Retinoids promote penis development in sequentially hermaphroditic snails

Maryna P Lesoway^{1*} and Jonathan Q Henry

Department of Cell and Developmental Biology

University of Illinois

601 S Goodwin Avenue

Urbana, IL, USA 61801

Keywords

Crepidula, imposex, tributyltin, genital development, environmental sex determination

¹ Current Address: Scripps Institute of Oceanography, UC San Diego, 9500 Gilman Drive #0202, La Jolla, CA, USA, 92903

^{*} Author to whom correspondence should be addressed: mlesoway@ucsd.edu

Abstract

Sexual systems are surprisingly diverse, considering the ubiquity of sexual reproduction. Sequential hermaphroditism, the ability of an individual to change sex, has emerged multiple times independently across the animal kingdom. In molluscs, repeated shifts between ancestrally separate sexes and hermaphroditism are generally found at the level of family and above, suggesting recruitment of deeply conserved mechanisms. Despite this, molecular mechanisms of sexual development are poorly known. In molluscs with separate sexes, endocrine disrupting toxins bind the retinoid X receptor (RXR), activating ectopic male development in females, suggesting the retinoid pathway as a candidate controlling sexual transitions in sequential hermaphrodites. We therefore tested the role of retinoic acid signaling in sequentially hermaphroditic Crepidula snails, which develop first into males, then change sex, maturing into females. We show that retinoid agonists induce precocious penis growth in juveniles and superimposition of male development in females. Combining RXR antagonists with retinoid agonists significantly reduces penis length in induced juveniles, while similar treatments using retinoic acid receptor (RAR) antagonists increase penis length. Transcripts of both receptors are expressed in the induced penis. Our findings therefore show that retinoid signaling can initiate molluscan male genital development, and regulate penis length. Further, we show that retinoids induce ectopic male development in multiple Crepidula species. Species-specific influence of conspecific induction of sexual transitions correlates with responsiveness to retinoids. We propose that retinoid signaling plays a conserved role in molluscan male development, and that shifts in the timing of retinoid signaling may have been important for the origins of sequential hermaphroditism within molluscs.

Introduction

Sexual systems and sex determination mechanisms are highly diverse. While most species have separate sexes (dioecy), approximately 5% are hermaphroditic (monoecy), expressing both sexes in the same individual simultaneously, sequentially, or in some combination thereof (Jarne and Auld, 2006). Hermaphroditism is widely, but unevenly distributed across the animal kingdom. Meanwhile, potential

selective pressures for hermaphroditism are widespread (Charnov, 1982; Ghiselin, 1969; Warner, 1975). Sequential hermaphrodites express both male and female reproductive characters in the same individual at different times, often under environmental control (Lesoway and Henry, 2019). The evolution of sequential hermaphroditism requires not only the activation of developmental modules for both sexes within a single individual, but also regulatory control of the transition from one sex to the other. Understanding the regulation of sexual development in sequential hermaphrodites will provide a useful model for resolving the paradox underlying sexual diversity.

Molluscs have frequently been used as models for the evolution of sex determination, owing to the repeated evolution of hermaphroditism and their unique sexual behaviors and anatomies (Auld and Jarne, 2016; Heller, 1993; Ponder et al., 2020). Separate sexes are thought to be ancestral in molluscs (Lesoway and Henry, 2019; Ponder et al., 2020), and estimates of hermaphroditism are as high as 40% (Heller, 1993; Jarne and Auld, 2006). In many molluscan families, including the calyptraeid gastropods, all members are hermaphroditic, suggesting either that sequential hermaphroditism is deeply conserved, or that developmental constraints play some role (Collin, 2018; Leonard, 1991, 2013). Frequently used as models of early development (Henry et al., 2017; Henry and Lyons, 2016), calyptraeids were first confirmed as sequential hermaphrodites over a century ago (Orton, 1909). All members of this family of sedentary, marine, filter-feeding snails, have internal fertilization and brood their young (Henry et al., 2010). Individuals develop first into males with an external penis, followed by a transitional period of penis resorption, elaboration of female external genitalia, and a shift from spermatogenesis to oogenesis, to become functional females (protandry) (Fig. 1A) (Lesoway and Henry, 2019). Sex determination is well studied in the Atlantic slipper snail, Crepidula fornicata, which form stacks or chains of animals with large females found at the bottom and smaller males located at the top of the chain (Coe, 1936; Collin, 1995, 2000, 2007; Collin et al., 2005). The timing of sexual transition is environmentally determined by a combination of nutrition, size, and social factors (Coe, 1938; Collin, 1995, 2000). For example, the presence of large females inhibits the transition of males into functional females, and direct physical contact has been shown to mediate social control of sex change (Cahill et al., 2015; CarrilloBaltodano and Collin, 2015). Similar interactions are important in most calyptraeids (Coe, 1938, 1942; Collin, 2007; Hoagland, 1978). However, the molecular pathways controlling sexual differentiation and sex change in the calyptraeids are generally unknown.

One promising window into the sexual development of calyptracids is provided by the disruptive effects of the organotin compound, tributylin (TBT). In the 1970s and 80s, commercially important shell fisheries began to show high levels of mortality, shell abnormalities, and imposex, which is the superimposition of male sexual characters in female animals (Evans et al., 1995; Smith, 1971). Tributyltin, used at the time as an anti-fouling agent, was determined to be the cause of these sexual abnormalities (Smith, 1981; Sousa et al., 2014). The ability of tributyltin to induce imposex in many gastropod species suggests that it acts through a conserved signaling pathway.

Several hypotheses have been proposed to explain the endocrine disrupting effects of tributyltin. The strongest available evidence supports activation of the retinoid pathway via retinoid X receptor (RXR) binding (Horiguchi, 2006, 2017; Lesoway and Henry, 2019; Pascoal et al., 2013). RXR is a member of the nuclear receptor (NR) superfamily (Evans and Mangelsdorf, 2014). In vertebrates, RXR (NR2B) functions as a dimerizing partner with other nuclear receptors (e.g., retinoic acid receptor, RAR, NR1B; peroxisome proliferator-activated receptor, PPAR, NR1C) and other co-factors, initiating downstream transcriptional activity (Fig. 1B) (Germain et al., 2006b). Most nuclear receptors are activated via binding to hydrophobic ligands such as retinoic acid, steroid hormones, thyroid hormones, and fatty acids (Mazaira et al., 2018). The primary binding partner of RXR is RAR, which binds to retinoic acid (RA). RA is synthesized from retinol (vitamin A) by a series of enzymatic reactions (Fig. 1B). Retinoic acid is transported into the nucleus where it binds RAR-RXR dimers bound to retinoic acid response elements (RAREs) in the genome that regulate downstream activity. Retinoic acid levels are controlled by the cytochrome P450 26 subfamily enzyme (Cyp26), which metabolizes retinoic acid, regulating developmental activity (Rhinn and Dollé, 2012). Retinoic acid has previously been implicated in regulation of genital tubercle formation in mice (Liu et al., 2012; Ogino et al., 2001), and RXR, RAR and other components of the retinoid signaling pathway are highly conserved (Albalat, 2009).

To better understand mechanisms of sexual development in the sequentially hermaphroditic calyptraeids, we used drugs targeting different components of the retinoic acid pathway to test the role of retinoids in the initiation of male genital development. Drugs were used both alone and in combination with tributyltin (**Fig. 1B**). We also visualized mRNA expression of the receptors *RXR* and *RAR*, as well as *Cyp26*, the metabolizing enzyme for retinoic acid, in TBT-exposed juveniles of *C. atrasolea*. We then asked if tributyltin induces penis growth in mature females of four calyptraeid species. Our results demonstrate a role for the retinoic acid pathway in male genital development of these sequential hermaphrodites.

Results

Exposure to agonists of RXR and RAR induce penis growth

To determine the abilities of retinoids to induce penis development, we tested the effects of retinoid agonists on juvenile snails. Juveniles of *C. atrasolea*, exposed to moderate levels of the presumed RXR agonist, TBT (200ng Sn/ml; **Table 1**), show induction of penis growth within a few days. Penis length is significantly increased compared to DMSO controls (Kruskal-Wallis $\chi^2 = 144.43$, df = 9, p<0.0001, **Fig. 1C**; **Fig. 2A-B**). Similarly, juveniles exposed to all-trans retinoic acid (ATRA), which can bind to both RXR and RAR, show significantly increased penis length relative to DMSO controls (**Fig. 1C**; **Fig. 2C**). Penis length in ATRA-induced juveniles is increased compared to TBT treatments, although this difference is not statistically significant (**Fig. 1C**). While exposure to the pan-RAR agonist TTNPB significantly increases penis length in juveniles compared to DMSO controls, the effect is less pronounced than treatment with either TBT or ATRA (**Fig. 1C**; **Fig. 2D**).

Blocking retinoic acid synthesis, RXR reduces the effects of tributyltin

To further examine the effects of retinoic acid on male genital development, juveniles of *C.*atrasolea were treated with antagonists of retinoic acid signaling, targeting different components of the retinoic acid signaling pathway. Animals were treated either with a drug that blocks receptor activity

(pan-RXR antagonist UVI-3003), or with drugs to block retinoic acid synthesis by targeting the enzymes that synthesize retinoic acid, RALDH and RDH (citral), or RALDH alone (disulfiram) (**Fig. 1D**).

Animals exposed to the RXR antagonist UVI-3003 alone show minor but non-significant increases in penis length (**Fig. 1D**). Citral and disulfiram treatments alone do not induce penis growth (data not shown). As expected if tributyltin is an RXR agonist, exposure to both tributyltin and the RXR antagonist UVI-3003 significantly reduces juvenile penis length compared to treatment with tributyltin alone (**Fig. 1D**). Combining tributyltin treatment with either citral or disulfiram, blocking retinoic acid synthesis, significantly reduces penis lengths compared to treatment with tributyltin alone (**Fig. 1D**). Furthermore, combined treatments of tributyltin with citral or UVI-3003 do not significantly increase penis lengths compared to DMSO control treatments (**Fig. 1D**).

Exposure to RAR antagonist increases penis length

In contrast to the experiments described above, treatment of *C. atrasolea* juveniles with the RAR-ß antagonist LE-135 significantly increases penis length compared to DMSO controls (**Fig. 1E**). Penis length in LE-135 treated animals is not significantly different from penis length of animals treated with tributyltin (**Fig. 1E**) or TTNPB (**Fig. 1C**). Combining tributyltin with LE-135 does not reduce penis length compared to treatment with tributyltin alone, but rather shows increased penis lengths compared to animals treated with the RAR agonist TTNPB, and are not statistically different from treatments with ATRA (**Fig. 1C**).

Expression of retinoid receptors, RAR and RXR, and retinoic acid metabolizing enzyme, Cyp26 in TBT induced penis development

Both *RAR* and *RXR* receptor mRNAs are expressed in immature juveniles of *C. atrasolea*. In DMSO treated animals, *RAR* expression is mainly visible in the gill filaments, while *RXR* appears to be mainly expressed in the nervous system (**Fig. 3A, B**). When animals are treated with tributyltin, both *RAR* and *RXR* expression are primarily visible in the developing penis (5-8 days of treatment, **Fig. 3D, E**).

