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Identifying patterns is an important part of mathematical reasoning, but many students struggle 
to justify pattern-based generalizations. Some researchers argue for a de-emphasis on patterning 
activities, but empirical investigation has also been shown to support discovery and insight into 
problem structures. We introduce a phenomenon we call empirical re-conceptualization, which 
is the development of a generalization based on an empirical pattern that is subsequently re-
interpreted from a structural perspective. We define and elaborate empirical re-
conceptualization by drawing on data from secondary and undergraduate students, and identify 
three major affordances: Empirical re-conceptualization can serve as (a) a source of 
verification, (b) a means of justification, and (c) a vehicle for generating insight. 
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Objective: Leveraging the Power of Pattern-Based Generalizations 
Recognizing and developing patterns is a critical aspect of mathematical reasoning. Many 

students are adept at recognizing and formalizing patterns (Pytlak, 2014), but they can also 
struggle to understand, explain, and justify those very patterns they develop (Čadež & Kolar, 
2014). One source of students’ difficulties may rest with the empirical nature of those 
generalizations. Students can become overly reliant on examples and infer that a universal 
statement is true based on a few confirming cases (Knuth, Choppin, & Bieda, 2009). One 
potential solution is to help students understand the limitations of empirical evidence and thus 
recognize the need for deductive arguments (e.g., Stylianides & Stylianides, 2009). These 
approaches have shown some success in helping students see the limitations of examples, but 
they also frame empirical reasoning strategies as stumbling blocks to overcome. 

In contrast, we have identified a phenomenon that we call empirical re-conceptualization, in 
which students identify a pattern, form an associated generalization, and then re-interpret their 
findings structurally. From this perspective, students can bootstrap their pattern-based 
generalizations into mathematically meaningful insights and arguments. In this paper, we 
describe and elaborate the construct of empirical re-conceptualization and address the following 
questions: (a) What characterizes students’ abilities to leverage pattern-based generalizations in 
order to develop mathematical insights? (b) What are the conceptual affordances of empirical re-
conceptualization? We offer a secondary example, discuss the affordances experienced, and 
consider ways in which instruction can support the practice of empirical re-conceptualization. 

The Drawbacks and Opportunities of Empirical Reasoning 
While an emphasis on patterning that lacks meaning can promote the learning of routine 

procedures without understanding (Fou-Lai Lin et al., 2004), there are also a number of 
affordances that can arise from empirical investigation. The act of developing empirically-based 
generalizations can foster the discovery of insight into a problem’s structure, which could 
consequently support proof development (de Villiers, 2010). The degree to which pattern 



generalization is an effective route to proof is an open question, but there is evidence that 
students can and do engage in a dynamic interplay between empirical patterning and deductive 
argumentation (e.g., Schoenfeld, 1986).  

Students lack sufficient experience with developing meaning from patterns. Curricular 
materials emphasize patterning activities that end with a generalization, typically an algebraic 
rule; developing an associated justification is seldom emphasized in standard classroom tasks. In 
fact, students typically receive little, if any, explicit instruction on how to strategically analyze 
examples in developing, exploring, and proving generalizations (Cooper et al., 2011). We 
propose that empirical re-conceptualization can be one way to provide opportunities to develop 
mathematical insight and deductive argumentation from pattern-based generalizing activities.  

Theoretical Perspectives: Structural Reasoning  
Harel and Soto (2017) identified five major categories of structural reasoning: (a) pattern 

generalization, (b) reduction of an unfamiliar structure into a familiar one, (c) recognizing and 
operating with structure in thought, (d) epistemological justification, and (e) reasoning in terms 
of general structures. The first category further distinguishes between result pattern 
generalization (RPG) and process pattern generalization (PPG) (Harel, 2001). RPG is a way of 
thinking in which one attends solely to regularities in the result. The example Harel gave is 

observing that 2 is an upper bound for the sequence √2 ,#2	+ √2, &2+#2 + √2, … because 
the value checks for the first several terms. When we refer to empirical re-conceptualization and 
the identification of a pattern based on empirical evidence, we are referring to RPG. In contrast, 
PPG entails attending to regularity in the process. Harel discussed how one might engage in PPG 
to determine that there is an invariant relationship between any two consecutive terms of the 
sequence, #()* = ##( + 2, and therefore reason that all of the terms of the sequence are 
bounded by 2 because √2 < 2.  

We define empirical re-conceptualization as the process of re-interpreting a generalization 
based on RPG from a structural perspective. By structural perspective, we mean engaging in any 
of the following activities: (a) shifting from RPG to PPG; (b) reducing an unfamiliar structure 
into a familiar one; (c) carrying out operations in thought without performing calculations; (d) 
forming and reasoning with a new conceptual entity; or (e) shifting from figurative to operative 
activity. In short, re-interpreting a generalization from a structural perspective entails the ability 
to recognize, act upon, and reason with general structures.  

Methods 
Barney (a 7th-grade student) and Homer (a 9th-grade student) participated in a paired teaching 

experiment (Steffe & Thompson, 2000), which took place across five sessions averaging 75 
minutes each. An aim of the teaching experiment was to investigate the students’ generalizations 
about the areas and volumes of growing figures, and then to study their development of 
combinatorial reasoning by exploring the growing volumes of hypercubes and other objects in 4 
dimensions and beyond. 

All teaching sessions were videoed and transcribed. We first drew on Ellis et al.’s (2017) 
RFE Framework to identify generalizations, and then used open coding to infer categories of 
generalizing activity based on the participants’ talk, gestures, and task responses. We then 
identified an emergent set of relationships between the participants’ patterning activities and the 
types of generalizations they formed; this yielded the category of empirical re-conceptualization. 



