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Lifted Multiplicity Codes and the Disjoint
Repair Group Property

Ray Li"™, Graduate Student Member, IEEE, and Mary Wootters

Abstract— Lifted Reed-Solomon Codes (Guo, Kopparty, Sudan
2013) were introduced in the context of locally correctable
and testable codes. They are multivariate polynomials whose
restriction to any line is a codeword of a Reed-Solomon code.
We consider a generalization of their construction, which we call
lifted multiplicity codes. These are multivariate polynomial codes
whose restriction to any line is a codeword of a multiplicity
code (Kopparty, Saraf, Yekhanin 2014). We show that lifted
multiplicity codes have a better trade-off between redundancy
and a notion of locality called the r-disjoint-repair-group property
than previously known constructions. As a corollary, they also
give better tradeoffs for PIR codes in the same parameter
regimes. More precisely, we show that, for + < +/N, lifted
multiplicity codes with length N and redundancy O(:°-°%°1/N)
have the property that any symbol of a codeword can be
reconstructed in ¢ different ways, each using a disjoint subset
of the other coordinates. This gives the best known trade-off
for this problem for any super-constant ¢+ < +/N. We also give
an alternative analysis of lifted Reed-Solomon codes using dual
codes, which may be of independent interest.

Index Terms— Error correction codes, lifted codes, multiplicity
codes, locality, disjoint repair groups.

I. INTRODUCTION

N THIS work we study lifted multiplicity codes, and show

how they provide improved constructions of codes with the
t-disjoint repair group property (t-DRGP), a notion of locality
in error correcting codes.

An error correcting code of length N over an alphabet X
is a set C C L. There are several desirable properties in
error correcting codes, and in this paper we study the trade-
off between two of them. The first is the size of C, which
we would like to be as big as possible given N. The second
desirable property is locality. Informally, a code C exhibits
locality if, given (noisy) access to ¢ € C, one can learn the
i’th symbol ¢; of c¢ in sublinear time. As we discuss more
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below, locality arises in a number of areas, from distributed
storage to complexity theory.

Two constructions of codes with locality are lifted codes [6]
and multiplicity codes [14]; in fact, both of these constructions
were among the first known high-rate Locally Correctable
Codes. In this work, we consider a combination of the two
ideas in lifted multiplicity codes, and we show that these codes
exhibit locality beyond what’s known for either lifted codes
or for multiplicity codes.

More precisely, we study a particular notion of locality
called the t-disjoint-repair-group property (t-DRGP). Infor-
mally, we say that C has the ¢-DRGP if any symbol ¢; of
¢ € C can be obtained in ¢ different ways, each of which
involves a disjoint set of coordinates of c. Formally, we have
the following definition.

Definition 1.1: A code C C XV has the t-disjoint repair
property if for every ¢ € [N], there is a collection of ¢ disjoint
subsets S1,...,S5: C [N]\ {i}, and functions fi,..., f; so
that for all ¢ € C and for all j € [t], f;(c|s;) = c;i. The sets
S1,...,S; are called repair groups.

As discussed more in Section I-A below, the t-DRGP nat-
urally interpolates between many different notions of locality.
The ¢-DRGP is well-studied both when ¢ = O(1) is small
(where it is related to Locally Repairable Codes and nearly
equivalently to Private Information Retrieval Codes) and
t = Q(N) is large (where it is equivalent to Locally
Correctable Codes). For this reason, it is natural to study the
t-DRGP when t is intermediate; for example, when ¢t = N
for a € (0,1). In this case, it is possible for the size of the
code |C| to be quite large: more precisely, it is possible for the
rate R = M to approach 1 (notice that we always have
IC| < |Z|Y, hence we always have R < 1). Thus, the goal
is to understand exactly how quickly the rate can approach 1.
That is, given ¢, how small can the redundancy N — RN be?

Several works have tackled this question, and we illustrate
previous results in Figure 1. Our main result is that lifted
multiplicity codes improve on the best-known trade-offs for
all super-constant ¢t < V/N.

a) Contributions: We summarize the main contributions
of this work below.

1) For t < /N, we construct codes with the t-DRGP and

redundancy at most

0 (151N ) ~ 0 (1255VN).
This gives the best known construction for all ¢ with

t = w(l) and t < +/N; the only previous result
that held non-trivially for a range of ¢ was redundancy
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Fig. 1. The best trade-offs known between the number ¢ of disjoint repair

groups and the redundancy N — RN. Blue points and lines indicate upper
bounds (possibility results), and the red line indicates our upper bound.
The best lower bound (impossibility result) available is that we must have
logn((1 — R)N) > 1/2 for any ¢ > 2, and this is shown as the dotted
orange line.

O(tv/N) [11, [2], [5] and our result also surpasses the
specialized bound for t = N'/4 of [4].

