

Article

Computational Techniques for Investigating Information Theoretic Limits of Information Systems

Chao Tian¹ , James Plank² , Brent Hurst³ , and Ruida Zhou⁴

¹ Texas A&M University; chao.tian@tamu.edu

² University of Tennessee Knoxville; jplank@utk.edu

³ University of Tennessee Knoxville; tmn678@vols.utk.edu

⁴ Texas A&M University; ruida@tamu.edu

Version September 16, 2021 submitted to *Information*

Abstract: Computer-aided methods, based on the entropic linear program framework, have been shown to be effective in assisting the study of information theoretic fundamental limits of information systems. One key element that significantly impacts their computation efficiency and applicability is the reduction of variables, based on problem-specific symmetry and dependence relations. In this work, we propose using the disjoint-set data structure to algorithmically identify the reduction mapping, instead of relying on exhaustive enumeration in the equivalence classification. Based on this reduced linear program, we consider four techniques to investigate the fundamental limits of information systems: 1) computing an outer bound for a given linear combination of information measures and providing the values of information measures at the optimal solution; 2) efficiently computing a polytope tradeoff outer bound between two information quantities; 3) producing a proof (as a weighted sum of known information inequalities) for a computed outer bound; and 4) providing the range for information quantities between which the optimal value does not change, i.e., sensitivity analysis. A toolbox, with an efficient JSON format input frontend, and either Gurobi or Cplex as the linear program solving engine, is implemented and open-sourced.

Keywords: Capacity, converse bounds, computational methods.

1. Introduction

One of the most distinguishing features of information theory is its ability to provide fundamental limits to various communication and computation systems, which may be extremely difficult, if not impossible, to establish otherwise. There are a set of well-known information inequalities, such as the non-negativity of mutual information and conditional mutual information, which are guaranteed to hold simply due to the basic mathematical properties of the information measures such as entropy and conditional mutual information. Fundamental limits of various information systems can be obtained by combining these inequalities strategically. The universality of the information measures implies that fundamental limits of diverse information systems can be derived in a general manner.

Conventionally, the proofs for such fundamental limits are hand-crafted and written as a chain of inequalities, where each individual step is one of the afore-mentioned known information inequalities, or certain equality and inequalities implied by the specific problem settings. As information systems become more and more complex, such manual efforts have become increasingly unwieldy, and computer-aided approaches naturally emerge as possible alternatives. A computer-aided approach can be particularly attractive and productive during the stage of initial problem exploration and when the complexity of the system prevents an effective bound to be constructed manually.

The entropic linear programming (LP) framework [1] was the first major step toward this direction, however since the resultant LPs are usually very large, a direct adoption limits its applicability to

34 simple problem settings, typically with no greater than ten random variables. In several recent works
35 [2–7] which were led by the first author of the current work, it was shown that reductions based
36 on problem-specific symmetry and dependence relations can be used to make the problems more
37 manageable. In this work, we further develop this research direction. First, we adopt an efficient data
38 structure, namely disjoint-set [8], to improve the efficiency of the afore-mentioned reduction. Then we
39 consider and develop four techniques to investigate the fundamental limits of information systems: 1)
40 computing a bound for a given linear combination of information measures and providing the value of
41 information measures at the optimal solution; 2) efficiently computing a polytope tradeoff outer bound
42 between two information quantities; 3) producing a proof (as a weighted sum of known information
43 inequalities; and 4) providing the range for information quantities between which the optimal value
44 does not change (sensitivity analysis). To improve the utility of the approach, an efficient JSON input
45 format is provided, and a toolbox using either Cplex [9] or Gurobi [10] as the linear program solving
46 engine, is implemented and open-sourced [11].

47 2. Literature Review

48 In a pioneer work, Yeung [1] pointed out and demonstrated how a linear programming (LP)
49 framework can be used to computationally verify whether an information inequality involving
50 Shannon's information measures is true or not, or more precisely, whether it can be proved using
51 a general set of known information inequalities, which has since been known as Shannon-type
52 inequalities. A Matlab implementation based on this connection, called the information theory
53 inequality prover (ITIP) [12], was made available online at the same time. A subsequent effort by
54 another group (XITIP [13]) replaced the Matlab LP solver with a more efficient open source LP solver
55 and also introduced a more user-friendly interface. Later on, a new version of ITIP also adopted a
56 more efficient LP solver to improve the computation efficiency. ITIP and XITIP played important roles
57 in the study of non-Shannon-type inequalities and Markov random fields [14–16].

58 Despite its considerable impact, ITIP is a generic inequality prover, and utilizing it on any specific
59 coding problem can be a daunting task. It can also fail to provide meaningful results due to the
60 associated computation cost. Instead of using the LP to verify a hypothesized inequality, a more
61 desirable approach is to use a computational approach on the specific problem of interest to directly
62 find the fundamental limits, and moreover, to utilize the inherent problem structure in reducing the
63 computation burden. This was the approach taken on several problems of recent interest, such as
64 distributed storage, coded caching and private information retrieval [2–7], and it was shown to be
65 rather effective.

66 One key difference in the above-mentioned line of work, compared to several other efforts in
67 the literature, is the following. Since most information theoretic problems of practical relevance
68 or current interests induce a quite large LP instance, considerable effort was given to reducing the
69 number of LP variables and the number of LP constraints algorithmically, before the LP solver is
70 even invoked. Particularly, problem-specific symmetry and dependence have been used explicitly for
71 this purpose, instead of the standard approach of leaving them for the LP solver to eliminate. This
72 approach allows the program to handle larger problems than ITIP can, which has yielded meaningful
73 results on problems of current interest. Moreover, through LP duality, it has been demonstrated in [2]
74 that human-readable proofs can be generated by taking advantage of the dual LP. This approach of
75 generating proofs has been adopted and extended by several other works [17,18].

76 From more theoretical perspectives, a minimum set of LP constraints under problem-specific
77 dependence was fully characterized in [19], and the problem of counting the number of LP variables
78 and constraints after applying problem specific symmetry relations was considered in [20]. However,
79 these results do not lead to any algorithmic advantage, since the former relies on a set of relationship
80 tests which are algorithmically expensive to complete, and the latter provided a method of counting
81 instead of enumerating these information inequalities.

82 Li et al. used a similar computational approach to tackle the multilevel diversity coding problem
 83 [21] and multi-source network coding problems with simple network topology [22] (see also [23]);
 84 however the main focus was to provide an efficient enumeration and classification of the large number
 85 of specific small instances (all instances considered require 7 or fewer random variables) where
 86 each instance itself poses little computation issue. Beyond computing outer bounds, the problem of
 87 computationally generating inner bounds was also explored [24,25].

88 Recently, Ho et al. [18] revisited the problem of using the LP framework for verifying the validity
 89 of information inequalities, and proposed a method to computationally disprove certain information
 90 inequalities. Moreover, it was shown that the alternating direction method of multipliers (ADMM) can
 91 be used to speed up the LP computation. In a different application of the LP framework [26], Gattegno
 92 et al. used it to improve the efficiency of the Fourier-Motzkin elimination procedure often encountered
 93 in information theoretic study of multiterminal coding problems. In another generalization of the
 94 approach, Gurpinar and Romashchenko used the computational approach in an extended probability
 95 space such that information inequalities beyond Shannon-types may become active [27].

96 3. Information Inequalities and Entropic LP

97 In this section, we provide the background and a brief review of the entropic linear program
 98 framework. Readers are referred to [28–30] for more details.

99 3.1. Information Inequalities

The most well-known information inequalities are based on the non-negativity of the conditional
 entropy and mutual information, which are

$$H(X_1|X_2) \geq 0 \\ I(X_1; X_2|X_3) \geq 0, \quad (1)$$

100 where the single random variables X_1 , X_2 , and X_3 can be replaced by sets of random variables. A very
 101 large number of inequalities can be written this way, when the problem involves a total of n random
 102 variables X_1, X_2, \dots, X_n . Within the set of all information inequalities in the form shown in (1), many
 103 are implied by others. There are also other information inequalities implied by the basic mathematical
 104 properties of the information measure but not in these forms or directly implied by them, which are
 105 usually referred to as non-Shannon-type inequalities. Non-Shannon-type inequalities are notoriously
 106 difficult to enumerate and utilize [31–34]. In practice, almost all bounds for the fundamental limits of
 107 information systems have been derived using only Shannon-type inequalities.

