑘 , and𝑤𝑘 is one element in the parameter matrix

𝜽𝑃 in the P-Graph Layer. Further, we let 𝑝𝑛 := 𝒚𝑛O [ 𝑗] − 𝑓 0

𝐹
(𝒙𝑛O) [ 𝑗]

as the 𝑛𝑡ℎ sample net flow from N𝑗 , where the estimation of the

net flow is guaranteed via accurate parameter estimation of the

F-Graph Layer. Similarly, we let 𝑥𝑛 := 𝒙𝑛O [ 𝑗] as the 𝑛𝑡ℎ input mea-

surement of node 𝑗 . Finally, we denote 𝑥𝑛
𝑘
as the 𝑛𝑡ℎ approximated

nodal measurements for the 𝑘𝑡ℎ virtual node inN𝑗 . Thus, 𝑥
𝑛
𝑘
is a re-

alization of one element in 𝒙𝑛N . Here we eliminate the index 𝑗 in𝑤𝑘 ,

𝑝𝑛 , 𝑥
𝑛
and 𝑥𝑘𝑛 for simplicity. To find a good physics-consistent ini-

tialization, we propose to treat𝑤𝑘 and 𝑥
𝑘
𝑛 as variables and formalize

the following optimization P
𝑗

𝐾
.

min

𝑤𝑘 ,𝑥
𝑛
𝑘

𝐿 =

𝑁∑
𝑛=1

(𝑝𝑛 −
𝐾∑
𝑘=1

𝑤𝑘 (𝑥𝑛 − 𝑥𝑛
𝑘
))2

𝑠 .𝑡 . {𝑤𝑘 , {𝑥𝑛𝑘 }
𝑁
𝑛=1

}𝐾
𝑘=1

∈ C𝐾 ,

(7)

where 𝐿 is the loss and we eliminate the index 𝑗, 𝐾 for simplicity.

C𝐾 represents for 𝐾 virtual nodes, the feasible region under a set

of physical constraints. For example, the tolerance of the nodal

devices requires 𝑥𝑛
𝑘
to have positive minimum andmaximum values.

Further, the capacity of the line 𝑗𝑘 limits the maximum values of

the flow on that line, i.e., |𝑤𝑘 (𝑥𝑛 − 𝑥𝑛𝑘 ) | has an upper bound. It can

be easily proven that under the above constraints, C is convex. We

assume this convexity holds in general for all the proposed physical

constraints.

To prove the PCS can be obtained via the above optimizations,

we prove the existence of the PCSs in the subsequent section.

5.1 Existence of the solution
Proof. F-Graph Layer has the feasible solution of the ground-

truth physical grid parameters.

As for P-Graph Layer and N-Approximation Layer, we denote

the PCS as {𝑤̄𝑘 , {𝑥𝑛𝑘 }
𝑁
𝑛=1

}𝐾
𝑘=1

in equation (7). For node 𝑗 , we assume

there are𝑀 number of true hidden nodes connecting 𝑗 with line 𝑗𝑚

parameter as 𝑏𝑚, 1 ≤ 𝑚 ≤ 𝑀 and true input nodal measurements

as 𝑥𝑛𝑚,∀1 ≤ 𝑛 ≤ 𝑁 for the 𝑛𝑡ℎ sampling time. Since we assume the

PCS produces 0 loss, we have the following equations:

𝐾∑
𝑘=1

𝑤̄𝑘 (𝑥𝑛 − 𝑥𝑛
𝑘
) =

𝑀∑
𝑚=1

𝑏𝑚 (𝑥𝑛 − 𝑥𝑛𝑚),∀1 ≤ 𝑛 ≤ 𝑁

𝑠.𝑡 . {𝑤̄𝑘 , {𝑥𝑛𝑘 }
𝑁
𝑛=1

}𝐾
𝑘=1

∈ C𝐾 .

(8)

It’s obvious that when𝑀 = 𝐾 , {𝑏𝑚, {𝑥𝑛𝑚}𝑁
𝑛=1

}𝑀
𝑚=1

is a PCS. How-

ever, since equation (8) is under-determined, multiple PCSs exist

within C𝐾 , even when 𝐾 ≠ 𝑀 . To find one of these solutions, we

show in the next subsection that the problem P
𝑗

𝐾
is convex under

certain assumptions, and we can iteratively increase 𝐾 and solve

P
𝑗

𝐾
to obtain one PCS. □

5.2 Model Convexity
We have the following proofs for the model convexity for the pre-

training of the F-Graph and P-Graph Layers.