We note, however, that our construction has a large
alphabet size, N O(N/t*) In contrast, the works [4]-[6]
have alphabet size at most polynomial in N. However,
we can follow the approach of [1] and make our code
binary by replacing each symbol with an (uncoded)
binary string. This yields binary codes with t-DRGP,
that have the best known trade-offs between ¢ and the
redundancy when N'/* < t < N'/2 among all known
codes with alphabet size poly(N).

2) We give a new analysis of bivariate lifts of multiplicity
codes. Both multiplicity codes and lifted codes have
been studied before (even in the context of the --DRGP),
but to the best of our knowledge the only work to
consider lifted multiplicity codes is [25]. That work
studies m-variate lifts of multiplicity codes, where m
is large; its goal is to obtain new constructions of
high-rate locally correctable codes. In the context of
our discussion, this corresponds to the ¢-DRGP when
t = N999 1In contrast, for bivariate lifts, we are able
to obtain more refined bounds which lead to improved
results for the -DRGP when ¢ < v/N.

b) Organization: In the remainder of the introduction,
we survey related work and give an overview of our
approach. In Section II, we give the formal definitions about
polynomials and derivatives that we need. In Section III,
we formally define lifted multiplicity codes. In Section IV,
we prove that lifted multiplicity codes have high rate, and in
Section V, we prove that they have the t-DRGP, which gives
rise to our main theorem, Theorem 1.2.

A. Background and Related Work

1) Disjoint Repair Groups: The t-DRGP and related notions
have been studied both implicitly and explicitly across several
communities. When ¢ = O(1) is small, several notions
related to the ¢-DRGP have been studied, motivated primar-
ily by distributed storage. These include Locally Repairable

Codes (LRCs) with availability [17], [21], [22], [26], codes
for Private Information Retrieval (PIR) [1], [2], [5] (all codes
with the t-DRGP are ¢-PIR codes) and batch codes [1], [10],
[18]; we refer the reader to [20] for a survey of these notions.!

To see why the ¢t-DRGP might be relevant for distributed
storage, consider a setting where some data is encoded as
¢ € C, and then each ¢; is sent to a separate server. If server ¢
is later unavailable, we might want to reconstruct ¢; without
contacting too many other servers. This can be done if each
symbol has one small repair group; this is the defining property
of LRCs. Now suppose that several (say, ¢ — 1) servers are
unavailable. If C has the t-DRGP then all ¢ — 1 unavailable
symbols can be locally reconstructed: each node has at least
t disjoint repair groups and at most ¢t — 1 of them have been
compromised.

On the other hand, when ¢t = §(N) is large, the
t-DRGP has been studied in the context of Locally Decodable
Codes and Locally Correctable Codes (LDCs/LCCs). In fact,
the Q(IV)-DRGP is equivalent to a constant-query LCC, and
the notion has been used to prove impossibility results for such
codes [15], [23].

Because of these motivations, there are several constructions
of t-DRGP codes for a wide range of ¢; we illustrate the
relevant ones in Figure 1. In the context of coded PIR,
[11, [2], [5] give constructions of -DRGP codes with redun-
dancy O(t\/ﬁ). This is known to be tight for ¢ = 2 [19], [24],
but no better lower bound is known.> When ¢ = Q(N) is very
large, constructing codes with the ¢-DRGP is equivalent to
constructing constant-query LCCs, and it is known that the
rate of the code must tend to zero [23]. On the other hand,
for any € > 0, when ¢t = O(N'7¢) is just slightly smaller,
then work on high-rate LCCs [6], [9], [11], [14] (see also [1])
imply that there are codes with rate 0.99 (or any constant less
than 1) with the --DRGP.?

When ¢+ = +/N, there are a few constructions known
that beat the O(t\/ﬁ ) bound mentioned above, including
difference-set codes (see, e.g., [16]) and, relevant for us,
lifted parity-check codes [6]. These constructions achieve
redundancy N'°2:(3) ~ N7 when t = v/N. In Appendix,
we include a new proof of the fact that the lifted codes of [6]
have this redundancy using a dual view of lifted codes.

When ¢t < /N, there is only one construction known which
beats the O(tv/N) bound, due to [4]. For the special case of
t = N'/4, they give a construction based on “partially lifted
codes” which has redundancy O(N®72) = O(t*83\/N).

2) Lifting and Multiplicity Codes: Lifted multiplicity codes
are based on lifted codes and multiplicity codes, both of which
have a long history in the study of locality in error correcting

codes.
a) Lifted Codes: Lifting was introduced by Guo, Kop-

party and Sudan in [6]. The basic idea can be illustrated by
Reed-Solomon (RS) codes. An RS code of degree d over I,

'In many (but not all) of these notions, we also care about the size of the
repair groups but in this work we focus on the simpler problem of the t-DRGP.

