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Abstract: For achieving increasing artificial intelligence in future smart grids, a highly accurate state estimation (SE) is needed as a
prerequisite for many other key functionalities for successful monitoring and control. With increasing interconnection of utility network
and internet, traditional state estimators are vulnerable to complex data integrity attacks, such as false data injection (FDI), bypassing
existing bad data detection (BDD) schemes. While researchers propose detectors for FDI, such countermeasures neglect power state
changes due to contingencies. As such an abrupt physical change negatively affects existing FDI detectors, they will provide incorrect
classification of the new instances. To resolve the problem, we conducted analysis for a fundamental understanding of the differences
between a physical grid change and data manipulation change. We use outage as an example and propose to analyze historical data
followed by concept drift, focusing on distribution change. The key is to find critical lines to narrow down the scope. Techniques such
as dimensionality reduction and statistical hypothesis testing are employed. The proposed method is tested on IEEE 14 bus system
using load data from the New York independent system operator with two different attack scenarios: 1) attacks without concept drift,
2) attacks under concept drift. Numerical results show that the new method significantly increases the accuracy of the existing detection

methods under concept drift.

Smart grid, data integrity attacks, line outage, machine learning.

1 INTRODUCTION

The future smart grid is highly dependent on communication networks to facilitate power system operation and control. However,
this strong reliance makes the grid vulnerable to a wide variety of malicious attacks which reduce the reliability of smart grids and
cause severe operational failures and substantial financial loss [1]-[3]. For example, in the December 2015 Ukrainian electrical grid
cyber-attack, the adversary opened several circuit breakers and caused a power outage of approximately 225,000 customers [4]. Among
possible cyber-attacks, false data injection (FDI) [5] is one of the most critical ones which makes SE results inaccurate [6]. Wrong
estimates could mislead system operators to take incorrect actions, endangering the security of the power system with catastrophic
consequences such as blackouts [7]. This is because the provided network status information through state estimation is used in other
functions of energy management systems, such as transmission stability analysis, load shedding, etc [8]. Specificially, adversaries
can launch such an attack by altering readings of multiple sensors and Phasor Measurement Units (PMUs) to introduce malicious
measurements and finally inject arbitrary errors to state estimates without being detected by BDD methods [9], [10].

To safeguard the system operation and control against FDI attacks, several detectors and mitigation methods have been developed. These
countermeasures can be divided into two categories: 1) protection-based; and 2) detection-based. The protection-based approaches try
to alleviate FDI attacks through identifying and protecting critical meters [11], [12]. Drawbacks of these approaches include high
implementation cost for large-scale power systems, the drop of measurements redundancy and the unassured effectiveness of the
protection all of the time [13].



2

The detection-based methods rely on anomaly detection techniques to recognize maliciously altered measurements that do not fit the
distribution of historical measurements utilizing graph theory, Kalman filter, classification algorithms, statistical threshold testing [13]—
[17], etc. Specifically, the second solution type estimates the underlying data distribution of the historical data and use the estimated
distribution as a reference to capture future attacks that will lead to extreme deviation from the reference distribution. For a detailed
review, a qualitative comparison between relevant literature and the proposed method, 4 properties are studied for each method as
shown in Table 1. These properties are:

1) Dealing with contingencies (DC): This property indicates the ability of methods in detecting attacks when the system is under a
line outage contingency.

2) Attack localization (AL): This property indicates whether the proposed method can determine the location of attacks or not.

3) Applicable to large-scale power systems (ALSPS): This property indicates whether implementing the method in large-scale power
systems is computationally complex and costly or not.

4) Requiring external devices (RED): This property indicates whether the method, to protect the system or to detect the attacks, relies
on external devices such as secure PMUs, etc. or not. This reliance is a drawback since compromise of the device will negatively
affect the method.

