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Abstract: Computer-aided methods, based on the entropic linear program framework, have been1

shown to be effective in assisting the study of information theoretic fundamental limits of information2

systems. One key element that significantly impacts their computation efficiency and applicability3

is the reduction of variables, based on problem-specific symmetry and dependence relations. In4

this work, we propose using the disjoint-set data structure to algorithmically identify the reduction5

mapping, instead of relying on exhaustive enumeration in the equivalence classification. Based on6

this reduced linear program, we consider four techniques to investigate the fundamental limits of7

information systems: 1) computing an outer bound for a given linear combination of information8

measures and providing the values of information measures at the optimal solution; 2) efficiently9

computing a polytope tradeoff outer bound between two information quantities; 3) producing a10

proof (as a weighted sum of known information inequalities) for a computed outer bound; and 4)11

providing the range for information quantities between which the optimal value does not change, i.e.,12

sensitivity analysis. A toolbox, with an efficient JSON format input frontend, and either Gurobi or13

Cplex as the linear program solving engine, is implemented and open-sourced.14

Keywords: Capacity, converse bounds, computational methods.15

1. Introduction16

One of the most distinguishing features of information theory is its ability to provide fundamental17

limits to various communication and computation systems, which may be extremely difficult, if not18

impossible, to establish otherwise. There are a set of well-known information inequalities, such as the19

non-negativity of mutual information and conditional mutual information, which are guaranteed to20

hold simply due to the basic mathematical properties of the information measures such as entropy and21

conditional mutual information. Fundamental limits of various information systems can be obtained22

by combining these inequalities strategically. The universality of the information measures implies23

that fundamental limits of diverse information systems can be derived in a general manner.24

Conventionally, the proofs for such fundamental limits are hand-crafted and written as a chain of25

inequalities, where each individual step is one of the afore-mentioned known information inequalities,26

or certain equality and inequalities implied by the specific problem settings. As information systems27

become more and more complex, such manual efforts have become increasingly unwieldy, and28

computer-aided approaches naturally emerge as possible alternatives. A computer-aided approach29

can be particularly attractive and productive during the stage of initial problem exploration and when30

the complexity of the system prevents an effective bound to be constructed manually.31

The entropic linear programming (LP) framework [1] was the first major step toward this direction,32

however since the resultant LPs are usually very large, a direct adoption limits its applicability to33
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simple problem settings, typically with no greater than ten random variables. In several recent works34

[2–7] which were led by the first author of the current work, it was shown that reductions based35

on problem-specific symmetry and dependence relations can be used to make the problems more36

manageable. In this work, we further develop this research direction. First, we adopt an efficient data37

structure, namely disjoint-set [8], to improve the efficiency of the afore-mentioned reduction. Then we38

consider and develop four techniques to investigate the fundamental limits of information systems: 1)39

computing a bound for a given linear combination of information measures and providing the value of40

information measures at the optimal solution; 2) efficiently computing a polytope tradeoff outer bound41

between two information quantities; 3) producing a proof (as a weighted sum of known information42

inequalities; and 4) providing the range for information quantities between which the optimal value43

does not change (sensitivity analysis). To improve the utility of the approach, an efficient JSON input44

format is provided, and a toolbox using either Cplex [9] or Gurobi [10] as the linear program solving45

engine, is implemented and open-sourced [11].46

2. Literature Review47

In a pioneer work, Yeung [1] pointed out and demonstrated how a linear programming (LP)48

framework can be used to computationally verify whether an information inequality involving49

Shannon’s information measures is true or not, or more precisely, whether it can be proved using50

a general set of known information inequalities, which has since been known as Shannon-type51

inequalities. A Matlab implementation based on this connection, called the information theory52

inequality prover (ITIP) [12], was made available online at the same time. A subsequent effort by53

another group (XITIP [13]) replaced the Matlab LP solver with a more efficient open source LP solver54

and also introduced a more user-friendly interface. Later on, a new version of ITIP also adopted a55

more efficient LP solver to improve the computation efficiency. ITIP and XITIP played important roles56

in the study of non-Shannon-type inequalities and Markov random fields [14–16].57

Despite its considerable impact, ITIP is a generic inequality prover, and utilizing it on any specific58

coding problem can be a daunting task. It can also fail to provide meaningful results due to the59

associated computation cost. Instead of using the LP to verify a hypothesized inequality, a more60

desirable approach is to use a computational approach on the specific problem of interest to directly61

find the fundamental limits, and moreover, to utilize the inherent problem structure in reducing the62

computation burden. This was the approach taken on several problems of recent interest, such as63

distributed storage, coded caching and private information retrieval [2–7], and it was shown to be64

rather effective.65

One key difference in the above-mentioned line of work, compared to several other efforts in66

the literature, is the following. Since most information theoretic problems of practical relevance67

or current interests induce a quite large LP instance, considerable effort was given to reducing the68

number of LP variables and the number of LP constraints algorithmically, before the LP solver is69

even invoked. Particularly, problem-specific symmetry and dependence have been used explicitly for70

this purpose, instead of the standard approach of leaving them for the LP solver to eliminate. This71

approach allows the program to handle larger problems than ITIP can, which has yielded meaningful72

results on problems of current interest. Moreover, through LP duality, it has been demonstrated in [2]73

that human-readable proofs can be generated by taking advantage of the dual LP. This approach of74

generating proofs has been adopted and extended by several other works [17,18].75

From more theoretical perspectives, a minimum set of LP constraints under problem-specific76

dependence was fully characterized in [19], and the problem of counting the number of LP variables77

and constraints after applying problem specific symmetry relations was considered in [20]. However,78

these results do not lead to any algorithmic advantage, since the former relies on a set of relationship79

tests which are algorithmically expensive to complete, and the latter provided a method of counting80

instead of enumerating these information inequalities.81
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Li et al. used a similar computational approach to tackle the multilevel diversity coding problem82