2When the size s of the repair groups is bounded, it is known that the
redundancy must be at least Q(N In(¢)/s) [22].

3In fact we may even take e slightly sub-constant using the construction
of [11].
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is the code

RSaq = {(f(21), .-, f(zq)) : [ € Fg[X], deg(f) < dj,

where z1,...,xz, are the elements of FF,. There is a natural
multi-variate version of RS codes, known as Reed-Muller

codes:
S AN
o feF (X, ..., Xyn], deg(f) < d

where X1, ..., x,m are the elements of F{". Reed-Muller codes
have a very nice locality property, which is that the restriction
of a RM codeword to a line in F'¢* yields an RS codeword. This
fact has been taken advantage of extensively in applications
like local decoding, local list-decoding and property testing.
However, RM codes have a downside, which is that if d < ¢
(required for the above property to kick in), they have very
low rate. With this inspiration, we could ask for the set C
which contains evaluations of all m-variate polynomials which
restrict to low-degree univariate polynomials on every line.
Surprisingly, [6] showed that this set C can be much larger
than the corresponding RM code! This code C is called a lifted
Reed-Solomon code, and the main structural result of [6] is
that C is the span of the monomials whose restrictions to lines
are low-degree. This property is key when analyzing the rate
of these codes. Moreover [6] showed that this is the case when
we begin with any affine-invariant code, not just RS codes.

The original motivation for lifted codes was to construct
LCCs, but [6] actually also give a code with the v/N-DRGP,
mentioned above; we give an alternate proof that this con-
struction has the v/ N-DRGP in Appendix. A variant of lifting
was also used in [4] to construct N 1/4_DRGP codes; however,
the analysis of this construction is quite brittle and seems

difficult to extend to non-trivial constructions for t # N1/,
b) Multiplicity Codes: Multiplicity codes were intro-

duced by Kopparty, Saraf and Yekhanin [14] with the goal
of constructing high-rate LCCs. The basic idea of multiplicity
codes is to get around the low rate of RM codes discussed
above in a different way, by appending derivative information
to allow for higher-degree polynomials. That is, it is not useful
to have an RS code with degree d > ¢, since ¢ = x for any
x € F,. However, if we replace the single evaluation f(z)
with a vector of evaluations (f(z), fM)(z),..., fTV(z)),
where f () denotes the 7’th derivative, then it does make sense
to take d > ¢. The m-variate multiplicity code Multg g »
of degree d and order r over IF, is then defined similarly

to RMg, ¢, m:
(<r)
Multy g mr = (f (x1), ...
Whd,qm, {feIE‘q[Xl,...

where f(<")(x) € IFS ") is a vector containing all of
the partial derivatives of f of order less than r, evaluated
at x. Since their introduction, multiplicity codes have found
several uses beyond LCCs, including list-decoding [7], [12],
and have even been used to explicitly construct codes with the

t-DRGP [1].
c) Lifted Multiplicity Codes: To the best of our knowl-

edge, the only work to study lifted multiplicity codes is the
work of Wu [25]. The goal of that work is to obtain versions
of multiplicity codes which are still high-rate LCCs but which
require lower-order derivatives than the construction of [14].

S (xgm)) }
; Xm], deg(f) < d.

The main result in [25] is that lifted multiplicity codes of rate
1 — o are LCCs with locality N€ (this corresponds roughly to
having the --DRGP with ¢t = O(N'~¢)). However, since the
number of variables in the lift is large, it is hard to get a very
precise handle on the codimension.

In comparison, in our work, we focus on the ¢-DRGP for
t < V/N, but where our goal is to get much tighter bound
on the codimension of the code. We address the quantitative
comparison between our bound on the rate and that obtainable
by the techniques of [25] in Remark IV.5.

We note that the construction in [25] is similar to the
construction presented here. Since this construction is some-
what non-trivial (for reasons discussed below), we include the
details.

d) Why only bivariate lifts?: In contrast to [25], we study
bivariate lifts of multiplicity codes. By focusing only on
bivariate lifts (as was also done in [4]), we obtain a more
precise handle on the codimension of lifted multiplicity codes,
which gives results for the ¢-DRGP for ¢ < V'N. (See
Remark IV.6 for more on why bivariate lifts make it much
easier to analyze the codimension.) We believe that this wide
range of ¢ is interesting, and thus we think that bivariate lifts
are worth focusing on.