108 3.2. The Entropic LP Formulation

Suppose we express all the relevant quantities in a particular information system (a coding
 problem) as random variables (X_1, X_2, \dots, X_n) , e.g., X_1 is an information source and X_3 is its encoded
 version at a given point in the system. In this case, the derivation of a fundamental limit in an
 information system or a communication system may be understood conceptually as the following
 optimization problem:

minimize: a weighted sum of certain joint entropies
 subject to: (I) generic constraints that any information measures must satisfy
 (II) problem specific constraints on the information measures,

109 where the variables in this optimization problem are all the **information measures** on the random
 110 variables X_1, X_2, \dots, X_n that we can write down in this problem. For example, if $H(X_2, X_3)$ is a certain
 111 quantity that we wish to minimize (e.g., as the total amount of the compressed information in the
 112 system), then the solution of the optimization problem with $H(X_2, X_3)$ being the objective function

113 will provide the fundamental limit of this quantity (e.g., the lowest amount we can compress the
 114 information to).

115 The first observation is that the variables in the optimization problem may be restricted to all
 116 possible joint entropies. In other words, there are $2^n - 1$ variables of the form of $H(X_{\mathcal{A}})$ where
 117 $\mathcal{A} \subseteq \{1, 2, \dots, n\}$. We do not need to include conditional entropy, mutual information, or conditional
 118 mutual information, because they may be written simply as linear combinations of the joint entropies.

Next let us focus on the two classes of constraints. To obtain a good (hopefully tight) bound, we
 wish to include all the Shannon-type inequalities as generic constraints in the first group of constraints.
 However, enumerating all of them is not the best approach, as we have mentioned earlier that there
 are redundant inequalities that are implied by others. Yeung identified a minimal set of constraints
 which are called elemental inequalities [1,29]:

$$H(X_i|X_{\mathcal{A}}) \geq 0, \quad i \in \{1, 2, \dots, n\}, \quad \mathcal{A} \subseteq \{1, 2, \dots, n\} \setminus \{i\} \quad (2)$$

$$I(X_i; X_j|X_{\mathcal{A}}) \geq 0, \quad i \neq j, i, j \in \{1, 2, \dots, n\}, \quad \mathcal{A} \subseteq \{1, 2, \dots, n\} \setminus \{i, j\}. \quad (3)$$

119 Note that both (2) and (3) can be written as linear constraints in terms of joint entropies. It is
 120 straightforward to see that there are $n + \binom{n}{2}2^{n-2}$ elemental inequalities. These are the generic
 121 constraints that we will use in group (I).

The second group of constraints are the problem specific constraints. These are usually the
 implication relations required by the system or the specific coding requirements. For example, if X_4 is
 a coded representation of X_1 and X_2 , then this relation can be represented as

$$H(X_4|X_1, X_2) = H(X_1, X_2, X_4) - H(X_1, X_2) = 0, \quad (4)$$

which is a linear constraint. This group of constraints may also include independence and conditional
 independence relations. For example, if X_1, X_3, X_7 are three mutually independent sources, then this
 relation can be represented as

$$H(X_1, X_3, X_7) - H(X_1) - H(X_3) - H(X_7) = 0, \quad (5)$$

122 which is also a linear constraint. In the examples in later sections, we will provide these constraints
 123 more specifically.

124 The two groups of constraints are both linear in terms of the optimization problem variables, i.e.,
 125 the $2^n - 1$ joint entropies (defined on the n random variables), and thus we have a linear program (LP)
 126 at hand.

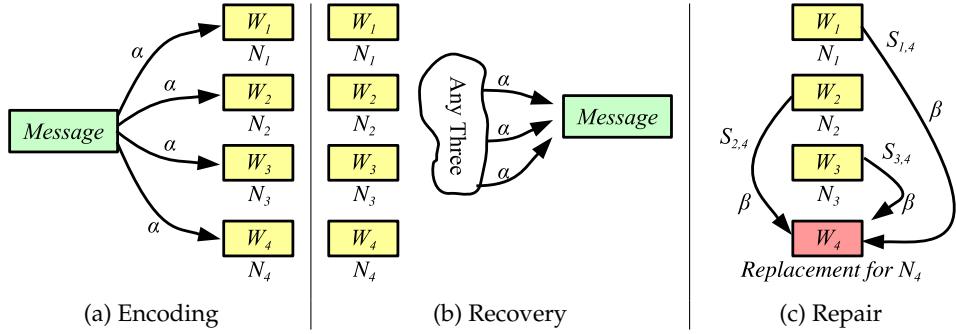
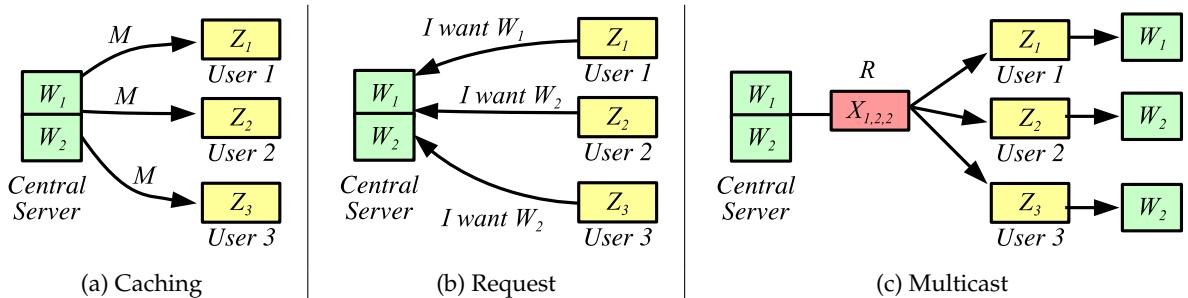
127 4. Symmetry and Dependence Relations

128 In this section, we discuss two relations that can help reduce the complexity of the entropic LP,
 129 without which many information system or coding problems of practical interest appear too complex
 130 to be solved in the entropic LP formulation. To be more specific, we first introduce two working
 131 examples that will be used throughout this paper to illustrate the main idea.

132 4.1. Two Examples

133 The two example problems are the regenerating code problem and the coded caching problem:

- The (n, k, d) regenerating code problem [35,36] is depicted in Figure 1. It considers the situation
 that a message is stored in a distributed manner in n nodes, each having capacity α (Figure 1(a)).
 Two coding requirements need to be satisfied: 1) the message can be recovered from any k nodes
 (Figure 1(b)), and 2) any single node can be repaired by downloading β amount of information
 from any d of the other nodes (Figure 1(c)). The fundamental limit of interest is the optimal
 tradeoff between the storage cost α and the download cost β . We will use the $(n, k, d) = (4, 3, 3)$

Figure 1. The regenerating code problem with $(n, k, d) = (4, 3, 3)$.Figure 2. The caching problem with $(N, K) = (2, 3)$.

case as our working example. In this setting, the stored contents are W_1, W_2, W_3, W_4 , and the repair message sent from node i to repair j is denoted as $S_{i,j}$. In this case, the set of the random variables in the problem are

$$W_1, W_2, W_3, W_4, S_{1,2}, S_{1,3}, S_{1,4}, S_{2,1}, S_{2,3}, S_{2,4}, S_{3,1}, S_{3,2}, S_{3,4}, S_{4,1}, S_{4,2}, S_{4,3}.$$

Some readers may notice that we do not include a random variable to represent the original message stored in the system. This is because it can be equivalently viewed as the collection of (W_1, W_2, W_3, W_4) and can thus be omitted in this formulation.

134

135

136

- The (N, K) coded caching problem [37] considers the situation that a server, which holds a total N mutually independent files of unit size each, serves a set of K users, each with a local cache of size M . The users can prefetch some content (Figure 2(a)), but when they reveal their requests (Figure 2(b)), the server must calculate and multicast a common message of size R (Figure 2(c)). The requests are not revealed to the server beforehand, and the prefetching must be designed to handle all cases. The fundamental limit of interest is the optimal tradeoff between the cache capacity M and the transmission size R . In this setting, the messages are denoted as (W_1, W_2, \dots, W_N) , the prefetched contents as (Z_1, Z_2, \dots, Z_K) , and the transmission when the users requests (d_1, d_2, \dots, d_K) is written as X_{d_1, d_2, \dots, d_K} . We will use the case $(N, K) = (2, 3)$ as our second running example in the sequel, and in this case the random variables in the problem are

$$W_1, W_2, Z_1, Z_2, Z_3, X_{1,1,1}, X_{1,1,2}, X_{1,2,1}, X_{1,2,2}, X_{2,1,1}, X_{2,1,2}, X_{2,2,1}, X_{2,2,2}.$$

137 4.2. The Dependency Relation

138 The dependency (or implication) relation, e.g., the one given in (4), can be included in the
 139 optimization problem in different ways. The first option, which is the simplest, is to include these
 140 equality constraints directly as constraints of the LP. There is however another method. Observe that
 141 since the two entropy values are equal, we can simply represent them using the same LP variable,
 142 instead of generating two different LP variables then insisting that they are of the same value. This

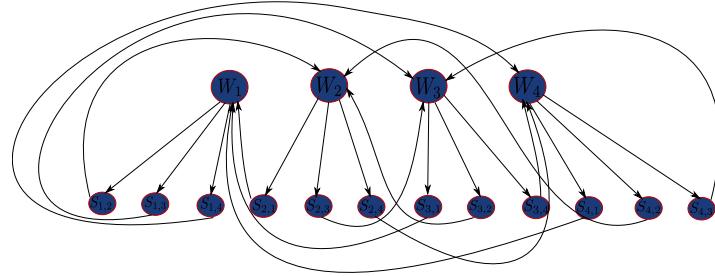


Figure 3. A graph representation for dependence relation in the regenerating code problem with $(n, k, d) = (4, 3, 3)$.