[21] and multi-source network coding problems with simple network topology [22] (see also [23]);83

however the main focus was to provide an efficient enumeration and classification of the large number84

of specific small instances (all instances considered require 7 or fewer random variables) where85

each instance itself poses little computation issue. Beyond computing outer bounds, the problem of86

computationally generating inner bounds was also explored [24,25].87

Recently, Ho et al. [18] revisited the problem of using the LP framework for verifying the validity88

of information inequalities, and proposed a method to computationally disprove certain information89

inequalities. Moreover, it was shown that the alternating direction method of multipliers (ADMM) can90

be used to speed up the LP computation. In a different application of the LP framework [26], Gattegno91

et al. used it to improve the efficiency of the Fourier-Motzkin elimination procedure often encountered92

in information theoretic study of multiterminal coding problems. In another generalization of the93

approach, Gurpinar and Romashchenko used the computational approach in an extended probability94

space such that information inequalities beyond Shannon-types may become active [27].95

3. Information Inequalities and Entropic LP96

In this section, we provide the background and a brief review of the entropic linear program97

framework. Readers are referred to [28–30] for more details.98

3.1. Information Inequalities99

The most well-known information inequalities are based on the non-negativity of the conditional
entropy and mutual information, which are

H(X1|X2) ≥ 0

I(X1; X2|X3) ≥ 0, (1)

where the single random variables X1, X2, and X3 can be replaced by sets of random variables. A very100

large number of inequalities can be written this way, when the problem involves a total of n random101

variables X1, X2, . . . , Xn. Within the set of all information inequalities in the form shown in (1), many102

are implied by others. There are also other information inequalities implied by the basic mathematical103

properties of the information measure but not in these forms or directly implied by them, which are104

usually referred to as non-Shannon-type inequalities. Non-Shannon-type inequalities are notoriously105

difficult to enumerate and utilize [31–34]. In practice, almost all bounds for the fundamental limits of106

information systems have been derived using only Shannon-type inequalities.107

3.2. The Entropic LP Formulation108

Suppose we express all the relevant quantities in a particular information system (a coding
problem) as random variables (X1, X2, . . . , Xn), e.g., X1 is an information source and X3 is its encoded
version at a given point in the system. In this case, the derivation of a fundamental limit in an
information system or a communication system may be understood conceptually as the following
optimization problem:

minimize: a weighted sum of certain joint entropies

subject to: (I) generic constraints that any information measures must satisfy

(II) problem specific constraints on the information measures,

where the variables in this optimization problem are all the information measures on the random109

variables X1, X2, . . . , Xn that we can write down in this problem. For example, if H(X2, X3) is a certain110

quantity that we wish to minimize (e.g., as the total amount of the compressed information in the111

system), then the solution of the optimization problem with H(X2, X3) being the objective function112
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will provide the fundamental limit of this quantity (e.g., the lowest amount we can compress the113

information to).114

The first observation is that the variables in the optimization problem may be restricted to all115

possible joint entropies. In other words, there are 2n − 1 variables of the form of H(XA) where116

A ⊆ {1, 2, . . . , n}. We do not need to include conditional entropy, mutual information, or conditional117

mutual information, becuase they may be written simply as linear combinations of the joint entropies.118

Next let us focus on the two classes of constraints. To obtain a good (hopefully tight) bound, we
wish to include all the Shannon-type inequalities as generic constraints in the first group of constraints.
However, enumerating all of them is not the best approach, as we have mentioned earlier that there
are redundant inequalities that are implied by others. Yeung identified a minimal set of constraints
which are called elemental inequalities [1,29]:

H(Xi|XA) ≥ 0, i ∈ {1, 2, . . . , n}, A ⊆ {1, 2, . . . , n} \ {i} (2)

I(Xi; Xj|XA) ≥ 0, i 6= j, i, j ∈ {1, 2, . . . , n}, A ⊆ {1, 2, . . . , n} \ {i, j}. (3)

Note that both (2) and (3) can be written as linear constraints in terms of joint entropies. It is119

straightforward to see that there are n + (n
2)2

n−2 elemental inequalities. These are the generic120

constraints that we will use in group (I).121

The second group of constraints are the problem specific constraints. These are usually the
implication relations required by the system or the specific coding requirements. For example, if X4 is
a coded representation of X1 and X2, then this relation can be represented as

H(X4|X1, X2) = H(X1, X2, X4)− H(X1, X2) = 0, (4)

which is a linear constraint. This group of constraints may also include independence and conditional
independence relations. For example, if X1, X3, X7 are three mutually independent sources, then this
relation can be represented as

H(X1, X3, X7)− H(X1)− H(X3)− H(X7) = 0, (5)

which is also a linear constraint. In the examples in later sections, we will provide these constraints122

more specifically.123

The two groups of constraints are both linear in terms of the optimization problem variables, i.e.,124

the 2n − 1 joint entropies (defined on the n random variables), and thus we have a linear program (LP)125

at hand.126

4. Symmetry and Dependence Relations127

In this section, we discuss two relations that can help reduce the complexity of the entropic LP,128

without which many information system or coding problems of practical interest appear too complex129

to be solved in the entropic LP formulation. To be more specific, we first introduce two working130

examples that will be used throughout this paper to illustrate the main idea.131

4.1. Two Examples132

The two example problems are the regenerating code problem and the coded caching problem:133

• The (n, k, d) regenerating code problem [35,36] is depicted in Figure 1. It considers the situation
that a message is stored in a distributed manner in n nodes, each having capacity α (Figure 1(a)).
Two coding requirements need to be satisfied: 1) the message can be recovered from any k nodes
(Figure 1(b)), and 2) any single node can be repaired by downloading β amount of information
from any d of the other nodes (Figure 1(c)). The fundamental limit of interest is the optimal
tradeoff between the storage cost α and the download cost β. We will use the (n, k, d) = (4, 3, 3)
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(a) Encoding (b) Recovery (c) Repair

Figure 1. The regenerating code problem with (n, k, d) = (4, 3, 3). .

(a) Caching (b) Request (c) Multicast

Figure 2. The caching problem with (N, K) = (2, 3).

case as our working example. In this setting, the stored contents are W1, W2, W3, W4, and the
repair message sent from node i to repair j is denoted as Si,j. In this case, the set of the random
variables in the problem are

W1, W2, W3, W4, S1,2, S1,3, S1,4, S2,1, S2,3, S2,4, S3,1, S3,2, S3,4, S4,1, S4,2, S4,3.