We expect that lifted multiplicity codes can be analyzed
over more variables. However, we expect that this will not
improve the tradeoff between the redundancy and ¢ (the
number of repair groups) for the setting ¢ < v/N. Indeed, this
tradeoff becomes worse for ordinary multiplicity codes [1]:
for these codes, a larger number of variables yields better
bounds only for larger values of t. In general, m-variable lifted
multiplicity codes can have up to ¢"~! = N"=1/™ disjoint
repair groups, so [1/¢] variables are needed for N'~¢ repair
groups. For N(m=2)/(m=1) < ¢ < N(m=D/m e expect
that the number of variables that gives the best rate for
lifted multiplicity codes is m. We leave the analysis for more
variables m this for future work (see Section VI).

B. Our Approach

We study lifted multiplicity codes to obtain improved con-
structions of codes with the ¢-DRGP. We focus on bivariate
lifts in this paper in order to obtain codes with {-DRGP for
t < /N. We expect that lifted multiplicity codes in more
than two variables also give better codes for the t-DRGP when
t > +/N.

1) Definition of Lifted Multiplicity Codes: It is not immedi-
ately obvious how to apply lifting (and in particular, the nice
characterization of it developed in [6] as the span of “good”
monomials) to univariate multiplicity codes. We first note
that the univariate multiplicity code Multg g1, C (F7)*
does not fit the affine-invariant framework of [6], so their
results do not immediately apply. Instead, we might try to
define the bivariate lift of Multg 1, as the set of vectors
(fS(x1), ..., FS)(x,42)) for all polynomials f so that
every restriction of f to a line agrees with some polynomial
of degree less than d on its first 7 — 1 derivatives; that is,
the restriction of f is equivalent up to order r to a polynomial
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of degree less than d. This works, but there are two non-trivial
things to deal with.

1) First, in order to get a handle on the rate of the code,
as in [6] we show that the set of valid polynomials f
includes the span of a large set of “good” monomials.
In contrast to [6], the good monomials in this work do
not span the entire code. However, lower bounding the
number of good monomials, which in turns gives a lower
bound on the rate of the code, turns out to be enough
for our results.

2) Second, we need to take some care about what mono-
mials we allow. With lifted RS codes, one only allows
monomials X¢Y® with individual degrees a, b < g; oth-
erwise, we could have multiple monomials which corre-
spond to the same codeword which leads to problems if
we are counting monomials in order to understand the
dimension of the code. As we show in Lemma IIL5,
it turns out that with multiplicity codes, we should
only allow monomials X°Y? with [a/q| + |b/q| < 7;
otherwise, we would have multiple monomials the cor-
respond to the same codeword and this would create

similar problems.
Dealing with these issues leads us to the final code and rate

analysis, where we define the lifted multiplicity code to be
all polynomials spanned by monomials XY with |a/q| +
|b/q] < r, such that the restriction of the polynomial to a
line is equivalent up to order  to some univariate polynomial
of degree less than d. We then lower bound the number of
evaluations of monomials in this code, giving a lower bound
on the rate. We note that the work [25] considers a similar
construction.

2) Lifted Multiplicity Codes Have the t-DRGP: In Corol-
lary IV.3 we give a lower bound on the number of (g, r,d)-
good monomials, and this leads to a lower bound on the
dimension of the lifted multiplicity code; crucially, this can
be quite a bit bigger than the dimension of the corresponding
multivariate multiplicity code.

Finally, we observe that lifted multiplicity codes have the
t-DRGP for a range of values of t. Similarly to previous
constructions based on multivariate polynomial codes, the dis-
joint repair groups to recover the symbol f(<")(x) are given
by disjoint collections of lines through x. More precisely,
the values f(<")(y) for the set of y that lie on r distinct lines
through x can be used to recover f(<")(x). Thus, the number
of disjoint repair groups is ¢/r = \/N/r By adjusting r,
we obtain the trade-off shown in Figure 1. Our main theorem
is as follows.

Theorem 1.2: For g :31’ and 7 = 2¢ with 1 < ¢/ < /, there
exists a code C over F; * 7 with the following properties.

o The length of the code is ¢

o The rate of the code is at least

37~10g2(8/3) q1°gz(3)
r+1 ’
("2)¢?
so that the redundancy is at most
3rloga (8/3) glogz (3)
(")
2

o The code has the ¢/r-disjoint repair group property.

As a remark, our techniques can also recover any symbol
from any one of its repair groups in polynomial time. For any
~ € [0,1], choosing ¢ = 2¢ and r = 2 with v ~ '/ gives a
code with length N = ¢? and redundancy at most

N 1084(3)—7(1-log,(8/3))

with the N(1=7)/2.DRGP. This is made formal in the follow-
ing corollary.

Corollary 1.3: For any € € (0, 1), there are infinitely many
N so that, for t = | N€|, there exists a code of length NV which
has the t-DRGP and redundancy at most 6 ¢'°&2(3)=1/N

We note that Theorem 1.2 also yields results for constant ¢,
not just for ¢ = N€ as presented in Corollary I.3. For example,
by setting = ¢/2 we obtain a code with the 2-DRGP and
redundancy at most 9v/N. The constant 9 is not optimal here
(the optimal constant for ¢ = 2 is known to be V2 [19]), but
to the best of our knowledge, Theorem 1.2 does yield the best
known bounds for any super-constant t.

