
Correlation of Cyber Threat Intelligence Data
Across Global Honeypots

Jay Thom
Computer Science Department

University of Nevada Reno

Reno, Nevada, USA

jthom@unr.edu

Yash Shah
Computer Science Department

University of Nevada Reno

Reno, Nevada, USA

yashs@nevada.unr.edu

Shamik Sengupta
Computer Science Department

University of Nevada Reno

Reno, Nevada, USA

ssengupta@unr.edu

Abstract—Today’s global network is filled with attackers both
live and automated seeking to identify and compromise vulner-
able devices, with initial scanning and attack activity occurring
within minutes or even seconds of being connected to the Internet.
To better understand these events, honeypots can be deployed to
monitor and log activity by simulating actual Internet facing
services such as SSH, Telnet, HTTP, or FTP, and malicious
activity can be logged as attempts are made to compromise
them. In this study six multi-service honeypots are deployed in
locations around the globe to collect and catalog traffic over a
period of several months between March and December, 2020.
Analysis is performed on various characteristics including source
and destination IP addresses and port numbers, usernames
and passwords utilized, commands executed, and types of files
downloaded. In addition, Cowrie log data is restructured to
observe individual attacker sessions, study command sequences,
and monitor tunneling activity. This data is then correlated
across honeypots to compare attack and traffic patterns with
the goal of learning more about the tactics being employed.
By gathering data gathered from geographically separate zones
over a long period of time a greater understanding can be
developed regarding attacker intent and methodology, can aid in
the development of effective approaches to identifying malicious
behavior and attack sources, and can serve as a cyber-threat
intelligence feed.

Index Terms—honeypots, malicious traffic, botnet, Cowrie, ssh-
attacks, cyber-threat intelligence

I. INTRODUCTION

Scanning and brute-force attacks on Internet facing services

such as SSH, Telnet, FTP, and HTTP, have become so common

that within minutes or even seconds of connecting devices to

the global network, attacks are being launched to compromise

them. An unwary administrator might find their work is

actively being compromised even as they are in the process

of setting it up. What are they after, and what are they

trying to accomplish? The answer is, quite a variety of things.

Since the Mirai malware made headlines in 2016, the code

behind the botnet has been released as open-source, and has

been modified by various hackers seeking to build their own

zombie-armies [14]. Evidence of this code and the sequence of

actions indicating its installation are evident in data collected

by SSH honeypots and account for a significant portion of scan

and attack activity, along with a host of other botnet-related

malware. There are also various random brute-force attempts

in order to gain root access to the host device or to specific

services, as well as non-malicious scanning activity.

Honeypots are a useful tool for capturing such events

by providing a realistic environment for attack, and then

logging activity for later analysis. They have been extensively

employed for such tasks as attack pattern comparisons, attack

frequency analysis, attack origin analysis, root cause iden-

tification, and risk assessment [1]. For SSH attacks Cowrie

is a popular medium interaction sandbox environment which

provides a simulated file system and shell, and allows access

with random credentials after a variable number of brute force

attempts. Once inside, an attacker is deceived into believing it

has accessed a real system, and is observed while carrying

out whatever their intention is; changing or creating files,

downloading software, or altering passwords or user accounts.

This type of environment is especially effective with bots,

as they are automated and generally less able to identify the

environment as a honeypot than a live attacker would be.

Are there patterns in the activities seen in these environ-

ments, and are the attacks coordinated, or completely random?

Can similarities or differences be identified across honeypots

distributed globally? This study utilizes a series of docker

containers running Cowrie to detect SSH attacks without

compromising the host machine in an effort to answer these

questions. In addition to Cowrie, the honeypots also utilize an

Apache web server and an FTP server running in containerized

environments, allowing for the collection of associated logs

and tracking access attempts. Linux kernel logs from the host

machines are also collected to monitor for compromise of the

host device. Each honeypot is built on a Debian 10 virtual

machine running in one of six Digital Ocean data centers

located in geographically separate areas, including London,

New York, Toronto, Amsterdam, Bangalore, and Singapore.

