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SILICON PHOTONICS FOR  
ARTIFICIAL INTELLIGENCE APPLICATIONS 

Artificial intelligence enabled by neural networks has 
enabled applications in many fields (e.g. medicine, finance, 
autonomous vehicles). Software implementations of neural 
networks on conventional computers are limited in speed and 
energy efficiency. Neuromorphic engineering aims to build 
processors in which hardware mimic neurons and synapses in 
brain for distributed and parallel processing. Neuromorphic 
engineering enabled by silicon photonics can offer sub-

nanosecond latencies, and can extend the domain of artificial intelligence applications 
to high-performance computing and ultrafast learning. We discuss current progress and 
challenges on these demonstrations to scale to practical systems for training and inference.
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A nalog computing 
has recently been 
considered a poten-
tial avenue to de-
crease energy and 
time requirements 

for executing algorithms such as 
deep neural networks. Analog spe-
cial-purpose hardware requires 
the manufacturing of machines to 
physically model each individual 
component of such networks. This 
proves to be a significant challenge 
as current deep networks scale up 
to thousands or even billions of 
neurons to solve complex artificial 
intelligence (AI) tasks. To enable the 
use of analog machines to map brain 
circuitry, the functions of biological 
neurons must be modelled. The most 

common neural models are spiking 
artificial neurons and perceptrons. 
While spiking artificial neurons are 
biologically realistic, the field of AI is 
currently perceptron-based [1]. 

Perceptrons implement multi-
ply-accumulate (MAC) operations. 
MAC operations serve to quantify the 
number of multiplications and addi-
tions required to run deep networks. 
A perceptron of M inputs can per-
form M MAC operations per time 
step. Multiple MAC operations can 
be executed in parallel to implement 
any type of artificial neural network 
(ANN). MACs are currently the most 
burdensome hardware bottleneck in 
ANNs; for instance, the deep network 
AlexNet requires 724 million MACs to 
solve ImageNet [2]. 

The photonic platform is currently 
one of the most promising technolo-
gies to tackle the expensive calcula-
tions performed by deep networks. 
Silicon photonics offers high-scala-
bility, high-bandwidth, low-footprint, 
and low-energy consumption [3]. The 
high-bandwidth and multiwavelen-
gth parallel properties of light allow 
for optical information processing at 
a high data rate. The ability of neuro-
morphic photonic systems to provide 
substantial improvement in our com-
puting capabilities is moving ever 
closer, with, potentially, PetaMac/
second/mm2 processing speeds.

In this article, we describe a photo-
nic scheme that can perform parallel 
MAC operations on-chip and introduce 
two photonic platforms that allow for 
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AI hardware acceleration: i) a special-pur-
pose photonic architecture for executing 
the direct feedback alignment (DFA) al-
gorithm for neural network training [6], 
and ii) an implementation of a Long-Short 
Term Memory (LSTM) neural network [7]. 
Both proposed designs offer fundamental 
speed and bandwidth advantages over di-
gital electronic implementations. 

BACKGROUND: NEUROSCIENCE 
AND COMPUTATION
Digital computers are typically computing 
systems that perform logical and mathe-
matical operations with high accuracy. 
Nowadays, such complex systems signi-
ficantly outweigh human capabilities for 
calculation and memory. Nevertheless, 
if we were to compare a human agent 
with a digital machine, we would see that 
there are many abstractions that should 
be made to perform one-to-one compa-
risons. Such abstractions assume that 
human cognitive processes are comple-
tely procedural and follow standard logic. 
However, most human cognitive acts do 
not follow a set of well-defined instruc-
tions. Therefore, a one-to-one mapping 
between human and digital computers 
might not be suitable.

 Analog neuromorphic computing ap-
proaches might be more suited to mimic 
human brain processes. The goal is to 
create a one-to-one mapping between the 
neural system and the analog machine, 
where each biological quantity is mo-
delled by an equivalent analog artificial 
model. For an architecture such as the 
human brain, this could be a demanding 
requirement. The human brain contains 

approximately 100 billion neurons and 
100 trillion synaptic interconnections 
that must be represented in an artificial 
machine. However, a subset of the brain 
circuitry can still be represented in an 
artificial machine to simulate some of 
the human cognitive processes.