Retinoic acid is regulated in a tissue specific manner by Cyp26, a hydroxylase that converts RA into metabolites such as 4-hydroxy-retinoic acid (**Fig. 1B**). As retinoic acid is difficult to visualize directly, Cyp26 is often used as a readout of retinoic acid signaling (Rhinn and Dollé, 2012; White et al., 1996). In control animals of *C. atrasolea*, *Cyp26* is most obviously expressed in a ring around the mantle, in the body wall, and in the digestive gland (**Fig. 3C**). After treatment with tributyltin, *Cyp26* expression is also evident in the penis (**Fig. 3F**).

Alignment of *C. atrasolea* RAR and RXR sequences with human and other molluscan protein sequences shows 54% identity with human RAR-β, and 80% identity with human RXR-α (**Fig. 4**). Of the predicted amino acid residues in the ligand binding domain that are thought to confer binding ability, *C. atrasolea* RXR shares all but one of the residues in common with human RXR sequence (**Fig. 4A**), while *C. atrasolea* RAR shares 13/25 of these residues in common with human RAR sequence (**Fig. 4B**). Predicted protein sequences for *C. atrasolea* cluster with known RAR and RXR sequences (**Fig. S1A**), as do predicted protein sequences for Cyp26 (**Fig. S1B**).

Retinoid agonists initiate abnormal penis growth in calyptraeid females

The timing of sexual transitions in most calyptraeids is regulated by social environment, but not all species respond to conspecifics (**Fig. 5A**). To test the role of differing levels of social control on the ability of retinoids to induce penis development, we compared the effects of retinoid agonists in multiple calyptraeid species with differing abilities to respond to conspecific signals. Mature females of *C. atrasolea, C. fornicata, C. convexa, and C. plana* exposed to moderate levels of TBT (200ng Sn/ml; **Table 1**) showed induction of penis growth within a few days (*C. atrasolea*) to weeks (temperate species) (**Fig. 5B-E**). This is true of mature females injected with TBT (*C. fornicata*, 91%; *C. plana*, 100%; *C. convexa*, 56%; **Fig. 5C-E**), and females bathed in TBT (*C. atrasolea*, 92%; **Fig. 5B**). Comparisons of TBT-treated animals to DMSO controls indicate significant increases in the proportion of animals with penis development in treated individuals for all species observed (**Fig. 5B-E; Table 2**). Although females of *C. plana* and *C. convexa* have high proportions of penis presence in DMSO-treated control animals

(*C. plana*, 57%; *C. convexa*, 21%; **Fig. 5C**, **E; Table 2**), TBT-treated animals showed significant increases in the proportion of animals with penis presence (*C. plana*, 100%; *C. convexa*, 56%; **Fig. 5C**, **E; Table 2**). Although DMSO is generally considered to be inert, even low levels can induce biological activity, potentially by altering gene expression and methylation patterns (Schirling et al., 2006; Verheijen et al., 2019). Untreated controls of these species also show relatively high rates of penis incidence (*C. plana*, 31%; *C. convexa*, 9%; **Fig. 5C**, **E; Table 2**), suggesting these species may be more sensitive to non-specific inductive effects. Adult females of *C. fornicata* also show a significantly increased proportion of females with penis development in response to ATRA (100%) and the RAR-specific ligand TTNPB (88%) (**Fig. 5D; Table 2**), as do *C. atrasolea* juveniles exposed to ATRA (95%) and TTNPB (15%; **Fig. 5B; Fig. 2, Table 2**).

Discussion

We demonstrate that multiple components of the retinoic acid signaling pathway are active during male genital development in sequentially hermaphroditic calyptraeid gastropods. Exogenous retinoids and tributyltin, an RXR-agonist, induce penis growth and increase penis length in *C. atrasolea*, while drugs that antagonize RXR (UVI-3003) or interfere with the production of retinoic acid (citral and disulfiram) significantly reduce tributyltin's effects. Surprisingly, treatments with both RAR agonists (all-trans retinoic acid, TTNPB) and a specific β-RAR antagonist (LE-135) result in increased penis length. In all species tested, tributyltin induces imposex in mature females. The ability to alter the timing of penis induction and penis length via pharmacological means points to a potential role for retinoids in the evolution of sexual development and hermaphroditism in calyptraeids and other gastropods.

Retinoids and Imposex

Tributyltin has previously been shown to bind human RXR, PPAR and RXR-PPAR dimers (Harada et al., 2015; le Maire et al., 2009; Nishikawa et al., 2004), and association of RXR with tributyltin-caused imposex is well documented in molluscs. For example, in *Nucella lapillus*, a gastropod

with separate sexes, tributyltin exposure alters expression of RXR in tissue and sex-specific patterns (Lima et al., 2011), and upregulates global RXR transcription (Pascoal et al., 2013). Natural populations of *Tritia* (=*Ilyanassa*) *obsoleta*, show increasing RXR transcript levels with seasonal onset of both male and female reproductive recrudescence (Sternberg et al., 2008). RXR protein expression also correlates with imposex susceptibility; Argentinan populations of *Buccinanops globulosus* show high rates of imposex and high levels of RXR protein in the vas defens, while the co-occurring *Trophon geversianus* show low rates of imposex and low levels of RXR protein in vas deferens (Giulianelli et al., 2020). The purported natural ligand for RXR is 9-cis retinoic acid, which binds to both RAR and RXR receptors (Germain et al., 2006a, b). Exposure to 9-cis retinoic acid induces imposex in both *N. lapillus* (Castro et al., 2007) and *Reishia* (=*Thais*) *clavigera* (Nishikawa et al., 2004), and transfection assays show transcriptional activation on exposure to this and other RXR-specific ligands in the pulmonate gastropod *Biomphalaria glabrata* (Bouton et al., 2005). Penis development and imposex appears to be mediated by RXR in both separate-sexed gastropods and sequential hermaphrodites (current study).

Nuclear receptors, including RXR and RAR, are evolutionarily conserved (Babonis and Martindale, 2017; Bridgham et al., 2010). However, previous work indicates that molluscan RARs in several species have lost the ability to bind retinoids (André et al., 2019; Gutierrez-Mazariegos et al., 2014). In contrast, we found that exposure to RAR agonists and a specific RAR antagonist results in increased penis length in *C. atrasolea*. While the natural ligand of RAR is thought to be ATRA (Germain et al., 2006a), it can also bind to RXR (Mangelsdorf et al., 1990; Tsuji et al., 2015), including molluscan RXRs (André et al., 2019). In addition, ATRA and 13-cis retinoic acid (but not 9-cis retinoic acid) are present in adult tissues of *N. lapillus* (Gutierrez-Mazariegos et al., 2014), and RAR-RXR dimers can bind to retinoic acid response element DNA motifs in *R. clavigera*, (Urushitani et al., 2013). In the bivalve *C. gigas*, embryonic exposure to ATRA produces significant developmental effects (Vogeler et al., 2017), *Cg-RAR* and *Cg-RXR* expression in adults increases on exposure to ATRA, and Cg-RAR protein localizes to the nucleus and can heterodimerize with Cg-RXR (Jin et al., 2021). While the precise mechanism of

action remains unclear, RAR does play a role in molluscan development, and is implicated in calyptraeid penis development.

Conservation of specific amino acid residues in the ligand binding domain of RAR has been used as an indirect measure of binding ability (Fig. 4). For example, RAR of the polychaete annelid Platynereis dumerilli is functional, binds to various retinoids, and retains 20/25 binding residues (Handberg-Thorsager et al., 2018). RAR of the gastropod Lymnaea stagnalis retains 16/25 binding residues and is not thought to bind retinoids directly, though ATRA exposure can induce growth cone turning (Carter et al., 2015; Johnson et al., 2019). C. atrasolea RAR retains only 13/25 binding residues, suggesting that RAR does not bind to RAR-specific ligands (Fig. 4). In N. lapillus, the RAR ligand binding domain binds to corepressor proteins (Gutierrez-Mazariegos et al., 2014), and in P. vulgata RAR and RXR are individually able to promote transcription, while RAR-RXR heterodimers are not, suggesting a role for RAR in co-repressor release (André et al., 2019). C. atrasolea RAR mRNA expressed in the induced penis (Fig. 3D) may function by regulating corepressors to mediate transcription. This hypothesis would also explain the observed reduction in penis length caused by blocking the enzymes that produce retinoic acid in the presence of TBT (citral and TBT, disulfiram and TBT, Fig. 1D). Precise determination of the binding affinities of molluscan retinoid receptors, the levels of endogenous retinoids, and interactions with other members of this pathway will be necessary to understand the mechanisms of male genital induction in calyptraeids and other molluscs.

Connecting external and internal signals in calyptraeid sex determination

Nuclear receptors have evolved from an ancestral role in binding to fatty acids (Bridgham et al., 2010) and play important roles in a variety of life history transitions in other organisms. For example, the initiation of dauer larva formation in *C. elegans* is mediated by the nuclear receptor DAF-12, which acts as a switch between dauer formation and reproduction by integrating complex neural, nutritional, and metabolic inputs (Antebi, 2015). Genome analyses have identified 43 NRs in the bivalve *Crassostrea gigas* (Vogeler et al., 2014), and 39 and 33 NRs in the gastropods *B. glabrata* and *Lottia gigantia*,

respectively (Kaur et al., 2015), suggesting as yet unknown NR functions in molluscs. Indeed, unbiased sampling of transcriptional responses to tributyltin in separate-sexed molluscs has implicated the peroxisome proliferator-activated receptor (PPAR, NR1C) and a specific PPAR-γ agonist induces imposex in *N. lapillus* (Pascoal et al., 2013). Additionally, *PPAR* and *RXR* transcripts are differentially expressed between male and female tissues of *C. gigas* (Vogeler et al., 2016). Vertebrate studies link PPAR signaling to metabolism and lipogenesis (Feige et al., 2006), which, if similar roles exist in gastropods, could link nutritional states to sexual development. Altogether, the importance of nuclear receptors in integrating environmental signals is likely to be important for controlling life history transitions in the calyptraeids and other molluscs.

While our results show that retinoids can induce growth of male genitalia in calyptraeids, retinoid activity is unlikely to initiate male sexual development. Gould (1917) indicates that penis development is not seen until after the gonad begins spermatogenesis, suggesting that masculinizing signals may result from sperm maturation. Hormonal initiation of penis development has been suggested; however, steroidal sex hormone receptors (i.e., androgen or estrogen receptors) appear to be absent in molluscs (see (Horiguchi, 2017) for review). Initiation and maintenance of penis development in calyptraeids appears to be modulated by neural factors, as removal of the ganglia adjacent to the site of penis growth in *C. fornicata* blocks tributyltin activity (Le Gall and Feral, 1982). The shift of *RXR* transcript expression from the nervous system to the developing tissues of the penis in *C. atrasolea* (Fig. 3B, E) supports neural involvement, and similar shifts in transcript expression are reported for *N. lapillus RXR* (Lima et al., 2011). Downstream effectors are likewise unknown in molluscan male genital development. Expression of patterning molecules like *Sonic hedgehog* in male genitalia of species from *Drosophila* (Sanchez et al 2001) to mouse (Perriton et al 2002) and skate (O'Shaughnessy 2015) suggest a starting point for further investigation.