Fake websites with domain names provided by Google Do-

mains are utilized with names related to higher education in an

attempt to attract specific kinds of traffic, although this feature

has not been extensively developed thus far. Logs from these

services are transferred using a cron tab and rsync on a nightly

basis to a repository server where all logs are consolidated

and analyzed. This study will look at data collected for the

time period between March 2020 and December 2020, with

the data being continuously amalgamated. Apache, FTP, and978-0-7381-4394-1/21/$31.00 ©2021 IEEE

0766

20
21

 IE
EE

 1
1t

h
An

nu
al

 C
om

pu
tin

g
an

d
Co

m
m

un
ic

at
io

n
W

or
ks

ho
p

an
d

Co
nf

er
en

ce
 (C

CW
C)

 |
 9

78
-1

-6
65

4-
14

90
-6

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CC
W

C5
17

32
.2

02
1.

93
76

03
8

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 10,2021 at 19:09:53 UTC from IEEE Xplore. Restrictions apply.

Linux kernel logs are in their standard form (apache.json.log,

ftp.json.log, kern.log), while Cowrie returns a .json or .log file

containing a variety of tags, including event-ID, session-ID,

source-IP, destination-IP, username and password (that were

used to access the honeypot), source-port, destination-port,

message (commands passed to the honeypot), file hashes, and

a variety of other data points.

By collecting data from the honeypots over several months

we observe data and patterns of activity, and attempt to draw

correlations between honeypots and regions to learn more

about attackers, their objectives, their methods, and intent.

Standard .json log files are also restructured so that session-

IDs rather than event-IDs are made the key value. This allows

for the collection of command chains, and makes it easier to

view attack patterns and analyze attacker behavior.

II. RELATED WORKS

Honeypots have been widely used for collecting and analyz-

ing the activities of malicious actors. They provide an effective

tool for observing attacker behavior, as it can be assumed

no legitimate traffic should be exchanged with the honeypot

services, and they have no production value [13] [20].

More than 67% of web servers and 71% of IoT devices

connected to the Internet rely on Unix/Linux-based operating

systems [24] [25]. In the work by Kambourakis et al [14],

regular updates to firmware for these systems are often over-

looked, leaving opportunities for malicious actors to develop

methods for unauthorized access and remote manipulation.

In addition, source code for many well-known and scalable

exploits are publicly available, providing hackers with ample

resources to bypass security measures and subvert vulnerable

systems. Honeypots can be placed inside of a network as a

distraction, drawing attackers away from valued resources,

or as stand-alone services exposing vulnerable interfaces of

compete services such as SSH, Telnet, HTTP, FTP, or SMTP.

Services attempt to appear as legitimate to attackers, and log

activity without implementing all of the service’s logic and

functionality, as shown by Bistarelli et al [20]. Kumar [6] and

Kyriakou [8] et al demonstrate the advantages of deploying

multiple honeypot tools and utilizing containers to produce

a lightweight multi-service honeypot on a single virtual ma-

chine, server, or lightweight device (i.e. Raspberry Pi). In [3],

[9], [12] examples of deployment and data collection from

honeypots are detailed, and the basic functions of a botnet

malware are examined based on scanning practices and the

order of commands executed by an attacker once logged in.

Several open-source honeypot applications are available to

emulate common services, provide limited functionality, and

automatically log activity. Vetterl et al discuss applications

such as Kojoney and Klippo [1] Other applications such

as Dionaea, Whaler, and Cowrie provide access to services

such as SMB, HTTP, FTP, TFTP, MSSQL, MySQL, SIP,

SSH and the Docker API. Narwocki et al [7] explain how

by exposing the common ports for these services attackers

performing random scans of the Internet are often attracted

to them within minutes, and then perform brute-force attacks

using dictionaries of common usernames and passwords to

gain access.