Table 1: Summary of related work

Approach | References Main idea DC|AL|ALSPS|RED

Protection| [11], [12],|Defending against the FDI attacks by determining the minimal set of measurements|No|No| No |Yes
[19], [20] that needs to be protected and ensuring the security of them by encryption,
tamper-proof communication systems, etc. For example, reference [11] uses greedy
approaches to select a subset of measurements and to promote the secure PMUs
deployment to defend against such attacks.

Detection | [21] A sequential detector based on the generalized likelihood ratio is developed to|No|[No| Yes [No
detect FDI attacks.

Detection | [6], [16], [17],|Supervised learning algorithms such as k-Nearest Neighbor, Support Vector Ma-|No |Yes| Yes [No

[22], [23] chines, reservoir computing (multilayer perceptron + delayed feedback networks)
are used to predict class label of new observations using historical data as training
set.
Detection | [1] A robust detector is proposed by checking the measurement statistical consistency|No |[No| Yes |To
using a subset of secure PMU measurements. Specifically, they derive the Neyman- some
Pearson detector for an FDI detection. ex-

tent

Detection | [24], [25] A discrepancy between the calculated Markov graph of the bus phase angles and|No |Yes| Yes |No
the power grid graph can lead to anomaly detection. To find the attacked nodes, the
approaches are dependent on selecting a threshold based on historical data.

Detection | [13] A Kullback-Leibler distance (KLD) threshold is set using historical data to detect|No |Yes| Yes [No
FDI attacks since they believe the KLD of the attacked measurement will be larger
than the normal one. Proper selection of this threshold affects the accuracy of

detection.
Detection |Proposed Serves as a complementary tool for the existing detectors by ensuring their|Yes|Yes| Yes |No
Method robustness against concept drift.

As shown in Table 1, one common drawback of the existing FDI attack detection approaches is reliance on the assumption of a
time-invariant historical data and the assumption of static discovered patterns, which makes them more suitable for stationary data.
This means they are designed for a specific system configuration and have not considered the impact of topology reconfigurations.
However, in practice, the data tends to change over time and the underlying distribution of data are not stationary. In other words,
they have been developed based on the training set which is obtained from the system without topology changes. This is while the
concept of data (underlying distribution of unseen data) could unpredictably drift after a line outage contingency as shown in Fig. 1.
As a result, predictions made by the models developed/trained on such historical data will be no longer accurate since the distribution

of data changes and old observations became irrelevant to the new ones.
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Fig. 1: Data distribution of a bus phase angles before and after a line outage

To address this issue, we propose a paradigm to enable the existing attack detection approaches to handle concept drift stem from
line outage contingencies. The key idea of the proposed method is to find the critical line outage contingencies leading to significant
change in the underlying data distribution and including their historical data in the training phase of the attack detection method.
Critical branch outage contingency set is constructed by comparing the probability distributions of the reduced drifted historical data
with the reduced historical data of the network when there is no contingency. It is shown through simulations that the proposed method
significantly increases accuracy of the existing methods under concept drift. The contributions of this paper are as follow:

1) We thoroughly investigate the effect of concept drift on smart grid cybersecurity, i.e., show what are the differences between a
physical grid change and data manipulation change and how drifting from the baseline network topology due to a line outage can
affect (he attack detection methods.

2) A detailed analysis of the behavior of a supervised learning technique in identifying attacks under concept drift is conducted.

3) The proposed method makes the existing FDI detectors robust to physical changes and works by identifying the critical line outage
contingencies leading to significant data distribution change. Furthermore, the computed critical line set by the proposed method
is compared with those constructed by power system indices.

The rest of the paper is as follows. In Section 2, we discuss the attack model. Section 3 explains the proposed method. Section 4

shows the test results of different attacking scenarios. Section 5 concludes the paper.



