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1 Introduction

Simulator-based models, such as differential equations, are important tools for
modeling the complex physical systems in many scientific and engineering ap-
plications. However, the model parameters of interest are generally not known
a priori, and thus require estimation from noisy observational data. This is
known as the inverse problem [Kirsch, 2011], and it has great implication in
chemical engineering [Ren et al., 2021], ecology [Wood, 2010], genetics [Mart-
tinen et al., 2015], and many other fields. The inverse problem is also known as
model calibration in the statistical literature [Box and Hunter, 1962, Kennedy
and O’Hagan, 2001, Joseph and Yan, 2015].

More formally, let y* € ) denote the noisy structured observational data
that could be a scalar, a function, or a tensor. Let H : ©® — ) denotes
the simulator-based model with unknown parameters § € ©. Suppose that
the model H is correctly specified, the objective of the inverse problem is to
identify 6* € © such that

y* = H(0") +e (1)

where € € ) represents the unknown observational noise. However, the inverse
of H is generally intractable in practice. In order to find 6*, we formulate the
inverse problem as a least squares problem. In other words, we aim to find the
model parameters 8* € © such that the discrepancy between H(6*) and y* is
minimized,

0" = argmin £(0) = g(H(0),y") = [ H(0) —y' 3, (2)

where g : Y x Y — R is the squared distance function, a popular discrepancy
measure for the structured data, and the objective f := g o h is a composite
function with non-negative range. Unfortunately, the optimization problem
in (2) is difficult to solve since (i) the model H is so complicated or even
black-box such that the analytical gradient/Hessian of f cannot be derived,
(ii) the model H could be computationally expensive to evaluate in many real
world applications, so we cannot afford the computational cost of getting pre-
cise numerical approximation for the gradient/Hessian, and (iii) multiple local
minima could exist due to the noise-contaminated observations and possible
information loss in the forward process of evaluating the model H. Thus, the
objective of this paper is to investigate an efficient optimization procedure to
solve (2) using as few evaluations of the model H as possible.

Bayesian optimization (BO) [Kushner, 1964, Mockus, 1994, Jones, 2001,
Frazier, 2018] is the state-of-the-art method for solving optimization prob-
lem involving an expensive objective function that has multiple local optima,
making it a perfect tool for solving the inverse problem in (2). BO builds a
probabilistic surrogate model to infer the predictive distribution of any input,
and then utilizes the predictive information to select the next sample that
maximizes the expected improvement [Jones et al., 1998]. The naive approach
is to apply BO with respect to the composite objective function f, but this
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ignores the useful information from the model H. To address this shortcom-
ing, Uhrenholt and Jensen [2019] and Matsui et al. [2019] proposed surrogate
modeling on the model H and derived the generalized chi-square predictive
distribution for f, when g is the squared distance function as in (2). More-
over, Astudillo and Frazier [2019] further generalized this composite objective
function BO framework to any well behaved scalar-output function g with
analytical first-order derivative.

Motivated by the parameter identification problem of a reaction-diffusion
transport model in the vapor phase infiltration (VPI) process where the obser-
vational data y*(t) is a function over time [Ren et al., 2021], we focus on the
inverse problem with an expensive model H(¢; ) that returns a functional re-
sponse. Prior literature have considered the inverse problem for vector-output
model H with both independent components [Uhrenholt and Jensen, 2019]
and correlated components [Matsui et al., 2019]. The latter is more related
to our interest since functional data are usually represented by some high-
dimensional vector with correlated entries for the temporal dependency. How-
ever, the approach in Matsui et al. [2019] is computationally expensive for the
high dimensional data since (i) vector-valued Gaussian process [Alvarez et al.,
2012] is utilized for modeling H, and (ii) spectral decomposition of the predic-
tive covariance is required for deriving the generalized chi-square distribution.
Thus, we propose using the functional principal component analysis (FPCA)
for dimension reduction of the functional data [Ramsay, 2004], resulting in
efficient derivation of the generalized chi-square predictive distribution for f
using only the principal component scores. The FPCA has also been used to
define probability density for random functions [Delaigle and Hall, 2010] and
construct a Gaussian process model with a functional output [Tan, 2018].

This paper is organized as follows. Section 2 presents the physical process,
vapor phase infiltration, and the differential equations that motivate our in-
terest on the inverse problem with functional output. Section 3 reviews the
standard Bayesian optimization procedure. Section 4 first discusses the modifi-
cation of Bayesian optimization for a principal approach of solving the inverse
problem using the generalized chi-square distribution, and then proposes the
BOFO, Bayesian Optimization of Functional Output, to extend the frame-
work to a functional target. Section 5 presents the numerical result of BOFO
on the motivating problem and demonstrates how BOFO improves over the
standard Bayesian optimization procedure. The article then concludes with
some remarks in Section 6.