Proof. For F-Graph Layer, the pre-training is an ordinary least

square optimization, which implies convexity.

For P-Graph Layer, the optimization P
𝑗

𝐾
is in (7). Since C𝐾 is

convex, we only need to consider the convexity of the loss function.

Thus, We construct the Hessian matrix of the loss function with

the following elements:

𝜕𝐿

𝜕2𝑤𝑘
=

𝑁∑
𝑛=1

2(𝑥𝑛
𝑘
− 𝑥𝑛)2,

𝜕𝐿

𝜕𝑤𝑘 𝜕𝑤ℎ
=

𝑁∑
𝑛=1

2(𝑥𝑛
ℎ
− 𝑥𝑛) (𝑥𝑛

𝑘
− 𝑥𝑛),

𝜕𝐿

𝜕𝑤𝑘 𝜕𝑥
𝑛
𝑘

= 2(𝑝𝑛 −
𝐾∑
𝑙=1

𝑤𝑙 (𝑥𝑛 − 𝑥𝑛
𝑙
) −𝑤𝑘 (𝑥𝑛 − 𝑥𝑛

𝑘
)), 𝜕𝐿

𝜕2𝑥𝑛
𝑘

= 2𝑤2

𝑘
,

𝜕𝐿

𝜕𝑤𝑘 𝜕𝑥
𝑛
ℎ

= 2(𝑥𝑛
𝑘
− 𝑥𝑛)𝑤ℎ,

𝜕𝐿

𝜕𝑥𝑛
𝑘
𝑥𝑛
ℎ

= 2𝑤𝑘𝑤ℎ,
𝜕𝐿

𝜕𝑥𝑛
𝑘
𝑥𝑚
ℎ

= 0.

We study the positive-definiteness of the Hessianmatrix𝑯 0 with

respect to the variable vector [𝑤1, · · · ,𝑤𝐾 , 𝑥1

1
, 𝑥1

2
· · · , 𝑥1

𝐾
, 𝑥2

1
, · · · , 𝑥𝑁

𝐾
]𝑇 .

It’s clear that 𝑯 0 [1 : 𝐾, 1 : 𝐾] is positive semi-definite, since this

Hessian matrix 𝑯 0 [1 : 𝐾, 1 : 𝐾] represents a linear least square loss.
On the other hand, if we conduct a Gaussian elimination process

to iteratively prove the positive semi-definiteness, we need to itera-

tively prove the first entry of each eliminated matrix is positive. Due

to the positive semi-definiteness of 𝑯 0 [1 : 𝐾, 1 : 𝐾], it’s obvious
that during the first 𝐾 − 1 eliminations, all the first entries of the

eliminated matrices are positive, i.e., 𝑯 1 (1, 1), · · · ,𝑯𝐾−1 (1, 1) > 0.

Thus, we focus on the impacts of eliminations on diagonal entries

after the previous 𝐾 numbers.

Specifically, for the 𝑖𝑡ℎ Gaussian elimination, we can evaluate

the diagonal element of the eliminated matrix as:

𝑯 𝑖 (𝑙, ℎ) = 𝑯 𝑖−1 (𝑙 + 1, ℎ + 1) −
(𝑯 𝑖−1 (1, ℎ + 1)

)
(𝑯 𝑖−1 (1, 𝑙 + 1)

)
𝑯 𝑖−1 (1, 1)

,

(9)

where 1 ≤ 𝑙 ≤ (𝑁 + 1)𝐾 − 𝑖 .
If we assume 𝑁 is sufficiently large, H0 (𝑘, 𝑘) =

∑𝑁
𝑛=1

2(𝑥𝑛
𝑘
−

𝑥𝑛)2,∀1 ≤ 𝑘 ≤ 𝐾 . The non-zero flow of line 𝑗𝑘 (recall 𝑗 is the index

of the center node of G𝑗 ) implies 𝑥𝑛
𝑘
− 𝑥𝑛 ≠ 0. Namely, H0 (𝑘, 𝑘)

is a sufficiently large positive number. More specifically, equation

(5.2) implies that ∀𝑏 ≥ 𝐾,𝑯 0 (1, 1 + 𝑏) ≪ 𝑯 0 (1, 1). Therefore,
the elimination process in equation (9) indicates that 𝑯 1 (𝑏, 𝑏) > 0.