2 PROBLEM FORMULATION

Continuous and uninterrupted operation of power systems requires an accurate knowledge of the system states to correctly apply active
controls. SE processes the gathered measurement data from remote terminal units (RTUs) and estimates the system status using DC
state estimation or AC state estimation. In this paper, we adopt the widely used DC power flow model [2], [3], [6]-[9], [16], [17], [24],
[25] for power system state estimation. For smart grid under consideration, it is assumed that the underlying transmission grid consists
ofaset N'={1,2,--- ,n} of buses, aset M = {1,2,--- ;m} of meters and aset 5 = {1,2,--- , b} of transmission branches. State
estimation is used to estimate state variables x = [0y, 05, -+ , 0,]7 based on m installed meter measurements z = [21, 22, -+ , 2|’
under independent random measurement noises e € R™*1 which are assumed to follow Gaussian distribution with zero mean and
diagonal matrix representing the covariance matrix of the measurement errors R [26].

The n state variables are phase angles at all the buses except the slack bus where the phase angle is set to be zero (bus 1 in this
paper, i.e., #1 = 0). The installed meters measure buses active power injections and branch active power flows. Given the DC power

flow model, the relationship between meter measurements z and state variables X is:
z=Hx+e, @))]

where H € R™*" is the linear measurement function. Based on the weighted least squares (WLS) approach, the estimated system state
X can be calculated as:
Xx=H'R'H)'H'R ! 2. )

After estimation, Euclidean norm of measurement residual p = ||z — HX||2, is used to identify bad measurements [27]. This
is achieved by comparing p with a predetermined threshold 7, and bad measurements are assumed to exist if p > 7, otherwise the
measurement set is taken as a normal one. However, this assumption is breached through a newly introduced attack called FDI [5]. In this
research, it is proved that if the attacker has knowledge of the system structure H and can manipulate multiple meter measurements at
the same time, can pass the bad data detection test. Let a € R™*! denotes the cyber attack vector. Then, the manipulated measurement
with the malicious data is given by z, = z + a and could bypass the BDD under the condition a = He, where ¢ € R™*! is the
maliciously injected error on the system state. Sending z,, to the state estimator will result in false estimates X, = X + ¢ where X is the
true estimates of the system. The attacked measurement z, will bypass BDD since the measurement residual of z, will not lead to a

change in the measurement residual p and is the same as that of z:

pa = |2 = HXalla = [lz+a - HX+ ¢)lla = [z — HX + (a — He)||2 = [z — Hx[|2 = p. 3)

3 METHODOLOGY

This section proposes a methodology to handle concept drift due to branch outage contingencies. The proposed approach would serve
as a complementary tool to the existing detection methods by enabling them to detect stealthy attacks after concept drift, which could
otherwise go undetected. Focus of this paper is on classification which is a supervised learning task. More specifically, the k-Nearest
Neighbor (k-NN) [28] is used to detect FDI attacks and show the effectiveness of the proposed method since it has better performance
in managing data distribution changes compared to other algorithms due to its lazy nature [23]. The overview of the proposed method
is illustrated in Fig. 2. In this paper, the system topology without any contingency is considered as a baseline concept. We further
define the network under a branch outage contingency as a new concept. In particular, the system topology could drift from the baseline
to concept C;, where & = 1,---, Q. Concept C; differs from the baseline in the network topology and there exists a line outage
contingency in the system. Different algorithms have been used in the proposed method. First in this section, these algorithms are
briefly described. Afterward, the proposed approach is presented.

3.1 Employed Algorithms
3.1.1 Principal Component Analysis (PCA)
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Fig. 2:

3.1.2 Two-sample Kolmogorov-Smirnov Test (KS test)

The KS test distance is defined as the maximum absolute difference
between cumulative distribution functions of the distributions of the two sample data vectors S1 and S2. Assuming that a sample

Y = vy1,y2, -, Ym 1s given, its cumulative distribution function can be defined as follows:
Y S Y
Fym(y) = ==, @)

where #1i : y; < y denotes the number of elements in the set satisfying the property y; < y, for all possible 7. The KS test statistic for
two sets with n and m samples is:

Dnﬂn = sup |F51,n(5) - FSQ,m(S)|7 o)

—o0<s<00

where Fsq 5, and Flg2 ,, are the empirical cumulative distribution functions of the first and the second sample respectively and sup, is
the supremum of the set of distances. The null hypothesis that the two sets of samples are from the same distribution, is rejected at the

significance level « if the following necessary condition is satisfied:

Dy, > (@) X \/M, (6)
nxm
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where ¢(a) = \/—% x In and n and m are the sizes of first and second sample respectively. The significance level is usually set
to 5%, 1% or 0.1% [31]. Lower values give more confident decisions in accepting/rejecting the null hypothesis [32]. Thus, 0.1% is
selected as « in this paper.

3.1.3 k-NN

Let L be a set of class labels (normal versus tampered) and let S, be a p-dimensional data instance of a training set
TS = {S1,S2,---,S:} at time point ¢ that is labeled with some | € L. More specifically, the attack detection problem using
machine learning algorithms can be defined as a binary classification problem:

0, ife=0

I = , (N
1, ife#1

where [; = 0 means that there is no attack and /; = 1 means the ¢th measurement is manipulated.

In other
words, the k-NN classifier aims to predict the label of a new instance S;1; according to the labels of a predefined (k) number of
the training set closest in distance to S;4;. The commonly used dissimilarity measures is Euclidean distances which is defined as the
2-norm of the displacement vector between two instances as follows [28]:

P
d(Sl, SQ) = S1 — 822 = Z(Sl(J) - SQ(J‘))Q- (8)
j=1
To predict the class label of the new instance S; 1, the set of its k-NNs, R(S;11) = {S;(1),Si2), -+ »Si(k)}. is constructed by
computing the Euclidean distances between this sample and all instances in the TS, where S; € TS and i(1),4(2), - - - ,i(t) are defined
as follows:
d(St+1,8i(1)) < d(St41,8i2)) < -+ < d(St41,Sit))s )

where ? is the number of training samples. Then, the class label of the majority of the neighboring instances is assigned as the class
label of the S¢y1.

In this paper, k is set to 3 which is calculated by searching k € {1,2,--- ,\/f} using leave-one-out
cross-validation [33].

3.2 Proposed Method

As discussed in the previous section, the current methods are non-robust to topology changes and will incorrectly label the samples
(normal and attack ones) after a contingency. To enable robustness for the existing methods, we propose to use not only the historical
data (measurement set and state vectors) of the baseline concept, but also historical data of the critical concepts stem from the line
outage contingencies leading to significant change of data distribution. Contingency analysis is a powerful tool for transmission power
system (TPS) which is performed to evaluate the outage events in TPS and it is a critical part in security assessment [34]. The objective
of the existing line outage contingency selection methods is identifying the contingencies which may lead to unreliability [35]. The
majority of the contingency selection methods are based on the evolution of some Performance Index (PI) derived from DC or fast
decoupled load flow solution for each contingency [36]. This is while the objective of the proposed method is to identify line outages
changing the underlying data distribution dramatically.

obtain the sequence of normal system state vectors of that concept xm = {X1;Xo; - ;Xy; - ;X7 }, where w is the time index and T'
is the total number of the collected data points.



Afterward, the probability distribution of the reduced system state vectors of the derived concepts
are compared with the reduced data of the baseline concept using KS test. This is because we assume that some line outages will
lead to significant data distribution change and the reduced xm of the new concept will have a different distribution than the baseline
concept one. If the KS test rejects the null hypothesis that the two underlying one-dimensional probability distributions are the same,
that concept will be considered as a critical concept.