Tributyltin, imposex, and reproductive development in sequentially hermaphroditic calyptraeids

Reports on the occurrence of imposex in calyptraeids are mixed, which has led some to suggest that sexual development in sequential hermaphrodites is regulated by different developmental pathways from dioecious species (e.g., Cledón et al., 2016). No evidence of imposex was reported in *Bostrycapulus odites* (=Crepidula aculeata) collected from highly contaminated sites, though reduced retention of pollutants by hard substrates may have limited exposure (Bigatti et al., 2009). Imposex was reported in *Bostrycapulus calyptraeiformis* and *Crepidula* cf. *nivea* exposed to seawater from the highly-trafficked entrance to the Panama Canal, although the identity of the inductive agent was not determined (Li and Collin, 2009). We show here that tributyltin induces imposex in females of four species of *Crepidula* (Fig. 5; Table 2), with responses varying across species. Females of *C. convexa* show relatively low incidence of penis formation on exposure to tributyltin compared to other species (*i.e.*, 56% compared to 91-100%, Fig. 5B-E). In the solitary *C. convexa*, the timing of sexual transitions is not strongly influenced by the presence of conspecifics (Hoagland, 1978), and females retain the penis well into maturity (Coe, 1936). The level of gregariousness has been suggested to correlate with the level of social influence over sex determination (Hoagland, 1978) (Fig. 5A), suggestive of an alternate mechanism controlling reproductive transitions in species with reduced conspecific-based sex determination.

Animals exposed to high levels of tributyltin exhibit diverse reproductive impacts. Here, we show that tributyltin exposure and interference with retinoid signaling not only induces penis development, but appears to alter penis length (Fig. 1C-E). Gonadal-level effects are reported in other molluscs, including reduced oogenesis and initiation of spermatogenesis (Alzieu, 2000). Comparison of normal reproductive development to pharmacologically induced reproductive characters will be useful for understanding how reproductive tissues are formed. Reproductive development has been previously documented in calyptracids (Coc, 1936; Giese, 1915; Gould, 1917), though developmental details are lacking. Both male and female germ cells are present in the gonad in young juveniles (Gould, 1917), and in males during seasonal gonadal changes in *C. fornicata* (Beninger et al., 2010). The calyptracid penis is muscular, with an external ciliated sperm groove (Giese, 1915; Kleinsteuber, 1913). Detailed understanding of the

development of the male and female external genitalia and the ovotestis in *Crepidula* will be necessary to understand the basis for transitions in reproductive characters.

Evolution of sequential hermaphroditism

Sexual state is increasingly recognized as flexible and dynamic. Detailed examinations of sexual development highlight the plasticity of sexual expression via multiple levels of regulatory control (Zhao and Yao, 2019). Indeed, cross-sexual transfers are a well-known source of phenotypic novelties (West-Eberhard, 2003). Even in chromosomally determined systems, somatic and germ cell sex can be changed by disruption of a single gene (*e.g.*, tra-1 in *C. elegans*, Sox9 in mice (Williams and Carroll, 2009)). In the development of separate males and females, early signals for one sex typically inhibit development of the opposite sex, and in some cases initiate removal of tissue progenitors of the opposite sex (**Fig. 6**) (Zhao et al., 2017; Zhao and Yao, 2019). Control of sexual expression may be similar in sequential hermaphrodites, with shifts in timing of initiation and integration of signals for genital resorption and tissue development to allow for the expression of both sexes in sequence (**Fig. 6**). Alterations in timing of sexual expression represent important components of the evolution of sequential hermaphroditism (**Fig. 6**). Additionally, for animals with an intromittent organ, penis length and shape evolves rapidly, with important consequences for reproductive success (see Hoskin et al 2019 for review). The relative ease of altering the timing and size of male genitalia in a sequential hermaphrodite as shown here may have implications for the repeated evolution of hermaphroditism in sexually diverse molluses.

Materials and Methods

Animal collection

Juvenile and adult females of *C. atrasolea* were sampled from a laboratory colony of snails maintained at the University of Illinois at Urbana-Champaign. Details of their culture conditions are as described previously (Henry et al., 2020; Henry et al., 2017). Adult females of *C. fornicata*, *C. plana*, and *C. convexa* were collected from wild populations around Woods Hole under a scientific collection permit

from the Commonwealth of Massachusetts Division of Marine Fisheries. Adult females of *C. fornicata* and *C. plana* were also provided by the Marine Resources Centre of the Marine Biological Laboratory (MBL) at Woods Hole, MA. Animals were maintained in natural flowing seawater at the MBL under ambient food and temperature conditions prior to experimental use.

Juvenile Treatments

Juveniles of *C. atrasolea* were collected from brooding females of the laboratory population described above. Hatchlings were separated into treatment and control groups of 5-15 juveniles per treatment. Broods from multiple females were randomized across treatments, and at least two replicates per treatment were performed. All animals were maintained in 35x10mm petri dishes filled to the brim with 0.22μm filtered Reef Crystals Instant Ocean Sea Water (Spectrum Brands, Inc. Blacksburg, VA) and fed 1x10⁶ cells/ml of Phytofeast daily. Food and sea water were changed daily. Drugs were added to culture dishes daily at the concentrations indicated in **Table 1**, for 5-8 days. Several concentrations of drugs were tested initially to determine dosages that induced a response without significant mortality (data not shown). At the end of the treatment period, animals were relaxed, scored for penis development, imaged, and fixed, as described below. Penis and shell length were measured from images using ImageJ (v.2.0.0-rc-69/1.52p) (Rasband, 1997-2018). Shell length was measured along the longest axis of the shell. Penis length was measured freehand in ImageJ, from the middle of the base of the penis to the tip, as indicated in **Figure 2**.

Adult treatments

Individual adult females of *C. fornicata*, *C. plana*, and *C. convexa* were transferred to 350ml plastic cups and maintained in bag-filtered (10µm porosity high-flow polyester filter bag, Cole-Parmer, Vernon Hills, IL, Item # EW-01524-82) natural seawater at the MBL at room temperature (~20°C). Experimental animals were fed approximately 1x10⁶ cells/ml of *Isochrisis galbana-T* or Phytofeast (Reed Mariculture Inc., Campbell, CA) daily, and water was changed every other day. Field collected animals

were acclimated for 24-48 hours before initiating treatments. Stock solutions of all drugs used were prepared in DMSO to concentrations reported in **Table 1**. Drugs were injected directly into the foot at a concentration of approximately 1μg of drug per gram adult body weight using a 5μl glass syringe (Hamilton, Reno, NV, Part No. 7633-01) with a 34-gauge needle (Hamilton, Reno, NV, Part No. 207434). Control animals were injected with a comparable volume of DMSO. Animals were injected twice, at least one week apart. Mortality was high for injection treatments, primarily due to difficulty animals had in attaching to the substrate for feeding. Treated adult females were scored for penis growth after 1 week (*C. atrasolea*) or 2-4 weeks (other species), relaxed using a 1:1 mixture of sea water and 7.5% MgCl₂, followed by addition of a saturated chloretone-seawater (Sigma-Aldrich, Cat. No. 112054) solution. Relaxed animals were fixed in 4% paraformaldehyde overnight at 4°C, rinsed in phosphate buffered saline (PBS), and transferred to 100% methanol for storage at -80°C. Non-treated adult females were scored post-fixation for penis presence. Adult females of *C. atrasolea* were treated as described for juveniles above.

Cloning and in situ hybridization

PCR primers were designed based on sequence data from a *C. atrasolea* developmental transcriptome (see Henry et al., 2017, NCBI TSA GFWJ00000000.1). Primers for *C. atrasolea* PCR amplification and cloning were: RAR forward 5'-ATGGGCATGTCCAAAGAAGCGGTG-3' and reverse 5'-TCCTGTCGGTCCAGCATCTCTTTCAC-3'; RXR forward 5'-GACGGGGAGGTGGAGAGCAC-3' and reverse 5'-CAGACCCTTGGCATCAGGATTG-3'; and Cyp26 forward 5'-AGGTGTACAAGACTCACATTCTGG-3' and reverse 5'-GTTCCTGGCCAAAAGATACAAGAG-3'. GenBank accession numbers for *C. atrasolea* sequences: RAR, MZ020963; RXR, MZ020964; Cyp26 MZ020965.

RNA was extracted from whole embryos of *C. atrasolea* using TriZol (Life Technologies, Grand Island, NY), following the manufacturer's protocol, which was used to prepare cDNA (iScript cDNA Synthesis kit, BioRad, Hercules, CA). Fragments of each gene of interest were cloned into pGEMt-Easy

vector, and validated by sequencing at the University of Illinois Core Sequencing Facility (Urbana, IL). Human, mouse, and molluscan sequences for RAR, RXR and CYP26 were aligned using ClustalOmega. Alignments were adjusted for readability using Jalview (V.2.11.0). Digoxigenin (DIG)-labeled antisense and sense *in situ* probes were prepared from PCR products of cloned template DNA, as described previously (Osborne et al., 2018). *In situ* hybridization of drug treated juveniles of *C. atrasolea* was performed as described previously (Osborne et al., 2018).

Phylogenetic Analyses

Phylogenetic trees (**Fig. S1**) were constructed using protein translations of previously identified sequences, sequenced fragments and transcriptomic data for *C. atrasolea*. Accession numbers are reported in **Table S1**. MEGAX software (v10.1.7, 1993-2020) was used to realign sequences and construct neighbor joining trees (1000 replicates) and maximum likelihood trees (500 replicates).

Statistical analyses

Penis length was measured directly in *C. atrasolea* juveniles treated with agonists alone, antagonists alone, TBT + antagonist and DMSO (control). Average penis lengths were not normally distributed, and were compared using the non-parametric Kruskal-Wallis test, tested post-hoc by the Dunn test. Penis length was not measured for adult females. Rather, adult females were scored for penis presence or absence in treated (TBT, ATRA, TTNPB) and DMSO control animals, and compared by chisquare test. Presence/absence penis counts were combined for adult and juvenile treatments of *C. atrasolea*. Unlike females of the other species tested, females of *C. convexa* retain the penis well after transitioning to functional females (Coe, 1936), therefore penis length relative to tentacle length was used as a proxy for penis presence/absence for this species only. Individual females of *C. convexa* with a penis longer than the adjacent tentacle were scored as present. Penis presence/absence in non-treated animals is also reported. All statistical tests were performed in R version 3.6.1 (2019-07-05).