However, we need to consider the values of𝑯 1 (1, 𝑏) and𝑯 1 (1, 1) to
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continue the iteration. Due to the triangle inequality, we know that

𝑯 1 (1, 1) > 0 given 𝑥𝑛
1
≠ 𝑥𝑛

2
for any 1 ≤ 𝑛 ≤ 𝑁 . If 𝑁 is sufficiently

large, we can claim that 𝑯 1 (1, 1) has a sufficiently large positive

accumulation value, compared to a fixed value of 𝑯 1 (1, 𝑏). Thus,
we have 𝑯 1 (1, 1) ≫ 𝑯 1 (1, 𝑏). Repeating the above eliminations for

𝐾 times and we have 𝑯𝐾 (𝑏 + 1 − 𝐾,𝑏 + 1 − 𝐾) > 0.

Then, for the rest of 𝑏 − 𝐾 eliminations, the diagonal element

𝑯𝐾+𝑎 (1, 1),∀1 ≤ 𝑎 ≤ 𝑏 −𝐾 is not sufficiently large. However, since

the off-diagonal 𝑯𝐾+𝑎 (1, 𝑏 + 1 − (𝐾 + 𝑎)) = 0 always hold during

the Gaussian eliminations, we can still guarantee 𝑯𝐾+𝑎 (𝑏 + 1 −
(𝐾 + 𝑎), 𝑏 + 1 − (𝐾 + 𝑎)) > 0. Finally, the elimination will end up

with 𝑯𝑏 (1, 1) > 0.

In general, the above iteration process proves the positivity of

each first entry of the eliminated matrices, indicating the positive

semi-definiteness of the Hessian matrix and the convexity of our

problem P
𝑗

𝐾
. □

5.3 Model solving algorithm
The process above presents for a P-Graph𝐺 𝑗 ,∀𝑗 ∈ P, the existence

of the PCS for some𝐾s and the convexity of P
𝑗

𝐾
for any𝐾 . Thus, we

propose to iteratively solve P
𝑗

𝐾
and evaluate if the solution is a PCS.

Since the real-world data is not noiseless, we employ a threshold

𝜖1 for the evaluation. Then, the algorithm is shown in Algorithm 2

for the PCS for P-Graph Layer and N-Approximation Layer.

Algorithm 2: Training Algorithm for {P𝑗
𝐾
},∀𝑗 ∈ P

Function Train-P𝑗
𝐾

Input: Measurements {𝒙𝑛}𝑁
𝑛=1

and {𝒚𝑛}𝑁
𝑛=1

from

observed nodes, threshold 𝜖1, and P;

𝐾 = 1;

forall j=1 to |P | do
while 𝐿 𝑗

𝐾
> 𝜖1 do

Use gradient descent method to solve P
𝑗

𝐾
;

Evaluate 𝐿
𝑗

𝐾
, i.e., the loss of P

𝑗

𝐾
;

𝐾 = 𝐾 + 1;

end
end
Obtain the PCS as the optimal solutions of the above

optimizations;

Output: A PCS for weights in the P-Graph Layer and

outputs of the N-Approximation Layer;

end

6 EXPERIMENT
6.1 Dataset Description
In our experiment, we introduce power systems, mass-damper

systems, hydraulic networks, and the graph of large systems from

the University of Florida (UF) sparse matrix collection [5] as the

underlying physical system for model training and comparison.

Specifically, the dataset descriptions are as follows.

IEEE Power Systems and PJM Load Data. IEEE provides stan-

dard power system models, including the grid topology, parameters,

and generation models, etc., for accurate simulations on the power

domain. The model files and the simulation platform, MATPOWER

[19], are based on MATLAB. In this experiment, we incorporate

IEEE 19-, 30-, 57-, 69-, and 85-systems for testing. To conduct the

simulation, the load files are required as the input to the systems.

Thus, we introduce real-world power consumptions in PJM Inter-

connection LLC (PJM) data [21]. The load files contain hourly power

consumption in 2017 for the PJM RTO regions. With the above data,

MATPOWER produces the system states of voltage angle 𝝓 and

system input active power flow 𝒑, indicating the linearized power

flow equations 𝒑 = 𝑳𝐴𝝓, a special case for the general physical sys-
tem formulation in (1), where 𝑳𝐴 is the weighted Laplacian matrix

(i.e., the susceptance matrix) of the electric system.