Some readers may notice that we do not include a random variable to represent the original134

message stored in the system. This is because it can be equivalently viewed as the collection of135

(W1, W2, W3, W4) and can thus be omitted in this formulation.136

• The (N, K) coded caching problem [37] considers the situation that a server, which holds a
total N mutually independent files of unit size each, serves a set of K users, each with a local
cache of size M. The users can prefetch some content (Figure 2(a)), but when they reveal their
requests (Figure 2(b)), the server must calculate and multicast a common message of size R
(Figure 2(c)). The requests are not revealed to the server beforehand, and the prefetching must be
designed to handle all cases. The fundamental limit of interest is the optimal tradeoff between
the cache capacity M and the transmission size R. In this setting, the messages are denoted as
(W1, W2, . . . , WN), the prefetched contents as (Z1, Z2, . . . , ZK), and the transmission when the
users requests (d1, d2, . . . , dK) is written as Xd1,d2,...,dK . We will use the case (N, K) = (2, 3) as our
second running example in the sequel, and in this case the random variables in the problem are

W1, W2, Z1, Z2, Z3, X1,1,1, X1,1,2, X1,2,1, X1,2,2, X2,1,1, X2,1,2, X2,2,1, X2,2,2.

4.2. The Dependency Relation137

The dependency (or implication) relation, e.g., the one given in (4), can be included in the138

optimization problem in different ways. The first option, which is the simplest, is to include these139

equality constraints directly as constraints of the LP. There is however another method. Observe that140

since the two entropy values are equal, we can simply represent them using the same LP variable,141

instead of generating two different LP variables then insisting that they are of the same value. This142
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Figure 3. A graph representation for dependence relation in the regenerating code problem with
(n, k, d) = (4, 3, 3).

helps reduce the number of LP variables in the problem. In our two working examples, the dependence143

relations are as follows.144

• The regenerating code problem: the relations are the following

H(S1,2, S1,3, S1,4|W1) = 0, H(S2,1, S2,3, S2,4|W2) = 0, H(S3,1, S3,2, S3,4|W3) = 0,

H(S4,1, S4,2, S4,3|W4) = 0, H(W1|S2,1, S3,1, S4,1) = 0, H(W2|S1,2, S3,2, S4,2) = 0,

H(W3|S1,3, S2,3, S4,3) = 0, H(W4|S1,4, S2,4, S3,4) = 0. (6)

The first equality implies that

H(S1,2, S1,3, S1,4, W1) = H(W1), (7)

and we can alternatively write

W1 → {S1,2, S1,3, S1,4}. (8)

Other dependence relations can be converted similarly. This dependence structure can also145

be represented as a graph shown in Fig. 3. In this graph, a given node (random variable) is a146

function of others random variables with an incoming edge.147

• The caching problem: the relations are the following

H(Z1, Z2, Z3, X1,1,1, X1,1,2, X1,2,1, X1,2,2, X2,1,1, X2,1,2, X2,2,1, X2,2,2|W1, W2) = 0,

H(W1|Z1, X1,1,1) = 0, H(W1|Z2, X1,1,1) = 0, H(W1|Z3, X1,1,1) = 0, H(W1|Z1, X1,1,2) = 0,

H(W1|Z2, X1,1,2) = 0, H(W2|Z3, X1,1,2) = 0, H(W1|Z1, X1,2,1) = 0, H(W2|Z2, X1,2,1) = 0,

H(W1|Z3, X1,2,1) = 0, H(W1|Z1, X1,2,2) = 0, H(W2|Z2, X1,2,2) = 0, H(W2|Z3, X1,2,2) = 0,

H(W2|Z1, X2,1,1) = 0, H(W1|Z2, X2,1,1) = 0, H(W1|Z3, X2,1,1) = 0, H(W2|Z1, X2,1,2) = 0,

H(W1|Z2, X2,1,2) = 0, H(W2|Z3, X2,1,2) = 0, H(W2|Z1, X2,2,1) = 0, H(W2|Z2, X2,2,1) = 0,

H(W1|Z3, X2,2,1) = 0, H(W2|Z1, X2,2,2) = 0, H(W2|Z2, X2,2,2) = 0, H(W2|Z3, X2,2,2) = 0.

4.3. The Symmetry Relation148

In many problems, there are certain symmetry relations present. Such symmetry relations are149

usually a direct consequence of the structure of the information systems. Often it is without loss of150

optimality to consider only codes with a specific symmetric structure. In our two working examples,151

the symmetry relations are as follows.152

• The regenerating code problem: exchanging the coding functions for different storage nodes.
For example, if we simply let node 2 store the content for node 1, and also exchange other
coding functions, the result is another code that can fulfill the same task as before this exchange.
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Mathematically, we can represent the symmetry relation using permutations of all the random
variables, where each row indicates a permutation as follows:

W1, W2, W3, W4, S1,2, S1,3, S1,4, S2,1, S2,3, S2,4, S3,1, S3,2, S3,4, S4,1, S4,2, S4,3

W1, W2, W4, W3, S1,2, S1,4, S1,3, S2,1, S2,4, S2,3, S4,1, S4,2, S4,3, S3,1, S3,2, S3,4

W1, W3, W2, W4, S1,3, S1,2, S1,4, S3,1, S3,2, S3,4, S2,1, S2,3, S2,4, S4,1, S4,3, S4,2

W1, W4, W3, W2, S1,4, S1,3, S1,2, S4,1, S4,3, S4,2, S3,1, S3,4, S3,2, S2,1, S2,4, S2,3

W1, W3, W4, W2, S1,3, S1,4, S1,2, S3,1, S3,4, S3,2, S4,1, S4,3, S4,2, S2,1, S2,3, S2,4

W1, W4, W2, W3, S1,4, S1,2, S1,3, S4,1, S4,2, S4,3, S2,1, S2,4, S2,3, S3,1, S3,4, S3,2

W2, W1, W3, W4, S2,1, S2,3, S2,4, S1,2, S1,3, S1,4, S3,2, S3,1, S3,4, S4,2, S4,1, S4,3

W2, W4, W3, W1, S2,4, S2,3, S2,1, S4,2, S4,3, S4,1, S3,2, S3,4, S3,1, S1,2, S1,4, S1,3

W2, W1, W4, W3, S2,1, S2,4, S2,3, S1,2, S1,4, S1,3, S4,2, S4,1, S4,3, S3,2, S3,1, S3,4

W2, W4, W1, W3, S2,4, S2,1, S2,3, S4,2, S4,1, S4,3, S1,2, S1,4, S1,3, S3,2, S3,4, S3,1

W2, W3, W1, W4, S2,3, S2,1, S2,4, S3,2, S3,1, S3,4, S1,2, S1,3, S1,4, S4,2, S4,3, S4,1

W2, W3, W4, W1, S2,3, S2,4, S2,1, S3,2, S3,4, S3,1, S4,2, S4,3, S4,1, S1,2, S1,3, S1,4

W3, W2, W1, W4, S3,2, S3,1, S3,4, S2,3, S2,1, S2,4, S1,3, S1,2, S1,4, S4,3, S4,2, S4,1

W3, W2, W4, W1, S3,2, S3,4, S3,1, S2,3, S2,4, S2,1, S4,3, S4,2, S4,1, S1,3, S1,2, S1,4

W3, W1, W2, W4, S3,1, S3,2, S3,4, S1,3, S1,2, S1,4, S2,3, S2,1, S2,4, S4,3, S4,1, S4,2

W3, W1, W4, W2, S3,1, S3,4, S3,2, S1,3, S1,4, S1,2, S4,3, S4,1, S4,2, S2,3, S2,1, S2,4

W3, W4, W1, W2, S3,4, S3,1, S3,2, S4,3, S4,1, S4,2, S1,3, S1,4, S1,2, S2,3, S2,4, S2,1

W3, W4, W2, W1, S3,4, S3,2, S3,1, S4,3, S4,2, S4,1, S2,3, S2,4, S2,1, S1,3, S1,4, S1,2

W4, W2, W3, W1, S4,2, S4,3, S4,1, S2,4, S2,3, S2,1, S3,4, S3,2, S3,1, S1,4, S1,2, S1,3

W4, W2, W1, W3, S4,2, S4,1, S4,3, S2,4, S2,1, S2,3, S1,4, S1,2, S1,3, S3,4, S3,2, S3,1

W4, W1, W3, W2, S4,1, S4,3, S4,2, S1,4, S1,3, S1,2, S3,4, S3,1, S3,2, S2,4, S2,1, S2,3

W4, W1, W2, W3, S4,1, S4,2, S4,3, S1,4, S1,2, S1,3, S2,4, S2,1, S2,3, S3,4, S3,1, S3,2

W4, W3, W1, W2, S4,3, S4,1, S4,2, S3,4, S3,1, S3,2, S1,4, S1,3, S1,2, S2,4, S2,3, S2,1

W4, W3, W2, W1, S4,3, S4,2, S4,1, S3,4, S3,2, S3,1, S2,4, S2,3, S2,1, S1,4, S1,3, S1,2

Note that when we permute the storage contents (W1, W2, W3, W4) the corresponding repair
information needs to be permuted accordingly. The 24 permutations clearly form a permutation
group. With this representation, we can take any subset of the columns, and the collections of the
random variables in each row in these columns will have the same entropy in the corresponding
symmetric code. For example, if we take columns 2, 9, 15, then we have that

H(W1, S2,1, S4,1) = H(W1, S2,1, S3,1) = H(W1, S3,1, S4,1) = ...

There are a total of 216− 1 subset of columns, and they each will induce a set of equality relations.153

For a more rigorous discussion of this symmetry relation, the readers can refer to [2,20].154

• Similarly, in the caching problem, there are two types of symmetry relations. The first is to
exchange the coding functions for each users, and the second is to exchange the operation on
different files. Intuitively, the first one is due to a permutation of the users, and the second due to
the permutation of the files. As a consequence, we have the following permutations that form a
group:

W1, W2, Z1, Z2, Z3, X1,1,1, X1,1,2, X1,2,1, X1,2,2, X2,1,1, X2,1,2, X2,2,1, X2,2,2

W2, W1, Z1, Z2, Z3, X2,2,2, X2,2,1, X2,1,2, X2,1,1, X1,2,2, X1,2,1, X1,1,2, X1,1,1
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W1, W2, Z2, Z1, Z3, X1,1,1, X1,1,2, X2,1,1, X2,1,2, X1,2,1, X1,2,2, X2,2,1, X2,2,2

W2, W1, Z2, Z1, Z3, X2,2,2, X2,2,1, X1,2,2, X1,2,1, X2,1,2, X2,1,1, X1,1,2, X1,1,1

W1, W2, Z3, Z2, Z1, X1,1,1, X2,1,1, X1,2,1, X2,2,1, X1,1,2, X2,1,2, X1,2,2, X2,2,2

W2, W1, Z3, Z2, Z1, X2,2,2, X1,2,2, X2,1,2, X1,1,2, X2,2,1, X1,2,1, X2,1,1, X1,1,1

W1, W2, Z1, Z3, Z2, X1,1,1, X1,2,1, X1,1,2, X1,2,2, X2,1,1, X2,2,1, X2,1,2, X2,2,2

W2, W1, Z1, Z3, Z2, X2,2,2, X2,1,2, X2,2,1, X2,1,1, X1,2,2, X1,1,2, X1,2,1, X1,1,1

W1, W2, Z2, Z3, Z1, X1,1,1, X2,1,1, X1,1,2, X2,1,2, X1,2,1, X2,2,1, X1,2,2, X2,2,2

W2, W1, Z2, Z3, Z1, X2,2,2, X1,2,2, X2,2,1, X1,2,1, X2,1,2, X1,1,2, X2,1,1, X1,1,1

W1, W2, Z3, Z1, Z2, X1,1,1, X1,2,1, X2,1,1, X2,2,1, X1,1,2, X1,2,2, X2,1,2, X2,2,2

W2, W1, Z3, Z1, Z2, X2,2,2, X2,1,2, X1,2,2, X1,1,2, X2,2,1, X2,1,1, X1,2,1, X1,1,1

For a more detailed discussion on this symmetry relation, the readers can refer to [4,20].155