Acknowledgements

This work was generously supported by funding from the National Science Foundation (NSF IOS-1558061 and NSF EDGE IOS-1827533) to JQH (JJH). MPL was supported by a Postdoctoral Fellowship from the Fonds de recherche québécois – Nature et Technologie; and Emerging Models Grant from the Society for Developmental Biology; and Whitman Early Career Research Fellowships at the Marine Biological Laboratory (Woods Hole, MA, USA). We thank the Waquoit Bay National Estuarine Research Reserve for granting collection permissions. The authors thank the MBL Embryology course students, faculty, and directors David Sherwood and Rich Schneider. MPL thanks Rajendhran (Rajee) Rajakumar, Ehab Abouheif, and members of the Abouheif lab for their valuable comments on a previous version of this manuscript.

References

Albalat, R., 2009. The retinoic acid machinery in invertebrates: Ancestral elements and vertebrate innovations. Mol Cell Endocrinol 313, 23-35.

Alzieu, C., 2000. Impact of tributyltin on marine invertebrates. Ecotoxicology 9, 71-76.

André, A., Ruivo, R., Fonseca, E., Froufe, E., Castro, L.F.C., Santos, M.M., 2019. The retinoic acid receptor (RAR) in molluscs: Function, evolution and endocrine disruption insights. Aquat Toxicol 208, 80-89.

Antebi, A., 2015. Nuclear receptor signal transduction in *C. elegans*, in: Community, T.*C.e.*R. (Ed.), WormBook.

Auld, J.R., Jarne, P., 2016. Sex and Recombination in Snails, in: Kliman, R.M. (Ed.), Encyclopedia of Evolutionary Biology. Academic Press, Oxford, pp. 49-60.

Babonis, L.S., Martindale, M.Q., 2017. Phylogenetic evidence for the modular evolution of metazoan signalling pathways. Philos Trans R Soc B-Biol Sci 372, 20150477.

Beninger, P.G., Valdizan, A., Decottigies, P., Cognie, B., 2010. Field reproductive dynamics of the invasive slipper limpet, *Crepidula fornicata*. J Exp Mar Biol Ecol 390, 179-187.

Bigatti, G., Primost, M.A., Cledón, M., Averbuj, A., Theobald, N., Gerwinski, W., Arntz, W., Morriconi, E., Penchaszadeh, P.E., 2009. Biomonitoring of TBT contamination and imposex incidence along 4700km of Argentinean shoreline (SW Atlantic: From 38S to 54S). Mar Pollut Bull 58, 695-701.

Bouton, D., Escriva, H., Mendonça, R.L.d., Glineur, C., Bertin, B., Noël, C., Robinson-Rechavi, M., Groot, A.d., Cornette, J., Laudet, V., Pierce, R.J., 2005. A conserved retinoid X receptor (RXR) from the mollusk *Biomphalaria glabrata* transactivates transcription in the presence of retinoids. J Mol Endocrinol 34, 567-582.

Bridgham, J.T., Eick, G.N., Larroux, C., Deshpande, K., Harms, M.J., Gauthier, M.E.A., Ortlund, E.A., Degnan, B.M., Thornton, J.W., 2010. Protein evolution by molecular tinkering: Diversification of the nuclear receptor superfamily from a ligand-dependent ancestor. PLoS Biol 8, e1000497.

Cahill, A.E., Juman, A.R., Pellman-Isaacs, A., Bruno, W.T., 2015. Physical and chemical interactions with conspecifics mediate sex change in a protandrous gastropod *Crepidula fornicata*. Biol Bull 229, 276-281.

Carrillo-Baltodano, A., Collin, R., 2015. *Crepidula* slipper limpets alter sex change in response to physical contact with conspecifics. Biol Bull 229, 232-242.

Carter, C.J., Rand, C., Mohammad, I., Lepp, A., Vesprini, N., Wiebe, O., Carlone, R., Spencer, G.E., 2015. Expression of a retinoic acid receptor (RAR)-like protein in the embryonic and adult nervous system of a protostome species. J Exp Zool B Mol Dev Evol 324, 51-67.

Castro, L.F.C., Lima, D., Machado, A., Melo, C., Hiromori, Y., Nishikawa, J., Nakanishi, T., Reis-Henriques, M.A., Santos, M.M., 2007. Imposex induction is mediated through the Retinoid X Receptor signalling pathway in the neogastropod *Nucella lapillus*. Aquat Toxicol 85, 57-66.

Charnov, E.L., 1982. The theory of sex allocation. Princeton University Press, Princeton, NJ.

Cledón, M., Nuñez, J.D., Ocampo, E.H., Sigwart, J.D., 2016. Sexual traits plasticity of the potentially invasive limpet *Bostrycapulus odites* (Gastropoda: Calyptraeidae) within its natural distribution in South America. Mar Ecol 37, 433-441.

Coe, W.R., 1936. Sexual phases in Crepidula. J Exp Zool 72, 455-477.

Coe, W.R., 1938. Conditions influencing change of sex in mollusks of the genus *Crepidula*. J Exp Zool 77, 401-424.

Coe, W.R., 1942. Influence of natural and experimental conditions in determining shape of shell and rate of growth in gastropods of the genus *Crepidula*. J Morphol 71, 35-51.

Coe, W.R., 1953. Influences of association, isolation, and nutrition on the sexuality of snails of the genus *Crepidula*. J Exp Zool 122, 5-19.

Collin, R., 1995. Sex, size, and position: A test of models predicting size at sex change in the protandrous gastropod *Crepidula fornicata*. Am Nat 146, 815-831.

Collin, R., 2000. Sex change, reproduction, and development of *Crepidula adunca* and *Crepidula lingulata* (Gastropoda : Calyptraeidae). Veliger 43, 24-33.

Collin, R., 2007. Sex ratio, life-history invariants, and patterns of sex change in a family of protandrous gastropods. Evolution 60, 735-745.

Collin, R., 2018. Transitions in sexual and reproductive strategies among the Caenogastropoda, in: Leonard, J.L. (Ed.), Transitions Between Sexual Systems: Understanding the Mechanisms of, and Pathways Between, Dioecy, Hermaphroditism and Other Sexual Systems. Springer International Publishing, Cham, pp. 193-220.

Collin, R., McLellan, M., Gruber, K., Bailey-Jourdain, C., 2005. Effects of conspecific associations on size at sex change in three species of calyptraeid gastropods. Mar Ecol-Prog Ser 293, 89-97.

Evans, Ronald M., Mangelsdorf, David J., 2014. Nuclear Receptors, RXR, and the Big Bang. Cell 157, 255-266.

Evans, S.M., Leksono, T., McKinnell, P.D., 1995. Tributyltin pollution: A diminishing problem following legislation limiting the use of TBT-based anti-fouling paints. Mar Pollut Bull 30, 14-21.

Feige, J.N., Gelman, L., Michalik, L., Desvergne, B., Wahli, W., 2006. From molecular action to physiological outputs: Peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 45, 120-159.

Germain, P., Chambon, P., Eichele, G., Evans, R.M., Lazar, M.A., Leid, M., De Lera, A.R., Lotan, R., Mangelsdorf, D.J., Gronemeyer, H., 2006a. International Union of Pharmacology. LX. Retinoic Acid Receptors. Pharm Rev 58, 712.

Germain, P., Chambon, P., Eichele, G., Evans, R.M., Lazar, M.A., Leid, M., De Lera, A.R., Lotan, R., Mangelsdorf, D.J., Gronemeyer, H., 2006b. International Union of Pharmacology. LXIII. Retinoid X Receptors. Pharm Rev 58, 760.

Ghiselin, M.T., 1969. The evolution of hermaphroditism among animals. Q Rev Biol 44, 189-208.

Giese, M., 1915. Der Genitalapparat von Calyptraea sinensis Lin., Crepidula unguiformis Lam. und Capulus hungaricus Lam. Z wiss Zool Bd. 114, 169-231.

Giulianelli, S., Primost, M.A., Lanari, C., Bigatti, G., 2020. RXR expression in marine gastropods with different sensitivity to imposex development. Sci Rep 10, 9507.

Gould, H.N., 1917. Studies on sex in the hermaphrodite mollusc *Crepidula plana* I. History of the sexual cycle. J Exp Zool 23, 1-69.

Gutierrez-Mazariegos, J., Nadendla, E.K., Lima, D., Pierzchalski, K., Jones, J.W., Kane, M., Nishikawa, J.-I., Hiromori, Y., Nakanishi, T., Santos, M.M., Castro, L.F.C., Bourguet, W., Schubert, M., Laudet, V., 2014. A mollusk retinoic acid receptor (RAR) ortholog sheds light on the evolution of ligand binding. Endocrinology 155, 4275-4286.

Handberg-Thorsager, M., Gutierrez-Mazariegos, J., Arold, S.T., Kumar Nadendla, E., Bertucci, P.Y., Germain, P., Tomançak, P., Pierzchalski, K., Jones, J.W., Albalat, R., Kane, M.A., Bourguet, W., Laudet, V., Arendt, D., Schubert, M., 2018. The ancestral retinoic acid receptor was a low-affinity sensor triggering neuronal differentiation. Science Advances 4, eaao1261.

Harada, S., Hiromori, Y., Nakamura, S., Kawahara, K., Fukakusa, S., Maruno, T., Noda, M., Uchiyama, S., Fukui, K., Nishikawa, J.-i., Nagase, H., Kobayashi, Y., Yoshida, T., Ohkubo, T., Nakanishi, T., 2015. Structural basis for PPARγ transactivation by endocrine-disrupting organotin compounds. Sci Rep 5, 8520.

Heller, J., 1993. Hermaphroditism in molluscs. Biol J Linn Soc 48, 19-42.

Henry, J.Q., Collin, R., Perry, K.J., 2010. The Slipper Snail, *Crepidula*: An emerging lophotrochozoan model system. Biol Bull 218, 211-229.

Henry, J.Q., Lesoway, M.P., Perry, K.J., 2020. An automated aquatic rack system for rearing marine invertebrates. BMC Biol 18, 46.

Henry, J.Q., Lesoway, M.P., Perry, K.J., Osborne, C.C., Shankland, M., Lyons, D.C., 2017. Beyond the sea: *Crepidula atrasolea* as a spiralian model system. Int J Dev Biol 61, 479-493.

Henry, J.Q., Lyons, D.C., 2016. Molluscan models: *Crepidula fornicata*. Curr Opin Gen Dev 39, 138-148.

Hoagland, K., 1978. Protandry and the evolution of environmentally-mediated sex change: A study of the Mollusca. Malacologia 17, 365-391.

Horiguchi, T., 2006. Masculinization of female gastropod mollusks induced by organotin compounds, focusing on mechanism of actions of tributyltin and triphenyltin for development of imposex. Environ Sci 13, 77-87.

Horiguchi, T., 2017. Mode of action of organotins to induce the development of imposex in gastropods, focusing on steroid and the Retinoid X Receptor activation hypotheses, in: Horiguchi, T. (Ed.), Biological Effects by Organotins. Springer Japan, Tokyo, pp. 199-219.