Finally, we create a training set which comprises historical data of the baseline concept and the identified critical concepts. Now,

this training set could be used to develop a robust detection method. As one will see in the simulation result, the proposed paradigm

3.4 Performance Evaluation

F-measure and false positive rate are used to evaluate the performance of the proposed method. F-measure is defined as follows [28]:

2x P, x R,

FM = 10
] (10)
where P, is the precision, R, is the recall and are computed as follows:
TP TP
P == e =(75—5); 11
(TP+FP) i (TP+FN) an

where true positive (TP) is the number of attack samples correctly detected and localized, false positive (FP) is the number of incorrectly
detected and localized attacks, true negative (TN) is the number of correctly rejected normal samples, and false negative (FN) is the
number of missed attacks. FM = 1 indicates that each sample labeled normal is actually a normal instance, and each measurement

classified as an attack is actually a manipulated one.

4 NUMERICAL RESULTS

The simulations are implemented on the IEEE 14 bus system. To highlight the effectiveness of the proposed paradigm in managing
concept drift originated from the line outage contingencies, two evaluation scenarios have been designed. Scenario S1 focuses on the
baseline concept where FDI attacks are conducted when the system is not affected by contingencies. Scenario S2 is about classifying
the attacks when the network topology drifts from the baseline to concept Cij—1 2 ... . As we already discussed, concept C; is the
network under a line outage contingency. These concepts are shown in Fig. 3. For IEEE 14 bus system, DC load flow converged for 19

line outage contingencies () = 19).

4.1 Data Preparation

The historical data have been preprocessed by MATPOWER [39]. The proposed method is implemented using MATLAB 2017 and
Python 3.

Real-world Load Data: To simulate the power system behavior in a more realistic pattern, real-world load data has been integrated
into the MATPOWER framework. The load data from New York independent system operator (NYISO) [40] are adopted as the real
power profile in the subsequent simulations. NYISO contains online load flow profiles for 11 regions recorded every five minutes. This
implies that there are about 288 values for each day. The load data used in this paper is for the first week of January 2016 (January 1,
2016 to January 7, 2016). This means 7' = 2045 load values are obtained as normal samples for each region.
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Table 2: NYISO load data characteristics

Region Bus Range (MW) | Mean(MW) SD (MW)
CAPITL Bus2 | [11.76-21.70] 16.68 2.38 (14.29%)
CENTRL Bus3 | [51.23-94.20] 72.85 9.54 (13.10%)

DUNWOD | Bus4 | [25.70-47.80] 35.35 5.11 (14.46%)
GENESE Bus5 [4.14-7.60] 5.76 0.81 (14.18%)
HUD VL Bus6 [5.44-11.20] 8.26 1.27 (15.40%)
LONGIL Bus9 | [15.39-29.50] 21.41 3.45 (16.15%)
MHK VL | Busl0 [4.60-9.00] 6.87 1.11 (16.22%)
MILLWD | Busll [1.68-3.50] 2.48 0.35 (14.12%)

N.Y.C. Bus12 [3.54-6.10] 4.71 0.72 (15.32%)
NORTH Bus13 | [9.12-13.50] 11.07 0.89 (8.09%)

WEST Busl14 | [9.29-14.90] 11.98 1.31 (11.01%)

To generate data for SE, each load bus of the test system is linked with one region of NYISO using the shown map in Table 2 and
then fit the normalized load data into the case file. For example, Fig. 4 shows the distribution of normalized NYISO load values for
bus 3. Subsequently, we run a power flow based on the power profile above to obtain the true measurement sets. Therefore, we obtain
T = 2045 normal measurement sets by repeatedly running the power flow. To mimic the effect of random errors, Gaussian noises
with zero mean and the standard deviation of 0.02 are added to the measurements. After orchestrating FDI attacks (Section 2), the
measurement data are given as inputs to the SE. In these simulations, active power measurements and system states are collected and

considered as inputs to the k-NN algorithm.

4.2 Attack State Variable

To test the performance of the proposed method, false data injection attacks on each system state variable 6o — 614 are simulated.
For each attack, one system state variable is decreased or increased by ten percentage of its original value which means two injection
amounts 90% and 110% are simulated. 90% means that the manipulated state variable is 10% smaller than the true value.