2 Application: VPI Process

Vapor phase infiltration (VPI) is an emerging chemical modification process
for transforming polymers into hybrid organic-inorganic materials with in-
dustrially relevant properties. In VPI, the bulk of a polymer is infused with a
vapor-phase precursor (often a metal-organic) which becomes entrapped either
via a chemical interaction with functional groups on the polymer or through
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Assumptions

Process Constants: polymer thickness, temperature, pressure, surface concentration (Cs)
Rate of Adsorption and Absorption: significantly faster than diffusion and reaction
Linear Sorption Isotherm: surface concentration follows Henry’s Law
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Fig. 1: Detailed steps of a typical VPI process (metal-organic cycle)!. a) At
t = 0, a polymer is exposed to vapor phase metal-organic precursors, equi-
librium is reached between polymer surface and vapor pressure. b) As t > 0,
metal-organic vapor diffuses throughout the polymer, some reacting with poly-
mer functional groups and losing mobility ¢) As ¢ continues to increase, there
will be both free diffusing vapors and immobilized products in the polymer,
both contributing to the total mass uptake d) As desorption occurs, surface
concentration of precursor drops to 0, immobilized product remains in the
polymer while free diffusing precursors leave the polymer.

the introduction of a co-reactant that forms a non-volatile product. VPI is
unique in that it modifies polymers post-fabrication, thus maintaining the
material’s macroscale form (thin films, bulk plastics, fibers, fabrics, etc.). As
a result, the application space for VPI spans a number of industries [Leng
and Losego, 2017, Waldman et al., 2019, Ingram and Jur, 2019, Azpitarte and
Knez, 2018, Subramanian et al., 2019, Losego and Peng, 2019].

While the utility of VPI was the focus of initial research efforts, a recent
shift has occurred to understand the fundamental thermodynamic and kinetic
principles of the infiltration process. To account for how reactions in VPI

1 Reprinted with permission from Ren, Yi, Emily K. McGuinness, Chaofan Huang, V.
Roshan Joseph, Ryan P. Lively, and Mark D.Losego (2021). “Reaction—Diffusion Transport
Model to Predict Precursor Uptake and Spatial Distribution in Vapor-Phase Infiltration
Processes”. In: Chemistry of Materials 33.13, pp. 5210-5222. Copyright 2021 American
Chemical Society.
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systems influence the transport behavior of vapor phase precursors in the
infiltration process, Ren et al. [2021] recently proposed a reaction-diffusion
model (see Figure 1) to understand the mass uptake behavior observed from
the physical experiment, leading to the following system of partial differential
equations (PDEs),

Cs ree *Chree

5 ft =D 82{2 - kcfreecpolymer

%‘M = kcfreecpolymer (3)
D = Dy exp(—K'Cproduct)

acpolynwr

ot = _kcfreecpolymer

with the following initial and boundary conditions,

Cfree =0, O<z<l,t=0
Cproduct:07 O<$<l,t:0
Chotymer = Clppymer» 0 < & <1, =0 (4)
OCree — ), x=0, t>0
Cfreezcs, r=I, t>0

where Cfce(mol/cm?) is the concentration of the free diffusing vapor-phase
precursor, Cpoiymer(mol/ cm3) is the concentration of the accessible reactive
polymeric functional groups, Cpmduct(mol/cm?’) is the concentration of im-
mobilized product from the reaction between the free diffusing vapor-phase
precursor and the polymeric functional groups. The first differential equation
describes how the free diffusing vapor-phase precursor diffuses into the poly-
mer while being consumed via reaction; the second equation describes the
formation of immobilized product; the third equation captures how diffusiv-
ity decreases exponentially with the formation of immobilized product; and
the last equation describes the consumption of the polymer reactive groups.
Based on the governing equations and boundary conditions, there are five un-
known parameters 6 = {Dy, Cs, Cgolymer, K’ k} that will directly impact the
transport process, where Dg(cm?/s) is initial diffusivity of the free diffusing
vapor-phase precursor, Cs(mol/cm?) is the surface concentration of the free
diffusing vapor-phase precursor, C’golymw(mol/ cm?) is the initial concentra-
tion of accessible reactive polymeric functional groups, K’(cm?/mol) is the
hindering factor describing how immobilized product Cproguct slows down the
diffusivity of free diffusing vapor, and k(cm®/mol - s) is the associated reac-
tion rate. There are three more operational parameters, polymer thickness [,
temperature, and vapor pressure, that can be experimentally controlled. See
supplementary information for more details of the VPI process.

