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Abstract—Today’s global network is filled with attackers both
live and automated seeking to identify and compromise vulner-
able devices, with initial scanning and attack activity occurring
within minutes or even seconds of being connected to the Internet.
To better understand these events, honeypots can be deployed to
monitor and log activity by simulating actual Internet facing
services such as SSH, Telnet, HTTP, or FTP, and malicious
activity can be logged as attempts are made to compromise
them. In this study six multi-service honeypots are deployed in
locations around the globe to collect and catalog traffic over a
period of several months between March and December, 2020.
Analysis is performed on various characteristics including source
and destination IP addresses and port numbers, usernames
and passwords utilized, commands executed, and types of files
downloaded. In addition, Cowrie log data is restructured to
observe individual attacker sessions, study command sequences,
and monitor tunneling activity. This data is then correlated
across honeypots to compare attack and traffic patterns with
the goal of learning more about the tactics being employed.
By gathering data gathered from geographically separate zones
over a long period of time a greater understanding can be
developed regarding attacker intent and methodology, can aid in
the development of effective approaches to identifying malicious
behavior and attack sources, and can serve as a cyber-threat
intelligence feed.

Index Terms—honeypots, malicious traffic, botnet, Cowrie, ssh-
attacks, cyber-threat intelligence

I. INTRODUCTION

Scanning and brute-force attacks on Internet facing services
such as SSH, Telnet, FTP, and HTTP, have become so common
that within minutes or even seconds of connecting devices to
the global network, attacks are being launched to compromise
them. An unwary administrator might find their work is
actively being compromised even as they are in the process
of setting it up. What are they after, and what are they
trying to accomplish? The answer is, quite a variety of things.
Since the Mirai malware made headlines in 2016, the code
behind the botnet has been released as open-source, and has
been modified by various hackers seeking to build their own
zombie-armies [14]. Evidence of this code and the sequence of
actions indicating its installation are evident in data collected
by SSH honeypots and account for a significant portion of scan
and attack activity, along with a host of other botnet-related
malware. There are also various random brute-force attempts
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in order to gain root access to the host device or to specific
services, as well as non-malicious scanning activity.
Honeypots are a useful tool for capturing such events
by providing a realistic environment for attack, and then
logging activity for later analysis. They have been extensively
employed for such tasks as attack pattern comparisons, attack
frequency analysis, attack origin analysis, root cause iden-
tification, and risk assessment [1]. For SSH attacks Cowrie
is a popular medium interaction sandbox environment which
provides a simulated file system and shell, and allows access
with random credentials after a variable number of brute force
attempts. Once inside, an attacker is deceived into believing it
has accessed a real system, and is observed while carrying
out whatever their intention is; changing or creating files,
downloading software, or altering passwords or user accounts.
This type of environment is especially effective with bots,
as they are automated and generally less able to identify the
environment as a honeypot than a live attacker would be.
Are there patterns in the activities seen in these environ-
ments, and are the attacks coordinated, or completely random?
Can similarities or differences be identified across honeypots
distributed globally? This study utilizes a series of docker
containers running Cowrie to detect SSH attacks without
compromising the host machine in an effort to answer these
questions. In addition to Cowrie, the honeypots also utilize an
Apache web server and an FTP server running in containerized
environments, allowing for the collection of associated logs
and tracking access attempts. Linux kernel logs from the host
machines are also collected to monitor for compromise of the
host device. Each honeypot is built on a Debian 10 virtual
machine running in one of six Digital Ocean data centers
located in geographically separate areas, including London,
New York, Toronto, Amsterdam, Bangalore, and Singapore.
Fake websites with domain names provided by Google Do-
mains are utilized with names related to higher education in an
attempt to attract specific kinds of traffic, although this feature
has not been extensively developed thus far. Logs from these
services are transferred using a cron tab and rsync on a nightly
basis to a repository server where all logs are consolidated
and analyzed. This study will look at data collected for the
time period between March 2020 and December 2020, with
the data being continuously amalgamated. Apache, FTP, and
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Linux kernel logs are in their standard form (apache.json.log,
ftp.json.log, kern.log), while Cowrie returns a .json or .log file
containing a variety of tags, including event-ID, session-ID,
source-IP, destination-IP, username and password (that were
used to access the honeypot), source-port, destination-port,
message (commands passed to the honeypot), file hashes, and
a variety of other data points.

By collecting data from the honeypots over several months
we observe data and patterns of activity, and attempt to draw
correlations between honeypots and regions to learn more
about attackers, their objectives, their methods, and intent.
Standard .json log files are also restructured so that session-
IDs rather than event-IDs are made the key value. This allows
for the collection of command chains, and makes it easier to
view attack patterns and analyze attacker behavior.