143 helps reduce the number of LP variables in the problem. In our two working examples, the dependence
 144 relations are as follows.

- The regenerating code problem: the relations are the following

$$\begin{aligned} H(S_{1,2}, S_{1,3}, S_{1,4} | W_1) &= 0, & H(S_{2,1}, S_{2,3}, S_{2,4} | W_2) &= 0, & H(S_{3,1}, S_{3,2}, S_{3,4} | W_3) &= 0, \\ H(S_{4,1}, S_{4,2}, S_{4,3} | W_4) &= 0, & H(W_1 | S_{2,1}, S_{3,1}, S_{4,1}) &= 0, & H(W_2 | S_{1,2}, S_{3,2}, S_{4,2}) &= 0, \\ H(W_3 | S_{1,3}, S_{2,3}, S_{3,3}) &= 0, & H(W_4 | S_{1,4}, S_{2,4}, S_{3,4}) &= 0. \end{aligned} \quad (6)$$

The first equality implies that

$$H(S_{1,2}, S_{1,3}, S_{1,4}, W_1) = H(W_1), \quad (7)$$

and we can alternatively write

$$W_1 \rightarrow \{S_{1,2}, S_{1,3}, S_{1,4}\}. \quad (8)$$

145 Other dependence relations can be converted similarly. This dependence structure can also
 146 be represented as a graph shown in Fig. 3. In this graph, a given node (random variable) is a
 147 function of others random variables with an incoming edge.

- The caching problem: the relations are the following

$$\begin{aligned} H(Z_1, Z_2, Z_3, X_{1,1,1}, X_{1,1,2}, X_{1,2,1}, X_{1,2,2}, X_{2,1,1}, X_{2,1,2}, X_{2,2,1}, X_{2,2,2} | W_1, W_2) &= 0, \\ H(W_1 | Z_1, X_{1,1,1}) &= 0, \quad H(W_1 | Z_2, X_{1,1,1}) = 0, \quad H(W_1 | Z_3, X_{1,1,1}) = 0, \quad H(W_1 | Z_1, X_{1,1,2}) = 0, \\ H(W_1 | Z_2, X_{1,1,2}) &= 0, \quad H(W_2 | Z_3, X_{1,1,2}) = 0, \quad H(W_1 | Z_1, X_{1,2,1}) = 0, \quad H(W_2 | Z_2, X_{1,2,1}) = 0, \\ H(W_1 | Z_3, X_{1,2,1}) &= 0, \quad H(W_1 | Z_1, X_{1,2,2}) = 0, \quad H(W_2 | Z_2, X_{1,2,2}) = 0, \quad H(W_2 | Z_3, X_{1,2,2}) = 0, \\ H(W_2 | Z_1, X_{2,1,1}) &= 0, \quad H(W_1 | Z_2, X_{2,1,1}) = 0, \quad H(W_1 | Z_3, X_{2,1,1}) = 0, \quad H(W_2 | Z_1, X_{2,1,2}) = 0, \\ H(W_1 | Z_2, X_{2,1,2}) &= 0, \quad H(W_2 | Z_3, X_{2,1,2}) = 0, \quad H(W_2 | Z_1, X_{2,2,1}) = 0, \quad H(W_2 | Z_2, X_{2,2,1}) = 0, \\ H(W_1 | Z_3, X_{2,2,1}) &= 0, \quad H(W_2 | Z_1, X_{2,2,2}) = 0, \quad H(W_2 | Z_2, X_{2,2,2}) = 0, \quad H(W_2 | Z_3, X_{2,2,2}) = 0. \end{aligned}$$

148 4.3. The Symmetry Relation

149 In many problems, there are certain symmetry relations present. Such symmetry relations are
 150 usually a direct consequence of the structure of the information systems. Often it is **without loss of
 151 optimality** to consider only codes with a specific symmetric structure. In our two working examples,
 152 the symmetry relations are as follows.

- The regenerating code problem: exchanging the coding functions for different storage nodes. For example, if we simply let node 2 store the content for node 1, and also exchange other coding functions, the result is another code that can fulfill the same task as before this exchange.

Mathematically, we can represent the symmetry relation using permutations of all the random variables, where each row indicates a permutation as follows:

$W_1, W_2, W_3, W_4, S_{1,2}, S_{1,3}, S_{1,4}, S_{2,1}, S_{2,3}, S_{2,4}, S_{3,1}, S_{3,2}, S_{3,4}, S_{4,1}, S_{4,2}, S_{4,3}$
 $W_1, W_2, W_4, W_3, S_{1,2}, S_{1,4}, S_{1,3}, S_{2,1}, S_{2,4}, S_{2,3}, S_{4,1}, S_{4,2}, S_{4,3}, S_{3,1}, S_{3,2}, S_{3,4}$
 $W_1, W_3, W_2, W_4, S_{1,3}, S_{1,2}, S_{1,4}, S_{3,1}, S_{3,2}, S_{3,4}, S_{2,1}, S_{2,3}, S_{2,4}, S_{4,1}, S_{4,3}, S_{4,2}$
 $W_1, W_4, W_3, W_2, S_{1,4}, S_{1,3}, S_{1,2}, S_{4,1}, S_{4,3}, S_{4,2}, S_{3,1}, S_{3,4}, S_{3,2}, S_{2,1}, S_{2,4}, S_{2,3}$
 $W_1, W_3, W_4, W_2, S_{1,3}, S_{1,4}, S_{1,2}, S_{3,1}, S_{3,4}, S_{3,2}, S_{4,1}, S_{4,3}, S_{4,2}, S_{2,1}, S_{2,3}, S_{2,4}$
 $W_1, W_4, W_2, W_3, S_{1,4}, S_{1,2}, S_{1,3}, S_{4,1}, S_{4,2}, S_{4,3}, S_{2,1}, S_{2,4}, S_{2,3}, S_{3,1}, S_{3,4}, S_{3,2}$
 $W_2, W_1, W_3, W_4, S_{2,1}, S_{2,3}, S_{2,4}, S_{1,2}, S_{1,3}, S_{1,4}, S_{3,2}, S_{3,1}, S_{3,4}, S_{4,2}, S_{4,1}, S_{4,3}$
 $W_2, W_4, W_3, W_1, S_{2,4}, S_{2,3}, S_{2,1}, S_{4,2}, S_{4,3}, S_{4,1}, S_{3,2}, S_{3,4}, S_{3,1}, S_{1,2}, S_{1,4}, S_{1,3}$
 $W_2, W_1, W_4, W_3, S_{2,1}, S_{2,4}, S_{2,3}, S_{1,2}, S_{1,3}, S_{1,4}, S_{4,2}, S_{4,1}, S_{4,3}, S_{3,2}, S_{3,1}, S_{3,4}$
 $W_2, W_4, W_1, W_3, S_{2,4}, S_{2,1}, S_{2,3}, S_{4,2}, S_{4,1}, S_{4,3}, S_{1,2}, S_{1,4}, S_{1,3}, S_{3,2}, S_{3,4}, S_{3,1}$
 $W_2, W_3, W_1, W_4, S_{2,3}, S_{2,1}, S_{2,4}, S_{3,2}, S_{3,1}, S_{3,4}, S_{1,2}, S_{1,3}, S_{1,4}, S_{4,2}, S_{4,3}, S_{4,1}$
 $W_2, W_3, W_4, W_1, S_{2,3}, S_{2,4}, S_{2,1}, S_{3,2}, S_{3,4}, S_{3,1}, S_{4,2}, S_{4,3}, S_{4,1}, S_{1,2}, S_{1,3}, S_{1,4}$
 $W_3, W_2, W_1, W_4, S_{3,2}, S_{3,1}, S_{3,4}, S_{2,3}, S_{2,1}, S_{2,4}, S_{1,3}, S_{1,2}, S_{1,4}, S_{4,3}, S_{4,2}, S_{4,1}$
 $W_3, W_2, W_4, W_1, S_{3,2}, S_{3,4}, S_{3,1}, S_{2,3}, S_{2,4}, S_{2,1}, S_{4,3}, S_{4,2}, S_{4,1}, S_{1,3}, S_{1,2}, S_{1,4}$
 $W_3, W_1, W_2, W_4, S_{3,1}, S_{3,2}, S_{3,4}, S_{1,3}, S_{1,2}, S_{1,4}, S_{2,3}, S_{2,1}, S_{2,4}, S_{4,3}, S_{4,1}, S_{4,2}$
 $W_3, W_1, W_4, W_2, S_{3,1}, S_{3,4}, S_{3,2}, S_{1,3}, S_{1,4}, S_{1,2}, S_{4,3}, S_{4,1}, S_{4,2}, S_{2,3}, S_{2,1}, S_{2,4}$
 $W_3, W_4, W_1, W_2, S_{3,4}, S_{3,1}, S_{3,2}, S_{4,1}, S_{4,3}, S_{4,2}, S_{1,3}, S_{1,4}, S_{1,2}, S_{2,3}, S_{2,4}, S_{2,1}$
 $W_3, W_4, W_2, W_1, S_{3,4}, S_{3,2}, S_{3,1}, S_{4,3}, S_{4,2}, S_{4,1}, S_{2,3}, S_{2,4}, S_{2,1}, S_{1,3}, S_{1,4}, S_{1,2}$
 $W_4, W_2, W_3, W_1, S_{4,2}, S_{4,3}, S_{4,1}, S_{2,4}, S_{2,3}, S_{2,1}, S_{3,4}, S_{3,2}, S_{3,1}, S_{1,4}, S_{1,2}, S_{1,3}$
 $W_4, W_2, W_1, W_3, S_{4,2}, S_{4,1}, S_{4,3}, S_{2,4}, S_{2,1}, S_{2,3}, S_{1,4}, S_{1,2}, S_{1,3}, S_{3,4}, S_{3,2}, S_{3,1}$
 $W_4, W_1, W_3, W_2, S_{4,1}, S_{4,3}, S_{4,2}, S_{1,4}, S_{1,3}, S_{1,2}, S_{3,4}, S_{3,1}, S_{3,2}, S_{2,4}, S_{2,1}, S_{2,3}$
 $W_4, W_1, W_2, W_3, S_{4,1}, S_{4,2}, S_{4,3}, S_{1,4}, S_{1,3}, S_{1,2}, S_{2,4}, S_{2,1}, S_{2,3}, S_{3,4}, S_{3,1}, S_{3,2}$
 $W_4, W_3, W_1, W_2, S_{4,3}, S_{4,1}, S_{4,2}, S_{3,4}, S_{3,1}, S_{3,2}, S_{1,4}, S_{1,3}, S_{1,2}, S_{2,4}, S_{2,3}, S_{2,1}$
 $W_4, W_3, W_2, W_1, S_{4,3}, S_{4,2}, S_{4,1}, S_{3,4}, S_{3,2}, S_{3,1}, S_{2,4}, S_{2,3}, S_{2,1}, S_{1,4}, S_{1,3}, S_{1,2}$