Figure 2 shows experimentally collected data for the mass uptake of the
polymer during the VPI process. This data is collected using a quartz crystal
microbalance; more information about the experimental data collection can be
found in Ren et al. [2021]. The solid black curve shows the total mass uptake
of the free diffusing vapor-phase precursor and the immobilized product, i.e.
Cree+Chproduct after unit adjustment, over time recorded from the experiment
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Fig. 2: Black solid curve is the area normalized total mass uptake of the free dif-
fusing vapor-phase precursor and the immobilized product over time recorded
from the experiment performed at 130°C, 8.7 Torr vapor pressure, and 483 nm
thick polymer film [Ren et al., 2021]. The dashed curves are the corresponding
mass uptakes over time from numerically solving the PDEs (3) under three
different settings of the five unknown parameters 6.

performed at 130°C, 8.7 Torr vapor pressure, and 483 nm thick polymer film.
Thus, our objective is to identify the five unknown parameters 6 such that
the total mass uptake obtained by numerically solving the PDEs (3) is aligned
with the experimental observations. The dashed curves in Figure 2 show the
results from solving the PDEs at three different sets of 6. They exhibit different
patterns over time and are incompatible with the experimental observation,
showing that identifying the correct 6 is difficult, not to mention that solving
the PDEs via numerical integration is computationally expensive: it takes
about one minute to numerically solve the PDEs in (3) in a 2.3 GHz laptop.

When both spatial and temporal experimental observations are available,
several gradient matching types of methods have been proposed in the liter-
ature to bypass the costly numerical integration step [Xun et al., 2013, Zhao
et al., 2021]. However, for the VPI process, the spatial information is aggre-
gated, yielding only a function over time as the experimental observations that
we aim to match. For this case of aggregated spatial information, the numerical
integration free methods cannot be applied. In fact, many common chemical
engineering phenomena, such as the transport processes [Chapter4; Hines and
Maddox, 1985], modeled with PDEs will have experimentally collected data
that is not easily collectable concurrently in both the space and time domains,
but rather will have one of these domains aggregated. This loss of spatial in-
formation makes the inverse problem ill-posed as many local minima could
exist, but we will see in Section 5 that our proposed Bayesian optimization
procedure could circumvent the issue and identify a good optimum using only
a few evaluations of the PDEs.
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3 Bayesian Optimization
3.1 Gaussian Process

Let us first review the Gaussian process (GP), the powerful and popularly
used probabilistic surrogate model in Bayesian optimization. Following the
definition in Rusmassen and Williams [2006], a Gaussian process is a collec-
tion of random variables such that any finite number of which have a joint
multivariate Gaussian distribution, denoted by

f(@) ~ GP(u,K), z € R, ()

where 1 : R? — R is the mean function and K : R x R¢ — R is a positive
definite covariance function parameterized by some hyperparameters which
we obtain using the empirical Bayes method. For any finite set of inputs X =
(T1,...,Ty), we have f(X) ~ N(u(X),K(X,X)). It is typical that we only
have noisy observations, i.e., we observe Y; = f(x;) + ¢; where we assume
additive i.i.d. Gaussian random noise ¢; ~ N(0,0%). Let Y = (Y1,...,Y,),
and it follows that

Y ~ N(u(X), (X, X) +17° L) (6)

Conditional on observing D,, = {(z;,v:)}7, and let y = (y1,...,yn), the
predictive distribution of f at any unseen test point z € R? is

f(@)[ Dy ~ N (fi(x), 5% (x)), (7)

where
i) = p(e) + Kz, X)(K(X, X) +7°1,) "y — p(X)),

52(x) = K(w,2) — K, X)(K(X, X) + L) K(X, 2), ®)

can be derived using the property of conditional multivariate Gaussian distri-
bution. For the case where the observations are exact, i.e., y; = f(x;) Vi, we
simply set n? = 0 in (8) to derive the predictive distribution. See Rusmassen
and Williams [2006] and Santner et al. [2018] for more details of the GP.

3.2 Standard Bayesian Optimization

Now consider the task of minimizing some black-box function f : R? — R
which could be expensive to evaluate. Under the limited computational budget,
we want to allocate the resources smartly to balance between learning the
response surface (exploration) and locating the optimal solution (exploitation).
Bayesian optimization (BO) offers a principle solution.