Jarne, P., Auld, J.R., 2006. Animals mix it up too: The distribution of self-fertilization among hermaphroditic animals. Evolution 60, 1816-1824.

Jin, K., Jin, Q., Cai, Z., Huang, B., Wei, L., Zhang, M., Guo, W., Liu, Y., Wang, X., 2021. Molecular characterization of retinoic acid receptor CgRAR in Pacific Oyster (*Crassostrea gigas*). Front Phys 12, 352.

Johnson, A., de Hoog, E., Tolentino, M., Nasser, T., Spencer, G.E., 2019. Pharmacological evidence for the role of RAR in axon guidance and embryonic development of a protostome species. genesis 57, e23301.

Kaur, S., Jobling, S., Jones, C.S., Noble, L.R., Routledge, E.J., Lockyer, A.E., 2015. The nuclear receptors of *Biomphalaria glabrata* and *Lottia gigantea*: Implications for developing new model organisms. PLoS ONE 10, e0121259.

Kleinsteuber, H., 1913. Die Anatomie von *Trochita*, *Calyptraea* und *Janacus*. Zool Jahrb Suppl. 13, 385-476.

Le Gall, S., Feral, C., 1982. Experimental study of in vitro development of the male genital tract in *Crepidula fornicata* L (Protandric Hermaphrodite Mesogastropod). Int J Invertebr Reprod 5, 31-42.

le Maire, A., Grimaldi, M., Roecklin, D., Dagnino, S., Vivat - Hannah, V., Balaguer, P., Bourguet, W., 2009. Activation of RXR–PPAR heterodimers by organotin environmental endocrine disruptors. EMBO Rep 10, 367-373.

Leonard, J.L., 1991. Sexual conflict and the mating systems of simultaneously hermaphroditic gastropods. Am Malacol Bull 9, 45-58.

Leonard, J.L., 2013. Williams' Paradox and the role of phenotypic plasticity in sexual systems. Integr Comp Biol 53, 671-688.

Lesoway, M.P., Henry, J.Q., 2019. Sex determination, sexual development, and sex change in slipper snails, in: Tworzydlo, W., Bilinski, S.M. (Eds.), Evo-Devo: Non-model Species in Cell and Developmental Biology. Springer International Publishing, Cham, pp. 155-182.

Li, C., Collin, R., 2009. Imposex in one of the world's busiest shipping zones, in: Lang, M.A., MacIntyre, I.G., Ruetzler, K. (Eds.), Proceedings of the Smithsonian Marine Science Symposium. Smithsonian Institution Scholarly Press, pp. 189-196.

Lima, D., Reis-Henriques, M.A., Silva, R., Santos, A.I., Filipe C. Castro, L., Santos, M.M., 2011. Tributyltin-induced imposex in marine gastropods involves tissue-specific modulation of the Retinoid X Receptor. Aquat Toxicol 101, 221-227.

Liu, L., Suzuki, K., Nakagata, N., Mihara, K., Matsumaru, D., Ogino, Y., Yashiro, K., Hamada, H., Liu, Z., Evans, S.M., Mendelsohn, C., Yamada, G., 2012. Retinoic acid signaling regulates Sonic hedgehog and Bone morphogenetic protein signalings during genital tubercle development. Birth Defects Res B 95, 79-88.

Mangelsdorf, D.J., Ong, E.S., Dyck, J.A., Evans, R.M., 1990. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345, 224-229.

Mazaira, G.I., Zgajnar, N.R., Lotufo, C.M., Daneri-Becerra, C., Sivils, J.C., Soto, O.B., Cox, M.B., Galigniana, M.D., 2018. The nuclear receptor field: A historical overview and future challenges. Nucl Receptor Res 5, 101320.

Nishikawa, J.-i., Mamiya, S., Kanayama, T., Nishikawa, T., Shiraishi, F., Horiguchi, T., 2004. Involvement of the Retinoid X Receptor in the development of imposex caused by organotins in gastropods. Environ Sci Technol 38, 6271-6276.

Ogino, Y., Suzuki, K., Haraguchi, R., Satoh, Y., Dolle, P., Yamada, G.E.N., 2001. External Genitalia Formation. Ann NY Acad Sci 948, 13-31.

Orton, J.H., 1909. On the occurrence of protandric hermaphroditism in the Mollusc *Crepidula fornicata*. P Roy Soc Lond B Bio 81, 468-484.

Osborne, C.C., Perry, K.J., Shankland, M., Henry, J.Q., 2018. Ectomesoderm and epithelial—mesenchymal transition-related genes in spiralian development. Dev Dynam 247, 1097-1120.

Pascoal, S., Carvalho, G., Vasieva, O., Hughes, R., Cossins, A., Fang, Y., Ashelford, K., Olohan, L., Barroso, C., Mendo, S., Creer, S., 2013. Transcriptomics and in vivo tests reveal novel mechanisms underlying endocrine disruption in an ecological sentinel, *Nucella lapillus*. Mol Ecol 22, 1589-1608.

Ponder, W.F., Lindberg, D.R., Ponder, J., 2020. Biology and Evolution of the Mollusca. CRC Press, Boca Raton.

Rasband, W.S., 1997-2018. ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA.

Rhinn, M., Dollé, P., 2012. Retinoic acid signalling during development. Development 139, 843.

Schirling, M., Bohlen, A., Triebskorn, R., Köhler, H.R., 2006. An invertebrate embryo test with the apple snail *Marisa cornuarietis* to assess effects of potential developmental and endocrine disruptors. Chemosphere 64, 1730-1738.

Smith, B.S., 1971. Sexuality in the American mud snail, *Nassarius obsoletus* Say. J Molluscan Stud 39, 377-378.

Smith, B.S., 1981. Tributyltin compounds induce male characteristics on female mud snails *Nassarius obsoletus = Ilyanassa obsoleta*. J Appl Toxicol 1, 141-144.

Sousa, A.C.A., Pastorinho, M.R., Takahashi, S., Tanabe, S., 2014. History on organotin compounds, from snails to humans. Environ Chem Lett 12, 117-137.

Sternberg, R.M., Hotchkiss, A.K., LeBlanc, G.A., 2008. Synchronized expression of retinoid X receptor mRNA with reproductive tract recrudescence in an imposex-susceptible mollusc. Environ Sci Technol 42, 1345-1351.

Tsuji, M., Shudo, K., Kagechika, H., 2015. Docking simulations suggest that all-trans retinoic acid could bind to retinoid X receptors. J Comput Aid Mol Des 29, 975-988.

Urushitani, H., Katsu, Y., Ohta, Y., Shiraishi, H., Iguchi, T., Horiguchi, T., 2013. Cloning and characterization of the retinoic acid receptor-like protein in the rock shell, *Thais clavigera*. Aquat Toxicol 142-143, 403-413.

Verheijen, M., Lienhard, M., Schrooders, Y., Clayton, O., Nudischer, R., Boerno, S., Timmermann, B., Selevsek, N., Schlapbach, R., Gmuender, H., Gotta, S., Geraedts, J., Herwig, R., Kleinjans, J., Caiment, F., 2019. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci Rep 9, 4641.

Vogeler, S., Bean, T.P., Lyons, B.P., Galloway, T.S., 2016. Dynamics of nuclear receptor gene expression during Pacific oyster development. BMC Dev Biol 16, 33.

Vogeler, S., Galloway, T.S., Isupov, M., Bean, T.P., 2017. Cloning retinoid and peroxisome proliferator-activated nuclear receptors of the Pacific oyster and in silico binding to environmental chemicals. PLoS ONE 12, e0176024.

Vogeler, S., Galloway, T.S., Lyons, B.P., Bean, T.P., 2014. The nuclear receptor gene family in the Pacific oyster, *Crassostrea gigas*, contains a novel subfamily group. BMC Genomics 15, 369.

Warner, R.R., 1975. The adaptive significance of sequential hermaphroditism in animals. Am Nat 109, 61-82.

Warner, R.R., Fitch, D.L., Standish, J.D., 1996. Social control of sex change in the shelf limpet, *Crepidula norrisiarum*: size-specific responses to local group composition. J Exp Mar Biol Ecol 204, 155-167.

West-Eberhard, M.J., 2003. Developmental Plasticity and Evolution. Oxford University Press, Oxford.

White, J.A., Guo, Y.-D., Baetz, K., Beckett-Jones, B., Bonasoro, J., Hsu, K.E., Dilworth, F.J., Jones, G., Petkovich, M., 1996. Identification of the retinoic acid-inducible all-trans-retinoic acid 4-hydroxylase. J Biol Chem 271, 29922-29927.

Williams, T.M., Carroll, S.B., 2009. Genetic and molecular insights into the development and evolution of sexual dimorphism. Nat Rev Genet 10, 797-804.

Zhao, F., Franco, H.L., Rodriguez, K.F., Brown, P.R., Tsai, M.-J., Tsai, S.Y., Yao, H.H.C., 2017. Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science 357, 717.

Zhao, F., Yao, H.H.-C., 2019. A tale of two tracts: history, current advances, and future directions of research on sexual differentiation of reproductive tracts. Biol Reprod 101, 602-616.

Figure Legends

Figure 1. The retinoic acid pathway, drug targets, and their effects on penis length in juveniles of the sequentially hermaphroditic snail C. atrasolea. A. Typical development of sequentially hermaphroditic calyptraeid snails. Immature juveniles mature first into males with a penis, followed by a transitional period of penis resorption, elaboration of external female genitalia, and maturation into a functional female. B. Retinoic acid (RA) is synthesized from an exogenous precursor, retinol (RO, Vitamin A). Progressive oxidation reactions by retinol and retinaldehyde dehydrogenases (RDH, RALDH) produce retinoic acid (RA) from retinol (RO) and retinaldehyde (RE) precursors. Transporters (CRABP) move RA into the nucleus and may aid in localization. Retinoic acid receptor (RAR) and retinoid X receptor (RXR) dimers are typically bound to retinoid acid response elements (RAREs) in the genome and associated with repressors that inhibit transcription. RA binding to RAR induces conformational changes that releases co-repressors, recruits co-activators, and activations downstream transcription. RA levels are controlled by the RA metabolizing Cyp26 enzyme. Drugs used in the current study target retinoic acid synthesis (citral, disulfiram) and retinoid receptor activity (ATRA, TBT, TTNPB, UVI-3003, LE-135). C-E. Box and whisker plots of penis length following drug treatments. All individuals measured are indicated as points, and total number of individuals measured (n) is indicated above each boxplot. The heavy central line indicates the mean penis length, upper and lower bounds are 25% intervals, whiskers indicate 1.5x interquartile range. Letters above plot indicate statistical significance as compared post hoc by the Dunn test. Treatments with the same letter are not statistically different from one another. Green ovals indicate agonists, red boxes indicate antagonists.