Two remarks are now in order:156

• For the purpose of deriving outer bounds, it is valid to ignore the symmetry relation altogether,157

or consider only part of the symmetry relation, as long as the remaining permutations still158

form a group. For example, in the caching problem if we only consider the symmetry induced159

by exchanging the two messages, then we have the first 2 rows instead of the full 12 rows of160

permutations. Omitting some permutations means less reduction in the LP scale, but does not161

invalidate the computed bounds.162

• Admittedly, representing the symmetry relation using the above permutation representation is163

not the most concise approach, and there exists mathematically precise and concise language164

to specify such structure. We choose this permutation approach because of its simplicity and165

universality, and perhaps more importantly, due to its suitability for software implementation.166

5. Reducing the Problem Algorithmically via the Disjoint-Set Data Structure167

In this section, we first introduce the equivalence relation and classification of joint entropies, and168

then introduce the disjoint-set data structure to identify the classification in an algorithmic manner.169

5.1. Equivalence Relation and Reduction170

The two reductions mentioned in the previous section essentially provide an equivalent relation
and a classification of the joint entropies of subsets of the random variables. To see this, let us consider
the regenerating code problem. Due to the dependence structure, the following entropies are equal:

H(W1, S2,1) = H(W1, S1,2, S2,1) = H(W1, S1,3, S2,1) = H(W1, S1,4, S2,1) = H(W1, S1,2, S1,3, S2,1)

= H(W1, S1,2, S1,4, S2,1) = H(W1, S1,3, S1,4, S2,1) = H(W1, S1,2, S1,3, S1,4, S2,1), (9)

and the following subsets are thus equivalent in this setting:

{W1, S2,1} ≡ {W1, S1,2, S2,1} ≡ {W1, S1,3, S2,1} ≡ {W1, S1,4, S2,1} ≡ {W1, S1,2, S1,3, S2,1}
≡ {W1, S1,2, S1,4, S2,1} ≡ {W1, S1,3, S1,4, S2,1} ≡ {W1, S1,2, S1,3, S1,4, S2,1}. (10)

Orthogonal to the dependence relation, the symmetry provides further opportunity to build
equivalence. For example, for the first item H(W1, S2,1) above, we have by symmetry

H(W1, S2,1) = H(W1, S3,1) = H(W1, S4,1) = H(W2, S1,2) = H(W2, S4,2) = H(W2, S3,2)

= H(W3, S1,3) = H(W3, S2,3) = H(W3, S4,3) = H(W4, S1,4) = H(W4, S2,4) = H(W4, S3,4), (11)
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and for the second term H(W1, S1,2, S2,1) we have

H(W1, S1,2, S2,1) = H(W1, S1,3, S3,1) = H(W1, S1,4, S4,1)

= H(W2, S2,3, S3,2) = H(W2, S1,2, S2,1) = H(W2, S2,4, S4,2)

= H(W3, S1,3, S3,1) = H(W3, S2,3, S3,2) = H(W3, S3,4, S4,3)

= H(W4, S1,4, S4,1) = H(W4, S2,4, S4,2) = H(W4, S3,4, S4,3). (12)

Such symmetry-induced equivalence relation holds similarly for every item in (9). All joint entropies171

such related have the same value.172

Mathematically, the dependence and the symmetry jointly induce an equivalence relation, and
we wish to identify the classification based on this equivalence relation. The key to efficiently form
the reduced LP is to identify the mapping from any subset of random variables to an index of the
equivalence class it belongs to, i.e.,

f : 2{1,2,...,n} → {1, 2, . . . , N∗}, (13)

where N∗ is the total number of equivalence classes such induced. In terms of software implementation,
the mapping f assigns any subset of the n random variables in the problem to an index, which also
serves as the index of the variable in the linear program. More precisely, this mapping provides the
fundamental reduction mechanism in the LP formulation, where an elemental constraint of the form

H(Xi|XA) ≥ 0 (14)

becomes the inequality in the resultant LP

Yf ({i}∪A) −Yf (A) ≥ 0, (15)

where the Y’s are the variables in the LP; similarly, the elemental constraint

I(Xi; Xj|XA) ≥ 0 (16)

becomes

Yf ({i}∪A) + Yf ({j}∪A) −Yf (A) −Yf ({i,j}∪A) ≥ 0. (17)

5.2. Difficulty in Identifying the Reduction173

Following the discussion above, each given subset A ⊆ {1, 2, . . . , n} belongs to an equivalent
class of subsets, and an arbitrary element in the equivalent class can be designated (and fixed) as the
leader of this equivalent class. To efficiently complete the classification task, we need to be able to find
for each given subset A the leader of the equivalent class this subset belongs to. In the example given
above, this step is reasonably straightforward. Complications arise when multiple reduction steps
are required. To see this, let us consider the set {S1,2, S2,3, S4,3, S2,1, S4,1}. By the dependence relation
{S1,3, S2,3, S4,3} →W3, we know

H(S1,3, S2,3, S4,3, S2,1, S4,1) = H(W3, S1,3, S2,3, S4,3, S2,1, S4,1). (18)

However, we also have

H(W3, S1,3, S2,3, S4,3, S2,1, S4,1) = H(W3, S1,3, S2,3, S4,3, S2,1, S3,1, S4,1, S3,2, S3,4), (19)
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because of the dependence relation W3 → {S3,1, S3,2, S3,4}, from which we can further derive

H(W3, S1,3, S2,3, S4,3, S2,1, S3,1, S4,1, S3,2, S3,4) = H(W1, W3, S1,3, S2,3, S4,3, S2,1, S3,1, S4,1, S3,2, S3,4), (20)

due to the dependence relation {S2,1, S3,1, S4,1} →W1. In this process, we have applied three different174

dependence relations in the particular order. In a computer program, this implies that we need to175

iterate over all the dependence relations in the problem to apply the appropriate one, and then repeat176

the process until no further dependence relation can be applied. To make things worse, the symmetry177

relation would need to be taken into account: for example, we will also need to consider how to178

recognize one subset to be a permuted version of another subset, and whether to do so before or after179

applying the dependence relation. A naive implementation to find the mapping function f will be180

highly inefficient.181

5.3. Disjoint-Set Data Structure and Algorithmic Reduction182

The afore-mentioned difficulty can be resolved using a suitable data structure, namely disjoint-set183

[8]. A disjoint-set data structure is also called a union-find structure, and as its name suggests, it184

stores a collection of disjoint sets. The most well known method to accomplish this task is through a185

disjoint-set forest [8], which can perform the union operation in constant time, and the find operation186