The codes in Theorem 1.2 and Corollary 1.3 have the
disadvantage of having a large alphabet size. Indeed, we have
r = ¢/t, and so the alphabet size is Q) = q(rgl) = N@(N/tQ),
which is very large. It is an interesting question to obtain the
results of Corollary 1.3 with a code over a smaller alphabet
(see open questions in Section VI). Among the existing
work in Figure 1, [4]-[6] all have poly(/N) or smaller sized
alphabets.

For now, we observe as in [1] that, if C is a code with
the ¢-DRGP, then replacing C with a binary code C’, where
each symbol in each codeword is replaced with log(Q) binary
bits, yields a code that also has the ¢-DRGP. As a result,
applying this to the code in Corollary 1.3 yields a code
with length Ny, = Nlog(Q) = N272¢ and redundancy
O(t'922(3/2) /N 1log(Q)) = O(N3/2te108:(3/8) Jog ).

Corollary 1.4: For any € € (0, 1), there are infinitely many
N so that, for t = LNTEZEJ, there exists a binary code of
length N which has the ¢t-DRGP and redundancy at most
- 3/2+¢ logs (3/8)

O(N— 22 ).

Among codes with alphabet size poly(/N) or smaller, our
binary codes give the best known tradeoff between ¢ and
redundancy when N'/4 <t < N'/2 (at t = N'/* [4] gives a
better redundancy).

II. PRELIMINARIES

In this section, we introduce the background we need on
polynomials and derivatives over finite fields. Throughout this
paper, we assume that ¢ is a power of 2. Let I, denote the
finite field of order ¢, and let I denote its multiplicative
subgroup.

If a and b are nonnegative integers with binary represen-
tations @ = ay—1---ag and b = by_1--- by, then we write
a <o bifa; <b; fori=0,...,0—1.1If a is an integer, let
(¢ mod c) denote the element of {0,...,c— 1} congruent to
a mod c. We write a <4 b if (a mod 2%) <5 (b mod 2°).

As in [6], we use Lucas’s theorem.

Proposition 1.1 (Lucas’s Theorem): Let p be a prime and
a=ag_1---ag,b="by_1---by be written in base p. Then

-1
a a;
= mod p (1)
(b> E) (bz>
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In particular, if p = 2, then (‘;) = 1 mod p if and only if
b SQ a.

A. Polynomials and Derivatives

For a vector i = (i1,...,%m,) of nonnegative integers,
its weight, denoted wt(i), equals ka:1 1. For a field T,

let F[Xq,...,X] = F[X] be the ring of polynomials in
the variables X7, ..., X,, with coefficients in F. For a vec-
tor of nonnegative integers i = (i1,...,%,) and a vector
X = (Xi,...,X,,) of variables, let X' denote the monomial
[T/X, X; € F[X], and for a vector a = (av,...,qp,) €
F™, let a' denote the value []’" il 104] , where 0° := 1. For
nonnegative vectors i = (iy,...,%,,) and j = (jl,...,j.m'),

we write i < j if i < ji for all k. We also write (‘}Y)
to denote [, (**77¢). For nonnegative vector i, we let
[X'] P(X) denote the coefficient of X' in the polynomial P(X).

We will use Hasse derivatives, a notion of derivatives over
finite fields:

Definition I1.2 (Hasse Derivatives): For P(X) € F[X] and a
nonnegative vector i, the i-th (Hasse) derivative of P, denoted
PO (X) or DWP(X), is the coefficient of Z' in the polynomial
P(X,Z) = P(X + Z) € F[X, Z]. Thus,

P(X+1Z)=> PYX)Z".
i
For x € F" and P(X) € Fy[X], we use the notation
m+r—1 .
P<(x) € IFS ") to denote the vector containing P (x)

for all i so that wt(i) < r. We record a few useful (well-
known) properties of Hasse derivatives below (see [8]).

Proposition I1.3 (Properties of Hasse Derivatives): Let
P(X),Q(X) € F[X] and let i,j be vectors of nonnegative
integers. Then

D POX) +QV(X) = (P + Q) (X).

2) (P-Q)V(X) =3 pceq; P (X) - QU9(X).

3) (PO)I(X) = (iJirJ')p(iﬂ)( ).

Using the above, we obtain the following useful derivative
computation, and we provide a proof in Appendix for com-
pleteness.