Figure 2. Retinoid receptor agonists induce premature penis development in juveniles of *C. atrasolea*. Juvenile *C. atrasolea* initiate precocious penis development in response to treatment with tributyltin (TBT) (B), all-trans retinoic acid (ATRA) (C), and the RAR agonist TTNPB (D), but not DMSO control treatment (A). White dotted lines show approximate penis measurement paths. Animals

are shown in ventral view with anterior towards the top of the image. ft, foot; lt, left tentacle; m, mouth; ma, mantle; p, penis; rt, right tentacle. Scale bar = $500 \mu m$.

Figure 3. Expression of *RAR*, *RXR*, and *Cyp26* mRNA in juveniles of *C. atrasolea* exposed to DMSO control or treated with TBT. A. DMSO-control animals show faint expression of *RAR* primarily in the gill filaments. B. *RXR* expression is visible primarily in the nervous system of DMSO control animals. C. Cyp26 is expressed in a ring around the mantle edge, the edge of the body wall and in the digestive gland of DMSO control animals. D, E. When treated with tributyltin, *RAR* and *RXR* expression is primarily seen in the induced penis. F. Likewise, Cyp26 expression is visible in the penis of TBT-treated animals, and is retained in the mantle and digestive gland. ft, foot; gf, gill filaments; lt, left tentacle; ma, mantle; p, penis; rt, right tentacle. Scale bar = 250 μ m.

Figure 4. Predicted protein sequence alignment of ligand binding domains of RXR and RAR.

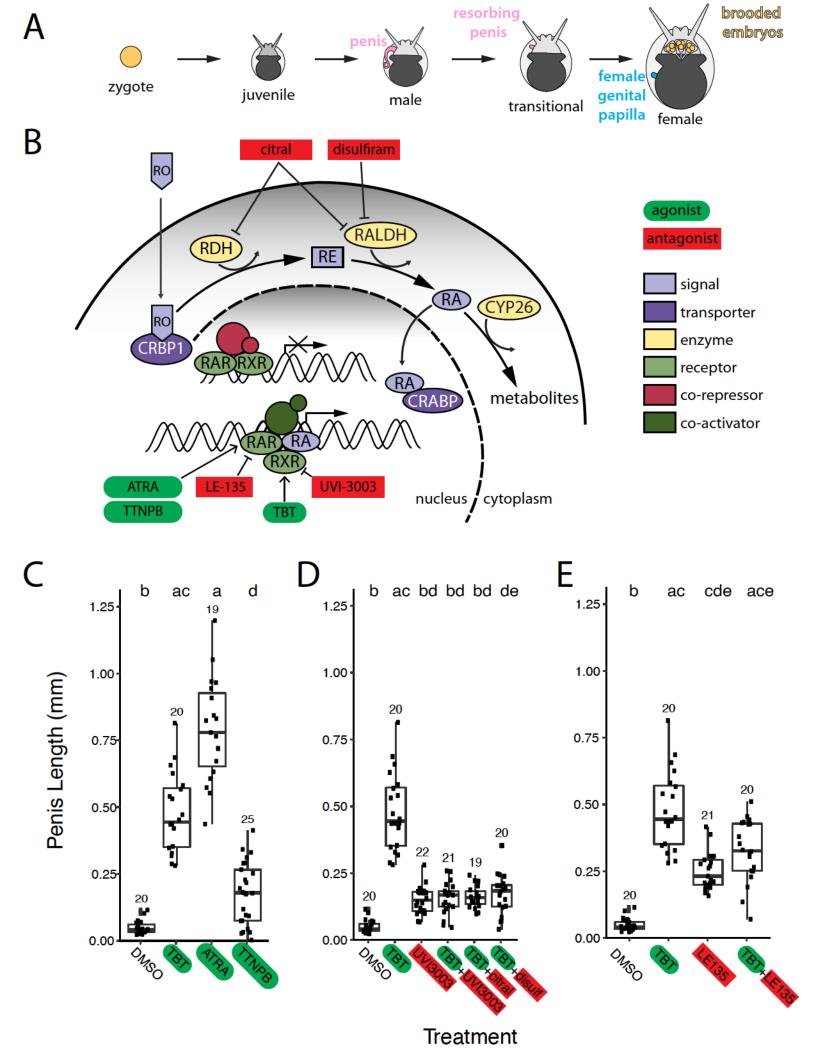
Clustal Omega alignments of protein residues that are predicted to be important for ligand binding in RXR (A) and RAR (B) based on vertebrate models are indicated in pink. Increasing percent sequence

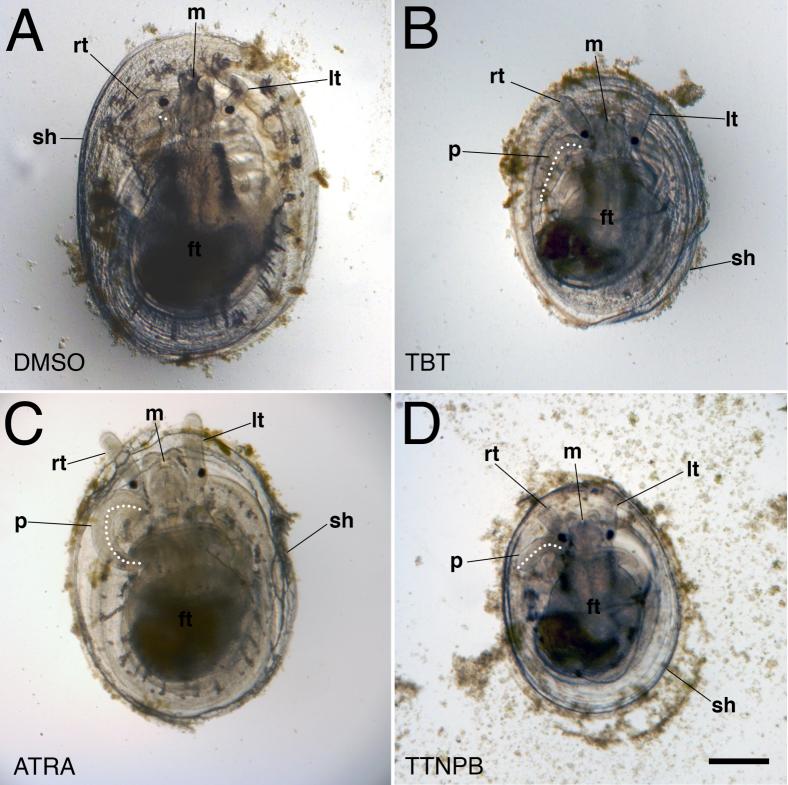
identity is indicated by increasingly darker blue, as indicated by the legend.

Figure 5. Tributyltin and retinoic acid receptor agonists induce ectopic penis growth in mature females of *Crepidula spp*. A. Simplified cladogram of the calyptraeid genus *Crepidula* indicating previously reported social behavior and experimentally determined extent of social control of sex change (Carrillo-Baltodano and Collin, 2015; Coe, 1953; Collin, 2000; Collin et al., 2005; Hoagland, 1978; Warner et al., 1996). Increased rate of social interaction is thought to increase social control of sex change (Hoagland, 1978). Species used in the current study are underlined. B–E. Mature females of *C. atrasolea* (B), *C. plana* (C), *C. fornicata* (D), and *C. convexa* (E), initiate penis growth in response to either waterborne exposure (B) or injection (C-E) of tributyltin (TBT). All adult females of *C. fornicata*, *C. plana*, and *C. convexa* and adults and juveniles of *C. atrasolea* treated with TBT or retinoic acid receptor

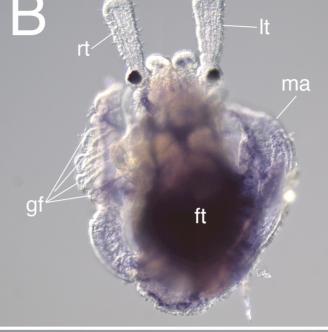
agonists (ATRA, TTNPB) show a significantly increased proportion of individuals with penis growth when compared to control DMSO treated animals. Animals are shown in ventral views, with anterior towards the top. The percentage of individuals with induced penis growth is indicated above bars, and the number of animals per treatment (n) is indicated below. Level of significance in change in penis presence compared to DMSO-treated controls is indicated by asterisks. * p<0.5, *** p<<<0.0001. an, anus; ft, foot; fgp, female genital papilla; lt, left tentacle; m, mouth; p, penis; rt, right tentacle. Scale bar B, E = $250\mu m$; C, D = $415\mu m$.

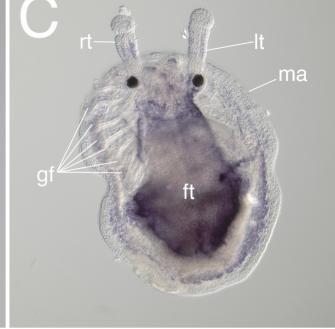
Figure 6. Comparison of development between separate sexes and sequential hermaphrodites. All individuals have the potential to produce either male or female characters (top). Precise timing and mechanisms of sex determination varies, but in species with separate sexes is primarily via genetic or chromosomal mechanisms. Sex determination in sequential hermaphrodites including the calyptracid gastropods is typically under greater control by environmental influences. In both cases, induction of one sex is coupled with regression and inhibition of characters of the other sex. In sequential hermaphrodites, a second round of inductive and inhibitory events cause regression of the first sex and development of the second sex. The ability of endocrine disruptors, including tributyltin, to induce ectopic male characters in females demontrates the flexibility of the sexual system. In sequential hermaphrodites, the same drugs accelerate male development in juveniles and induce imposex in mature females, implicating retinoids in the control of male sexual development. Altered timing of sexual induction produced by artificial means suggests heterochronic shifts in timing of sexual development as important factors in the evolution of sequential hermaphroditism, including earlier induction of the first sex, inhibition of the first sex, and induction of the second sex.

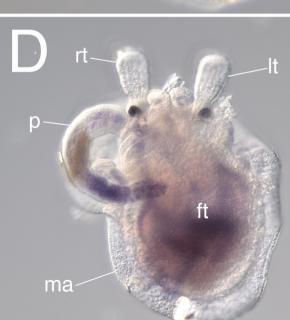

Tables

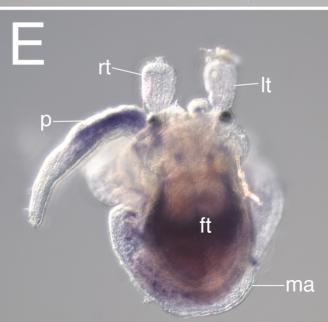

Table 1. Drug concentrations for injection and bath experiments. Dash indicates treatment not done.