II. RELATED WORKS

Honeypots have been widely used for collecting and analyz-
ing the activities of malicious actors. They provide an effective
tool for observing attacker behavior, as it can be assumed
no legitimate traffic should be exchanged with the honeypot
services, and they have no production value [13] [20].

More than 67% of web servers and 71% of IoT devices
connected to the Internet rely on Unix/Linux-based operating
systems [24] [25]. In the work by Kambourakis et al [14],
regular updates to firmware for these systems are often over-
looked, leaving opportunities for malicious actors to develop
methods for unauthorized access and remote manipulation.
In addition, source code for many well-known and scalable
exploits are publicly available, providing hackers with ample
resources to bypass security measures and subvert vulnerable
systems. Honeypots can be placed inside of a network as a
distraction, drawing attackers away from valued resources,
or as stand-alone services exposing vulnerable interfaces of
compete services such as SSH, Telnet, HTTP, FTP, or SMTP.
Services attempt to appear as legitimate to attackers, and log
activity without implementing all of the service’s logic and
functionality, as shown by Bistarelli et al [20]. Kumar [6] and
Kyriakou [8] et al demonstrate the advantages of deploying
multiple honeypot tools and utilizing containers to produce
a lightweight multi-service honeypot on a single virtual ma-
chine, server, or lightweight device (i.e. Raspberry Pi). In [3],
[9], [12] examples of deployment and data collection from
honeypots are detailed, and the basic functions of a botnet
malware are examined based on scanning practices and the
order of commands executed by an attacker once logged in.

Several open-source honeypot applications are available to
emulate common services, provide limited functionality, and
automatically log activity. Vetterl et al discuss applications
such as Kojoney and Klippo [1] Other applications such
as Dionaea, Whaler, and Cowrie provide access to services
such as SMB, HTTP, FTP, TFTP, MSSQL, MySQL, SIP,
SSH and the Docker API. Narwocki et al [7] explain how
by exposing the common ports for these services attackers
performing random scans of the Internet are often attracted
to them within minutes, and then perform brute-force attacks

using dictionaries of common usernames and passwords to
gain access.

High value data can be collected, and detailed analysis is
required to learn more about attack behavior. Fraunholz et al
[11] discuss analysis based on timing behavior by correlating
the overall number of attacks with the number of unique IP
addresses seen, as well as the correlating between the overall
number of attacks with the number of attacks per unique IP
address. Vakilinia et al [2] discuss capturing commonly used
passwords from brute force attacks and utilizing them as a
feed for cyber threat intelligence. Fan et al [4] develop attack
profiles by applying attack information to analyze malicious
activity in order to unveil intruder motives. Fraunholz et al
[15] discuss the application of machine learning techniques
for classifying attacks on honeypots.

A major concern is the fingerprinting and identification of
deployed honeypots by attackers. Vetter]l et al [18] present
a generic technique for fingerprinting honeypots at Internet
scale with a single TCP packet. They conduct Internet-
wide scans and are able to identify 7605 honeypot instances
across nine separate implementations. They also discover most
honeypot instances are not properly updated, making them
even easier for attackers to identify. McCaughey et al [10]
note many open-source software tools are available to help
identify honeypot devices that have been on the network
for extended periods of time by noting timing differences
between honeypots and actual machines. Vetterl et al [17]
discuss a project wherein they scan the Internet and discover
thousands of honeypot devices. They also cover some of the
legal issues involved in “logging into” honeypot machines,
even for the purpose of identifying them. Cabral et al [9]
discuss how Cowrie in its standard state can be easily identified
by attackers using nmap, Shodan, and OS fingerprinting, and
requires modification to be effective. Finally, Pitman et al [16]
discuss their tool that can quantify the ability of a honeypots
to fingerprint its environment, capture valid data, deceive an
adversary, and monitor itself and its surroundings.

To better understand attack behavior and to develop a
more complete understanding of how adversaries are utilizing
services left exposed by weak or default login credentials we
collect traffic on a global scale over an extended period of
time, both to amass a large body of data for the development of
Cyber Threat Intelligence (CTI) tools, and to identify patterns
in behavior as attackers access and utilize services presented
by honeypots located in geographically separated regions.