4.3 Suggested Concepts by the Proposed Method

To find the critical concept set by the proposed method, all of the concepts to which the network topology may drift from the baseline
due to branch outage contingency have been defined except the case load-flow solution is unobtainable and the program is diverged
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(line 7 — 8 outage). These concepts are shown by C; in Fig. 3. For example, the concept C; means the network under outage of branch
2 — 4. Table 3 shows the computed critical set by the proposed method which drift to those concepts is expected to change the data
distribution significantly. The table also shows the concepts which the baseline concept will drift to by occurrence of the computed the
critical contingency set using power system indices.

Table 3: Concepts stem from the occurrence of the obtained critical contingency set

Method Index Critical Concepts
Proposed | change of data distribution | C7,Cy, C3, Cs, Cqg
Ref [35] RSSI 01,02703,04706
Ref [37] FVSI Cl, 027 Cg, C4, 05
Ref [38] load power margins C1,C5,C3,Cy,Cy
—— Baseline Concept —— New Concept
5
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4.4 Scenario S1: Detecting Attacks in the Network without any Contingencies

In this scenario, it is supposed that there is no contingency in the network (baseline concept) and the system works well except for
the seventh day. This means that the attacker has falsified state variables of one day and the measurements of that day is completely
replaced by the attacked ones. Therefore, there are 288 attack samples for each attacking scenarios with incremental/decremental attack
cost and overall 576 attack samples for each bus. Table 4 summarizes the test results. This table represents the results when the k-NN
classifier is trained with just the baseline concept data and with the suggested critical concepts samples by the proposed method. This
means we update the training set TS by samples of the identified critical concepts and then the forecast model is trained based on the
newly updated data. The models were built using tenfold cross-validation.

To evaluate the effectiveness of the computed critical contingency set and the obtained critical concepts by the proposed method, the
classifier is also trained based on the collected data of the concepts stem from the occurrence of the critical contingency set identified by
references [35], [37], [38] which are shown in Table 3. As it is clear, all trained models were able to detect all attack samples correctly
for this scenario.

Table 4: Evaluation of methods

No Forecast Model FM| FP
1 |Trained with just baseline concept data - Currently utilized approach 1 0%
2 |Trained with baseline concept data and the proposed critical concepts - Proposed paradigm 1 10%
3 |Trained with baseline concept data and data of critical contingency set by [35] - Comparison purpose 1 0%
4 |Trained with baseline concept data and data of critical contingency set by [37] - Comparison purpose 1 (0%
5 |Trained with baseline concept data and data of critical contingency set by [38] - Comparison purpose 1 (0%
4.5 Scenario S2: Detecting Attacks under Concept Drift
This scenario focuses on the prediction of the labels of samples after using the trained classifiers in (h¢ scenario S1 shown

in Table 4. To this end, the contingencies are applied one by one and false data are injected into the system after each contingency.
The occurrence of each contingency leads to drift to a new concept from the baseline concept. The trained models are tested with each
instance of the derived concepts. For this simulation, we have assumed that a line outage occurs at 12 PM of the sixth day and the
system works under that contingency until the end of the seventh day. But, the adversary launches attacks to the measurements of the
seventh day completely. This means there exists 288 attack samples with incremental/decremental attack cost for each state variable
under each contingency and derived concept.

Table 5 represents the results for this scenario. Each row of Table 5 represents average F-measure and FP rate over the state variables
of related concept with different trained models in scenario S1. For example, the FP rate for Cy for the trained model No. 1 is 82%
which means this model incorrectly classifies 1694 normal samples out of 7' = 2045 samples as attack ones under concept drift (line
2 — 4 outage). Fig. 6 presents the average F-measure and FP rate over the different concepts of Table 5. As it is clear from the results,
the trained model with just baseline concept (No. 1) is not able to yield its performance and cannot predict samples correctly after
system reconfiguration in new concepts.