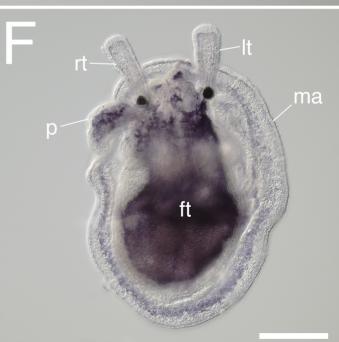
Drug	Working Concentration for Injections (1µg/g body weight)	Working Concentration for Bath Treatments	Target / Action
DMSO	volumetric equivalent	volumetric equivalent	carrier, negative control
TBT	4.6 mM	4.6 pM (=200ngSn/μl)	likely RXR agonist
ATRA	3.3 mM	1μΜ	RAR, RXR ligand
TTNPB	2.9 mM	1μΜ	pan-RAR agonist
LE-135	-	1μΜ	RAR-ß antagonist
UVI-3003	-	1μΜ	pan-RXR antagonist
citral	-	1μΜ	RDH, RALDH inhibitor
disulfiram	-	1μΜ	RALDH inhibitor
	I	I	I

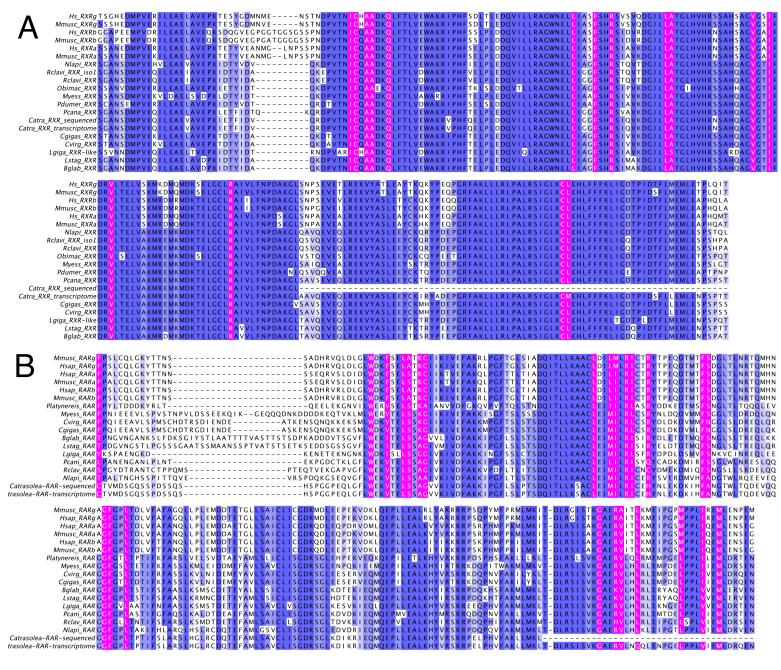

Table 2. Effects of retinoid agonists on penis induction. Note that for individuals of *C. convexa*, penis presence is determined by length relative to the length of the adjacent tentacle. See text for details.

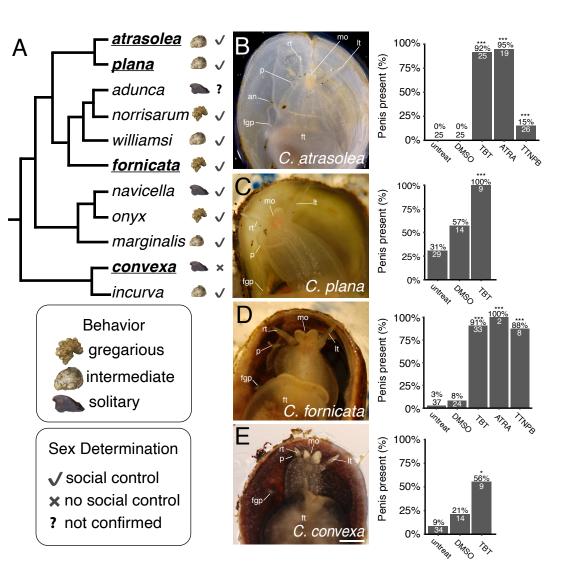

Species	Stage	Treatment	total (n)	with penis	without penis	% with penis	χ^2	df	p
C. atrasolea	female	DMSO	5	0	5	0			
		TBT	5	5	0	100	inf	1	0
		none	5	0	5	0	-	-	-
	juvenile	DMSO	20	0	20	0			
		TBT	20	18	2	90	inf	1	0
		ATRA	19	18	1	95	inf	1	0
		TTNPB	26	4	22	15	inf	1	0
		none	20	0	20	0	-	-	-
C. fornicata	female	DMSO	24	2	22	8			
		TBT	33	30	3	91	294.57	1	< 0.0001
		ATRA	2	2	0	100	22	1	< 0.0001
		TTNPB	8	7	1	88	65.64	1	< 0.0001
		none	37	1	36	3	-	-	-
C. plana	female	DMSO	14	8	6	57			
		TBT	9	9	0	100	6.75	1	0.0094
		none	29	9	20	31	-	-	-
C. convexa	female	DMSO	14	3	11	21			
		TBT	9	5	4	56	6.23	1	0.013
		none	34	3	31	9	-	-	-

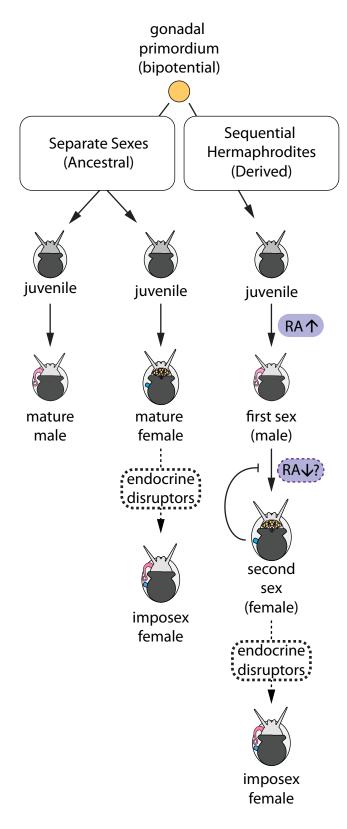


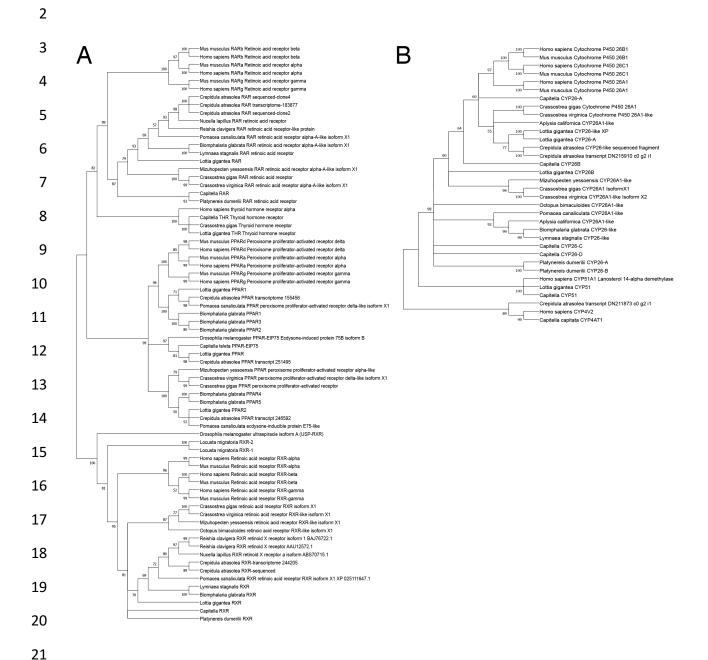












Supplemental Data

Figure S1. Maximum likelihood bootstrap consensus trees (500 replicates) for (A) the nuclear receptors retinoic acid receptor (RAR), retinoid X receptor (RXR), peroxisome proliferator-activated receptor (PPAR) and thyroid hormone (TH); and (B) the cytochrome p450 oxidases Cyp26, Cyp51, and Cyp4.

Table S1. Accession numbers for sequences used to build phylogenetic trees.