III. SYSTEM IMPLEMENTATION

To collect data on a global scale the Digital Ocean developer
cloud is utilized, allowing for the deployment of Low-cost
virtual machines placed in various data centers around the
world. In order to limit resources and reduce cost, specific
honeypot services are run as containers on a Debian 10 virtual
machine, and are exposed to the Internet on the standard
ports. Log files from each of the services are collected and
forwarded via rsync to a central repository server, allowing for
the periodic deletion of local files to save space. Containerized
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images of the running services sandbox malicious activity
from the host machine. Rayson-Cowrie [21] is a version of
the Cowrie honeypot running on Docker and maintained by
Rayson Zhu. The Cowrie container captures log files for SSH
and Telnet activity in both .log and .json format, and simulates
a real file system allowing attackers to execute commands,
create and download files, and forward traffic, but confines
these activities to the honeypot. The official Docker image
of httpd, the Apache HTTP server project [22] is run in a
container to host a fake website and allow exposure to the
Internet without risking the host machine. Apache log files of
interactions with the web services are captured and stored. The
Docker image stillard-pure-ftpd [23] obtained from Github
is used to host an FTP server with a few sample files is
exposed and logs collected. In addition to logs from sand-
boxed services, Linux kernel logs from the host machine are
collected to track changes in the host and to help determine
if it has been compromised.

A central repository server collects data from each hon-
eypot, and processes log files to generate statistics about
malicious traffic and to make comparisons in honeypot activity.
For this work we will focus primarily on log files generated
by Cowrie.

IV. ANALYSIS AND INSIGHTS FROM COWRIE DATA

Cowrie generates daily logs in both json and log formats.
Json logs are built around events with each action initiated
with the honeypot generating an event ID which defines
a command executed by an attacker. Within an event are
numerous data points, including source IP, destination IP,
source port, destination port, session ID, username, password,
messages (which contain commands issued by the attacker),
timestamp, and many others. In this section we cover details
of the collected data.

A. Source IP Addresses and Port Numbers

When contact is made with the honeypot, the source IP
address and port number of the machine initiating the contact
is stored. From the series of commands (covered in more
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Fig. 2. Unique source port numbers per honeypot location.

detail later), it appears the most common types of activity
are illicit login attempts and requests to forward traffic to
another device. In the first scenario, the machine initiating the
contact (possibly infected by a bot) is randomly scanning the
network, then performing brute force attacks on susceptible
hosts using a dictionary of usernames and passwords, with
the owner of the offending device remaining unaware of this
activity. In the second scenario, attackers are logging in and
passing traffic through the honeypot to hide their location.
Attacker machines are often masked by one or more proxy,
VPN, or VPS devices, so the source IP recorded may not be
the actual identity of the attack origin. Recorded in Fig. 1
are the unique source IP addresses globally that accessed or
attempted to access one of the honeypots. 170865 unique IP
addresses were recorded in total, with an average of 28478
unique IP addresses seen at each honeypot. These addresses
were globally diverse, and appear to be random. There were
also 6527 addresses which were present in all six honeypots.
Random addresses, which make up the bulk of the observed
source IP addresses collected, would be expected as bots scan
the Internet seeking new victims. However, we see many
addresses targeting the same machines which would seem
to indicate credentials are being shared across a network of
devices, which are in turn accessing them for the purpose of
recruitment or traffic forwarding.

While there are a variety of events occurring at each
honeypot, a majority of the activity seen after a successful lo-
gin are session.connect, direct-tcp.forward and direct-tcp.data
requests. Many of the login attempts are being made for the
purpose of utilizing compromised machines for routing traffic
through SSH tunnels. By default, SSH sets the AllowTcpFor-
warding flag to yes, enabling others to use the victim machine
as a SOCKS proxy to route any type of traffic generated by
any protocol or program. To prevent this, the forwarding flag
should be set to no. In addition, a limit on the number of
login attempts allowed should be set to prevent brute force
attacks. These forwarding requests are logged by Cowrie, but
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are not actually forwarded. Requested destination IP addresses
appear to be randomly distributed between those sent directly
to targeted devices and with messages routed through a known
proxy device to further mask an attacker’s actual location.
Source port numbers on the order of 60k were present in each
honeypot as seen in Fig. 2 as bots were utilizing random port
numbers to initiate contact.

B. Destination IP Addresses and Port Numbers

In order to better understand this forwarding behavior, an
analysis is performed mapping attackers to their targets, and
targets to attackers. Table II gives a numeric example of these
mappings from the London honeypot. The left side of the
table lists the top 20 attackers in terms of the number of
targets each attacker can be mapped to, while the left side
of the table lists the top 20 targets in terms of the number
of attackers each target can be mapped to. It can be seen
here there are far more targets per attacker than vise-versa,
suggesting that this IP address has identified the honeypot as
available for tunneling activity and is running through a list
of targets using this host as a proxy. At the same time, we
see these targets are being contacted by what would appear a
coordinated network of attackers, some targets being accessed
through all six honeypot locations. This suggests information
about the honeypot and its compromised credentials are being
shared across members of a botnet.