Recently, most significant advances in 
the field of AI have been achieved using 
a perceptron, shown in Fig. 1, as the ar-
tificial model of the neuron. The output y 
of the neuron represents the signals sent 
from the axon of a biological neuron and 
is mathematically described by

y = f (W∙ x+b). 

The xi inputs transmit the information 
to the neuron through the weights Wi 
which correspond to the strength of the 
synapses. The summation of all weighted 
inputs and their transformation via acti-
vation function f are associated with the 
physiological role of the neuron’s cell 
body. The bias b represents an extra va-
riable that remains in the system even if 
the other inputs are absent. 

ANNs are built using perceptrons as 
neural primitives such that the synaptic 
connections are either positive or nega-
tive to mimic excitatory and inhibitory 
neural behaviour. A nonlinear activation 
function can be used to define activated 
and deactivated behaviours in artificial 
neurons. ANNs can be categorized as 
either feed forward (where connections 
between neurons do not form a cycle) 
or recurrent neural networks (where 
cycles exist).

Attempts to build fast and efficient 
perceptron-based ANNs have been 

Figure 1. 
Schematic diagram of a perceptron.
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reported throughout recent years. An 
interesting computing acceleration 
technique consists in using hardware 
units to perform MAC operations at 
high speeds. A MAC unit performs 
multiplications and accumulation 
processes: (a+w.x). Multiple MAC 
operations can be run in parallel to 
perform complex operations such as 
convolutions and digital filters. MACs 
are typically used in implementations 
of ANNs in digital electronics [4]. 
Nevertheless, the serialization of 
the summands to perform weighted 
addition makes this process ineffi-
cient; consequently, chip designers 
are looking for alternative solutions 
such as full parallelism. One of the 
most promising technologies for 
this purpose is based on the photo-
nic platform.

PHOTONIC PERCEPTRON  
AND MAC OPERATIONS
A scalable photonic architecture that 
implements parallel MACs can be 
achieved using on-chip wavelength 
division multiplexing (WDM) tech-
niques [8]. This design uses microring 
resonators (MRRs) [9], i.e. photonic 
synapses, to encode input values and 
weights onto multiple wavelength si-
gnals. Tuning a given MRR on and off 
resonance changes the transmission 
of each signal through the respec-
tive filter, effectively multiplying the 
signal with a desired weight. An ad-
vantage of using MRRs is the ability 
to tune the weight values using a va-
riety of different methods: thermally, 

electro-optically, or through light 
absorption such as phase-change or 
graphene materials. In this work, tu-
ning is performed by thermally mo-
difying the refractive index of the MRR 
waveguide. The application of voltage 
values to the heater allows us to map 
real-valued numbers to the device. 

Figure 3. 
(a) Transmission versus wavelength 
curves of two different MRRs (MRR(x1), 
MRR(W1) performing element-wise optical 
multiplications, and (b) the product of 
such multiplication.

 An array of M MRRs can emulate 
the weighted addition of a single neu-
ron if add-drop MRRs and a balanced 
photodetector are incorporated into 
the model, as shown in Fig. 2. In this 
illustration we show how to perform 
M MAC operations in parallel in pho-
tonics. Input values to the neuron 
can be mapped to voltage values Vi 

that tune each individual MRR(xi). 
Each voltage value has a one-to-one 
correspondence with an MRR trans-
mission profile Ti, and the same 
principle holds for weight values. The 
experimental implementation of this 
method requires the use of M lasers 
with different wavelengths λi (with  
i = 1, … ,M) that represent M channels.