For simplicity, consider the case when the evaluation of f is noise free. By
using a Gaussian process surrogate model to approximate f, (7) shows that the
predictive distribution for any input z € R? conditional on available samples
D, = {(zs,y; = f(x;))}, is Gaussian with mean ji(z) and variance &%(z)
defined in (8). Bayesian optimization selects the next sample via an acquisition
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function a : R? — R that assigns utility to any unseen input x based on the
inferred predictive distribution from the GP model. In this paper, we focus
on the Expected Improvement (EI) acquisition function [Jones et al., 1998].
In EI, for each input z, we compute how much we can expect to improve over
the best value fiin = min; f(z;) we have obtained so far, that is to compute

aEI(x; Dn) = E[{fmin - f(x)}+|Dn]’ (9)

where the notation {u}* stands for max(u,0). Given that the predictive dis-

tribution of f(z) conditional on the observations D is Gaussian, the EI can be
computed in closed-form,

(D) = 6(35){ (fmin - [‘(I))¢(fmin - ﬂ(@) i ¢(fmin - ﬁ(z))} (10)

& (x) &(x) &(x)

where @(-) and ¢(-) are the c.d.f. and p.d.f. of the standard normal distribution,
respectively. We then select the next sample that maximizes the EI,

Zp41 = arg max agy(x; Dy). (11)
reR4

By maximizing the EI in (10), we can see that it favors selecting a setting that
(i) has large predictive standard deviation &(z) for exploring the response
surface where the model has high uncertainty (exploration), or (ii) has small
predictive mean f(x) that try to locate a better optimum (exploitation). The
EI acquisition function naturally balances between exploration and exploita-
tion for the next sample selection, showing why BO is robust against problems
with many local minima.

4 Bayesian Optimization for Inverse Problems

In this section, we discuss the modification to the standard Bayesian optimiza-
tion procedure for solving the inverse problem in (2). We first discuss the case
of scalar-output model H to show that the generalized chi-square distribution
is a more appropriate predictive distribution for the the inverse problems. We
next extend the framework for the functional-output model H, leading to our
proposed method BOFO, Bayesian Optimization of Functional Output.

4.1 Inverse Problems with Scalar Output

Consider a scalar-output simulator-based model H : © — R with the target
observed data y* € R, and the objective of the inverse problem is to solve for

0" = argmin f(0) = g(H(6),y") = |[H(0) —y" 3 = (H(6) —=y")*  (12)

where g : R x R — R is the squared distance function. Following the standard
BO procedure, we apply GP model on f. This approach suffers from two
deficiencies: (i) the information from the model H is masked, which could
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Fig. 3: Left panel shows the model H in (13) with blue dashed line indicating
the target y* = 0.15. Right panel shows the corresponding squared loss func-
tion f(0) = ||H(0) — y*||3 that we want to minimize. The green circles are the
initial five observations.

contain useful insight for the optimization, and (ii) the predictive distribution
from GP is symmetric and has support in the negative domain, while the
squared distance type of objective in (12) only yields non-negative value and
the error distribution is skewed.

To illustrate the shortcoming, let us consider the following model [Xiong
et al., 2007],

H(6) = sin(30(0 — 0.9)*) cos(2(0 — 0.9)) + (6 — 0.9)/2, VO € [0,1],  (13)

with the target y* = 0.15. Figure 3 shows the model H and the correspond-
ing squared loss function f that we want to minimize. We can see that this
problem has two minima in the domain [0, 1]. Suppose that we have five ex-
act observations D5 = {(6;, H(6;), f(0;) = (H(6;) — y*)?)}>_; (green circles
in Figure 3) on the 5 Chebyshev nodes of [0,1]. Left panel of Figure 4 shows
the predictive distribution of f at any unseen input 6 € [0,1] after GP mod-
eling on f. The predictive distribution yields some negative values at around
0 = 0.6, reflecting a flawed expectation about the behavior of f in those un-
explored regions. Moreover, the predictive distribution completely misses one
of the minima at around 0.4, which can also be seen from the EI value in the
right panel of Figure 4.

One simple approach to take care of the non-negative range of f is to
perform GP modeling on log f [Gutmann and Corander, 2016], then the pre-
dictive distribution for log f at any input z is Gaussian with some mean [i(6)
and variance 2(6). Thus, it follows that the predictive distribution for f is
log-Gaussian, and we can compute the corresponding EI analytically,

ag1(6; Dr) =¢(W)ﬂnm*

- (1og(fmin) ;(zge) - 52 <9>) exp {/1(9) + 20 }
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Fig. 4: Left panel shows the predictive mean in red dashed line and 90% Gaus-
sian predictive interval in red dotted lines. Right panel shows the correspond-
ing EI acquisition value. The green circles are the initial five observations, and
the red square is the sample selected by EI.
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Fig. 5: Left panel shows the predictive mean in red dashed line and 90%
log-Gaussian predictive interval in red dotted lines. Right panel shows the
corresponding EI acquisition value. The green circles are the initial five obser-
vations, and the red square is the sample selected by EI.

where fiin = min; f(6;) is the best value we have from the samples. We can see
that the predictive distribution no longer has support on the negative domain
(left panel of Figure 5). Although it is able to yield positive EI for the two local
minima, it again fails to identify them as the most important regions for the
next step exploration (right panel of Figure 5), suffering the same drawback of
the standard BO approach on f that ignores the information from the model
H (Figure 4).