High value data can be collected, and detailed analysis is

required to learn more about attack behavior. Fraunholz et al

[11] discuss analysis based on timing behavior by correlating

the overall number of attacks with the number of unique IP

addresses seen, as well as the correlating between the overall

number of attacks with the number of attacks per unique IP

address. Vakilinia et al [2] discuss capturing commonly used

passwords from brute force attacks and utilizing them as a

feed for cyber threat intelligence. Fan et al [4] develop attack

profiles by applying attack information to analyze malicious

activity in order to unveil intruder motives. Fraunholz et al

[15] discuss the application of machine learning techniques

for classifying attacks on honeypots.

A major concern is the fingerprinting and identification of

deployed honeypots by attackers. Vetterl et al [18] present

a generic technique for fingerprinting honeypots at Internet

scale with a single TCP packet. They conduct Internet-

wide scans and are able to identify 7605 honeypot instances

across nine separate implementations. They also discover most

honeypot instances are not properly updated, making them

even easier for attackers to identify. McCaughey et al [10]

note many open-source software tools are available to help

identify honeypot devices that have been on the network

for extended periods of time by noting timing differences

between honeypots and actual machines. Vetterl et al [17]

discuss a project wherein they scan the Internet and discover

thousands of honeypot devices. They also cover some of the

legal issues involved in “logging into” honeypot machines,

even for the purpose of identifying them. Cabral et al [9]

discuss how Cowrie in its standard state can be easily identified

by attackers using nmap, Shodan, and OS fingerprinting, and

requires modification to be effective. Finally, Pitman et al [16]

discuss their tool that can quantify the ability of a honeypots

to fingerprint its environment, capture valid data, deceive an

adversary, and monitor itself and its surroundings.

To better understand attack behavior and to develop a

more complete understanding of how adversaries are utilizing

services left exposed by weak or default login credentials we

collect traffic on a global scale over an extended period of

time, both to amass a large body of data for the development of

Cyber Threat Intelligence (CTI) tools, and to identify patterns

in behavior as attackers access and utilize services presented

by honeypots located in geographically separated regions.

III. SYSTEM IMPLEMENTATION

To collect data on a global scale the Digital Ocean developer

cloud is utilized, allowing for the deployment of Low-cost

virtual machines placed in various data centers around the

world. In order to limit resources and reduce cost, specific

honeypot services are run as containers on a Debian 10 virtual

machine, and are exposed to the Internet on the standard

ports. Log files from each of the services are collected and

forwarded via rsync to a central repository server, allowing for

the periodic deletion of local files to save space. Containerized

0767

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 10,2021 at 19:09:53 UTC from IEEE Xplore. Restrictions apply.

images of the running services sandbox malicious activity

from the host machine. Rayson-Cowrie [21] is a version of

the Cowrie honeypot running on Docker and maintained by

Rayson Zhu. The Cowrie container captures log files for SSH

and Telnet activity in both .log and .json format, and simulates

a real file system allowing attackers to execute commands,

create and download files, and forward traffic, but confines

these activities to the honeypot. The official Docker image

of httpd, the Apache HTTP server project [22] is run in a

container to host a fake website and allow exposure to the

Internet without risking the host machine. Apache log files of

interactions with the web services are captured and stored. The

Docker image stillard-pure-ftpd [23] obtained from Github

is used to host an FTP server with a few sample files is

exposed and logs collected. In addition to logs from sand-

boxed services, Linux kernel logs from the host machine are

collected to track changes in the host and to help determine

if it has been compromised.

A central repository server collects data from each hon-

eypot, and processes log files to generate statistics about

malicious traffic and to make comparisons in honeypot activity.

For this work we will focus primarily on log files generated

by Cowrie.

IV. ANALYSIS AND INSIGHTS FROM COWRIE DATA

Cowrie generates daily logs in both json and log formats.