(find for an element the index, or the leading element, of the set that it belongs to) in near constant187

amortized time.188

Roughly speaking, the disjoint-set forest in our setting starts with each subset of random variables189

A ⊆ {1, 2, . . . , n} viewed as its own disjoint set and assigned an index; clearly we will have a total190

2n − 1 singleton sets at initialization. We iterate through each symmetry permutation and dependence191

relation as follows:192

• Symmetry step: For each singleton set (which corresponds to a subset A ⊆ {1, 2, . . . , n}) in the193

disjoint-set structure, consider each permutation in the symmetry relation: if the permutation194

maps A into another element (which corresponds to another subset of random variables A′ ⊆195

{1, 2, . . . , n}) not already in the same set in the disjoint-set structure, then we combine the two196

sets by forming their union.197

• Dependence step: For each existing set in the disjoint-set structure, consider each dependence198

relation: if the set leader (which corresponds to a subset A ⊆ {1, 2, . . . , n}) is equivalent to199

another element due to the given dependence (which corresponds to another subset of random200

variablesA′ ⊆ {1, 2, . . . , n}) not already in the same set, then we combine the two sets by forming201

their union.202

The key for the efficiency of this data structure is that the union operation is done through pointers,203

instead of physical memory copy. Moreover, inherent in the data structure is a tree representation of204

each set, and thus finding the leader index is equivalent to finding the tree root, which is much more205

efficient than a linear search. The data structure is maintained dynamically during union and find206

operations, and the height of a tree will be reduced (compressed) when a find operation is performed207

or when the tree becomes too high.208

Clearly, due to the usage of this data structure, the dependence relation does not need to
be exhaustively listed, because the permuted version of the dependence relation is accounted for
automatically. For example, in the regenerating code problem, including only two dependence relations
will suffice, when used jointly with the symmetry relations:

W1 → {S1,2, S1,3, S1,4}, {S2,1, S3,1, S4,1} →W1. (21)

This replaces the 8 dependence relations given in (6).209

In the context of our setting, after the disjoint-set forest is found after both the symmetry step and210

the dependence step, another enumeration step is performed to generate the mapping function f (·),211
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Figure 4. A fixed direction bounding plane and the tradeoff region computation.

which can be done in time 2n. In practice, we observe this data structure is able to provide considerable212

speedup (sometimes up to 50 fold), though the precise speedup factor depends on the problem-specific213

dependence and symmetry relations case by case.214

6. Four Investigative Techniques215

In this section, we introduce four investigative techniques to study fundamental limits of216

information systems. With the efficient reduction discussed above, these methods are rather powerful217

tools in such information theoretic studies.218

6.1. Bounding Plane Optimization and Queries219

In this case, the objective function is fixed, and the optimal solution gives an outer bound of a220

specific linear combination of several information measures or relevant quantities. Fig. 4 illustrates the221

method, where we wish to find a lower bound of the given direction for the given optimal tradeoff222

shown in red. Let us again consider the two working examples.223

• If the simple sum of the storage cost α and repair cost β, i.e., α + β, needs to be lower-bounded in
the regenerating code problem, we can let the objective function be given as

H(W1) + H(S1,2)

and then minimize it. The optimal value will be a lower bound, which in this case turns out to be224

5/8. Note that by taking advantage of the symmetry, the objective function set up above indeed225

specifies the sum rate of any storage and repair transmission.226

• If we wish to lower bound the simple sum of memory and rate in the coded caching problem,
the situation is somewhat sutble. Note that the rate R is a lower bound on the entropy H(X1,1,1)

and H(1, 2, 2); however, the symmetry relation does not imply that H(X1,1,1) = H(X1,2,2). For
this case, we can introduce an additional LP variable R, and add the constraints that

H(X1,1,1) ≤ R, H(X1,2,2) ≤ R.

We then set the objective function to be

H(Z1) + R,

from which the minimum value is a lower bound on the simple sum of memory and rate in this227

setting.228

In addition to simply computing the supporting hyperplane, it is important to extract useful229

information from the optimal solution. Particularly, we may wish to probe for the values of certain230
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information measures in the optimal solution. For example, in the case above for coded caching,231

we may be interested in the value of I(Z1; W1), which essentially reveals the amount of information232

regarding W1 that is stored in Z1 in an uncoded form.233

6.2. Tradeoff and Convex Hull Computation234

In many cases, instead of bounding a fixed rate combination, we are interested in the tradeoff of235

several quantities, most frequently the optimal tradeoff between two quantities; see Fig. 4 again for an236

illustration. The two working examples both belong to this case.237

Since the constrained set in the LP is a polytope, the resulting outer bound to the optimal tradeoff238

will be a piece-wise linear bound. A naive strategy is to trace the boundary by sampling points239

on a sufficiently dense grid. However, this approach is time consuming and not accurate. Instead240

the calculation of this piece-wise linear outer bound is equivalent to computing the projection of a241

convex polytope, for which Lassez’s algorithm is in fact a method to complete the task efficiently. We242

implemented Lassez’s algorithm for the projection on to two-dimensional space in this toolbox. A243

more detailed description of this algorithm can be found in [38], and the specialization used in the244

program can be found in [4].245

6.3. Duality and Computer-generated Proof246

After identifying a valid outer bound, we sometimes wish to find a proof for this bound. In fact,
even if the bound is not optimal, or it is a only hypothesized bound, we may still attempt to prove it.
For example, in the regenerating code problem, we have

H(W1) + H(S1,2) ≥
5
8

. (22)

How can we prove this inequality? It is clear from the LP duality that this inequality is a weighted247

sum of the individual constraints in the LP. Thus as long as we find one such weighted sum, we can248

then write down a chain of inequalities directly by combining these inequalities one by one; for a more249

detailed discussion, see [2,4,17,18].250

6.4. Sensitivity Analysis251

At the computed optimal value, we can probe for the range of certain information measures such252

that forcing them to be in these ranges does not change the value of the optimal solution. Consider the253

quantity I(Z1; W1) in the caching problem. It may be possible for it to take values between [0.2, 0.4]254

without changing the optimal value of the original optimization problem. On the other hand, if it can255

only take value 0.2, then this suggests if a code to achieve this optimal value indeed exists, it must256

have this amount of uncoded information regarding W1 stored in Z1. This information can be valuable257

in reverse-engineering optimal codes; see [4] for discussion of such usage.258

7. JSON Problem Descriptions259

In the implemented toolbox, the program can read a problem description file (a plain text file), and260

the desired computed bounds or proof will be produced without further user intervention. In our work,261

significant effort has been invested in designing an efficient input format, and after a few iterations, a262