Mass-damper system data. The mass-damper systems can be

represented with the physical equation ¤𝒒 = −𝑫𝑹𝑫⊤𝑴−1𝒒, where
𝒒 is the vector of momenta of the masses, 𝑫 is the incidence matrix

of the graph, 𝑹 is the diagonal matrix of the damping coefficients

of the damper attached to the edges, and 𝑴 is the diagonal mass

matrix [28]. Using MATLAB, we simulate the dynamic process of

the mass-damper system with 10 buses and obtain 𝒒 and ¤𝒒.
UF sparse matrix-based system. The UF sparse matrix collec-

tion provides a lot of large sparse matrix-based networks. In this

experiment, we utilize the 2003-bus system to test.

Therefore, we have three different systems, providing testing on

10-, 19-, 57-, 69-, 85-, and 2003-node networks. To consider different

system observability, we change the ratio of the number of the

observed nodes to that of the total nodes 𝛾 ∈ {0.1, · · · , 0.9}.

6.2 Benchmark Models
To fully investigate the strong interpretability and generalizability

of our PCNN, we compare our proposed PCNNwith other advanced

DNNmodels. Specifically, we have the following benchmarkmodels

for comparison.

• Resnet [8]. Deep Residual Network creates a shortcut con-

nection to pass the deep information directly to the shal-

low layers. Such a skip-connection effect not only helps to

avoid gradient vanishing issues in the training phase, but

also contributes to the model generalization ability since the

low-complexity features are connected to the output, thus

decreasing the model complexity [17].

• SINDYs [2, 3]. The sparse identification of nonlinear dy-

namics (SINDy) utilizes the sparse regression technique to

recover the parameters of the physical systems, while the

base of the regression can be selected via DNNs. In our ex-

periments, we consider systems with a fixed symbolic base

(i.e., we know 𝐻 (𝒔) in equation (1)) is fixed due to the prior

knowledge, and we eliminate the DNN part for simplicity.

• DNNs with Dropout Method [26]. Dropout method ran-

domly disables neurons in training, thus preventing the neu-

rons from over co-adapting and increasing the model gener-

alizability.

• DeepLIFT [18, 24]. DeepLIFT is an advanced model to select

important features of a well-trained DNN via calculating the

importance signals from output to the input features. In this

experiment, we calculate the SHAP (SHapley Additive exPla-

nations) values of features in the trained DNN via DeepLIFT
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[18]. Thus, we can select the important features and evaluate

the model interpretability.

6.3 Model Evaluations
We propose the following metrics to evaluate the generalizability

and interpretability of PCNN and benchmark models.

Generalizability. We conduct 5-fold cross-validation to evaluate

the model generalizability. Mean square error (MSE) of the valida-

tion set is used to evaluate the model performance of predicting

𝒚O .
Parameter estimation. We utilize all the data to estimate the

system parameters. To evaluate themodel performance, we consider

the following two aspects: (1) for lines among node set O, both
the line weight estimation error and the connectivity should be

evaluated. Since the connectivity can be converted to the sparsity

of the Laplacian matrix, we utilize the so-called normalized Total

Vector Error (𝑛𝑇𝑉𝐸) [15] to evaluate the difference between the

estimated 𝑳̂ and the true Laplacian matrix 𝑳:

𝑛𝑇𝑉𝐸 = 100 × ||𝑳̂ − 𝑳 | |2
| |𝑳 | |2

. (10)

(2) for lines between O to N , the connecivity is known so we use

percent difference (PE) to evaluate the error between the estimated

𝑤̂ and the true weight𝑤 for one line: 𝑃𝐸 = 100 × 𝑤̂−𝑤
𝑤 .

Interpretability. Themodel interpretability determines the critical

input features with respect to each output channel. For Resnet

and DNNs with Dropout method, we utilize DeepLIFT [18] for

important feature selection. For our proposed PCNN, the sparsity

of 𝜽𝐹 illustrates the estimated topology within O. Thus, for each
𝑖 ∈ O, the inputs in the neighboring nodes in the estimated unit
graph are the important features. For the SINDy method, we denote

input features with non-zero coefficients for one output feature as

its important features.

In general, we denote the indices of the estimated important

features as 𝐼𝑚𝑝𝑜𝑟𝑡 (𝑖) for the 𝑖𝑡ℎ output and the ground true indices

are 𝑁𝑒𝑖𝑔ℎ(𝑖) ∪ {𝑖}. Thus, we introduce the measure ℎ(%):

ℎ =
∑
𝑗 ∈O

𝐽 (𝐼𝑚𝑝𝑜𝑟𝑡 ( 𝑗), 𝑁𝑒𝑖𝑔ℎ( 𝑗) ∪ { 𝑗})
|O| × 100%, 𝐽 (𝑋,𝑌 ) = |𝑋 ∩ 𝑌 |

𝑋 ∪ 𝑌 ,

where 𝐽 (·, ·) is the so-called Jaccard index.