Json logs are built around events with each action initiated

with the honeypot generating an event ID which defines

a command executed by an attacker. Within an event are

numerous data points, including source IP, destination IP,

source port, destination port, session ID, username, password,

messages (which contain commands issued by the attacker),

timestamp, and many others. In this section we cover details

of the collected data.

A. Source IP Addresses and Port Numbers

When contact is made with the honeypot, the source IP

address and port number of the machine initiating the contact

is stored. From the series of commands (covered in more

Fig. 1. Unique source IP addresses per honeypot location.

Fig. 2. Unique source port numbers per honeypot location.

detail later), it appears the most common types of activity

are illicit login attempts and requests to forward traffic to

another device. In the first scenario, the machine initiating the

contact (possibly infected by a bot) is randomly scanning the

network, then performing brute force attacks on susceptible

hosts using a dictionary of usernames and passwords, with

the owner of the offending device remaining unaware of this

activity. In the second scenario, attackers are logging in and

passing traffic through the honeypot to hide their location.

Attacker machines are often masked by one or more proxy,

VPN, or VPS devices, so the source IP recorded may not be

the actual identity of the attack origin. Recorded in Fig. 1

are the unique source IP addresses globally that accessed or

attempted to access one of the honeypots. 170865 unique IP

addresses were recorded in total, with an average of 28478

unique IP addresses seen at each honeypot. These addresses

were globally diverse, and appear to be random. There were

also 6527 addresses which were present in all six honeypots.

Random addresses, which make up the bulk of the observed

source IP addresses collected, would be expected as bots scan

the Internet seeking new victims. However, we see many

addresses targeting the same machines which would seem

to indicate credentials are being shared across a network of

devices, which are in turn accessing them for the purpose of

recruitment or traffic forwarding.

While there are a variety of events occurring at each

honeypot, a majority of the activity seen after a successful lo-

gin are session.connect, direct-tcp.forward and direct-tcp.data

requests. Many of the login attempts are being made for the

purpose of utilizing compromised machines for routing traffic

through SSH tunnels. By default, SSH sets the AllowTcpFor-

warding flag to yes, enabling others to use the victim machine

as a SOCKS proxy to route any type of traffic generated by

any protocol or program. To prevent this, the forwarding flag

should be set to no. In addition, a limit on the number of

login attempts allowed should be set to prevent brute force

attacks. These forwarding requests are logged by Cowrie, but

0768

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 10,2021 at 19:09:53 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Unique destination IP addresses per honeypot location.

are not actually forwarded. Requested destination IP addresses

appear to be randomly distributed between those sent directly

to targeted devices and with messages routed through a known

proxy device to further mask an attacker’s actual location.

Source port numbers on the order of 60k were present in each

honeypot as seen in Fig. 2 as bots were utilizing random port

numbers to initiate contact.

B. Destination IP Addresses and Port Numbers

In order to better understand this forwarding behavior, an

analysis is performed mapping attackers to their targets, and

targets to attackers. Table II gives a numeric example of these

mappings from the London honeypot. The left side of the

table lists the top 20 attackers in terms of the number of

targets each attacker can be mapped to, while the left side

of the table lists the top 20 targets in terms of the number

of attackers each target can be mapped to. It can be seen

here there are far more targets per attacker than vise-versa,

suggesting that this IP address has identified the honeypot as

available for tunneling activity and is running through a list

of targets using this host as a proxy. At the same time, we

see these targets are being contacted by what would appear a

coordinated network of attackers, some targets being accessed

through all six honeypot locations. This suggests information

about the honeypot and its compromised credentials are being

shared across members of a botnet.