Proposition 11.4: Let 1 < r < ¢ with ¢ a power of 2, and
let P(X) = (X?— X)". Then,

0 1>

)

3)

B. Polynomial Local Recovery

A key property exploited by earlier work on multiplicity
codes [13], [14] is that f(<’")(x) can be recovered from
f(<9(y) for y that lie on a collection of lines through x. More
precisely, let £,,, be the set of lines L(T") of the form aT +b
with a,b € F7". Given a multivariate polynomial P(X) €
Fy[X1,..., Xm), if L is the line aT + b, let P(T) € F,[T]
denote the univariate polynomial P(aT +b). Let £ be the set
of lines in F2 of the form L(T') = (T, aT + f3) for o, 3 € F,.

For simplicity—and because it is enough for our application
to the --DRGP—we will consider only bivariate polynomials
in this paper, although (see for example [13]) the same basic
idea works for any m. We will further specialize to lines in

L—that is, lines of the form L(T') = (T, oT + 3)—because it
will simplify some computations later in the paper. With these
restrictions, we can specialize Equation (4) of [13] to obtain
the following relationship between the derivatives of Pr(T")
and the derivatives of P(X,Y).

Lemma I1.5 (Follows From, e.g., [13], [14]): Suppose that
Li,...,L, are r lines in £ all passing through a point (7, d),
with L; being the line (T, o;; T+ 3;). Then, for all polynomials
P(X,Y) € F,[X,Y], the following matrix equality holds for

alli=0,...,r—1.
PE];(’Y) ag a% o PE0) (v, §)
PLz (7) | * a0 pl~ 11)( ,0)
P(7)+1(7) adyr ady abyr] | POI(v,06)
4)

When lines Lq,...,L; are distinct, the middle matrix in
(4) is a Vandermonde matrix, and Vandermonde matrices are
invertible in polynomial time. Hence, we immediately have
the following corollary.

Corollary 11.6: Suppose that Ly, ..., L, are r distinct lines
of the form Ly(T) = (T, T + Pi) all passing through a
point (v,8) € F2. For a polynomial P(X,Y) € F,[X,Y],
given the polynomials Pr,(T),..., P, (T), the derivatives
P®(~,§) are uniquely determined and computable efficiently
for all i such that wt(i) < r.

III. LIFTED MULTIPLICITY CODES

In this section, we define lifted multiplicity codes. As noted
in the introduction, we restrict our attention to bivariate codes
because this is enough for our application to the ¢-DRGP.
However, everything in this section extends to general m-
variate codes. We define bivariate lifted multiplicity codes as
the vectors (f(<") (x))xerz for polynomials f(X) that live in
the span of “good” monomials. In order to define these “good”
monomials, we need a few more definitions.

A. Polynomial Equivalence

We first define a notion of polynomial equivalence.

Definition II1.1: We say that two univariate polynomials
A(X),B(X) € F,[X] are equivalent up to order r, written
A =, B, if AW(y) = BW(y) forall i =0,...,r — 1 and
v € F,.

It is easy to see that the above definition does in fact
give an equivalence relation. We now present two standard
results regarding this equivalence relation. The first is a
characterization of this equivalence.

Lemma II1.2: For A(X),B(X) € TF,X] we have
A(X) =, B(X) if and only if (X9 — X)"|A(X) — B(X).

Proof: By considering the polynomial A(X) — B(X),
it suffices to prove A(X) is equivalent to the zero polynomial
up to order r if and only if (X7 — X)"|A(X). If A(X) =
(X7 — X)"C(X) for some polynomial C'(X) € F,[X],
then, by part 2 of Proposition I1.3 and Proposition I1.4, for
0 <i<r, we have X9 — X|A®(X), so A (y) =0 for all
0<i<randallyelF,soAX)=,0.
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Conversely, suppose that A(X) =, 0. By the definition
of Hasse derivatives, we have A(X) = A(y + (X — 7)) =
S AG () (X — 7). Since AD(y) =0 fori=0,...,r— 1,
we have (X — ~)"|A(X). Thus is true for all ~, so
T, (X — 7)|A(X), s0 (X — X)"|A(X). .

Lemma III.2 gives the following corollary.

Lemma II1.3: Let q be a power of 2 and r > 1. For every
univariate polynomial A(X), there exists a unique degree-at-
most rq — 1 polynomial B(X) such that A(X) =, B(X).
Furthermore, if r is a power of 2, then for all a such that
deg A—(qr—r) < a < gr, we have [X*|A(X) = [X?]B(X).

Proof: For existence of B(X), note that, by Lemma III.2,
we can take B(X) to be the remainder when A(X) is
divided by (X? — X)". For uniqueness of B(X), suppose
that By (X) and B2 (X) are equivalent to A(X) up to order r
and are of degree at most rq — 1. By Lemma III.2, we have
(X9 — X)"|By(X) — By(X). Additionally, By (X) — Ba(X)
has degree at most rq — 1, so B1(X) — B2(X) =0.

