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Artificial intelligence enabled by neural networks has

enabled applications in many fields (e.g. medicine, finance,
autonomous vehicles). Software implementations of neural
networks on conventional computers are limited in speed and
energy efficiency. Neuromorphic engineering aims to build
processors in which hardware mimic neurons and synapses in
brain for distributed and parallel processing. Neuromorphic
engineering enabled by silicon photonics can offer sub-
nanosecond latencies, and can extend the domain of artificial intelligence applications

to high-performance computing and ultrafast learning. We discuss current progress and
challenges on these demonstrations to scale to practical systems for training and inference.

https://doi.org/10.1051/photon/202010440

nalog computing

has recently been

considered a poten-

tial avenue to de-

crease energy and

time requirements
for executing algorithms such as
deep neural networks. Analog spe-
cial-purpose hardware requires
the manufacturing of machines to
physically model each individual
component of such networks. This
proves to be a significant challenge
as current deep networks scale up
to thousands or even billions of
neurons to solve complex artificial
intelligence (AI) tasks. To enable the
use of analog machines to map brain
circuitry, the functions of biological
neurons must be modelled. The most
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common neural models are spiking
artificial neurons and perceptrons.
While spiking artificial neurons are
biologically realistic, the field of Al is
currently perceptron-based [1].

Perceptrons implement multi-
ply-accumulate (MAC) operations.
MAC operations serve to quantify the
number of multiplications and addi-
tions required to run deep networks.
A perceptron of M inputs can per-
form M MAC operations per time
step. Multiple MAC operations can
be executed in parallel to implement
any type of artificial neural network
(ANN). MAGCs are currently the most
burdensome hardware bottleneckin
ANNs; for instance, the deep network
AlexNet requires 724 million MACs to
solve ImageNet [2].

The photonic platform is currently
one of the most promising technolo-
gies to tackle the expensive calcula-
tions performed by deep networks.
Silicon photonics offers high-scala-
bility, high-bandwidth, low-footprint,
and low-energy consumption [3]. The
high-bandwidth and multiwavelen-
gth parallel properties of light allow
for optical information processing at
ahigh data rate. The ability of neuro-
morphic photonic systems to provide
substantial improvementin our com-
puting capabilities is moving ever
closer, with, potentially, PetaMac/
second/mm? processing speeds.

In this article, we describe a photo-
nic scheme that can perform parallel
MAC operations on-chip and introduce
two photonic platforms that allow for
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AThardware acceleration: i) a special-pur-
pose photonic architecture for executing
the direct feedback alignment (DFA) al-
gorithm for neural network training [6],
and i) an implementation of a Long-Short
Term Memory (LSTM) neural network [7].
Both proposed designs offer fundamental
speed and bandwidth advantages over di-
gital electronic implementations.

BACKGROUND: NEUROSCIENCE
AND COMPUTATION

Digital computers are typically computing
systems that perform logical and mathe-
matical operations with high accuracy.
Nowadays, such complex systems signi-
ficantly outweigh human capabilities for
calculation and memory. Nevertheless,
if we were to compare a human agent
with a digital machine, we would see that
there are many abstractions that should
be made to perform one-to-one compa-
risons. Such abstractions assume that
human cognitive processes are comple-
tely procedural and follow standard logic.
However, most human cognitive acts do
not follow a set of well-defined instruc-
tions. Therefore, a one-to-one mapping
between human and digital computers
might not be suitable.

Analog neuromorphic computing ap-
proaches might be more suited to mimic
human brain processes. The goal is to
create a one-to-one mapping between the
neural system and the analog machine,
where each biological quantity is mo-
delled by an equivalent analog artificial
model. For an architecture such as the
human brain, this could be a demanding
requirement. The human brain contains

inputs

A weights

wj

sum

approximately 100 billion neurons and
100 trillion synaptic interconnections
that must be represented in an artificial
machine. However, a subset of the brain
circuitry can still be represented in an
artificial machine to simulate some of
the human cognitive processes.

Recently, most significant advances in
the field of AT have been achieved using
a perceptron, shown in Fig. 1, as the ar-
tificial model of the neuron. The outputy
of the neuron represents the signals sent
from the axon of a biological neuron and
is mathematically described by

y=F(W- x+b).

The x;inputs transmit the information
to the neuron through the weights W;
which correspond to the strength of the
synapses. The summation of all weighted
inputs and their transformation via acti-
vation function fare associated with the
physiological role of the neuron’s cell
body. The bias b represents an extra va-
riable that remains in the system even if
the other inputs are absent.

ANNS s are built using perceptrons as
neural primitives such that the synaptic
connections are either positive or nega-
tive to mimic excitatory and inhibitory
neural behaviour. A nonlinear activation
function can be used to define activated
and deactivated behaviours in artificial
neurons. ANNs can be categorized as
either feed forward (where connections
between neurons do not form a cycle)
or recurrent neural networks (where
cycles exist).

Attempts to build fast and efficient
perceptron-based ANNs have been

nonlinearity

Figure 1.
Schematic diagram of a perceptron.
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reported throughout recent years. An
interesting computing acceleration
technique consists in using hardware
units to perform MAC operations at
high speeds. A MAC unit performs
multiplications and accumulation
processes: (at+w.x). Multiple MAC
operations can be run in parallel to
perform complex operations such as
convolutions and digital filters. MACs
are typically used in implementations
of ANNSs in digital electronics [4].
Nevertheless, the serialization of
the summands to perform weighted
addition makes this process ineffi-
cient; consequently, chip designers
are looking for alternative solutions
such as full parallelism. One of the
most promising technologies for
this purpose is based on the photo-
nic platform.