The honeypot in London saw far fewer unique destination

IPs than the other honeypots (12746), while Bangalore saw the

most (100252). Totals for all honeypots can be seen in Fig. 3

This is probably an indication of the types of attacks being

carried out, possibly recruitment versus tunneling activity,

although it is unclear why the London honeypot was being

utilized differently over this time period. As for destination

ports, there were 1038 port numbers targeted from Bangalore

and 718 from Amsterdam, while the other honeypots ranged

between 29-57, see Fig. 4. It is likely these two locations were

engaged in scanning activity, while the others were focused

on tunneling data to selected targets. London, Toronto, and

New York were targeting mainly common services such as

web, telnet, smtp, ssh, etc. Bangalore and Amsterdam seemed

to target these, as well as many non-common port numbers

associated with specific services (i.e. bo2k or Ghidra) that

could have been identified by nmap scans.

We look specifically at tunneled traffic, examining the

number of attackers and targets present in each honeypot,

and then looking for their presence across all honeypots. Fig.

5 shows that there are no attackers that are found in every

location (although most are found in more than one honeypot),

while Fig. 6 shows there are 1045 targeted IP addresses that

all six honeypots have in common. It would appear that while

there are high value targets being sought by more than one

attacking entity or botnet, no individual attacking IP is seen

in every honeypot.

C. Daily Events

As mentioned previously, Cowrie .json logs are built around

events, with multiple events often contained within a single

session. A unique session ID is created when a connection is

initially established, and the session is terminated when the

connection is eventually closed. Fig. 7 shows the number of

unique events per day across all honeypots, while Fig. 8 shows

the total of all unique sessions per day across honeypots. Inter-

estingly, there are several spikes in both events and sessions,

indicating increased activity across different honeypots on the

same days even though they are located in geographically

separated regions. An attempt was made to correlate these

peak days with other events such as news items or known

attacks, but with no convincing results. There were several

spikes in April 2020, likely due to the beginning of the Covid-

19 pandemic and a surge in the number of people working on

machines no longer protected by workplace security, as well

as quarantined individuals being online at home more than

usual.

D. Cowrie Sessions

To bring event IDs into perspective, Cowrie sessions can

be used to aggregate a series of events under a single ses-

Fig. 4. Unique destination port numbers per honeypot location.

0769

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 10,2021 at 19:09:53 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SERIES OF COMMANDS PER SESSION AND FREQUENCY OF OCCURRENCE.

London Amsterdam Toronto New York Singapore Bangalore
FADBEFADBE 40.3% 67.7% 67.8% 28.7% 53.4% 66.7%
FAGEFAGE 36.1% 21.5% 19.3% 36.2% 33.5% 15.6%
FAEFAE 10.5% 2.5% 0.41% 22.3% 5.5% 10.4%
FAGGGEFAGGGE 4.1% 0.1% 2.6% 5.3% 1.6% 3.2%
FEFE 4.5% 0.7% 2.8% 3.4% 3.0% 1.6%
FADBCEFADBCE 0.1% 0.5% 0.8% 0.1% 0.2% 0.3%

TABLE II
MAPPING OF ATTACKERS TO TARGETS AND TARGETS TO ATTACKERS.

Attackers to Targets Targets to Attackers
5.182.39.88:114839 google.com:872
5.182.39.61:50318 ya.ru:871
5.182.39.62:25441 208.95.112.1:609
5.182.39.64:16741 216.239.32.21:492
5.188.62.11:13714 216.239.36.21:443
5.182.39.6:13049 216.239.38.21:374

45.227.255.163:7023 216.239.34.21:338
88.214.26.90:5120 v4.ident.me:270
5.182.39.185:3081 video-weaver.arn03.hls.ttvnw.net:138
45.227.255.205:762 ipinfo.io:118

5.182.39.96:443 www.instagram.com:113
5.188.86.172:233 www.youtube.com:102
88.214.26.93:166 ip.bablosoft.com:101