6.4 Results for Model Generalizability
In our experiments, we test different systems with changing 𝛾

to comprehensively compare the model generalizability among

different methods. 5-fold cross-validation is conducted. The results

are shown in Fig. 3a to 3g. We find that for each trial, our PCNN

always achieves the lowest MSE value in the validation dataset.

Further, the𝑀𝑆𝐸 of our PCNN decreases as 𝛾 increases, while for

other methods, the𝑀𝑆𝐸 increases.

The lowest generalization error comes from (1) thewell-extracted

local governing equations that are generalizable to different datasets

and (2) the physical constraints that enable the physical variables

to be within the physical range. Secondly, the increasing of sensor

penetration (𝛾 ) leads to more physical parameters to be captured,

(a) MSE for different methods in the 10-bus system.

(b) MSE for different methods
in the 19-bus system.

(c) MSE for different methods
in the 30-bus system.

(d) MSE for different methods
in the 57-bus system.

(e) MSE for different methods
in the 69-bus system.

(f) MSE for different methods
in the 85-bus system.

(g) MSE for different methods
in the 2003-bus system.

Figure 3: The MSE value for different testing systems.

thus decreasing the MSE further. However, for other methods with-

out physical consistency, MSE will increase due to the growth of

the output dimensionality.

6.5 Results for Network Parameter Estimation
In this subsection, we show the second function of our PCNN,

i.e., estimating the edge weights to construct the underlying phys-

ical equations. For the line parameters and connectivity among

observed nodes O, we calculate the 𝑛𝑇𝑉𝐸 (%) for evaluation. The
comparison is between our PCNN and the SINDy since other DNNs

can’t estimate the physical equation parameters.

The result is shown in Table 1. Generally, our PCNN far outper-

forms the SINDy method for all systems when 𝛾 < 0.5. Empirically,

the PCNN’s𝑛𝑇𝑉𝐸 is around 10% ∼ 25% of the SINDy’s𝑛𝑇𝑉𝐸. When

𝛾 increases, the performance of the PCNN and SINDy will become

closer. However, PCNN’s 𝑛𝑇𝑉𝐸 still only covers around 40% ∼ 60%

of SINDy’s 𝑛𝑇𝑉𝐸. The reasons are as follows. (1) PCNN employs

a testing criterion in equation (4) to decompose O into F and P.

Then, the initialization rule of the PCNN can enable the shared

weights between F and P to always be accurately estimated in the

pre-training of the F-Graph. For the SINDy method, however, the

shared weight estimation incurs errors due to hidden quantities.

(2) when 𝛾 < 0.5, the hidden nodes are dominant so that PCNN

performs much better than SINDy. (3) when 𝛾 is increasing, the

number of hidden nodes decreases so that the inaccurate estimation

of the shared weights in SINDy decreases, forcing PCNN and SINDy
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Table 1: 𝑛𝑇𝑉𝐸 (%) error of parameter estimation for PCNN and SINDy methods.

10-bus 19-bus 30-bus 57-bus 69-bus 85-bus 2003-bus

𝛾 PCNN SINDy PCNN SINDy PCNN SINDy PCNN SINDy PCNN SINDy PCNN SINDy PCNN SINDy

0.1 69 381 4.5 23 32 89 73 169 65 648 31 139 89 399

0.2 51 317 3.6 21 33 83 65 198 68 723 34 121 74 421

0.3 56 265 6.3 24 30 81 78 156 68 614 24 118 61 406

0.4 43 198 3.3 18 27 78 71 153 54 598 19 123 59 385

0.5 45 118 2.9 15 27 72 72 145 79 470 16 121 78 335

0.6 62 97 4.4 12 23 61 64 132 76 423 13 104 66 299

0.7 41 65 0.95 7.3 12 55 52 122 69 327 9.8 96 64 301

0.8 37 72 0.89 5.1 8.8 29 47 98 43 211 10 93 59 276

0.9 18 32 0.73 4.8 9.5 21 34 94 22 108 10 71 57 283

to have closer performance. Secondly, we observe in Table 1 that

for 19-bus system, PCNN and SINDy have relatively small 𝑛𝑇𝑉𝐸

compared to other systems. This is because 19-bus system is radial

so that a hidden node will only cause errors within one line for line

parameter estimation.

