Combining Newton-Raphson and Stochastic
Gradient Descent for Power Flow Analysis

Napoleon Costilla-Enriquez, Student Member, IEEE, Yang Weng, Member, IEEE,
and Baosen Zhang, Member, IEEE

Abstract—The power flow problem is an indispensable tool to
solve many of the operation and planning problems in the electric
grid and has been studied for the last half-century. Currently,
popular algorithms require second-order methods, which may
lead to poor performance when the initialization points are poor
or when the system is stressed. These conditions are becoming
more common as both the generation and load profiles changes
in the grid. In this paper, we present a hybrid first-order and
second-order method that effectively escapes local minimums that
may trap existing algorithms. We demonstrate the performance
of our algorithm on standard IEEE benchmarks.

I. INTRODUCTION

Power flow (PF) analysis is one of the most important
and well-studied problems in the power system community.
It is commonly formulated as finding the solution to a system
of nonlinear algebraic equations, and a host of algorithms
have been proposed to solve this system of equations. The
most common among these is the Newton-Raphson (NR)
method, where the inverse of the Jacobian is used to update
the solutions iteratively [1], [2]. The popularity of the NR
method (and its variants) is partially due to the fact that it
has a fast speed of convergence. However, convergence is
not guaranteed, especially if the initial guess is not close
enough to the final solution, or the Jacobian matrix becomes
ill-conditioned in the iteration process [3]. A number of
approaches have been proposed to address these challenges, in-
cluding augmenting the system states [4], comparing polar and
rectangular formulations [5], improving the starting points [6],
[7], and using different approximations of the Jacobian [8—
10]. The authors from [11] take a different approach. They
reformulate the PF problem as an optimization one and handle
PV buses with complementarity constraints.

In this paper, we present an algorithm by combining gradi-
ent descent (GD) methods and the NR methods to overcome
some of the standard computational challenges in PF problems.
By formulating the PF problem as an optimization one, gradi-
ent descent steps can be taken without inverting the Jacobian
matrix. In addition, we use stochastic gradient descent (SGD)
to escape from local optima and saddle-points that would have
trapped deterministic algorithms. Once the iterations are close
enough to the global optimal solution, we can then utilize NR-
type methods to accelerate the convergence.

The rest of the paper is organized as follows: Section II
provides the problem formulation, Section III presents the
algorithm, Section IV shows numerical simulations to validate
our theory and makes a comparison between existing methods
and our proposed algorithm. Section V concludes the paper.
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II. PROBLEM FORMULATION

Consider a power system with n buses. For bus k, we denote
its complex voltage, active power and reactive power as vg,
Py, and Qy, respectively. We use bold fonts v = (v1,...,vp),
p=(p1,-..,pn) and q = (¢q1,...,¢n) to denote the vector
version of the quantities. Let Y denote the admittance bus
matrix. Then the power flow equation can be written in a
compact form as f(v) = p + jq = diag(vvHYH), where
() denotes the Hermitian transpose [12].

Given a complex load vector s, PF solves for the complex
voltage vector v such that f(v) = s. Instead of directly
solving this nonlinear equation, we consider the following

optimization problem:
n

min 31170) =l =ming 3 (5, (v) =5, (1)
i=

where if the PF problem is feasible, then the optimal value
of the objective is 0, and there is a v* such that f(v*) = s.
Given that the optimization problem is unconstrained with a
smooth objective function, it is natural to use gradient descent
to solve it.

III. GRADIENT DESCENT BASED METHODS

For notational simplicity, let £ denote the objective function

in (1). Its gradient with respect to v is given by the chain rule:

VoL =J3(f(v) —s), 2
where J is the power flow Jacobian. The standard GD algo-
rithm is given by

Vit = Vi — NV L(vy), (3)
where ¢ denotes the iteration number, and 7 is the step size
or learning rate, which may be constant or adaptive. Let
Zres,Ipy, and Zpg denote the sets of bus indices of the
reference bus, PV buses, and PQ buses, respectively. Then,
in (3), only the voltage angles d ;) for i ¢ Z,..; and the voltage
magnitudes vy, for i € Ipg will be updated. Note that
by controlling which variables are updated at each iteration,
we can also set specified voltage magnitudes on PV buses.
From (2) and (3), the GD algorithm would stop under two
conditions: 1) global optimal is reached and f(v) —s =0, or
2) J loses rank and f(v) — s is in the null space of J7.