P10276		Species	RAR	RXR	PPAR	TH	Cyp26	Cyp51	Cyp4
ARABD PROBE PROB	Deuterostomes	Homo sapiens	RARa	RXRa	PPARa	BAH02277.1	Cyp26a	Q16850	Q6ZWL3
### ARAB PROBE PPARE Cyp256 Cyp256 PPARE Cyp256 Cyp256 PPARE Cyp256 PPARE Cyp256 PPARE Cyp256 PPARE PPARE Cyp256 PPARE PPARE Cyp256 PPARE PPARE Cyp256 PPARE Cyp25	,		P10276	P19793.NP 002948.1	007869		043174		
P100226 P2302 P2302 P2302 P2302 P2302 P2302 P2303 P2303 P2303 P2303 P2304 P2									
RARG PARG									
P3511 P48443 P37211 G0VILD CypTeSa P11416 P12670 P22704 P22704 CypTeSa CypTeSa CypTeSa P22706 P22704 CypTeSa CypTeSa CypTeSa CypTeSa CypTeSa CypTeSa P22705 P									
Mus musculus RARa PRAR PRAR PPAR P23700 P23204 P23204 P23204 P23204 P23204 P23204 P23204 P23204 P23205 P23205 P23205 P23206 P23									
P11416									
RABb		Mus musculus							
P22605 P28704 P33396 P33396 P34704 P34705 P			P11416	P28700	P23204		055127		
P2265 P28704 P33396 P38705 P38706 P38706 P38708 P38708 P38708 P38708 P37238 P3			RARb	RXRb	PPARd		Cyp26b		
Ecdyscrop Pass Pa			P22605	P28704	P35396				
P18911 P28705 P37238 P			RARe	RXRg	PPARø				
Ecdysozoa Drosophila melanagosta Drosophila melanagosta Drosophila melanagosta Drosophila melanagosta Drosophila Depotrochozoa,									
Locista MacCosta						-		-	-
Cophotrochazoa, Annelida				44055303.4					
Lophotrochozoa, Platynereis AVR59236.1 AVR59237.1									
Annelida dumerili capitella teleta jgi Capca1 168520 jgi Capca1 164614 ELU11745.1 jgi Capca1 157148 jgi Capca1 1571232 jgi Capca1 150007 j									
Capitella	ophotrochozoa,	Platynereis	AVR59236.1	AVR59237.1	1		AVR59240.1		
Capitella teleta jg Capca1 168520 jg Capca1 168620 jg Capca1 168620 jg Capca1 168620 jg Capca1 16862 jg Capca1 167148 jg Capca1 173661 jg Ca	Annelida	dumerilii			ĺ	1	AVR59239.1		1
Lophotrochozoa, Mollusca, Bivalvia Crassostrea wirpinica wirpi			igi Capca1 168520	igi Capca1 164614	ELU11745.1	igi Capca1 167148		igi Capca1 173561	AAS87604.1
Lophotrochozoa, Crassostrea Moliusca, Grassostrea Moliusca, Grassostrea Moliusca, Grassostrea Moliusca, Grassostrea Moliusca, Shahiya Moliusca, Shahiya Moliusca, Moli			18.1	18:1		18:1		18.1	
Lophotrochozoa, Mollusca, Bivaivia Crassostrea gigas A0A1W6iG52 XP_011434492.1 ARM65371.1 AKE80988.1 XP_011436768.1 XP_011436768.1 XP_011436768.1 XP_011436768.1 XP_01143676.1 XP_01143676.1 XP_01143676.1 XP_01143676.1 XP_01143806.1 XP_01143676.1 XP_01143676.1 XP_01143806.1 XP_011436768.1 XP_01143606.1 XP_0114606.1		teretu							
Lophotrochozoa, Mollusca, Bivalvia (Crassostrea gigas Mollusca, Bivalvia gigas Mollusca, Bivalvia (Crassostrea virginica Mizuhopecter pressoensia) (Crassostrea virginica Mizuhopecter) (Crassostrea virginica Crassostrea virginica Crassostrea virginica Crassostrea (Sequenced, partial) (Catra_DN123972.01 AB7015156, Cag_2_11 (Catra_DN125910.Cd_g2_11 (Catra_DN1259									
Mollusca, Bivalvia Sivalvia		_							
Bivalvia Crassostrea WP_022324320.1 XP_022322314.1 XP_022327518.1 XP_022327518.1 XP_0223244876.1 XP_022344876.1 XP_022344876.1 XP_021375591.1 XP_02137591.1 XP_0			A0A1W6JGS2	XP_011434492.1	ARM65371.1	AKE80988.1			
Wiginica Mizuhopecten Mizuhope		gigas					XP_011433806.1		
Mizuhopecten XP_021341358.1 XP_021373595.1 XP_021370914.1 XP_021370914.1 XP_02137591.1 XP_02137591.1 XP_021375591.1 XP_021375591.1 XP_025095355.1 XP_02509		Crassostrea	XP_022324320.1	XP_022322314.1	XP_022327518.1		XP_022288365.1		
Miluhopecten XP_021341358.1 XP_021373595.1 XP_021370914.1 XP_021370914.1 XP_02137591.1 XP_02137591.1 XP_021375591.1 XP_021375591.1 XP_025095355.1 XP_02509		virainica	_	_	_		XP 022344876.1		
Lophotrochozoa Pomacea Cara_DN256551.1 Cara_DN25659.1 Cara_DN25659_C_7_g1_1 Cara_DN2569_C_7_g1_1 Cara_DN2569_C_7_g			XP 021341358.1	XP 021373595.1	XP 021370914.1				
Dephotrochozoa, Pomacea			/// _0213 11330.1	/ _0213/3333.1	// _0213/031/11		XI _021373331.1		
Mollusca, canaliculata Catra_DN25459c_C_g_11 Catra_DN25459c_C_g_11 Catra_DN25459c_C_g_11 Catra_DN25459c_C_g_11 Catra_DN25459c_C_g_11 Catra_DN25459c_C_g_11 Catra_DN25459c_C_g_2_11 Catra_DN25459c_C_g_2_11 Catra_DN25459c_C_g_2_11 Catra_DN25459c_C_g_2_11 Catra_DN25459c_C_g_2_11 Catra_DN25459c_C_g_2_11 Catra_DN25459c_C_g_2_11 Catra_DN25459c_C_g_2_11 Catra_DN25456_C_g_2_11 Catra_DN25459_C_g_2_11 Catra_DN25459_C_g			VD 035096531.1	VD 025111647.1	VD 03E110101 1	t	VD 025005255 1		
Gastropoda Lymnaea Stagnalis Stagna			AP_023080331.1	AP_025111647.1			AP_025095555.1		
Lymnaea stagnalis Biomphalaria glabrata Aplysia califonica Lottia gigantea Reishia clavigera Nucella lapillus Crepidula Catra_DN2162-ARR-like-clone4 (sequenced, partial) Catra_DN215495_c7_g14_12 Catra_DN244205_c7_g14_12 Catra_DN244205_c7_g14_12 Catra_DN15456_c0_g2_11 Catra_DN15546_c0_g2_11 Catra_DN15546_c0_g2_	ivioliusca,	canaliculata			XP_025110659.1				
Lymnaea stagnalis Blomphalaria glabrata Aplysia califonica Lottia gigantea Reishia clavigera Nucella lapillus Crepidula Catra_DN24692_c1_g1_i8 (sequenced, partial) Catra_DN24572_c0_g2_i1 Catra_DN244205_c7_g14_i2 Catra_DN245456_c0_g2_i1 Catra_DN245456_c0_g2_i1 Catra_DN245456_c0_g2_i1 Catra_DN25456_c0_g2_i1 Catra_DN255456_c0_g2_i1									
Stagnalis Biomphalaria Glabrata Rejshia Catragora Albiosaca Albiosaca Catragora Albiosaca Catragora Catr									
Biomphalaria SP_013085550.1 Q8TSC6 BGLB000113-RA BGLB000113-RA BGLB000113-RA BGLB000113-RC BGLB000113-RC BGLB000113-RC BGLB004656-RA BGLB004656-RB SP_005098124.1 SP		Lymnaea	ADF43963.1	Q517G2			KF669878.1		
BGIB000113-RB BGIB000113-RB BGIB000113-RB BGIB000113-RB BGIB004656-RA BGIB004656-RA BGIB004656-RA BGIB004656-RB XP_005098124.1 XP_012935038.1 XP_009050765.1 jgi Lotgi1 206562 jgi Lotgi1 2174409 jgi Lotgi1 224598 XP_009054366.1 jgi Lotgi1 224598 XP_009054366.1 jgi Lotgi1 224598 jgi Lotgi1 22238 jgi Lotgi1 23238 jgi Lotgi1 2132238 jgi Lotgi1 224598 XP_009045016.1		stagnalis							
BGIB000113-RB BGIB000113-RB BGIB000113-RB BGIB000113-RB BGIB004656-RA BGIB004656-RA BGIB004656-RA BGIB004656-RB XP_005098124.1 XP_012935038.1 XP_009050765.1 jgi Lotgi1 206562 jgi Lotgi1 2174409 jgi Lotgi1 224598 XP_009054366.1 jgi Lotgi1 224598 XP_009054366.1 jgi Lotgi1 224598 jgi Lotgi1 22238 jgi Lotgi1 23238 jgi Lotgi1 2132238 jgi Lotgi1 224598 XP_009045016.1		Biomphalaria	XP 013085550.1	Q8T5C6	BGLB000113-RA		XP 013083593.1		
Aplysia Califonica International Califonic									
Aplysia Califonica Jigi Lotgi1 206562 Jigi Lotgi1 174409 Jigi Lotgi1 224598 XP_005098124.1 XP_012935038.1 Jigi Lotgi1 23238 Jigi Lotgi1 23238 Jigi Lotgi1 232238 Jigi Lotgi1 232238 Jigi Lotgi1 111018 Jigi Lotgi1 111018 Jigi Lotgi1 232238 Jigi Lotgi1 111018 Jigi Lotgi1 111018 Jigi Lotgi1 232238 Jigi Lotgi1 111018 Jigi Lotgi1 Jigi Jigi Lotgi1 Jigi Ji		g							
Aplysia califonica Joseph Catra Solea RAR-like-clone4 Catra DN254c9c g.g. Catra DN254c9c g.g. Catra DN25t95c0c g.g.									
Aplysia califonica Lottio XP_009050765.1 jgi Lotgi1 206562 jgi Lotgi1 174409 jgi Lotgi1 234598 XP_009054356.1 jgi Lotgi1 232238 jgi Lotgi1									
Califonica Lottia XP_009050765.1 jgi Lotgi1 206562 jgi Lotgi1 174409 jgi Lotgi1 224598 jgi Lotgi1 224598 jgi Lotgi1 23238 jgi Lotgi1 232238 jgi Lotgi1 111018					DGLDUU4656-KB	1	VP 005000444		1
Lottia gigantea									
gi Lotgi1 232472 jgi Lotgi1 232238 jgi L		califonica							
gi Lotgi1 232472 jgi Lotgi1 232238 jgi L		Lottia	XP_009050765.1	jgi Lotgi1 206562	jgi Lotgi1 174409	jgi Lotgi1 224598	XP_009054356.1	jgi Lotgi1 205907	
Reishia BAN82614.1 BAJ76722.1 AJECTOR ALIGNER CATE AND AL		aiaantea	_		igi Lotgi1 238472		igi Lotgi1 232238		
Reishia BAN82614.1 BAJ76722.1 AAU12572.1 AAU12572.1 ABU12572.1 ABU	, i					1			1
AAU12572.1 ABS70715.1 ABS		Reishia	RAN82614 1	RΔ176722 1		1	20101		1
Nucella AlB06349.1 ABS70715.1 Catra-plus Catrasolea-RAR-like-clone2 Catra-plus Catra-plu					ĺ	1			1
Iapillus Crepidula Catrasolea-RAR-like-clone2 Catra_RXR-like Catra_DN246592_c1_g1_i8 Catra_DN251495_c7_g15_j5 Catra_DN244205_c7_g14_i2 Catra_DN254256_c0_g2_i1 Catra_DN215910_c0_g2_i1 Catra_DN25910_c0_g2_i1 Catra_DN25910_c0_g			AIDOC 240 1		ĺ	1			
Crepidula Catrasolea-RAR-like-clone2 Catra_RXR-like Catra_DN246592_c1_g1_i8 Catra_DN251495_c7_g15_i5 Catra_bulla atrasolea (sequenced, partial) Catra_DN251495_c7_g15_i5 (sequenced, partial) Catra_bulla8877_c0_g2_i1 Catra_bulla8877_c0_g2_i1 Catra_bulla9877_c0_g2_i1			AIDU0349.1	AD3/U/15.1	ĺ	1			1
atrasolea Catrasolea-RAR-like-clone4 (sequenced, partial) (sequenced, partial) Catra_DN251495_c7_g15_i5 (sequenced, partial) Catra_DN251495_c7_g15_i5 (sequenced, partial) Catra_DN183877_c0_g2_i1 Catra_DN24205_c7_g14_i2 Catra_DN155456_c0_g2_i1 Catra_DN215910_c0_g2_i1					ĺ	1			1
(sequenced, partial) Catra_DN244205_c7_g14_i2 Catra_DN155456_c0_g2_i1 Catra_DN215910_c0_g2_i1 Catra_DN215910_c0_g2_i1						1			Catra_DN211873_c0_g2
Catra_DN183877_c0_g2_i1		atrasolea	Catrasolea-RAR-like-clone4	(sequenced, partial)	Catra_DN251495_c7_g15_i5	1	(sequenced, partial)		1
Catra_DN183877_c0_g2_i1			(sequenced, partial)	Catra_DN244205_c7_g14 i2	Catra_DN155456_c0_g2 i1	1	Catra_DN215910_c0_g2 i1		
						1			
	ophotrochozoa,	Octopus		XP_014769191.1	İ		XP_014788587.1		
Mollusa, bimauloides				014/05151.1	ĺ	1	014700307.1		
Monasa, annocarous	ivioliusca,	Diriuculolues			ĺ	1			
Cephalopoda					1	1			1