The honeypot in London saw far fewer unique destination
IPs than the other honeypots (12746), while Bangalore saw the
most (100252). Totals for all honeypots can be seen in Fig. 3
This is probably an indication of the types of attacks being
carried out, possibly recruitment versus tunneling activity,
although it is unclear why the London honeypot was being
utilized differently over this time period. As for destination
ports, there were 1038 port numbers targeted from Bangalore
and 718 from Amsterdam, while the other honeypots ranged
between 29-57, see Fig. 4. It is likely these two locations were
engaged in scanning activity, while the others were focused
on tunneling data to selected targets. London, Toronto, and

New York were targeting mainly common services such as
web, telnet, smtp, ssh, etc. Bangalore and Amsterdam seemed
to target these, as well as many non-common port numbers
associated with specific services (i.e. bo2k or Ghidra) that
could have been identified by nmap scans.

We look specifically at tunneled traffic, examining the
number of attackers and targets present in each honeypot,
and then looking for their presence across all honeypots. Fig.
5 shows that there are no attackers that are found in every
location (although most are found in more than one honeypot),
while Fig. 6 shows there are 1045 targeted IP addresses that
all six honeypots have in common. It would appear that while
there are high value targets being sought by more than one
attacking entity or botnet, no individual attacking IP is seen
in every honeypot.

C. Daily Events

As mentioned previously, Cowrie .json logs are built around
events, with multiple events often contained within a single
session. A unique session ID is created when a connection is
initially established, and the session is terminated when the
connection is eventually closed. Fig. 7 shows the number of
unique events per day across all honeypots, while Fig. 8 shows
the total of all unique sessions per day across honeypots. Inter-
estingly, there are several spikes in both events and sessions,
indicating increased activity across different honeypots on the
same days even though they are located in geographically
separated regions. An attempt was made to correlate these
peak days with other events such as news items or known
attacks, but with no convincing results. There were several
spikes in April 2020, likely due to the beginning of the Covid-
19 pandemic and a surge in the number of people working on
machines no longer protected by workplace security, as well
as quarantined individuals being online at home more than
usual.

D. Cowrie Sessions

To bring event IDs into perspective, Cowrie sessions can
be used to aggregate a series of events under a single ses-
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Fig. 4. Unique destination port numbers per honeypot location.
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TABLE I
SERIES OF COMMANDS PER SESSION AND FREQUENCY OF OCCURRENCE.

MAPPING OF ATTACKERS TO TARGETS AND TARGETS TO ATTACKERS.

Attackers to Targets

Targets to Attackers

5.182.39.88:114839
5.182.39.61:50318
5.182.39.62:25441
5.182.39.64:16741
5.188.62.11:13714
5.182.39.6:13049
45.227.255.163:7023
88.214.26.90:5120
5.182.39.185:3081
45.227.255.205:762
5.182.39.96:443
5.188.86.172:233

14.177.178.248:30
14.186.28.128:29

google.com:872
ya.ru:871

208.95.112.1:609
216.239.32.21:492
216.239.36.21:443
216.239.38.21:374
216.239.34.21:338

v4.ident.me:270

video-weaver.arn03.hls.ttvnw.net: 138
ipinfo.io: 118
www.instagram.com:113
www.youtube.com:102

88.214.26.93:166 ip.bablosoft.com:101 A | cowrie.client.version
193.105.134.45:119 | video-weaver.waw(1.hls.ttvnw.net:101 B | cowrie.direct-tcp.request
103.114.104.68:60 104.16.119.50:101 C | cowrie.direct-tcp.data
51.158.111.157:53 104.16.120.50:101 D | cowrie.login.success
45.155.205.87:44 speedtest.tele2.net:96 E | cowrie.session.closed
79.173.88.244:36 87.250.250.242:93 F | cowrie.session.connect
G

m.youtube.com:90
check2.zennolab.com:89

sion, giving a better view of command patterns and attacker
behavior. By restructuring the Cowrie log as a dictionary
with the session ID as a key rather than the event ID, all
events containing the same session ID can be consolidated,
and an order of events can be captured. There were 16 possible
event IDs logged by Cowrie indicating actions such as a new

Common Attackers Across All Honeypots
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Fig. 5. Common attacker IPs across honeypots.