Note that when we permute the storage contents (W_1, W_2, W_3, W_4) the corresponding repair information needs to be permuted accordingly. The 24 permutations clearly form a permutation group. With this representation, we can take any subset of the columns, and the collections of the random variables in each row in these columns will have the same entropy in the corresponding symmetric code. For example, if we take columns 2, 9, 15, then we have that

$$H(W_1, S_{2,1}, S_{4,1}) = H(W_1, S_{2,1}, S_{3,1}) = H(W_1, S_{3,1}, S_{4,1}) = \dots$$

There are a total of $2^{16} - 1$ subset of columns, and they each will induce a set of equality relations. For a more rigorous discussion of this symmetry relation, the readers can refer to [2,20].

153

154

- Similarly, in the caching problem, there are two types of symmetry relations. The first is to exchange the coding functions for each users, and the second is to exchange the operation on different files. Intuitively, the first one is due to a permutation of the users, and the second due to the permutation of the files. As a consequence, we have the following permutations that form a group:

$W_1, W_2, Z_1, Z_2, Z_3, X_{1,1,1}, X_{1,1,2}, X_{1,2,1}, X_{1,2,2}, X_{2,1,1}, X_{2,1,2}, X_{2,2,1}, X_{2,2,2}$
 $W_2, W_1, Z_1, Z_2, Z_3, X_{2,2,2}, X_{2,2,1}, X_{2,1,2}, X_{2,1,1}, X_{1,2,2}, X_{1,2,1}, X_{1,1,2}, X_{1,1,1}$

$W_1, W_2, Z_2, Z_1, Z_3, X_{1,1,1}, X_{1,1,2}, X_{2,1,1}, X_{2,1,2}, X_{1,2,1}, X_{1,2,2}, X_{2,2,1}, X_{2,2,2}$
 $W_2, W_1, Z_2, Z_1, Z_3, X_{2,2,2}, X_{2,2,1}, X_{1,2,2}, X_{1,2,1}, X_{2,1,2}, X_{2,1,1}, X_{1,1,2}, X_{1,1,1}$
 $W_1, W_2, Z_3, Z_2, Z_1, X_{1,1,1}, X_{2,1,1}, X_{1,2,1}, X_{2,2,1}, X_{1,1,2}, X_{2,1,2}, X_{1,2,2}, X_{2,2,2}$
 $W_2, W_1, Z_3, Z_2, Z_1, X_{2,2,2}, X_{1,2,2}, X_{2,1,2}, X_{1,1,2}, X_{2,2,1}, X_{1,2,1}, X_{2,1,1}, X_{1,1,1}$
 $W_1, W_2, Z_1, Z_3, Z_2, X_{1,1,1}, X_{1,2,1}, X_{1,1,2}, X_{1,2,2}, X_{2,1,1}, X_{2,1,2}, X_{2,2,1}, X_{2,2,2}$
 $W_2, W_1, Z_1, Z_3, Z_2, X_{2,2,2}, X_{2,1,2}, X_{2,1,1}, X_{1,2,2}, X_{1,1,2}, X_{1,2,1}, X_{1,1,1}$
 $W_1, W_2, Z_2, Z_3, Z_1, X_{1,1,1}, X_{2,1,1}, X_{1,1,2}, X_{2,1,2}, X_{1,2,1}, X_{2,2,1}, X_{1,2,2}, X_{2,2,2}$
 $W_2, W_1, Z_2, Z_3, Z_1, X_{2,2,2}, X_{1,2,2}, X_{2,2,1}, X_{1,2,1}, X_{2,1,2}, X_{1,1,2}, X_{2,1,1}, X_{1,1,1}$
 $W_1, W_2, Z_3, Z_1, Z_2, X_{1,1,1}, X_{1,2,1}, X_{2,1,1}, X_{2,2,1}, X_{1,1,2}, X_{1,2,2}, X_{2,1,2}, X_{2,2,2}$
 $W_2, W_1, Z_3, Z_1, Z_2, X_{2,2,2}, X_{2,1,2}, X_{1,2,2}, X_{1,1,2}, X_{2,2,1}, X_{1,2,1}, X_{1,1,1}$

155 For a more detailed discussion on this symmetry relation, the readers can refer to [4,20].

156 Two remarks are now in order:

157 • For the purpose of deriving outer bounds, it is valid to ignore the symmetry relation altogether,
158 or consider only part of the symmetry relation, as long as the remaining permutations still
159 form a group. For example, in the caching problem if we only consider the symmetry induced
160 by exchanging the two messages, then we have the first 2 rows instead of the full 12 rows of
161 permutations. Omitting some permutations means less reduction in the LP scale, but does not
162 invalidate the computed bounds.

163 • Admittedly, representing the symmetry relation using the above permutation representation is
164 not the most concise approach, and there exists mathematically precise and concise language
165 to specify such structure. We choose this permutation approach because of its simplicity and
166 universality, and perhaps more importantly, due to its suitability for software implementation.

167 5. Reducing the Problem Algorithmically via the Disjoint-Set Data Structure

168 In this section, we first introduce the equivalence relation and classification of joint entropies, and
169 then introduce the disjoint-set data structure to identify the classification in an algorithmic manner.