Recently Uhrenholt and Jensen [2019] and Matsui et al. [2019] proposed a
principal remedy to the forgoing problem by using the generalized chi-square
distribution as the predictive distribution for the squared distance type of ob-
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Fig. 6: Left panel shows the predictive mean in red dashed line and 90%
generalized chi-square predictive interval in red dotted lines. Right panel shows
the corresponding EI acquisition value. The green circles are the initial five
observations, and the red square is the sample selected by EI.

jective function. They apply GP modeling on H, then for any unseen input
0, H(9)|D,, follows a Gaussian distribution. Hence, f(0)|D,, is the square of a
Gaussian random variable, which follows the generalized chi-square distribu-
tion [Imhof, 1961]. See supplementary information for details. Next, we need
to compute the EI under the generalized chi-square predictive distribution.
Let G2 and g2 denotes the c.d.f. and p.d.f. of the generalized chi-square dis-
tribution respectively. Let fuin = min; f(6;) be the best value we have from
the samples, then the EI of any input 6 can be computed by

O{EI(G;Dn) - E[{fmin - f(@)}—i_"Dn]

fmin
= [ i = Dt

fmin
= fminGX2 (fmin) - / th2 (t)dt (15)

0

. flnin
= fuinGrehin) = ({03 — [ Gat0n)
fmin
- / G (t)dt,
0

which can be efficiently estimated using quadrature [Golub and Welsch, 1969].
The EI in (15) requires computing the left tail probability of the general-
ized chi-square distribution, but the existing methods such as Imhof’s [Imhof,
1961] and Liu’s [Liu et al., 2009] methods implemented in the R package
CompQuadForm [Duchesne and de Micheaux, 2010] yield poor estimation when
the tail probability is very small. To address this issue, we use importance
sampling on support points [Mak and Joseph, 2018], a recently developed
Quasi-Monte Carlo point set, for more robust approximation of the small tail
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probability that often occurs in the EI computation. See supplementary infor-
mation for details.

Left panel of Figure 6 shows the predictive generalized chi-square distri-
bution of f at any unseen input §. We can see that the generalized chi-square
predictive distribution has support on the non-negative domain only, reflecting
the true behavior of the function f. Moreover, this approach incorporates the
information available from the model H, which helps identify the two regions
around the minima as the key regions for the next step exploration, while
the two aforementioned standard BO approaches all fail to recognize. This
demonstrates the advantage of using generalized chi-square as the predictive
distribution when applying BO in the inverse problem.

4.2 Inverse Problem with Functional Output

Now consider a functional-output model H(¢;6) with the target functional
y*(t) defined in a compact interval 7. The inverse problem aims to solve for

6" = argmin f(0) = g(H(t;0),y"(t))
= | H(t;0) —y*(1)]3 (16)

= | {H(%0) —y ()},
teT
where g computes the squared distance between any two functions. We first
introduce the functional principal component analysis (FPCA) that allows for
simplification of the integral in (16) to a summation of the squared errors in
principal component scores. Next, we present BOFO, Bayesian Optimization
of Functional Output, that can efficiently solve for 6* in (16).

4.2.1 Functional Principal Component Analysis

Similar to the principal component analysis (PCA), Ramsay [2004] derives the
similar decomposition for the functional data, which is known as the functional
principal component analysis (FPCA). It is also termed as Karhunen-Loeve
expansion or generalized Fourier expansion. Let Y (¢) be a random function
supported on a compact interval 7 with mean function u(t) and positive def-
inite covariance function

k(s 1) = Cov{Y (5), Y (1)} = Zw/)k (s)br (1), (17)

where equality follows from the spectral decomposmon. T > Tg > --- are
the eigenvalues with the respective orthonormal eigenvectors 1,9, .... The
functions {1 }32, form a basis for the space of square-integrable functions on
T, ie., for any square-integrable function y;(t) on T,

vil Z M2 B15(1), (18)
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where i = T;/ 2 J7 vi(t)r(t)dt is the k-th principal component score. Given

that the eigenvectors 9;’s are orthonormal, the squared distance between any
two square-integrable function y;(t) and y;(¢) can be simplified to

oo K
lyi(t) =y ()15 = D (B — B> = > m(Bi — B, (19)
k=1 k=1

where we only retain the top K eigenvalues with their respective eigenvec-
tors for the approximation. The rule-of-thumb is to select K such that 99%
of the total variance can be explained, i.e., we find the smallest K that
Zszl Te/ >opey Tk > 0.99. We use the R package fda [Ramsay et al., 2020]
to estimate the mean function u(t), eigenvalue 73’s, and the eigenvector vy’s
from data.