193.105.134.45:119 video-weaver.waw01.hls.ttvnw.net:101
103.114.104.68:60 104.16.119.50:101
51.158.111.157:53 104.16.120.50:101
45.155.205.87:44 speedtest.tele2.net:96
79.173.88.244:36 87.250.250.242:93
14.177.178.248:30 m.youtube.com:90
14.186.28.128:29 check2.zennolab.com:89

sion, giving a better view of command patterns and attacker

behavior. By restructuring the Cowrie log as a dictionary

with the session ID as a key rather than the event ID, all

events containing the same session ID can be consolidated,

and an order of events can be captured. There were 16 possible

event IDs logged by Cowrie indicating actions such as a new

Fig. 5. Common attacker IPs across honeypots.

connection, the success of a login attempt, a file download,

a message being forwarded, etc. To make these aggregated

lists of events easier to analyze, we assign a letter value A-P

to each command, then build a string based on the sequence

of commands executed during each distinct session. Table III

lists the most common of these A-G, the others were omitted

for space. The top six command sequences are listed in table

I, along with the frequency of their occurrence compared to

all identified sequences.

TABLE III
COMMAND LEGEND.

A cowrie.client.version
B cowrie.direct-tcp.request
C cowrie.direct-tcp.data
D cowrie.login.success
E cowrie.session.closed
F cowrie.session.connect
G cowrie.login.failed

The most common sequence involves a connection

(cowrie.session.connect), followed by the cowrie version sup-

plied as part of the ssh handshake (cowrie.client.version), an

indication of successful login (cowrie.client.success), then a

request for a direct-tcp connection (cowrie.direct-tcp.reques)

allowing the attacker to pass data through the honeypot

to another destination. Finally, the connection is closed

(cowrie.session.close). For the honeypot in London, of the

Fig. 6. Common target IPs across honeypots.

0770

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 10,2021 at 19:09:53 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Daily events per honeypot.

Fig. 8. Daily sessions per honeypot.

874782 sessions on April 12, 2020, about 40.3 percent,

or 352537 of these followed this pattern. For the London

honeypot there were 4459 unique command patterns captured

in total. Most were of the common type indicated here,

which were quite specific and relatively short. However, many

individual unique command patterns found that were very

long and exhibited repetitive patterns (some entailing hundreds

of individual commands). We believe these likely contain

repeated patterns that could be associated with an individual

bot. This analysis will make an interesting future work as it

could help to identify behaviors indicating malicious activity

and aid in attacker identification.

E. Usenames and Passwords

Each login attempt, whether successful or not, captures the

credentials that were given. A majority of these credentials

attempt privileged access (either ’root’, ’admin’, or some other

known default credential such as ’ubnt’ for a Ubiquiti device),

but many do not and instead utilize random usernames and

a wide variety of passwords. As discussed in [2], this data

is very useful as a Cyber Threat Intelligence (CTI) feed,

allowing for compromised usernames and passwords to be

black-listed from a system. Fig. 9 shows the number of unique

usernames found in each honeypot over the duration of this

study, while Fig. 10 shows all unique passwords used to

gain access. Cowrie randomly accepts any login credentials

after a variable number of attempts (set at three for our

application), in an effort to ”fool” attackers into believing they

have correctly guessed login credentials. The most commonly

used usernames and passwords are listed in table IV.

F. Malicious Downloads

Some Cowrie event contains a key messages that detail a

command being executed in the honeypot. If a search is done

for the string wget one can find attempts by an attacker to re-

trieve files from a remote host and download it to the honeypot.

These are typically shell scripts that are then made executable

using a chmod command either in the same message, or in

a subsequent message, and are then run in the compromised

machine. A list of these compromised files is gathered and

could be used as a CTI feed to identify known malicious

filenames. The IP addresses or URLs indicated in these down-

load commands can be considered highly malicious, either as

command and control devices, or more likely as file storage

devices used for downloading malicious software. Again, these

are often routed through a VPN or VPS. To help pinpoint

likely sources for these downloads, a list of known VPN and

data center addresses, and an api (getipintel.net) are used, and

a list of possible actual download IP addresses is compiled.