170 5.1. Equivalence Relation and Reduction

The two reductions mentioned in the previous section essentially provide an equivalent relation and a classification of the joint entropies of subsets of the random variables. To see this, let us consider the regenerating code problem. Due to the dependence structure, the following entropies are equal:

$$\begin{aligned}
H(W_1, S_{2,1}) &= H(W_1, S_{1,2}, S_{2,1}) = H(W_1, S_{1,3}, S_{2,1}) = H(W_1, S_{1,4}, S_{2,1}) = H(W_1, S_{1,2}, S_{1,3}, S_{2,1}) \\
&= H(W_1, S_{1,2}, S_{1,4}, S_{2,1}) = H(W_1, S_{1,3}, S_{1,4}, S_{2,1}) = H(W_1, S_{1,2}, S_{1,3}, S_{1,4}, S_{2,1}),
\end{aligned} \tag{9}$$

and the following subsets are thus equivalent in this setting:

$$\begin{aligned}
\{W_1, S_{2,1}\} &\equiv \{W_1, S_{1,2}, S_{2,1}\} \equiv \{W_1, S_{1,3}, S_{2,1}\} \equiv \{W_1, S_{1,4}, S_{2,1}\} \equiv \{W_1, S_{1,2}, S_{1,3}, S_{2,1}\} \\
&\equiv \{W_1, S_{1,2}, S_{1,4}, S_{2,1}\} \equiv \{W_1, S_{1,3}, S_{1,4}, S_{2,1}\} \equiv \{W_1, S_{1,2}, S_{1,3}, S_{1,4}, S_{2,1}\}.
\end{aligned} \tag{10}$$

Orthogonal to the dependence relation, the symmetry provides further opportunity to build equivalence. For example, for the first item $H(W_1, S_{2,1})$ above, we have by symmetry

$$\begin{aligned}
H(W_1, S_{2,1}) &= H(W_1, S_{3,1}) = H(W_1, S_{4,1}) = H(W_2, S_{1,2}) = H(W_2, S_{4,2}) = H(W_2, S_{3,2}) \\
&= H(W_3, S_{1,3}) = H(W_3, S_{2,3}) = H(W_3, S_{4,3}) = H(W_4, S_{1,4}) = H(W_4, S_{2,4}) = H(W_4, S_{3,4}),
\end{aligned} \tag{11}$$

and for the second term $H(W_1, S_{1,2}, S_{2,1})$ we have

$$\begin{aligned}
 H(W_1, S_{1,2}, S_{2,1}) &= H(W_1, S_{1,3}, S_{3,1}) = H(W_1, S_{1,4}, S_{4,1}) \\
 &= H(W_2, S_{2,3}, S_{3,2}) = H(W_2, S_{1,2}, S_{2,1}) = H(W_2, S_{2,4}, S_{4,2}) \\
 &= H(W_3, S_{1,3}, S_{3,1}) = H(W_3, S_{2,3}, S_{3,2}) = H(W_3, S_{3,4}, S_{4,3}) \\
 &= H(W_4, S_{1,4}, S_{4,1}) = H(W_4, S_{2,4}, S_{4,2}) = H(W_4, S_{3,4}, S_{4,3}).
 \end{aligned} \tag{12}$$

¹⁷¹ Such symmetry-induced equivalence relation holds similarly for every item in (9). All joint entropies
¹⁷² such related have the same value.

Mathematically, the dependence and the symmetry jointly induce an equivalence relation, and we wish to identify the classification based on this equivalence relation. The key to efficiently form the reduced LP is to identify the mapping from any subset of random variables to an index of the equivalence class it belongs to, i.e.,

$$f : 2^{\{1,2,\dots,n\}} \rightarrow \{1, 2, \dots, N^*\}, \tag{13}$$

where N^* is the total number of equivalence classes such induced. In terms of software implementation, the mapping f assigns any subset of the n random variables in the problem to an index, which also serves as the index of the variable in the linear program. More precisely, this mapping provides the fundamental reduction mechanism in the LP formulation, where an elemental constraint of the form

$$H(X_i | X_{\mathcal{A}}) \geq 0 \tag{14}$$

becomes the inequality in the resultant LP

$$Y_{f(\{i\} \cup \mathcal{A})} - Y_{f(\mathcal{A})} \geq 0, \tag{15}$$

where the Y 's are the variables in the LP; similarly, the elemental constraint

$$I(X_i; X_j | X_{\mathcal{A}}) \geq 0 \tag{16}$$

becomes

$$Y_{f(\{i\} \cup \mathcal{A})} + Y_{f(\{j\} \cup \mathcal{A})} - Y_{f(\mathcal{A})} - Y_{f(\{i,j\} \cup \mathcal{A})} \geq 0. \tag{17}$$

¹⁷³ 5.2. *Difficulty in Identifying the Reduction*

Following the discussion above, each given subset $\mathcal{A} \subseteq \{1, 2, \dots, n\}$ belongs to an equivalent class of subsets, and an arbitrary element in the equivalent class can be designated (and fixed) as the leader of this equivalent class. To efficiently complete the classification task, we need to be able to find for each given subset \mathcal{A} the leader of the equivalent class this subset belongs to. In the example given above, this step is reasonably straightforward. Complications arise when multiple reduction steps are required. To see this, let us consider the set $\{S_{1,2}, S_{2,3}, S_{4,3}, S_{2,1}, S_{4,1}\}$. By the dependence relation $\{S_{1,3}, S_{2,3}, S_{4,3}\} \rightarrow W_3$, we know

$$H(S_{1,3}, S_{2,3}, S_{4,3}, S_{2,1}, S_{4,1}) = H(W_3, S_{1,3}, S_{2,3}, S_{4,3}, S_{2,1}, S_{4,1}). \tag{18}$$

However, we also have

$$H(W_3, S_{1,3}, S_{2,3}, S_{4,3}, S_{2,1}, S_{4,1}) = H(W_3, S_{1,3}, S_{2,3}, S_{4,3}, S_{2,1}, S_{3,1}, S_{4,1}, S_{3,2}, S_{3,4}), \tag{19}$$

because of the dependence relation $W_3 \rightarrow \{S_{3,1}, S_{3,2}, S_{3,4}\}$, from which we can further derive

$$H(W_3, S_{1,3}, S_{2,3}, S_{4,3}, S_{2,1}, S_{3,1}, S_{4,1}, S_{3,2}, S_{3,4}) = H(W_1, W_3, S_{1,3}, S_{2,3}, S_{4,3}, S_{2,1}, S_{3,1}, S_{4,1}, S_{3,2}, S_{3,4}), \quad (20)$$

due to the dependence relation $\{S_{2,1}, S_{3,1}, S_{4,1}\} \rightarrow W_1$. In this process, we have applied three different dependence relations in the particular order. In a computer program, this implies that we need to iterate over all the dependence relations in the problem to apply the appropriate one, and then repeat the process until no further dependence relation can be applied. To make things worse, the symmetry relation would need to be taken into account: for example, we will also need to consider how to recognize one subset to be a permuted version of another subset, and whether to do so before or after applying the dependence relation. A naive implementation to find the mapping function f will be highly inefficient.

5.3. Disjoint-Set Data Structure and Algorithmic Reduction

The afore-mentioned difficulty can be resolved using a suitable data structure, namely disjoint-set [8]. A disjoint-set data structure is also called a union-find structure, and as its name suggests, it stores a collection of disjoint sets. The most well known method to accomplish this task is through a disjoint-set forest [8], which can perform the union operation in constant time, and the find operation (find for an element the index, or the leading element, of the set that it belongs to) in near constant amortized time.

Roughly speaking, the disjoint-set forest in our setting starts with each subset of random variables $\mathcal{A} \subseteq \{1, 2, \dots, n\}$ viewed as its own disjoint set and assigned an index; clearly we will have a total $2^n - 1$ singleton sets at initialization. We iterate through each symmetry permutation and dependence relation as follows:

- Symmetry step: For each singleton set (which corresponds to a subset $\mathcal{A} \subseteq \{1, 2, \dots, n\}$) in the disjoint-set structure, consider each permutation in the symmetry relation: if the permutation maps \mathcal{A} into another element (which corresponds to another subset of random variables $\mathcal{A}' \subseteq \{1, 2, \dots, n\}$) not already in the same set in the disjoint-set structure, then we combine the two sets by forming their union.
- Dependence step: For each existing set in the disjoint-set structure, consider each dependence relation: if the set leader (which corresponds to a subset $\mathcal{A} \subseteq \{1, 2, \dots, n\}$) is equivalent to another element due to the given dependence (which corresponds to another subset of random variables $\mathcal{A}' \subseteq \{1, 2, \dots, n\}$) not already in the same set, then we combine the two sets by forming their union.

The key for the efficiency of this data structure is that the union operation is done through pointers, instead of physical memory copy. Moreover, inherent in the data structure is a tree representation of each set, and thus finding the leader index is equivalent to finding the tree root, which is much more efficient than a linear search. The data structure is maintained dynamically during union and find operations, and the height of a tree will be reduced (compressed) when a find operation is performed or when the tree becomes too high.