4.2.2 Bayesian Optimization for Inverse Problem with Functional Output

Assume that both the model output H(¢;60) and the target y*(¢) are square-
integrable in the compact interval 7. Following the conclusion in (19), the
objective function in (16) can be simplified to

K
F(O) = 1H(560) —y* ()lI3 = Y m(Br(6) — 5;)°, (20)
k=1

where (j(0) is the k-th principal component score for H(t;0) and 5} is the
k-th principal component score for the target y*(¢). Thus, we only require GP
modeling on the principal component score Sy (6)’s. Moreover, by the orthonor-
mality of the eigenvectors, the principal component scores are independent, so
we can fit independent GP model for each i (0). We use the mlegp package
[Dancik and Dorman, 2008] available in R for the GP fitting. Conditional on
observing D,, = {(6;,v:(t) = H(t;6;))}", and computing all corresponding
principal component scores {3;}7" & |, the predictive distribution of B4(6)
at any unseen data 6 is again Gaussian for all £k = 1,..., K. It follows that
f(0)|D,, is approximated by a weighted sum of independent squared Gaus-
sian random variables, which is again the generalized chi-square distribution
[Imhof, 1961] with specific set of parameters (see supplementary information).
Thus, the EI acquisition function we derived for the generalized chi-square
distribution in (15) in the scalar-output case can also be applied.

Consider the following functional-output model with parameter 6 € [0, 1],

H(t;0) = exp{—5t(1 — 0/2)%/6} cos (5t\/1 +(1420)2—(1— 9/2)3/4), vt e [0,1], (21)

and the target functional y*(t) = H(t;0.7). Figure 7 shows the functional out-
put of H(t;0) at different value of 6 € [0,1] and the corresponding squared
loss function f that we want to minimize over. Again, assume that the ob-
servations are exact, and we have five initial observations D5 = {(6;,v:(t) =
H(t;0;), £(0:;) = llyi(t) — y*(£)||3)}3_,. Let us first look at the performance of
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Fig. 7: Left panel shows the functional-output of H(¢;6) (21) at different 6 €
[0,1]. The black solid line indicating the target y* = H(¢;0.7). Right panel
shows the corresponding squared loss function f(0) = ||H(¢;6) — y*||3. The
green circles are the initial five observations.
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Fig. 8: Left panel shows the predictive mean in red dashed line and 90% Gaus-
sian predictive interval in red dotted lines. Right panel shows the correspond-
ing EI acquisition value. The green circles are the initial five observations, and
the red square is the sample selected by EI.

applying standard Bayesian optimization with respect to the composite ob-
jective function f, which ignores the information from the model H and the
behavior of non-negative range. Figure 8 shows both the predictive distribu-
tion of f at any input 6 and the corresponding EI value. We can see that the
performance is poor, as the GP model fails to learn the behavior of f, which
is possibly due to too few observations. Even after applying the GP model on
log f to account for the non-negative range behavior, the performance is still
disastrous by looking at Figure 9. Last, let us incorporate the available infor-
mation from the model H by fitting GP on the principal component scores.
Left panel of Figure 10 shows the generalized chi-square predictive distribution
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Fig. 9: Left panel shows the predictive mean in red dashed line and 90%
log-Gaussian predictive interval in red dotted lines. Right panel shows the
corresponding EI acquisition value. The green circles are the initial five obser-
vations, and the red square is the sample selected by EI.
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Fig. 10: Left panel shows the predictive mean in red dashed line and 90%
generalized chi-square predictive interval in red dotted lines. Right panel shows
the corresponding EI acquisition value. The green circles are the initial five
observations, and the red square is the sample selected by EI.

of f at any input 6, we can see that it can better capture the true behavior
of f, e.g. the trend and the support on non-negative domain. Moreover, it is
able to assign higher utility to regions around the optimum by looking at the
EI plot, showing its advantage against the standard BO approach of ignoring
available information from the model H. Algorithm 1 details the full Bayesian
optimization procedure for efficiently solving the inverse problem involving a
functional-output model H.
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Algorithm 1: BOFO: Bayesian Optimization of Functional Output.

Objective: Solve (16).