1564 unique IP addresses are identified that do not appear in

the known VPN or data center list. As a future work, it would

be interesting to retrieve these shell scripts and analyze them

forensically. The top 20 malicious file names, all of which

appear in each of the six honeypots is given in table IV.

V. CONCLUSION

To better understand attack patterns and behavior, honeypots

can be deployed to monitor and log activity by simulating

actual Internet facing services. By examining traffic patterns,

downloads, and traffic forwarding across a series of geo-

graphically separate devices we attempt to better understand

Fig. 9. Unique usernames per honeypot.

0771

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 10,2021 at 19:09:53 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. Unique passwords per honeypot.

TABLE IV
MOST USED USERNAMES, PASSWORDS AND DOWNLOAD FILENAMES.

Usernames Passwords Malicious Filenames
root guest bins.sh

guest admin GhOul.sh
admin root yoyobins.sh

test test SnOopy.sh
user 123456 axisbins.sh
ubnt 1234 EkSgbins.sh
0101 user 8UsA.sh
nproc password Pemex.sh

22 ubnt Sakura.sh
support 0101 sh
oracle 123 skid.sh

postgres nproc UwUsh
ubuntu zeros6x.sh
usario support mavscock.sh

matrix KigaNet.x86
git 12345 infn.x86

Administrator usario ISIS.sh
pi 123456789 installer.sh

1234 12345678 Gummy.sh
ftpuser 1 gtop.sh

malicious activity and work to identify patterns that can be

useful in identifying malicious traffic in actual servers or IoT

devices. In addition, collected data such as source IP addresses,

download filenames, and login credentials can be useful as a

threat intelligence feed to protect digital assets. As a future

work more analysis on command series patterns could be

conducted to possibly predict attack behavior and to identify

threats in real time on production servers and IoT assets.

ACKNOWLEDGMENT

This research is supported by NSF Award #1739032.

REFERENCES

[1] Lingenfelter, Bryson, Iman Vakilinia, and Shamik Sengupta. ”Analyzing
variation among IoT botnets using medium interaction honeypots.” 2020
10th Annual Computing and Communication Workshop and Conference
(CCWC). IEEE, 2020.

[2] Vakilinia, Iman, Sui Cheung, and Shamik Sengupta. ”Sharing susceptible
passwords as cyber threat intelligence feed.” MILCOM 2018-2018 IEEE
Military Communications Conference (MILCOM). IEEE, 2018.

[3] Memari, Nogol, Shaiful Jahari Hashim, and Khairulmizam Samsudin.
”Network probe patterns against a honeynet in Malaysia”. Vol. 8.
Kajang: Science and Technology Research Institute for Defence, 2015.

[4] Fan, Wenjun, Zhihui Du, David Fernández, and Victor A. Villagra.
”Enabling an anatomic view to investigate honeypot systems: A survey.”
IEEE Systems Journal 12, no. 4 (2017): 3906-3919.

[5] Luo, Y., Zhang, Z.,Esaki, H., Ochiai, H. ”Classification of TCP 445
attacks and global snapshot with honeypot analysis”, IEEE, 2019,
doi:10.1109/AITC.2019.8921162.

[6] Kumar, Sanjeev, B. Janet, and R. Eswari. ”Multi platform honeypot for
generation of cyber threat intelligence.” 2019 IEEE 9th International
Conference on Advanced Computing (IACC). IEEE, 2019.

[7] Nawrocki, M., Wählisch, M., Schmidt, T.C., Keil, C. and Schönfelder,
J., 2016. ”A survey on honeypot software and data analysis”. arXiv
preprint arXiv:1608.06249.

[8] Kyriakou, Andronikos, and Nicolas Sklavos. ”Container-based honeypot
deployment for the analysis of malicious activity.” 2018 Global Infor-
mation Infrastructure and Networking Symposium (GIIS). IEEE, 2018.