JSON based format was selected which considerably improves the usability and extendibility of the263

toolbox. In this section, we provide an example problem description, from which the syntax is mostly264

self-evident. More details can be found in the documentation accompanying the software [11]. The265

input problem description files must include the characters PD (which stand for “problem description"),266

followed by a JSON detailing the problem description.267
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7.1. Keys in PD JSON268

The program solves a minimization problem, i.e., to find a lower bound for certain information269

quantity. There are a total of 12 JSON keys allowed in the problem description:270

RV, AL, O, D, I, S, BC, BP, QU, SE, CMD, and OPT.271

These stand for random variables, additional LP variables, objective function, dependence,272

independence, bound-constant, bound-to-prove, query, sensitivity, command, and options, respectively.273

For the precise syntax, the readers are referred to the toolbox user manual. We next provide a simple274

example to illustrate the usage of this toolbox, from which these keywords are self-evident.275

7.2. An Example Problem Description File276

Below is a sample PD file for the regenerating code problem we previously discussed.277

# problem description file for (4,3,3) regenerating codes278

PD279

{280

"OPT": ["CS"] ,281

"RV" : ["W1","W2","W3","W4","S12","S13","S14","S21","S23","S24","S31","S32","S34","S41","S42","S43"] ,282

"AL" : ["A","B"] ,283

"O" : "A+B" ,284

"D" : [285

{"dependent" : ["S12","S13","S14"] , "given" : ["W1"]} ,286

{"dependent" : ["W1"] , "given" : ["S21","S31","S41"]}287

],288

"BC" : [289

"H(W1)-A<=0" ,290

"H(S12)-B<=0" ,291

"H(W1,W2,W3)>=1"292

],293

"SE": ["A", "B", "2I(S12;S21|S32)+H(S21|S31)+A"],294

"QU": ["A", "B", "2H(S12|S13)","-2I(S12;S21|S32)"],295

"S" : [296

["W1","W2","W3","W4","S12","S13","S14","S21","S23","S24","S31","S32","S34","S41","S42","S43"] ,297

["W1","W2","W4","W3","S12","S14","S13","S21","S24","S23","S41","S42","S43","S31","S32","S34"] ,298

["W1","W3","W2","W4","S13","S12","S14","S31","S32","S34","S21","S23","S24","S41","S43","S42"] ,299

["W1","W4","W3","W2","S14","S13","S12","S41","S43","S42","S31","S34","S32","S21","S24","S23"] ,300

["W1","W3","W4","W2","S13","S14","S12","S31","S34","S32","S41","S43","S42","S21","S23","S24"] ,301

["W1","W4","W2","W3","S14","S12","S13","S41","S42","S43","S21","S24","S23","S31","S34","S32"] ,302

["W2","W1","W3","W4","S21","S23","S24","S12","S13","S14","S32","S31","S34","S42","S41","S43"] ,303

["W2","W4","W3","W1","S24","S23","S21","S42","S43","S41","S32","S34","S31","S12","S14","S13"] ,304

["W2","W1","W4","W3","S21","S24","S23","S12","S14","S13","S42","S41","S43","S32","S31","S34"] ,305

["W2","W4","W1","W3","S24","S21","S23","S42","S41","S43","S12","S14","S13","S32","S34","S31"] ,306

["W2","W3","W1","W4","S23","S21","S24","S32","S31","S34","S12","S13","S14","S42","S43","S41"] ,307

["W2","W3","W4","W1","S23","S24","S21","S32","S34","S31","S42","S43","S41","S12","S13","S14"] ,308

["W3","W2","W1","W4","S32","S31","S34","S23","S21","S24","S13","S12","S14","S43","S42","S41"] ,309

["W3","W2","W4","W1","S32","S34","S31","S23","S24","S21","S43","S42","S41","S13","S12","S14"] ,310

["W3","W1","W2","W4","S31","S32","S34","S13","S12","S14","S23","S21","S24","S43","S41","S42"] ,311

["W3","W1","W4","W2","S31","S34","S32","S13","S14","S12","S43","S41","S42","S23","S21","S24"] ,312

["W3","W4","W1","W2","S34","S31","S32","S43","S41","S42","S13","S14","S12","S23","S24","S21"] ,313

["W3","W4","W2","W1","S34","S32","S31","S43","S42","S41","S23","S24","S21","S13","S14","S12"] ,314

["W4","W2","W3","W1","S42","S43","S41","S24","S23","S21","S34","S32","S31","S14","S12","S13"] ,315

["W4","W2","W1","W3","S42","S41","S43","S24","S21","S23","S14","S12","S13","S34","S32","S31"] ,316

["W4","W1","W3","W2","S41","S43","S42","S14","S13","S12","S34","S31","S32","S24","S21","S23"] ,317

["W4","W1","W2","W3","S41","S42","S43","S14","S12","S13","S24","S21","S23","S34","S31","S32"] ,318

["W4","W3","W1","W2","S43","S41","S42","S34","S31","S32","S14","S13","S12","S24","S23","S21"] ,319

["W4","W3","W2","W1","S43","S42","S41","S34","S32","S31","S24","S23","S21","S14","S13","S12"]320

],321

"BP" : [ "4A+6B>=3" ]322

}323

In this setting, we introduce two additional LP variables A and B to represent the storage rate α and324

the repair rate β, respectively. The objective function chosen is the sum rate A+B, i.e. α + β. The option325

CS means that we are running a validity check on the symmetry relation. The sensitivity analysis is326

performed on A, B, and a third expression 2I(S12;S21|S32)+H(S21|S31)+A. We can also query the327

four quantities given in the QU section. A bound that we may attempt to prove is 4A + 6B >= 3. By328

choosing the right computation functionality in the toolbox, we can let the program perform direct329
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bounding, convex hull computation, generating a proof, or sensitivity analysis using this problem330

description file.331

7.3. Example Computation Result332

The result to bound the sum rate α + β is given as follows:333

Symmetries have been successfully checked.334

Total number of elements before reduction: 65536335

Total number of elements after reduction: 179336

Total number of constraints given to Cplex: 40862337

******************************************************************338

Optimal value for A + B = 0.625000.339

Queried values:340

A = 0.37500341

B = 0.25000342

2H(S12|S13) = 0.25000343

-2I(S12;S21|S32) = -0.25000344

******************************************************************345

The first part of the output is various information about the problem and the corresponding check
and verification result. The last star-separated segment means that the program found a bound

α + β ≥ 0.625.