The latter case means that the iterates v; is trapped in a
local minimum or in a saddle-point. To escape this minimum,
it needs to stop following the gradient (since it is zero) and
move in another direction. Of course, the direction it moves
in should not be random. In this paper, we advocate for a
type of stochastic gradient (SGD) approach [13]. Instead of
computing the exact gradient, each SGD iteration performs a
parameter update for a single term of the objective function in
(1). Specifically, a randomly index i is picked at an iteration,
and the gradient with respect to 3 (fi (v) — s; )2. We denote
this gradient as VyL;v;. The algorithm is shown in Fig. 1.



1: procedure SGD FOR PF
2: Select an initial vector vg, the number of maximum
iterations M¢er maz, and £ = 0

3: while f(v) —s < € o Niter < Niter,maz 0 > €18
the desired accuracy, and n;s, is the iteration number
4 Pick a random bus ¢ from {1,...,n}
5: Update the voltage vector:
Vi1 =V — 1) VL (Vt)
6: end while
7: return v,

8: end procedure

Fig. 1: SGD algorithm for the PF problem.

Even when the Jacobian J loses rank, it is typically close
to full rank. Therefore, the SGD gradients V,.L;v; would
not all be in the null space of J, and some of them would
still provide useful directions for updating the voltage vector.
Since the PF problem is non-convex, it typically has many
local minima. The SGD algorithm allows the updates to
“jump” out of local minima by the fluctuations induced by
the randomness in the bus index selection process. Note if
a global minimum is reached, then % (f; (v) — si)2 is zero
for all 4, so the SGD algorithm terminates as well. However,
SGD can also lead to slow convergence. Hence, we propose
a hybrid method which consists in starting solving the PF
problem with NR. If it stalls (when the condition number of
the Jacobian degrades), we switch to the SGD method. After
we escape from the local minimum, then the method switches
back to the NR to reach the final solution, which is depicted
in Fig. 2. The computational complexity for k iterations for
the Newton-Raphson’s method is O(k x n?) [14]. For the GD-
based methods the computational complexity for k iterations
is O(k x n).
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Fig. 2: Hybrid algorithm to solve PF problem.

IV. SIMULATION RESULTS

A. Escaping Local Minima

We illustrate the behavior of the SGD algorithm using a
3-bus resistive network that is arranged in a line. We choose
this example since we can explicitly plot the local minima
and the saddle-point of the PF problem, as shown in Fig. 3a.
To compare the behavior of the SGD and the standard NR
algorithms, we initialize a NR solver at some point and track
the error through the iterations. Of course, because of the local
minimum and the saddle-point, a NR solver can get trapped
at a suboptimal solution. At this point, a vanilla gradient
algorithm also gets trapped, since the Jacobian loses rank.
According to the algorithm in Fig. 1, we apply the SGD
algorithm. As shown by Fig 3c, the SGD escapes this point
and is able to converge to one of the global optimal solutions.
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Fig. 3: Global, local minima, and objective function values of
the 3-bus network.

B. Larger Systems

In this section, we illustrate the behavior and benefit of
using the hybrid method in Fig. 2 to solve the PF problem for
standard IEEE test systems. In the hybrid method, we start
with the NR algorithms, and if we detect divergence (when
the condition number of the Jacobian deteriorates), then we
switch over to the SGD algorithm. After running a few SGD
steps, we then again switch over to the NR iterates and repeat
the process until an optimal solution is found.

The reason we switch back and forth between the NR
and SGD updates is to utilize the NR algorithm as much as
possible. Because if NR is able to converge, it will converge
much faster (quadratic in the iterations) than when SGD is
used. For a system where the operating points do not change
appreciably, the NR algorithm can usually converge in a few
iterations from a good starting point. However, when the
operating conditions vary considerably, for example, when the
penetration of renewable resources is significant, then finding
a good start point becomes challenging [15], [16]. Therefore,
the role of SGD is to “correct” the actions of the NR algorithm
by escaping from suboptimal solutions and saddle-points when
a bad starting point is used.

In order to show the usefulness of this hybrid approach, we
performed a set of simulations. We compare the NR against
our hybrid approach. For both PF methods, we model trans-
formers and phase shifters with specified tap ratios and phase
shift angles that are kept constant throughout the simulation.
For all the simulations, we set specified voltage magnitudes
and generator reactive power limits on PV buses. We enforce
reactive power limits by using the conventional procedure [17].