London | Amsterdam | Toronto | New York | Singapore | Bangalore
FADBEFADBE 40.3% 67.7% 67.8% 28.7% 53.4% 66.7%
FAGEFAGE 36.1% 21.5% 19.3% 36.2% 33.5% 15.6%
FAEFAE 10.5% 2.5% 0.41% 22.3% 5.5% 10.4%
FAGGGEFAGGGE 4.1% 0.1% 2.6% 5.3% 1.6% 3.2%
FEFE 4.5% 0.7% 2.8% 3.4% 3.0% 1.6%
FADBCEFADBCE 0.1% 0.5% 0.8% 0.1% 0.2% 0.3%
TABLE II connection, the success of a login attempt, a file download,

a message being forwarded, etc. To make these aggregated
lists of events easier to analyze, we assign a letter value A-P
to each command, then build a string based on the sequence
of commands executed during each distinct session. Table III
lists the most common of these A-G, the others were omitted
for space. The top six command sequences are listed in table
I, along with the frequency of their occurrence compared to
all identified sequences.

TABLE III
COMMAND LEGEND.

cowrie.login.failed

The most common sequence involves a connection
(cowrie.session.connect), followed by the cowrie version sup-
plied as part of the ssh handshake (cowrie.client.version), an
indication of successful login (cowrie.client.success), then a
request for a direct-tcp connection (cowrie.direct-tcp.reques)
allowing the attacker to pass data through the honeypot
to another destination. Finally, the connection is closed
(cowrie.session.close). For the honeypot in London, of the
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Fig. 6. Common target IPs across honeypots.

0770

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 10,2021 at 19:09:53 UTC from IEEE Xplore. Restrictions apply.



Daily total events at each Honeypot

105

104

—— Amsterdam
—— Bangalore
—— London
—— New York
T
0

Number of total events at each Honeypot

singapore

10° A Toronto

T U T T
50 100 150 200 250 300

Fig. 7. Daily events per honeypot.
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Fig. 8. Daily sessions per honeypot.

874782 sessions on April 12, 2020, about 40.3 percent,
or 352537 of these followed this pattern. For the London
honeypot there were 4459 unique command patterns captured
in total. Most were of the common type indicated here,
which were quite specific and relatively short. However, many
individual unique command patterns found that were very
long and exhibited repetitive patterns (some entailing hundreds
of individual commands). We believe these likely contain
repeated patterns that could be associated with an individual
bot. This analysis will make an interesting future work as it
could help to identify behaviors indicating malicious activity
and aid in attacker identification.

E. Usenames and Passwords

Each login attempt, whether successful or not, captures the
credentials that were given. A majority of these credentials
attempt privileged access (either 'root’, ’admin’, or some other
known default credential such as "ubnt’ for a Ubiquiti device),
but many do not and instead utilize random usernames and
a wide variety of passwords. As discussed in [2], this data
is very useful as a Cyber Threat Intelligence (CTI) feed,
allowing for compromised usernames and passwords to be

black-listed from a system. Fig. 9 shows the number of unique
usernames found in each honeypot over the duration of this
study, while Fig. 10 shows all unique passwords used to
gain access. Cowrie randomly accepts any login credentials
after a variable number of attempts (set at three for our
application), in an effort to ”fool” attackers into believing they
have correctly guessed login credentials. The most commonly
used usernames and passwords are listed in table IV.

F. Malicious Downloads

Some Cowrie event contains a key messages that detail a
command being executed in the honeypot. If a search is done
for the string wget one can find attempts by an attacker to re-
trieve files from a remote host and download it to the honeypot.
These are typically shell scripts that are then made executable
using a chmod command either in the same message, or in
a subsequent message, and are then run in the compromised
machine. A list of these compromised files is gathered and
could be used as a CTI feed to identify known malicious
filenames. The IP addresses or URLs indicated in these down-
load commands can be considered highly malicious, either as
command and control devices, or more likely as file storage
devices used for downloading malicious software. Again, these
are often routed through a VPN or VPS. To help pinpoint
likely sources for these downloads, a list of known VPN and
data center addresses, and an api (getipintel.net) are used, and
a list of possible actual download IP addresses is compiled.
1564 unique IP addresses are identified that do not appear in
the known VPN or data center list. As a future work, it would
be interesting to retrieve these shell scripts and analyze them
forensically. The top 20 malicious file names, all of which
appear in each of the six honeypots is given in table IV.

V. CONCLUSION

To better understand attack patterns and behavior, honeypots
can be deployed to monitor and log activity by simulating
actual Internet facing services. By examining traffic patterns,
downloads, and traffic forwarding across a series of geo-
graphically separate devices we attempt to better understand
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Fig. 9. Unique usernames per honeypot.
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