A scalable photonic architecture that
implements parallel MACs can be
achieved using on-chip wavelength
division multiplexing (WDM) tech-
niques [8]. This design uses microring
resonators (MRRs) [9], i.e. photonic
synapses, to encode input values and
weights onto multiple wavelength si-
gnals. Tuning a given MRR on and off
resonance changes the transmission
of each signal through the respec-
tive filter, effectively multiplying the
signal with a desired weight. An ad-
vantage of using MRRs is the ability
to tune the weight values using a va-
riety of different methods: thermally,
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Figure 2.
Add-drop MRR weight bank with a balanced

photodetector implementing M element-wise

multipliers to perform N MAC operations
in parallel.

electro-optically, or through light
absorption such as phase-change or
graphene materials. In this work, tu-
ning is performed by thermally mo-
difying the refractive index of the MRR
waveguide. The application of voltage
values to the heater allows us to map
real-valued numbers to the device.

Figure 3.

(a) Transmission versus wavelength
curves of two different MRRs (MRR(x;),
MRR(W,) performing element-wise optical
multiplications, and (b) the product of
such multiplication.
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An array of M MRRs can emulate
the weighted addition of a single neu-
ron ifadd-drop MRRs and a balanced
photodetector are incorporated into
the model, as shown in Fig. 2. In this
illustration we show how to perform
M MAC operations in parallel in pho-
tonics. Input values to the neuron
can be mapped to voltage values V;
that tune each individual MRR(x;).
Each voltage value has a one-to-one
correspondence with an MRR trans-
mission profile T;, and the same
principle holds for weight values. The
experimental implementation of this
method requires the use of M lasers
with different wavelengths A; (with
i=1,...,M)thatrepresent M channels.

Two MRRs with different on and
off resonance configurations at the
same wavelength A, will therefore per-
form element-wise multiplications,
as shown in Fig. 3. Here, we show
an illustration of the multiplication

Ay
Wavelength



between two transmission elements
x;, and W, yielding the resulting va-
lue R. In Fig. 3(a), the element x; is
tuned to have the maximum optical
transmission, whereas W, is tuned
to half the maximum. To implement
x1, MRR(x,) is set on-resonance with
A, and MRR(W,) is tuned to be half
off-resonance with the same wave-
length. They represent real-valued
numbers 1 and 0.5, respectively. The
result of such multiplication, shown
inFig. 3(b),is R=0.5. A similar process
is followed with the remaining sets
(MRR(x;), MRR(W;)) for i > 1. Once the
weighted-addition is performed using
abalanced photodetector, an on-chip
nonlinear function can be added by
using a microring modulator.

Based on this scheme, we can de-
sign systems to solve many complex
AT tasks. In the following sections, we
will describe how to efficiently imple-
ment ANN training and inference on
photonic chips.
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Benefiting from the speed
and energy advantages of
photonics over traditional
digital computers, the DFA
training algorithm can be

implemented in situ on silicon

photonic hardware

To implement ANNs on photonic
chips, we stack N element-wise
multipliers that perform weighted
additions, as shown in Fig. 4. The
N x M input values received from
digital-to-analog converters (DACs)
modulate the intensities of a group
of M lasers with identical powers
but unique wavelengths. These mo-
dulated inputs are sent into an ar-
ray of photonic N x M weight banks
(uploaded from the DACs), which

then perform the multiplications for
each channel. This architecture is a
general representation of the mul-
tiwavelength platform as it can be
used for inference, as demonstrated
in [8], as well as in situ training.

ON-CHIP NEURAL NETWORK
TRAINING

Benefiting from the speed and en-
ergy advantages of photonics over
traditional digital computers, the
DFA training algorithm can be im-
plemented in situ on silicon photo-
nic hardware [6]. The DFA algorithm
is a supervised learning algorithm
for training ANNs, where the error
is propagated through fixed random
feedback connections directly from
the output layer to the hidden layer.
The DFA algorithm has been used
to train ANNs using the MNIST,
Cifar-10, and Cifar-100 datasets, and
yields comparable performance to
the popular backpropagation training
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weight bank

algorithm [10]. A DFA photonic inte-
grated circuit can be designed with
two connected blocks with M = 10
and N = 100. This design could per-
form 2000 MACs per pass, enabling
weight updates between two layers of
1000 neurons in 1000 passes.

LONG-SHORT TERM

MEMORY NEURAL NETWORK
Similar to the DFA circuit, LSTM
networks [11] can also be imple-
mented using the multiwavelength
photonic architecture [7]. An LSTM
network is a recurrent architecture
that offers advantages for time-se-
ries processing. Neuromorphic
photonic LSTMs offer a solution
to the growing demand for high-
speed, high-bandwidth neural
networks in time-series applica-
tions, including video processing,
autonomous driving, and optical
communications. The performance
of the photonic LSTM for inference
tasks was tested by applying the
network to a simple univariate time
series data problem in simulation.
The simulation of this task demons-
trates that even very small photonic
LSTM networks performing up to 64
MACs per pass can be highly effec-
tive at performing inference tasks
time series data.

44 ww.photoniques.com I Photoniques 104

—— - - - -

Figure 4.
The input and kernel

CONCLUSION

Neuromorphic photonics promises
exciting developments for the future
of AL In an effort to extend the bounds
of digital computers for Al applica-
tions, the high bandwidth operation
and full programmability of analog
photonic integrated circuits can faci-
litate ultrafast learning and inference
of ANNs. Current implementations
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