Initial Observations:

Dy, = {05, yi(t) = H(t;0:), f(0:) = [lya(t) — y* (D)I3) -
while not converges do

e Estimate the mean function u(t), eigenvalues 7;’s, and
eigenvectors 1’s from the available observations
{yi(t) = H(t;6;) s - ‘

e Compute the principal component scores {8 }7 ;X | for the
available observations, and the principal component scores
{B; | for the target y*(t).

o Fit independer_lt GP model for each principal component score
B(6) using {817

e Compute the predictive generalized chi-square distribution for
f(0) on any unseen test point 6 and find the next sample by
solving

en = 97 Dn
+1 = arg max agi (6, Dn)

via the Nelder-Mead method [Nelder and Mead, 1965].
e Evaluate y,+1(t) = H(t;0,11) and add to the observations

Dit1 = D U{(Bnt1, yn+1(8) = H(t;0n41), f(On41) = llyns1(t) —y* (D113}

eSetn=n+1.
end

Return: 0" = argminge 9,)» , f(0), the sample with the best result.

Dy Cs o K’ k

polymer

[[.0e-12, 1.0e-9] [4.0e-3, 5.0e-3] [5.0e-3, 6.0e-3] [5.0¢2, 2.5¢3] [1.0e-3, 1.0el]

Table 1: Feasible domain space © of the five unknown parameters.

5 Numerical Results

We now demonstrate the efficiency of our proposed method BOFO (Algo-
rithm 1) on the motivating model calibration problem of the VPI process.
Recall that the goal is to identify the set of unknown parameters 6 = { Dy, Cs,
Chotymers K'5 k} such that the output from the PDEs H(t;0) is aligned with
the experimental data y*(t) (black solid curve in Figure 2).

Recommended by the rule-of-thumb computer experiment sample size of
n = 10p where p is the number of unknown parameters [Loeppky et al., 2009],
we start with 50 initial observations. To ensure good space-filling properties
in all subset of the factors, we use the 50-run maximum projection (MaxPro)
design [Joseph et al., 2015] in the feasible domain space defined by Table 1
with rationale provided in the supplementary information. Since the range for
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Fig. 11: All samples from applying BOFO on the motivation problem after
scaling to [0,1]. Gray circles are the initial 50-point MaxPro design. Blue
crosses are the 25 adaptive samples selected by EI. Red square is the best
sample 0* with the smallest square error to the experimental data y*(¢).

diffusivity and reactivity is huge, spanning orders of magnitude, the values
for both parameters can be considered useful and accurate when the correct
order of magnitude is determined in chemical engineering. In this work, to
ensure a comprehensive parameter range while maintaining high calibration
efficiency, the diffusivity Dy and the reaction rate k are calibrated based on
log scale. See gray circles in Figure 11 for the 50-point MaxPro design. The
left panel of Figure 12 shows the outputs of evaluating the PDEs at the 50-run
MaxPro design. We can see that the magnitudes are very different, with few
values in the 1,000’s while many are in 10,000’s. Also, inconsistent patterns
are observed from run to run. Furthermore, even for the MaxPro run with the
smallest square error to the experimental data, the discrepancy is still large
(right panel of Figure 12), showing the difficulty of our problem! Note that
from the left panel of Figure 12, there is one MaxPro run that yields negative
values, which are due to the numerical approximation errors from solving the
PDEs. We remove this sample in the subsequent Bayesian optimization step.

For a comparison to our proposed method BOFO, we also consider (i)
random sampling from the feasible domain space, (ii) standard BO procedure
on f, (iii) standard BO procedure on log f to account for the non-negative
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Fig. 13: Best RMSE (root mean square error) versus the number of BO sam-
ples (PDEs evaluation) using the same initial 50-point MaxPro design on the
motivation example.

range. We run all four approaches by another 25 evaluations of the PDEs for
a fair comparison. Figure 13 shows that BOFO outperforms the other three
approaches. Though the standard BO procedure on log f is also able to locate
a good design in terms of the squared error, we can see that from Figure 13,
this approach spends more time exploring the less important regions, in other
words, we do not see a consistent drop in the best squared error as we evaluate
the PDEs at more design points. This is expected since the response surface of
the objective function f is too complicated to learn without using the output
information available from the PDEs H(¢;0), demonstrating the robustness of
our BOFO algorithm. Next, we discuss the additional runtime that is incurred
by BOFO over the standard BO procedure. For the problem considered, the
top three principal components explain 99% of the variance, drastically re-
ducing the problem dimension from 6,601 to 3, where the system of PDEs is
evaluated at 6,601 time points. Thus, we only require fitting three GP models,
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Parameter Train Test
Temperature (°C) 130 130

Experiment Thickness (nm) 483 607
Pressure (Torr) 8.7 10.5
Dy (cm?/s) 1.510e-10  1.510e-10
Cs (mol/cm?) 4.274e-3  5.158e-3

PDEs Cgolymer (mol/cm3)  5.749e-3  5.749¢-3
K’ (cm3/mol) 1160 1160
k (cm?3/mol - s) 0.592 0.592

Table 2: The best set of the five unknown parameters 6* identified by our
method (Algorithm 1) on the 8.7 Torr experimental run (train set), and then
estimated the parameters for the 10.5 Torr run (test set) by multiplying C;
with the ratio 10.5/8.7 to account for the increase in pressure.