The queried quantities are also shown in this part, and it can be seen (α, β) in the LP optimal solution346

are (0.375, 0.25), together with the values of two other information measures.347

The toolbox can also identify the tradeoff between α and β, for which the output is as follows.348

Total number of elements before reduction: 65536349

Total number of elements after reduction: 179350

Total number of constraints given to Cplex: 40862351

New point (0.333333, 0.333333).352

New point (0.500000, 0.166667).353

New point (0.375000, 0.250000).354

355

List of found points on the hull:356

(0.333333, 0.333333).357

(0.375000, 0.250000).358

(0.500000, 0.166667).359

End of list of found points.360

Here the three (α, β) pairs are the corner points of the lower convex hull of the tradeoff.361

To prove this inequality, the toolbox gives362

Total number of elements before reduction: 65536363

Total number of elements after reduction: 179364

Total number of constraints given to Cplex: 40862365

******************************************************************366

LP dual value 29.000000367

Proved 2-th inequality: 4A + 6B >= 3.368

001-th inequality: weight = 1.000000 H(W1,W3,S21,S41) -H(W1,W3,S21,S23,S41) H(W1,S24,S31,S41) -H(W1,S24,S41)>=0369

002-th inequality: weight = 3.000000 -H(W1,W3,S21,S41) 2.0H(W1,S24) -H(W2)>=0370

003-th inequality: weight = 7.000000 -H(W1,S24) H(S13) H(W2)>=0371

004-th inequality: weight = 1.000000 -H(S13) H(W1,S31) H(S13,S24) -H(W1,S23,S41)>=0372

005-th inequality: weight = 1.000000 -H(W1,W2,W3,W4) -H(W1,S31) H(W1,W4,S21) H(W1,S24,S41)>=0373

006-th inequality: weight = 1.000000 H(W1,W3,S21,S41) -H(W1,W4,S21)>=0374

007-th inequality: weight = 1.000000 -H(W1,W2,W3,W4) H(W1,W3,S21,S41) H(W1,W3,S21,S23,S41) -H(W1,S24,S31,S41)>=0375

008-th inequality: weight = 1.000000 -H(W1,W2,W3,W4) H(W1,S24) -H(S13,S24) H(W1,S23,S41)>=0376

009-th inequality: weight = 4.000000 -H(W2) A>=0377

010-th inequality: weight = 6.000000 -H(S13) B>=0378

011-th inequality: weight = 3.000000 H(W1,W2,W3,W4) -1.0*>=0379

******************************************************************380

******************************************************************381

MIP dual value 29.000000382

Proved 2-th inequality using integer values: 4A + 6B >= 3.383

001-th inequality: weight = 1.000000 H(W1,W3,S21,S41) -H(W1,W3,S21,S23,S41) H(W1,S24,S31,S41) -H(W1,S24,S41)>=0384

002-th inequality: weight = 3.000000 -H(W1,W3,S21,S41) 2.0H(W1,S24) -H(W2)>=0385

003-th inequality: weight = 1.000000 H(W1,W3,S21,S41) -H(W1,W4,S21)>=0386

004-th inequality: weight = 7.000000 -H(W1,S24) H(S13) H(W2)>=0387

005-th inequality: weight = 1.000000 -H(S13) H(W1,S31) H(S13,S24) -H(W1,S23,S41)>=0388

006-th inequality: weight = 1.000000 -H(W1,W2,W3,W4) -H(W1,S31) H(W1,W4,S21) H(W1,S24,S41)>=0389

007-th inequality: weight = 1.000000 -H(W1,W2,W3,W4) H(W1,W3,S21,S41) H(W1,W3,S21,S23,S41) -H(W1,S24,S31,S41)>=0390

008-th inequality: weight = 1.000000 -H(W1,W2,W3,W4) H(W1,S24) -H(S13,S24) H(W1,S23,S41)>=0391
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009-th inequality: weight = 4.000000 -H(W2) A>=0392

010-th inequality: weight = 6.000000 -H(S13) B>=0393

011-th inequality: weight = 3.000000 H(W1,W2,W3,W4) -1.0*>=0394

******************************************************************395

The result can be interpreted as follows. The bound

4A + 6B ≥ 3

in the problem description file can be proved by adding the 11 inequalities shown, with the weights396

given for each one. A constant value is marked using the “*”. Note that the proof is solved twice,397

one using floating point values, and the other as an integer program; the latter sometimes yields a398

more concise proof, though not in this case. In practice, it may be preferable to perform one of them to399

reduce the overall computation.400

The sensitivity analysis gives401

Total number of elements before reduction: 65536402

Total number of elements after reduction: 179403

Total number of constraints given to Cplex: 40862404

******************************************************************405

Optimal value for A + B = 0.625000.406

Sensitivity results:407

Sensitivity A = [0.37500, 0.37500]408

Sensitivity B = [0.25000, 0.25000]409

Sensitivity 2I(S12;S21|S32) + H(S21|S31) + A= [0.87500, 0.87500]410

******************************************************************411

In this case, there does not exist any slack at this optimal value in these quantities.412

8. Conclusion413

In this work, we considered computational techniques to investigate fundamental limits of414

information systems. The disjoint-set data structure was adopted to identify the equivalence class415

mapping in an algorithmic manner, which is much more efficient than a naive linear enumeration. We416

provide an open source toolbox for four computational techniques. A JSON format frontend allows417

the toolbox to read a problem description file, convert it to the corresponding LP, and then produce418

meaningful bounds and other results directly without user intervention.419
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