[9] Cabral, Warren, Craig Valli, Leslie Sikos, and Samuel Wakeling. ”Re-
view and analysis of Cowrie artefacts and their potential to be used
deceptively.” 2019 International Conference on Computational Science
and Computational Intelligence (CSCI), pp. 166-171. IEEE, 2019.

[10] McCaughey, Ryan J. ”Deception using an SSH honeypot”. Naval Post-
graduate School Monterey United States, 2017.

[11] Fraunholz, Daniel, Daniel Krohmer, Simon Duque Anton, and Hans
Dieter Schotten. ”Investigation of cyber crime conducted by abusing
weak or default passwords with a medium interaction honeypot.” 2017
International Conference on Cyber Security And Protection Of Digital
Services (Cyber Security), pp. 1-7. IEEE, 2017.

[12] Zhang, Zhiqing, Hiroshi Esaki, and Hideya Ochiai. ”Unveiling malicious
activities in LAN with honeypot.” 2019 4th International Conference on
Information Technology (InCIT). IEEE, 2019.

[13] Koniaris, Ioannis, Georgios Papadimitriou, and Petros Nicopolitidis.
”Analysis and visualization of SSH attacks using honeypots.” Eurocon
2013. IEEE, 2013.

[14] Kambourakis, Georgios, Constantinos Kolias, and Angelos Stavrou.
”The mirai botnet and the iot zombie armies.” MILCOM 2017-2017
IEEE Military Communications Conference (MILCOM). IEEE, 2017.

[15] Fraunholz, Daniel, Daniel Krohmer, Simon Duque Anton, and Hans
Dieter Schotten. ”YAAS-On the attribution of honeypot data.” IJCSA 2,
no. 1 (2017): 31-48.

[16] Pittman, Jason M., Kyle Hoffpauir, and Nathan Markle. ”Primer–a
tool for testing honeypot measures of effectiveness.” arXiv preprint
arXiv:2011.00582. 2020.

[17] Vetterl, Alexander, Richard Clayton, and Ian Walden. ”Counting out-
dated honeypots: legal and useful.” 2019 IEEE Security and Privacy
Workshops (SPW). IEEE, 2019.

[18] Vetterl, Alexander, and Richard Clayton. ”Bitter harvest: systematically
fingerprinting low-and medium-interaction honeypots at internet scale.”
12th USENIX Workshop on Offensive Technologies (WOOT 18). 2018.

[19] Bontchev, Vesselin, Veneta-Yosifova, ”Analysis of the global attack
landscape using data from a telnet honeypot.” Information and Security:
An International Journal 43 (2019): 264-282.

[20] Bistarelli, Stefano, Emanuele Bosimini, and Francesco Santini. ”A report
on the security of home connections with IoT and Docker honeypots.”
ITASEC. 2020.

[21] “Rayson Cowrie.” [Online] Docker Hub, 26 Nov. 2020, Available:
https://hub.docker.com/r/rayson/cowrie/.

[22] ”HTTPD, the Apache http server project.” [Online] Docker Hub, 26 Nov.
2020, Available: https://hub.docker.com/ /httpd

[23] ”Stillard Pure FTPD.” [Online] Github, 26 Nov. 2020, Available:
https://github.com/stilliard/docker-pure-ftpd

[24] ”Linux Took Over the Web. Now, It’s Taking Over the
World” [Online] Wired Magazine, Aug. 2016, Available:
https://www.wired.com/2016/08/linux-took-web-now-taking-world

[25] ”Eclipse 2018 survey: The IoT landscape, what it empirically
looks like” [Online] Canonical Ubuntu Blog, Apr. 2018, Available:
https://ubuntu.com/blog/eclipse-2018-survey-the-iot-landscape-what-it-
empirically-looks-like

[26] ”VPNs and Data Center IPs” [Online] Github, 14 Dec. 2020, Available:
https://github.com/ejrv/VPNs

0772

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 10,2021 at 19:09:53 UTC from IEEE Xplore. Restrictions apply.