Now suppose 7 is a power of 2. Then (X9 — X)" =
X" + X". Above, to obtain B(X) from A(X), we need
only to subtract terms of the form X9 4+ X7 X9+l 4

X+l XxdeeA 4 xdegA—ar+r  Thys, for a such that
deg A—qr+r < a < qr, the coefficients of X* in A(X) and
B(X) are equal. O

B. Type-r Polynomials

Define the order-r evaluation map eval,,,

()

evaly . (P) := (P(<”)(x))xelpg1, (5)

We will want to restrict our attention to a subset of monomi-
als M(X,Y) = X2Y" whose order-r evaluations eval, (M)
form a basis for the space {eval,.(P) : P € F,[X,Y]}.
To that end, we introduce the following definition.

Definition II1.4 (Type-r Monomials): Call a monomial
XaY? type-r if |a/q] + |b/q] < r — 1. Let F,, be the
family of polynomials P € F,[X, Y] that are spanned by type-
r monomials.

It is easy to see that F,, is a dimension (’“42'1)(]2 vector
space over ;. We now show that the type-r polynomials form
a basis for bivariate polynomials, up to order r equivalence.
We note that Lemma III.1 of [25] claims a similar statement,
with a different argument.

. F [X,Y] —

Lemma II1.5: The evaluation map eval, For —
2
r1)\ 9
Fg ) is a bijection.
Proof of Lemma II1.5: Since eval,,, is a linear map and

r+1) 2
Fq,r and ]Fg ) have the same F, dimension, it suffices to
prove the map has trivial kernel. We prove by induction.
Base Case: r = 1. Suppose P € F,; and evaly(P)
is the O-vector. Then P(X,Y) = 0 for all X,Y. For any
§ € F,, the polynomial P(X,d) € F,[X] has degree at most
q — 1 but has ¢ roots, so the polynomial must be 0. Hence,
(Y — 9)|P(X,Y) for all 4, so (Y7 — Y)|P(X,Y), which
implies P = 0. This proves that eval, 1 has trivial kernel.

Inductive step: Assume 7 > 1 and eval, , has trivial kernel.
We prove that eval, .41 has trivial kernel.

Assume P(X,Y) is a polynomial spanned by type-(r + 1)
monomials with all ith derivatives equal to 0 for wt(i) < r+1.
Let § € F, and Bs(X) == P(X,d). Then, for 0 < i < 7,
we have B((Sz) (y) = P@O)(y,8) = 0 for all 4 € F,. Hence,
for all v € F,, we have (X — v)"|Bs(X). Hence, (X7 —
X)"|Bs(X). Since deg Bs(X) < degy P(X,Y) < gr for all
5, we have Bs(X) = 0. Thus, P(X,4) is the O polynomial
for all 4, so (Y —0)|P(X,Y) forall ,s0 (Y?-Y)|P(X,Y).
Hence, we may write P(X,Y) = (Y?9—-Y)Q(X,Y) for some
polynomial Q(X,Y) € F,[X,Y].

As polynomial P is type-(r+ 1), polynomial @ is type-r: if
@ had a nonzero coefficient for XY with |a/q| + [b/q] >
r — 1, then the coefficient X*Y?*¢ is nonzero in P, which is
a contradiction. For all ¢, with ¢ > 0,7 > 1 and ¢+ j < r,
we have

POD(XY) = (YI-Y)QUI)(X,Y) — QWD (X Y).

(6)
Here we applied part 2 of Proposition II.3 and the r = 1
case of Proposition I1.4. At every X and Y, the left side
is 0 by assumption on P and the right side Q1~1(X,Y).
We conclude that Q(i"j ") evaluates to 0 everywhere for every
nonnegative 7' and j’ satisfying ¢’ + j° < r — 1. Since Q is
type-r, we have () = 0 by the induction hypothesis, so P = 0.
This completes the induction, completing the proof. O]

C. Definition of Lifted Multiplicity Codes

Finally we are ready to define lifted multiplicity codes,
which we define as the set of evaluations eval,,.(P) of
polynomials whose restrictions to lines* are equivalent, up to
order 7, to a low degree polynomial:

Definition 111.6 (Lifted Multiplicity Codes, First Definition):
The (g,7,d) (bivariatf,:r)1 lifted multiplicity code is a code C

over alphabet ¥ = [F; * 7 of length ¢? given by
P e F,[X,Y] and, for any L(T) € L,
P(L(T)) = Q(T) for some

Q € IFy[T] of degree less than d.