In a final round we re-visited the data corpus in order to identify all instances of empirical re-
conceptualization, the generalizations that led to each instance, and the subsequent explanation 
or justification. In this manner we were able track the changes in students’ activity after engaging 
in re-conceptualizing, which led to the identification of the affordances detailed below. 

Results 
We found three major affordances of engagement in empirical re-conceptualization. Namely, 

empirical re-conceptualization can serve as (1) a source of verification, (2) a means of 
justification, and (3) a vehicle for generating insight. Within the third category, we identified 
three types of insight: (3a) re-interpretation within a different context or representational register, 
(3b) the creation of a new generalization, and (3b) the establishment of a new piece of 
knowledge. In order to characterize the phenomenon of empirical re-conceptualization and its 
associated affordances, we present an exemplar case.  
Secondary Case: Growing Volumes in Three Dimensions and Beyond 

Barney and Homer explored the added volumes of three-dimensional, four-dimensional, and 
other n-dimensional “cubes” that grew uniform amounts in every direction. They began by 
determining the added volume of an n by n by n cube that grew 1 cm in height, width, and 
length. The students worked with physical cubes to consider the component pieces and 
determined that the added volume would be 3n2 + 3n + 1. When they then investigated the added 
volume of a cube that grew x cm in each direction, the students simply generalized from their 
prior result. Homer wrote “(3x)n2 + (3x)n + x2”, replacing the 3 in the first two terms of his 
original expression with a 3x, and replacing the 1 in the last term, which he had conceived as 12, 
with an x2. Unsure about the correctness of this expression, Barney said, “let me model on the 
cube”, which he used to verify that the first term, 3xn2, was correct because it represented three 
additional rectangular prisms, each with a volume of xn2. Both students then realized errors in 
the next two terms. Barney explained that the second term should actually be 3x2n “because 
you’re adding 3 of x by x by n.” Both students also realized the final term would have to be x3. 

The students’ original generalization was based on the result of their prior activity in building 
up additional volume components, rather than attending to the process by which they grew the 
cube’s volume. However, Barney then experienced a need to verify Homer’s result, which led to 
re-conceptualizing the generalization within the context of volume. He took the algebraic 
structure and made sense of it geometrically, in the process coordinating his mental activity of 
constructing component volumes and translating those quantities to algebraic representations.  

The students eventually went on to determine expressions of added volume for the 2nd, 3rd, 
and 4th dimensions, which the teacher-researcher wrote in Figure 1. Homer then saw a pattern in 
the expressions, exclaiming, “Oh, I know what’s happening!”: 

Homer: It is simple, as 2 – sorry I’m writing on it. [Begins to draw the blue lines.] Two 
plus 1 is 3, and 2 plus 1 is 3, 3 plus 3 is 6, 3 plus 1 is 4, 1 plus 3 is 4. [Writes the 
red numbers.] 

TR: Whoa. Huh. 
Barney: Wow. It’s just that one triangle, Pascal’s triangle, right? 
Homer recognized the pattern in which each coefficient could be determined by adding the 

sum of the coefficients of the prior consecutive terms. Pascal’s triangle then became a 
mechanism for determining the additional volume of a 5th-dimensional solid, which the students 
wrote as “5n4 + 10n3 + 10n2 + 5n1 + 15”. They then decided to check their answer by listing the 
arrangements of three ns and two 1s (the 10n3) case, which served to verify that the coefficient 



was indeed 10. Barney then realized that given that they had verified the 10n3 case, they did not 
need to check the 10n2 case: “We can basically just take this and switch all the ns to 1s and 1s to 
ns.” This explanation of symmetry caused Homer to then extend that finding to new cases: “Oh, 
and you know what? You can do the same for these (pointing to the 5n4 and the 5n1 terms)…you 
can just replace these 1s for ns.”  

       
Figure 1: Expressions for added volume in the 2nd, 3rd, and 4th dimensions 

 
Homer and Barney initially developed a generalization based on Pascal’s triangle, which 

allowed them to determine the expression for added volume. Their subsequent listing activity 
enabled the students to re-interpret that expression combinatorially. That pattern allowed the 
students to engage in a verification process and subsequently reason about outcomes to develop a 
new insight, that there must be symmetry in the coefficients. Barney was able to reflect on his 
operations in listing the ten outcomes and realize that there was nothing special about the 
characters n and 1, and that they could simply be reversed in the case of determining the 
combinations of two ns and three 1s. This then supported Homer’s new generalization. 

Discussion 
Empirical re-conceptualization can serve as a source of verification, such as when Barney 

checked the algebraic expression for adding x cm to a cube by appealing to the notion of volume. 
It can also serve as a source of justification, which we saw when Barney justified Homer’s 
pattern of xs in the expression 3xn2 + 3x2n + n3. We also saw the students developing insight. 
They developed new knowledge and understanding, such as when Barney generated the idea that 
the coefficient of n3 must be identical to the coefficient of n2, which then supported Homer’s 
ability to establish a new generalization that could be extended to the other terms, 5n4 and 5n. 

These affordances suggest that empirical re-conceptualization can serve as a vehicle to 
transform empirical patterns into meaningful sources of verification, justification, and insight. 
Certainly, students may also identify and generalize patterns that they do not understand or 
cannot justify. A danger is that students will engage in empirical investigation but then not seek 
to re-conceive their findings structurally. We find it useful to explore the conditions that can best 
support students’ transition to the productive next step, that of empirical re-conceptualization. 
Our data suggest that directing students back towards the contextual genesis of the patterns they 
generalize may be an effective strategy for supporting empirical re-conceptualization. With the 
support of concrete contexts for meaning making, the activity of generalizing empirical patterns 
can serve as a bridge to more generative and productive mathematical activity.  
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