Finally, we study the weight estimation between nodes in P and

N . Essentially, our PCNN gives an equivalent estimation within the

physical ranges to create an equivalent network to the true network.

This equivalence is not the same as the ground truth. Thus, the error
calculation for lines between P and N is generally meaningless.

However, intuitively, the equivalent network will be closer and

closer to the true network when the prior physical constraints are

smaller and smaller in the PCNN model. The above trend is worth

studying to numerically illustrate the PCNN’s improvement when

knowing more knowledge of the physical constraints.

Specifically, we utilize 19-bus system as an example. As is shown

in Fig. 4, we target at the estimation of𝑤1 and𝑤2. The true values

are 26.42 and 10.89, respectively. Then, we gradually decrease the

physical ranges of𝑤1 and𝑤2 from [0, 100] and [0, 100] to [25, 30]
and [10, 15] and calculate the 𝑃𝐸 (%) errors.

The result is shown in Fig. 4. In the x-axis, we set the base area to

be 𝑆𝑏 = 100 and use the ratio of
𝑆
𝑆𝑏

to represent the level of physical

constraints for a constraint area 𝑆 . In the y-axis, we plot the 𝑃𝐸 (%)
error for𝑤1 (green square) and𝑤2 (blue circle). We find that when

the ratio is decreasing, the error will decrease. More specifically,

When the ratio is larger than 60%, the errors in most of the testing

scenarios are higher than 40%. When the ratio is less than 10%, the

errors are less than 21%. This region can be a good indicator of how

much we need to know about the prior to enabling the estimation

to approach the ground truth. Finally, we find that there are points

when the ratio is high while the error is small. They are caused by

chance when we do the optimization in equation (7) and randomly

choose the initial points of 𝑤1 and 𝑤2 that are close to the true

points.

6.6 Results for Model Interpretability
To test the model interpretability, we set 𝛾 = 0.5 and calculate the

measure ℎ in (6.3) under different scenarios, as is shown in Table 2.

Our PCNN can always obtain 100% interpretable features, which

show that the estimated topology within O is correct. The perfect

Figure 4: The 𝑃𝐸% of the line weight estimation with respect
to different physical constraint areas.

Table 2: The ℎ(%) value for different methods in different
systems.

PCNN SINDy Resnet Dropout

10-bus 100 100 74.0 52.4

19-bus 100 93.2 69.0 36.7

30-bus 100 92.9 71.9 31.3

57-bus 100 85.3 57.4 12.8

85-bus 100 85.7 73.8 23.8

2003-bus 100 75.4 73.8 23.8

performance essentially comes from the sparsity control when

pre-training the F-Graph Layer. For SINDy method, the sparsity

control also exists, thus yielding highℎ values. However, the hidden

quantities bring some incorrect connectivity and prevent the ℎ to

be 100%. For the other two DNNs, ℎ will decrease about 30% ∼ 80%

due to the complex correlations in the NN model.

6.7 Results of Dynamic Simulation
We further demonstrate the quality of the estimated virtual grid

from PCNN via implementing the dynamic simulation for the

ground-truth grid and the virtual grid. Specifically, we utilize the

10-bus mass-damper system as an example. The ground-truth grid

and the virtual grid are shown in Fig. 5. We set the initial velocity

𝒙0 ∈ R10×1
for the ground-truth grid. Then, we input the data of 𝒙0

O
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Figure 5: The dynamic simulation using the ground-truth
grid and the virtual grid from PCNN.

to the well-trained PCNN and output 𝒙0

N in the N-Approximation

Layer, where O = {1, 2, 3} and N = {𝑛1, 𝑛2} in this experiment.

Subsequently, we can conduct the dynamic simulation for the two

grids, where the virtual grid’s parameters are learned from the

PCNN. The result is shown in Fig. 5. We find that the simulation

curve has an overall small difference and the ratio of the maximum

velocity difference to the base velocity (1𝑚/𝑠) is 4.61%.

7 CONCLUSION
We propose a Physics-Consistent deep Neural Network (PCNN)

to discover physical equations for the Laplacian systems under in-

complete observability. PCNN can be shrunk to physical equations

automatically for fully-observable areas, reduce hidden nodes to

virtual nodes to create a reduced grid, and maintain the physical

ranges and topology of the reduced grid with the deep-shallow

PCNN structure and physical constraints. Finally, we provide a

theoretical guarantee to find a good initial guess of the PCNN to

save the searching time. Extensive experiments are conducted in

the power, mass-damper, and UF sparse matrix systems.
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