The dramatic loss of F-measure of the forecast model No.1 after because the underlying distribution of incoming
data unpredictably drifts after topology reconfigurations and old observations became irrelevant to the new ones. This is while the
trained model using the proposed paradigm (No. 2) is robust to changes and achieves a high F-measure in detecting attacks in different
concepts. This is because the most critical concepts are part of the model. Hence, any deployed method against data integrity attacks
should be able to address dynamically changing system configuration.

The results indicate that the trained model with our proposed concepts outperforms the models which are trained by the suggested
concepts stem from identified critical contingency set by power system indices. The proposed paradigm has a higher F-measure and
less false positive rate compared to those methods. The reason is that, unlike the power system indices, the proposed method selects
the critical concepts based on the change in the underlying data distribution.
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Table 5: Evaluation of the built models with test data

Test Data No. 1 No. 2 No. 3 No. 4 No. 5
FM| FP |FM| FP \FM| FP |FM| FP | FM| FP

C1 0.7/71% | 1| 0% 1| 0% 1] 0% 1| 0%
C2 0450% | 1 | 0% 1| 0% 1| 0% 1| 0%
C3 10750 86% | 1 | 0% 1| 0% 1| 0% 1| 0%
C4 10.78] 82% | 09| 16% | 1 | 0% 1| 0% 1| 0%
C5 1094 17% 0.94| 14% | 1 | 0% 1| 0% (0.94| 14%

C6  10.92] 31% [0.96] 16% | 1 | 0% (0.97| 12% [0.92| 28%
C7  0.28] 97% [0.88| 29% [0.28/100% | 0.6 | 88% | 0.6 | 86%
C8 1064 77% | 1 | 0% [0.64| 77% |0.65| 76% |0.88| 9%
C9  10.93/0.09%0.98| 2% [0.93/0.09%0.93({0.09%0.93]0.09%
C10 1036 74% | 1 | 0% [0.42/100% |0.41|100% |0.44|100%
Cit |1 0% |1 ]0% | 1] 0% |1]|0%|1| 0%
c12 |1 |10% | 1]0% |1[0% |1 0% |1]| 0%
C13 0.9 0.24%]0.92]0.24%| 0.9 [0.24%| 0.9 0.24%] 0.9 |0.24%

C14 10.93/0.5% [0.93| 4% 0.94]| 0.5% |0.94|0.5% | 1 | 0%

C15 1| 0% 1| 0% 1| 0% 1| 0% 11 0%

C16 1099 0% | 1 | 0% (0.99] 0% | 1 | 0% 1]0.99] 0%

c17 110% |1 10%|1]0%|1]0%|1| 0%

C18 110% |1 ]0% |1 |0% |1]|0%|1]| 0%

C19 110% |1 10%|1]0% |1]0%|1| 0%
[ No. 1 (Current methods) = No. 4 (Ref [37])

I No. 2 (Proposed method) 3 No. 5 (Ref [38])
Il No. 3 (Ref [35])
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Fig. 6: Summary results of testing trained models with test data.

5 CONCLUSION

FDI attacks can present a serious threat to operation and control of smart grid. Existing detectors and mitigation methods are unable to
manage concept drift since they assume that the training and the future unseen data come from the same distribution. We, therefore,
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in this paper, proposed a paradigm to enable robustness for these algorithms. Specifically, instead of using only the baseline concept
historical data, we proposed to systematically find the critical concept set which causes significant drift of data distribution from the
baseline concept and then update the training set with samples of those concepts. Such a set is computed by using PCA and KS
test. k-NN algorithm has been used to show the effectiveness of the proposed method. Unlike the power system indices to find the
critical contingency set, the proposed method identifies the critical concepts based on the severity of the change in the underlying data
distribution. Numerical results showed that the proposed method can achieve a high accuracy under concept drift and is able to ensure
the robustness of the existing countermeasures against concept drift stem from line outages.
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