20000 30000 40000

Mass/Area (ng/crm"2)
Mass/Area (ng/m’2)
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10000 20000 30000 40000 50000

— e

-+ bestBO === bestBO

0
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1me"0.5 (50.5) 1ime"0.5 (5°0.5)

(a) Train (8.7 Torr) (b) Test (10.5 Torr)

Fig. 14: Left panel shows the PDEs’ output at the 8* identified by our method
(Algorithm 1) on the 8.7 Torr run (see Table 2). Right panel shows the PDEs’
output at the adjusted * on the 10.5 Torr run (see Table 2). Both 8.7 and
10.5 Torr experimental data are in solid black curves.

yielding additional computational burden that is negligible compared to the
cost of numerically solving the PDEs.

The blue crosses in Figure 11 shows the 25 adaptive samples selected by
our proposed BOFO. We can see that these 25 samples are also spread out
in the feasible domain space, indicating the consideration of both exploration
and exploitation of our method to avoid getting stuck at some local optimum.
Table 2 lists the value for the best set of parameters 6* identified by BOFO
using the 8.7 Torr experimental data, and the evaluation of PDEs at 6* is
presented in the left panel of Figure 14. We can see that the PDEs’ output
at 0* aligns much better with the experimental data than the output from
the initial 50 MaxPro runs (Figure 12). To further assess the performance of
0*, we use the parameters 6 learned from the 8.7 Torr run to predict the
mass change behavior of the VPI process at 10.5 Torr pressure with the same
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temperature setting of 130°C. As mentioned in Ren et al. [2021], due to the
increase in pressure from 8.7 Torr to 10.5 Torr, we should consider the same
ratio (10.5/8.7) increment for the surface concentration of the free diffusing
vapor Cs with the adjusted value listed in Table 2. From the right panel of
Figure 14, we can see that the output from the PDEs at the estimated 6* is
also similar to the 10.5 Torr experimental data, showing the generalizability
of the PDEs with 6* identified by our proposed method to predict the mass
change behavior of the VPI process at different experimental settings. Having
this generalizability is important since we no longer need to run a physical
experiment to study the mass uptake behavior at new polymer thickness or
vapor pressure setting. We could save time (the physical experiment of the VPI
process takes more than 30 hours) and expense from purchasing the material
and constructing the systems capable of performing in situ characterization
of the process. More importantly, only 75 evaluations of the expensive PDEs
numerical solver is used to identify the good set of the unknown parameters
0* from the large feasible domain space @ in Table 1, showing the efficiency of
our proposed algorithm BOFO on the inverse problems with functional output.
The source codes for the comparisons are available at https://github.com/
BillHuangO1/BOFO.

6 Conclusion

In this paper we present a Bayesian optimization algorithm, BOFO (Algo-
rithm 1), for efficiently solving inverse problems with a functional-output
model, i.e., that is to identify the unknown input 6* such that the expen-
sive functional-output model H (t;6*) can achieve a desired target functional
output y*(¢). An important use of BOFO is in the model calibration problem
of the PDEs with spatially aggregated observational data, such as the VPI pro-
cess presented in Section 2. To tackle this difficult inverse problem, there are
two improvements proposed in this paper over the standard Bayesian optimiza-
tion procedure: (i) we suggest the use of generalized chi-square distribution as
a more appropriate predictive distribution since it principally capture the cor-
rect probabilistic assumption, (ii) we propose the use of functional principal
component analysis for functional data dimensional reduction, and moreover,
we further show that this approach yields an efficient procedure to compute
the predictive distribution and the corresponding expected improvement ac-
quisition function. The proposed BOFO algorithm shows successful result in
solving the motivated model calibration problem from the VPI process. More-
over, BOFO could be adapted for solving the inverse problems with the target
observed data being a tensor by replacing the functional principal component
analysis with tensor decomposition. Last, the discussion of the chi-square dis-
tribution as a more appropriate prediction distribution also sheds light on the
approximate Bayesian computation literature where Gaussian process is used
to model the discrepancy measure for speeding up the inference [Gutmann and
Corander, 2016, Jarvenpéaa et al., 2018].
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Supplementary Information

codes are available at https://github.com/BillHuang01/B0OFO.
supplementary.pdf contains the supplementary information of this paper, in-
cluding details of VPI process, generalized chi-square distribution, and etc.
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