Two MRRs with different on and 
off resonance configurations at the 
same wavelength λ1 will therefore per-
form element-wise multiplications, 
as shown in Fig. 3. Here, we show 
an illustration of the multiplication 

Figure 2. 
Add-drop MRR weight bank with a balanced 
photodetector implementing M element-wise 
multipliers to perform N MAC operations 
in parallel.
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between two transmission elements 
x1 and W1, yielding the resulting va-
lue R. In Fig. 3(a), the element x1 is 
tuned to have the maximum optical 
transmission, whereas W1 is tuned 
to half the maximum. To implement 
x1, MRR(x1) is set on-resonance with 
λ1 and MRR(W1) is tuned to be half 
off-resonance with the same wave-
length. They represent real-valued 
numbers 1 and 0.5, respectively. The 
result of such multiplication, shown 
in Fig. 3(b), is R = 0.5. A similar process 
is followed with the remaining sets 
(MRR(xi), MRR(Wi)) for i > 1. Once the 
weighted-addition is performed using 
a balanced photodetector, an on-chip 
nonlinear function can be added by 
using a microring modulator.

Based on this scheme, we can de-
sign systems to solve many complex 
AI tasks. In the following sections, we 
will describe how to efficiently imple-
ment ANN training and inference on 
photonic chips.

APPLICATIONS 
To implement ANNs on photonic 
chips, we stack N element-wise 
multipliers that perform weighted 
additions, as shown in Fig. 4. The 
N × M input values received from 
digital-to-analog converters (DACs) 
modulate the intensities of a group 
of M lasers with identical powers 
but unique wavelengths. These mo-
dulated inputs are sent into an ar-
ray of photonic N × M weight banks 
(uploaded from the DACs), which 

then perform the multiplications for 
each channel. This architecture is a 
general representation of the mul-
tiwavelength platform as it can be 
used for inference, as demonstrated 
in [8], as well as in situ training. 

ON-CHIP NEURAL NETWORK 
TRAINING
Benefiting from the speed and en-
ergy advantages of photonics over 
traditional digital computers, the 
DFA training algorithm can be im-
plemented in situ on silicon photo-
nic hardware [6]. The DFA algorithm 
is a supervised learning algorithm 
for training ANNs, where the error 
is propagated through fixed random 
feedback connections directly from 
the output layer to the hidden layer. 
The DFA algorithm has been used 
to train ANNs using the MNIST, 
Cifar-10, and Cifar-100 datasets, and 
yields comparable performance to 
the popular backpropagation training 

Benefiting from the speed 
and energy advantages of 
photonics over traditional 
digital computers, the DFA 
training algorithm can be 
implemented in situ on silicon 
photonic hardware
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algorithm [10]. A DFA photonic inte-
grated circuit can be designed with 
two connected blocks with M = 10 
and N = 100. This design could per-
form 2000 MACs per pass, enabling 
weight updates between two layers of 
1000 neurons in 1000 passes.

LONG-SHORT TERM  
MEMORY NEURAL NETWORK 
Similar to the DFA circuit, LSTM 
networks [11] can also be imple-
mented using the multiwavelength 
photonic architecture [7]. An LSTM 
network is a recurrent architecture 
that offers advantages for time-se-
ries processing. Neuromorphic 
photonic LSTMs offer a solution 
to the growing demand for high-
speed, high-bandwidth neural 
networks in time-series applica-
tions, including video processing, 
autonomous driving, and optical 
communications. The performance 
of the photonic LSTM for inference 
tasks was tested by applying the 
network to a simple univariate time 
series data problem in simulation. 
The simulation of this task demons-
trates that even very small photonic 
LSTM networks performing up to 64 
MACs per pass can be highly effec-
tive at performing inference tasks 
time series data.

CONCLUSION
Neuromorphic photonics promises 
exciting developments for the future 
of AI. In an effort to extend the bounds 
of digital computers for AI applica-
tions, the high bandwidth operation 
and full programmability of analog 
photonic integrated circuits can faci-
litate ultrafast learning and inference 
of ANNs. Current implementations 

of photonic machines face complex 
technical challenges that many re-
search groups and companies have 
begun addressing, including the 
control of the processing unit and 
efficient memory access. Successful 
solutions to these problems could en-
able the widescale adoption of photo-
nic processors to tackle practical AI 
applications. 
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Figure 4. 
The input and kernel 
values modulate  
the MRRs via electrical 
currents proportional  
to those values.