Clearly, due to the usage of this data structure, the dependence relation does not need to be exhaustively listed, because the permuted version of the dependence relation is accounted for automatically. For example, in the regenerating code problem, including only two dependence relations will suffice, when used jointly with the symmetry relations:

$$W_1 \rightarrow \{S_{1,2}, S_{1,3}, S_{1,4}\}, \quad \{S_{2,1}, S_{3,1}, S_{4,1}\} \rightarrow W_1. \quad (21)$$

This replaces the 8 dependence relations given in (6).

In the context of our setting, after the disjoint-set forest is found after both the symmetry step and the dependence step, another enumeration step is performed to generate the mapping function $f(\cdot)$,

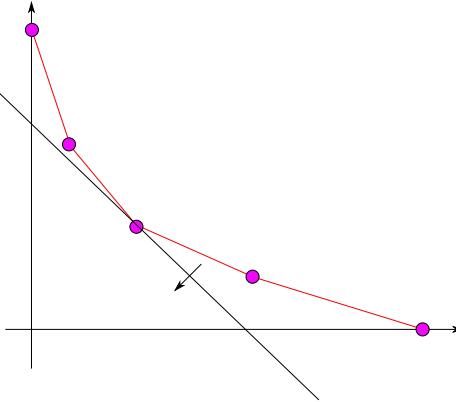


Figure 4. A fixed direction bounding plane and the tradeoff region computation.

212 which can be done in time 2^n . In practice, we observe this data structure is able to provide considerable
 213 speedup (sometimes up to 50 fold), though the precise speedup factor depends on the problem-specific
 214 dependence and symmetry relations case by case.

215 **6. Four Investigative Techniques**

216 In this section, we introduce four investigative techniques to study fundamental limits of
 217 information systems. With the efficient reduction discussed above, these methods are rather powerful
 218 tools in such information theoretic studies.

219 **6.1. Bounding Plane Optimization and Queries**

220 In this case, the objective function is fixed, and the optimal solution gives an outer bound of a
 221 specific linear combination of several information measures or relevant quantities. Fig. 4 illustrates the
 222 method, where we wish to find a lower bound of the given direction for the given optimal tradeoff
 223 shown in red. Let us again consider the two working examples.

- If the simple sum of the storage cost α and repair cost β , i.e., $\alpha + \beta$, needs to be lower-bounded in the regenerating code problem, we can let the objective function be given as

$$H(W_1) + H(S_{1,2})$$

224 and then minimize it. The optimal value will be a lower bound, which in this case turns out to be
 225 5/8. Note that by taking advantage of the symmetry, the objective function set up above indeed
 226 specifies the sum rate of any storage and repair transmission.

- If we wish to lower bound the simple sum of memory and rate in the coded caching problem, the situation is somewhat subtle. Note that the rate R is a lower bound on the entropy $H(X_{1,1,1})$ and $H(1,2,2)$; however, the symmetry relation does not imply that $H(X_{1,1,1}) = H(X_{1,2,2})$. For this case, we can introduce an additional LP variable R , and add the constraints that

$$H(X_{1,1,1}) \leq R, \quad H(X_{1,2,2}) \leq R.$$

We then set the objective function to be

$$H(Z_1) + R,$$

227 from which the minimum value is a lower bound on the simple sum of memory and rate in this
 228 setting.

229 In addition to simply computing the supporting hyperplane, it is important to extract useful
 230 information from the optimal solution. Particularly, we may wish to probe for the values of certain

231 information measures in the optimal solution. For example, in the case above for coded caching,
 232 we may be interested in the value of $I(Z_1; W_1)$, which essentially reveals the amount of information
 233 regarding W_1 that is stored in Z_1 in an uncoded form.

234 *6.2. Tradeoff and Convex Hull Computation*

235 In many cases, instead of bounding a fixed rate combination, we are interested in the tradeoff of
 236 several quantities, most frequently the optimal tradeoff between two quantities; see Fig. 4 again for an
 237 illustration. The two working examples both belong to this case.

238 Since the constrained set in the LP is a polytope, the resulting outer bound to the optimal tradeoff
 239 will be a piece-wise linear bound. A naive strategy is to trace the boundary by sampling points
 240 on a sufficiently dense grid. However, this approach is time consuming and not accurate. Instead
 241 the calculation of this piece-wise linear outer bound is equivalent to computing the projection of a
 242 convex polytope, for which Lassez's algorithm is in fact a method to complete the task efficiently. We
 243 implemented Lassez's algorithm for the projection on to two-dimensional space in this toolbox. A
 244 more detailed description of this algorithm can be found in [38], and the specialization used in the
 245 program can be found in [4].

246 *6.3. Duality and Computer-generated Proof*

After identifying a valid outer bound, we sometimes wish to find a proof for this bound. In fact, even if the bound is not optimal, or it is a only hypothesized bound, we may still attempt to prove it. For example, in the regenerating code problem, we have

$$H(W_1) + H(S_{1,2}) \geq \frac{5}{8}. \quad (22)$$

247 How can we prove this inequality? It is clear from the LP duality that this inequality is a weighted
 248 sum of the individual constraints in the LP. Thus as long as we find one such weighted sum, we can
 249 then write down a chain of inequalities directly by combining these inequalities one by one; for a more
 250 detailed discussion, see [24,17,18].

251 *6.4. Sensitivity Analysis*

252 At the computed optimal value, we can probe for the range of certain information measures such
 253 that forcing them to be in these ranges does not change the value of the optimal solution. Consider the
 254 quantity $I(Z_1; W_1)$ in the caching problem. It may be possible for it to take values between $[0.2, 0.4]$
 255 without changing the optimal value of the original optimization problem. On the other hand, if it can
 256 only take value 0.2, then this suggests if a code to achieve this optimal value indeed exists, it must
 257 have this amount of uncoded information regarding W_1 stored in Z_1 . This information can be valuable
 258 in reverse-engineering optimal codes; see [4] for discussion of such usage.

259 **7. JSON Problem Descriptions**

260 In the implemented toolbox, the program can read a problem description file (a plain text file), and
 261 the desired computed bounds or proof will be produced without further user intervention. In our work,
 262 significant effort has been invested in designing an efficient input format, and after a few iterations, a
 263 JSON based format was selected which considerably improves the usability and extendibility of the
 264 toolbox. In this section, we provide an example problem description, from which the syntax is mostly
 265 self-evident. More details can be found in the documentation accompanying the software [11]. The
 266 input problem description files must include the characters PD (which stand for "problem description"),
 267 followed by a JSON detailing the problem description.

268 7.1. Keys in PD JSON

269 The program solves a minimization problem, i.e., to find a lower bound for certain information
 270 quantity. There are a total of 12 JSON keys allowed in the problem description:

271 RV, AL, O, D, I, S, BC, BP, QU, SE, CMD, and OPT.

272 These stand for random variables, additional LP variables, objective function, dependence,
 273 independence, bound-constant, bound-to-prove, query, sensitivity, command, and options, respectively.
 274 For the precise syntax, the readers are referred to the toolbox user manual. We next provide a simple
 275 example to illustrate the usage of this toolbox, from which these keywords are self-evident.