That is, if any generator has a violated reactive power limit,

its reactive injection is fixed at the limit, and the corresponding
bus is converted to a PQ bus. For the SGD simulations,
we used an adaptive learning rate. Specifically, we used the
Adam adaptive learning algorithm [18] with stepsize n = 0.01,
and exponential decay rates §; = 0.9 and By = 0.999.
We set Njer,maz = 100. First, as a baseline, we perform
simulations under normal load conditions with a flat start with
the NR method and our proposed one. We can see the results
in Table I, which shows that both methods are successful.
However, when the conditions are changed, the NR method
will struggle to find a solution to the PF problem, as we will
show in the next simulations.

Now, we will change the starting points for the simu-
lations. This means that the initial guesses will be further
away from a solution. We first randomly pick a voltage



TABLE I: Convergence re-
sults with a flat start.

EE First iteration
20 — M Last iteration

Q Convergence result
10 - with flat start
Case NR Hybrid
H{I l ml I I 14-bus | Yes Yes
0 - \ l I l 39-bus Yes Yes
oM e | Ye Ye
# of simulati -pus es es
of simulation 300.bus Yes Yes

Fig. 4: Values of the first and

last iteration.

solution vector v* and compute the associated active and
reactive power. Subsequently, we randomly pick initial start-
ing points from a uniform distribution as follows: |v| ~
U(min (|v]*), max (|v]")) and 6 ~ U(min (8*), max (6%))
and test whether the algorithms can reach v* from the starting
points. We use this random initialization to make more
challenging the convergence when a PF solution exits. We use
the 14-bus system as an illustration to explore the convergence
of our hybrid method. The experiment design is as follows.
We randomly initialize voltage angles and magnitudes (as
we described before). Then, we use the SGD method for 50
iterations. Fig. 4 shows the result of 50 simulations, where
the value of the objective function at the first iteration (in
blue) is quite large, but the value of the last iteration (in
red) is minimal. Then, we initialize the NR method with the
starting points associated with the first value iteration and the
points associated with the last iteration. The result of doing this
experiment is shown in Table II (under normal load), where
the convergence rate is 10% with the NR method. On the
other hand, we have a 100% convergence rate with our hybrid
approach. We carry out the same experiments for the 39-, 57-,
118-, and 300-bus cases, in which we obtained better results
than the conventional NR approach, as shown in Table II.

For the proposed method under worse conditions, we make
simulations with a higher load level. We increase the power
system load by multiplying the active load by a factor « that
will produce an ill-conditioned test case. Table II shows the
result (under heavy load), where the convergence rate of the
hybrid method is better than the NR method.

Finally, we explore the convergence of both PF methods
around local minimum and saddle points. For this numerical
experiment, we perform two simulations by test case. In one
simulation, we choose the starting point to be a local minimum
one, and in the other simulation, we choose the starting point
to be a saddle-point. The results are shown in Table II. We
can see that the NR method does not converge, whereas we
achieve convergence in both simulations with our method. This
result is expected due to the NR Jacobian is singular at the

first iteration.
V. CONCLUSION

A novel hybrid method for the power flow problem is
proposed in this paper. This method combines the Newton-
Raphson and stochastic gradient algorithms to achieve fast
convergence speed as well as the ability to escape local minima
and saddle points.

Numerical tests on power systems of various sizes and
topologies demonstrated the effectiveness and efficiency of the

TABLE II: Convergence of different test cases for the NR and
Hybrid methods with original and increased loads.

Convergence
Convergence rate (%) Result
Normal Heavy Local minimums
Load Load and saddle points
Case NR Hybrid | NR Hybrid | NR Hybrid
14-bus 10 100 10 96 No Yes
39-bus 10 100 10 84 No Yes
57-bus 10 90 0 82 No Yes
118-bus 5 80 5 66 No Yes
300-bus 5 75 0 61 No Yes

proposed approach in solving fast and reliable the PF problem
under different load conditions and initial starting points.

In our future work, we would like to explore the voltage
stability problem with our proposed framework. Also, we will
investigate the possibility of finding and ranking problematic
buses that need power compensation to converge to a solution
with our proposed method.
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