276 7.2. An Example Problem Description File

277 Below is a sample PD file for the regenerating code problem we previously discussed.

```
278 # problem description file for (4,3,3) regenerating codes
279 PD
280 {
281     "OPT": ["CS"] ,
282     "RV" : ["W1","W2","W3","W4","S12","S13","S14","S21","S23","S24","S31","S32","S34","S41","S42","S43"] ,
283     "AL" : ["A","B"] ,
284     "O" : "A+B" ,
285     "D" : [
286         {"dependent" : ["S12","S13","S14"] , "given" : ["W1"]} ,
287         {"dependent" : ["W1"] , "given" : ["S21","S31","S41"]} ,
288     ],
289     "BC" : [
290         "H(W1)-A<=0" ,
291         "H(S12)-B<=0" ,
292         "H(W1,W2,W3)>=1"
293     ],
294     "SE": ["A", "B", "2I(S12;S21|S32)+H(S21|S31)+A"],
295     "QU": ["A", "B", "2H(S12|S13)", "-2I(S12;S21|S32)"],
296     "S" : [
297         ["W1","W2","W3","W4","S12","S13","S14","S21","S23","S24","S31","S32","S34","S41","S42","S43"] ,
298         ["W1","W2","W4","W3","S12","S14","S21","S24","S23","S41","S42","S43","S31","S32","S34"] ,
299         ["W1","W3","W2","W4","S13","S12","S14","S31","S32","S34","S21","S23","S24","S41","S42"] ,
300         ["W1","W4","W3","W2","S14","S13","S12","S41","S43","S42","S31","S34","S32","S21","S24","S23"] ,
301         ["W1","W3","W4","W2","S13","S14","S12","S31","S34","S32","S41","S43","S42","S21","S23","S24"] ,
302         ["W1","W4","W2","W3","S14","S12","S13","S31","S42","S43","S21","S24","S23","S31","S34","S32"] ,
303         ["W2","W1","W3","W4","S21","S23","S24","S12","S13","S14","S32","S31","S34","S42","S41","S43"] ,
304         ["W2","W4","W3","W1","S24","S23","S21","S42","S31","S32","S34","S31","S12","S14","S13"] ,
305         ["W2","W1","W4","W3","S21","S24","S23","S12","S14","S32","S42","S43","S31","S32","S34"] ,
306         ["W2","W4","W1","W3","S24","S21","S23","S42","S41","S43","S12","S14","S32","S34","S31"] ,
307         ["W2","W3","W1","W4","S23","S21","S24","S32","S31","S34","S12","S13","S14","S42","S43","S41"] ,
308         ["W2","W3","W4","W1","S21","S23","S24","S31","S32","S34","S42","S41","S12","S13","S14"] ,
309         ["W3","W2","W1","W4","S32","S31","S34","S23","S21","S24","S13","S12","S14","S43","S42","S41"] ,
310         ["W3","W2","W4","W1","S32","S34","S31","S23","S24","S21","S43","S42","S41","S13","S12","S14"] ,
311         ["W3","W1","W2","W4","S31","S32","S34","S13","S12","S14","S23","S21","S24","S43","S41","S42"] ,
312         ["W3","W1","W4","W2","S31","S32","S34","S13","S14","S12","S43","S42","S41","S23","S21","S24"] ,
313         ["W3","W4","W1","W2","S31","S32","S34","S42","S31","S12","S23","S24","S21","S13","S14"] ,
314         ["W3","W4","W2","W1","S34","S32","S31","S43","S42","S41","S23","S24","S21","S13","S14","S12"] ,
315         ["W4","W2","W3","W1","S42","S43","S41","S24","S23","S21","S34","S32","S31","S14","S12","S13"] ,
316         ["W4","W2","W1","W3","S42","S41","S43","S24","S21","S23","S14","S12","S13","S34","S32","S31"] ,
317         ["W4","W1","W3","W2","S41","S43","S42","S14","S12","S34","S31","S32","S24","S21","S23"] ,
318         ["W4","W1","W2","W3","S41","S42","S43","S14","S12","S34","S31","S32","S24","S21","S23"] ,
319         ["W4","W3","W1","W2","S43","S41","S42","S34","S31","S32","S14","S13","S12","S24","S23","S21"] ,
320         ["W4","W3","W2","W1","S43","S42","S41","S34","S32","S31","S24","S23","S21","S14","S13","S12"]
321     ],
322     "BP" : [ "4A+6B>=3" ]
323 }
```

324 In this setting, we introduce two additional LP variables A and B to represent the storage rate α and
 325 the repair rate β , respectively. The objective function chosen is the sum rate $A+B$, i.e. $\alpha + \beta$. The option
 326 CS means that we are running a validity check on the symmetry relation. The sensitivity analysis is
 327 performed on A, B, and a third expression $2I(S12;S21|S32)+H(S21|S31)+A$. We can also query the
 328 four quantities given in the QU section. A bound that we may attempt to prove is $4A + 6B \geq 3$. By
 329 choosing the right computation functionality in the toolbox, we can let the program perform direct

330 bounding, convex hull computation, generating a proof, or sensitivity analysis using this problem
 331 description file.

332 *7.3. Example Computation Result*

333 The result to bound the sum rate $\alpha + \beta$ is given as follows:

```
334 Symmetries have been successfully checked.
335 Total number of elements before reduction: 65536
336 Total number of elements after reduction: 179
337 Total number of constraints given to Cplex: 40862
338 ****
339 Optimal value for A + B = 0.625000.
340 Queried values:
341 A = 0.37500
342 B = 0.25000
343 2H(S12|S13) = 0.25000
344 -2I(S12;S21|S32) = -0.25000
345 ****
```

The first part of the output is various information about the problem and the corresponding check and verification result. The last star-separated segment means that the program found a bound

$$\alpha + \beta \geq 0.625.$$

346 The queried quantities are also shown in this part, and it can be seen (α, β) in the LP optimal solution
 347 are $(0.375, 0.25)$, together with the values of two other information measures.

348 The toolbox can also identify the tradeoff between α and β , for which the output is as follows.

```
349 Total number of elements before reduction: 65536
350 Total number of elements after reduction: 179
351 Total number of constraints given to Cplex: 40862
352 New point (0.333333, 0.333333).
353 New point (0.500000, 0.166667).
354 New point (0.375000, 0.250000).
355
356 List of found points on the hull:
357 (0.333333, 0.333333).
358 (0.375000, 0.250000).
359 (0.500000, 0.166667).
360 End of list of found points.
```

361 Here the three (α, β) pairs are the corner points of the lower convex hull of the tradeoff.

362 To prove this inequality, the toolbox gives

```
363 Total number of elements before reduction: 65536
364 Total number of elements after reduction: 179
365 Total number of constraints given to Cplex: 40862
366 ****
367 LP dual value 29.00000
368 Proved 2-th inequality: 4A + 6B >= 3.
369 001-th inequality: weight = 1.000000 H(W1,W3,S21,S41) -H(W1,W3,S21,S23,S41) H(W1,S24,S31,S41) -H(W1,S24,S41)>=0
370 002-th inequality: weight = 3.000000 -H(W1,W3,S21,S41) 2.0H(W1,S24) -H(W2)>=0
371 003-th inequality: weight = 7.000000 -H(W1,S24) H(S13) H(W2)>=0
372 004-th inequality: weight = 1.000000 -H(S13) H(W1,S31) H(S13,S24) -H(W1,S23,S41)>=0
373 005-th inequality: weight = 1.000000 -H(W1,W2,W3,W4) -H(W1,S31) H(W1,W4,S21) H(W1,S24,S41)>=0
374 006-th inequality: weight = 1.000000 H(W1,W3,S21,S41) -H(W1,W4,S21)>=0
375 007-th inequality: weight = 1.000000 -H(W1,W2,W3,W4) H(W1,W3,S21,S41) H(W1,W3,S21,S23,S41) -H(W1,S24,S31,S41)>=0
376 008-th inequality: weight = 1.000000 -H(W1,W2,W3,W4) H(W1,S24) -H(S13,S24) H(W1,S23,S41)>=0
377 009-th inequality: weight = 4.000000 -H(W2) A>=0
378 010-th inequality: weight = 6.000000 -H(S13) B=0
379 011-th inequality: weight = 3.000000 H(W1,W2,W3,W4) -1.0>=0
380 ****
381 ****
382 MIP dual value 29.00000
383 Proved 2-th inequality using integer values: 4A + 6B >= 3.
384 001-th inequality: weight = 1.000000 H(W1,W3,S21,S41) -H(W1,W3,S21,S23,S41) H(W1,S24,S31,S41) -H(W1,S24,S41)>=0
385 002-th inequality: weight = 3.000000 -H(W1,W3,S21,S41) 2.0H(W1,S24) -H(W2)>=0
386 003-th inequality: weight = 1.000000 H(W1,W3,S21,S41) -H(W1,W4,S21)>=0
387 004-th inequality: weight = 7.000000 -H(W1,S24) H(S13) H(W2)>=0
388 005-th inequality: weight = 1.000000 -H(S13) H(W1,S31) H(S13,S24) -H(W1,S23,S41)>=0
389 006-th inequality: weight = 1.000000 -H(W1,W2,W3,W4) -H(W1,S31) H(W1,W4,S21) H(W1,S24,S41)>=0
390 007-th inequality: weight = 1.000000 -H(W1,W2,W3,W4) H(W1,W3,S21,S41) H(W1,W3,S21,S23,S41) -H(W1,S24,S31,S41)>=0
391 008-th inequality: weight = 1.000000 -H(W1,W2,W3,W4) H(W1,S24) -H(S13,S24) H(W1,S23,S41)>=0
```

```

392 009-th inequality: weight = 4.000000 -H(W2) A>=0
393 010-th inequality: weight = 6.000000 -H(S13) B>=0
394 011-th inequality: weight = 3.000000 H(W1,W2,W3,W4) -1.0*>=0
395 ****

```

The result can be interpreted as follows. The bound

$$4A + 6B \geq 3$$

396 in the problem description file can be proved by adding the 11 inequalities shown, with the weights
 397 given for each one. A constant value is marked using the “**”. Note that the proof is solved twice,
 398 one using floating point values, and the other as an integer program; the latter sometimes yields a
 399 more concise proof, though not in this case. In practice, it may be preferable to perform one of them to
 400 reduce the overall computation.

401 The sensitivity analysis gives

```

402 Total number of elements before reduction: 65536
403 Total number of elements after reduction: 179
404 Total number of constraints given to Cplex: 40862
405 ****
406 Optimal value for A + B = 0.625000.
407 Sensitivity results:
408 Sensitivity A = [0.37500, 0.37500]
409 Sensitivity B = [0.25000, 0.25000]
410 Sensitivity 2I(S12;S21|S32) + H(S21|S31) + A= [0.87500, 0.87500]
411 ****

```

412 In this case, there does not exist any slack at this optimal value in these quantities.

413 8. Conclusion

414 In this work, we considered computational techniques to investigate fundamental limits of
 415 information systems. The disjoint-set data structure was adopted to identify the equivalence class
 416 mapping in an algorithmic manner, which is much more efficient than a naive linear enumeration. We
 417 provide an open source toolbox for four computational techniques. A JSON format frontend allows
 418 the toolbox to read a problem description file, convert it to the corresponding LP, and then produce
 419 meaningful bounds and other results directly without user intervention.

420 Acknowledgment

421 This work is supported by the National Science Foundation through grants CCF-18-16518 and
 422 CCF-18-16546.

423

- 424 1. Yeung, R.W. A framework for linear information inequalities. *IEEE Transactions on Information Theory* **1997**, 43, 1924–1934.
- 426 2. Tian, C. Characterizing the rate region of the (4, 3, 3) exact-repair regenerating codes. *IEEE Journal on Selected Areas in Communications* **2014**, 32, 967–975.
- 428 3. Tian, C.; Liu, T. Multilevel diversity coding with regeneration. *IEEE Transactions on Information Theory* **2016**, 62, 4833–4847.
- 430 4. Tian, C. Symmetry, outer bounds, and code constructions: A computer-aided investigation on the fundamental limits of caching. *Entropy* **2018**, 20, 603.1–43.
- 432 5. Tian, C.; Chen, J. Caching and delivery via interference elimination. *IEEE Transactions on Information Theory* **2018**, 64, 1548–1560.
- 434 6. Tian, C.; Sun, H.; Chen, J. A Shannon-theoretic approach to the storage-retrieval tradeoff in PIR systems. 2018 Proceedings of IEEE International Symposium on Information Theory (ISIT), 2018, pp. 1904–1908.
- 436 7. Tian, C. On the storage cost of private information retrieval. *IEEE Transactions on Information Theory* **2020**, 66, 7539–7549.
- 438 8. Galler, B.A.; Fisher, M.J. An improved equivalence algorithm. *Communications of the ACM* **1964**, 7, 301–303.

439 9. IBM. *IBM ILOG CPLEX Optimizer*, 2009-2019.

440 10. Gurobi. *Gurobi Optimizer*, 2008-2019.

441 11. An Open-Source Toolbox for Computer-Aided Investigation on the Fundamental Limits of Information
442 Systems. <https://github.com/ct2641/CAI>, 2020. Accessed: 2021-01.

443 12. Information Theoretic Inequality Prover (ITIP). <http://user-www.ie.cuhk.edu.hk/~ITIP/>, 1998-2008.
444 Accessed: 2020-12.

445 13. Xitip: Information Theoretic Inequalities Prover. <http://xitip.epfl.ch/>, 2007. Accessed: 2020-12.

446 14. Yeung, R.W.; Lee, T.T.; Ye, Z. Information-theoretic characterizations of conditional mutual independence
447 and Markov random fields. *IEEE Transactions on Information Theory* **2002**, *48*, 1996–2011.

448 15. Dougherty, R.; Freiling, C.; Zeger, K. Six new non-Shannon information inequalities. 2006 IEEE
449 International Symposium on Information Theory. IEEE, 2006, pp. 233–236.

450 16. Dougherty, R.; Freiling, C.; Zeger, K. Non-Shannon information inequalities in four random variables.
451 *arXiv preprint arXiv:1104.3602* **2011**.

452 17. Li, C.; Weber, S.; Walsh, J.M. Multilevel diversity coding systems: Rate regions, codes, computation, &
453 forbidden minors. *IEEE Transactions on Information Theory* **2016**, *63*, 230–251.

454 18. Ho, S.W.; Ling, L.; Tan, C.W.; Yeung, R.W. Proving and disproving information inequalities: Theory and
455 scalable algorithms. *IEEE Transactions on Information Theory* **2020**, *66*, 5522–5536.

456 19. Chan, T.; Thakor, S.; Grant, A. Minimal characterization of Shannon-type inequalities under functional
457 dependence and full conditional independence structures. *IEEE Transactions on Information Theory* **2019**,
458 *65*, 4041–4051.

459 20. Zhang, K.; Tian, C. On the symmetry reduction of information inequalities. *IEEE Transactions on
460 Communications* **2018**, *66*, 2396–2408.

461 21. Li, C.; Weber, S.; Walsh, J.M. Multilevel diversity coding systems: Rate regions, codes, computation, &
462 forbidden minors. *IEEE Transactions on Information Theory* **2017**, *63*, 230–251.

463 22. Li, C.; Weber, S.; Walsh, J.M. On multi-source networks: Enumeration, rate region computation, and
464 hierarchy. *IEEE Transactions on Information Theory* **2017**, *63*, 7283–7303.

465 23. Apte, J.; Walsh, J.M. Exploiting symmetry in computing polyhedral bounds on network coding rate regions.
466 2015 International symposium on network coding (NetCod), 2015, pp. 76–80.

467 24. Li, C.; Apte, J.; Walsh, J.M.; Weber, S. A new computational approach for determining rate regions and
468 optimal codes for coded networks. 2013 International Symposium on Network Coding (NetCod), 2013, pp.
469 1–6.

470 25. Apte, J.; Li, C.; Walsh, J.M. Algorithms for computing network coding rate regions via single element
471 extensions of matroids. 2014 IEEE International Symposium on Information Theory, 2014, pp. 2306–2310.

472 26. Gattegno, I.B.; Goldfeld, Z.; Permuter, H.H. Fourier-Motzkin elimination software for information theoretic
473 inequalities. *IEEE Information Theory Newsletter* **2015**, *65*, 25–29.

474 27. Gürpinar, E.; Romashchenko, A. How to use undiscovered information inequalities: Direct applications of
475 the copy lemma. 2019 IEEE International Symposium on Information Theory (ISIT), 2019, pp. 1377–1381.

476 28. Cover, T.M.; Thomas, J.A. *Elements of Information Theory*, 1 ed.; New York: Wiley, 1991.

477 29. Yeung, R. *A First Course in Information Theory*; Kluwer Academic Publishers: New York, 2002.

478 30. Yeung, R.W. *Information theory and network coding*; Springer Science & Business Media, 2008.

479 31. Zhang, Z.; Yeung, R.W. A non-Shannon-type conditional inequality of information quantities. *IEEE
480 Transactions on Information Theory* **1997**, *43*, 1982–1986.

481 32. Matus, F. Infinitely many information inequalities. 2007 IEEE International Symposium on Information
482 Theory. IEEE, 2007, pp. 41–44.

483 33. Dougherty, R.; Freiling, C.; Zeger, K. Insufficiency of linear coding in network information flow. *IEEE
484 Transactions on Information Theory* **2005**, *51*, 2745–2759.

485 34. Dougherty, R.; Freiling, C.; Zeger, K. Networks, matroids, and non-Shannon information inequalities. *IEEE
486 Transactions on Information Theory* **2007**, *53*, 1949–1969.

487 35. Dimakis, A.G.; Godfrey, P.B.; Wu, Y.; Wainwright, M.J.; Ramchandran, K. Network coding for distributed
488 storage systems. *IEEE transactions on information theory* **2010**, *56*, 4539–4551.

489 36. Dimakis, A.G.; Ramchandran, K.; Wu, Y.; Suh, C. A survey on network codes for distributed storage.
490 *Proceedings of the IEEE* **2011**, *99*, 476–489.

491 37. Maddah-Ali, M.A.; Niesen, U. Fundamental limits of caching. *IEEE Transactions on Information Theory* **2014**,
492 *60*, 2856–2867.

493 38. Lassez, C.; Lassez, J.L. Quantifier elimination for conjunctions of linear constraints via a convex hull
494 algorithm. In *Symbolic and numerical computation for artificial intelligence*; Donald, B.R.; Kapur, D.; Mundy,
495 J.L., Eds.; Academic Press: San Diego, CA, 1992; chapter 4, pp. 103–1199.

496 © 2021 by the authors. Submitted to *Information* for possible open access publication
497 under the terms and conditions of the Creative Commons Attribution (CC BY) license
498 (<http://creativecommons.org/licenses/by/4.0/>).