Definition II1.6 is natural but difficult to get a handle on
directly. Following the approach of previous work [4], [6],
we show that lifted multiplicity code contains the set of
vectors evaly . (P) for P that lie in the span of a set of
“good” monomials, which makes it easier to bound the rate.
Informally, a monomial is (g, r, d)-good if its restriction along
every line is equivalent, up to order r, to a polynomial of
degree less than d.

Definition 1IL.7 ((q,r,d)-Good Monomials): Call a
monomial M, ,(X,Y) = X°Y? € F,[X,Y] (g,7,d)-good
(or simply good, when r and d are understood) if it is type-r
and for every line (T, aT + [3) € L, the univariate polynomial
Mo o(T,oT + () is equivalent, up to order 7, to polynomial
of degree less than d, and call it (¢, d)-bad otherwise.

C=(eval.(P):

4To simplify calculations, we consider restrictions to lines of the form
L(T) = (T,aT + (). That is, we do not include lines of the form
L(T) = (o, T).
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By definition all good monomials lie in our lifted multiplic-
ity code, so to lower bound the rate of the code it suffices to
lower bound the number of good monomials.

Lemma II1.8: Let C be the bivariate (q,r,d) lifted
multiplicity code. Then, for every (g,r,d)-good monomial

M(X,Y), eval, (M) € C, and the rate of C is at least

#(q, r, d)-good monomials
TF1\ .

Prooj‘: )gl“he first part follows from the definition of good
monomial. For the second part, C is linear and the F,-span
of all good monomials have pairwise distinct evaluations by
Lemma IIL5, so |C| > ¢(#(a>7 d)-good monomials) ‘A C i5 a length
q? code over an alphabet of size || = q(rgl), the rate is at

log|C| _ #I(q,r,d)-good monomials
least Flog[S] = 1) g2 . O

Remark 111.9: A previo2us version of this paper incorrectly
asserted that every codeword of the lifted multiplicity code is
spanned by good monomials. As observed by Nikita Polian-
skii, this is in fact not true. For example, when » = 2 and
d = 2q — 1, the monomials X222y and X?°1Y? are not
(g,r,d)-good as verified by the line (7,T), but their sum
X242y + X971Y % is in the (g, r, d)-lifted multiplicity code:
the restriction of the sum to a line (T,aT + ) € L has a
T?3~1 coefficient of a4+ a? = 0 and hence has degree strictly
less than d = 2q — 1.

IV. THE RATE OF LIFTED MULTIPLICITY CODES

In this section, we bound the rate (and hence, the redun-
dancy) of lifted multiplicity codes. Our final result on the rate
is Corollary IV.3 below, which implies that for 7, ¢ and d of
an appropriate form, the lifted multiplicity code over order r
and degree d over I, has rate at least

6 ( d>10g2(4/3)
1—=(r—= .
r q

In the next section, we choose d = ¢qr — r, which will yield a
log,(4/3)
code of rate 1 — g g ’ and will give us Theorem 1.2.

Before we prove this result, we briefly compare our
approach to more straightforward ones, and discuss why we
are able to do better.

First, we discuss what might be a first strategy building on
the analysis of [6] for lifted Reed-Solomon codes. Similarly to
that work, we want to show there are few bad monomials. We
can show (after checking some conditions) that a monomial is
bad if, restricted to some line, in the resulting univariate poly-

nomial, one of the coefficients of T9"—% T9r—s+1  Tar—1
is nonzero. This corresponds to the analysis of lifted Reed-
Solomon codes when » = s = 1. For each s’ = 1,...,s,

similar to the analysis of the lifted Reed-Solomon code,
we can bound the number of monomials that could cause
the coefficient of 779~%" to be nonzero by rq'°%2(3). Using
the union bound and summing these bounds gives a bound
rsq©22(3) on the number of bad monomials for the lifted
multiplicity code. However, when r = s (the setting we will
consider), this gives a rate of 1 — ¢'°82(3/4) Thus, this yields
a code with the same redundancy of N'°81(3) as the lifted
Reed-Solomon code, and we have made no improvement.

In order to do better, the key to our analysis is to observe
that monomials that are bad for some s’ are likely to be bad

for another s”, so the union bound is wasteful. Instead, using
some tricks with binary arithmetic (captured in Lemma IV.1),
we are able to analyze together all the monomials that make
any of the coefficients of 7797*, ..., T"9~! nonzero, giving a
better bound.

Second, we compare our approach to the analysis of [25],
which also studies lifted multiplicity codes, but focuses on a
different parameter regime (one where ¢ is much larger). As
described more in Remark IV.5, the approach of [25] does not
yield anything better in the parameter regime that we consider
< VN ) than does the approach described above (or indeed
even any better than standard (not lifted) multiplicity codes
when 7 > ¢'/?%). The reason that we are able to do better
than the straightforward argument above while the approach
of [25] does not is that [25] uses a stricter requirement for
a monomial to be good in [25, Lemma III.3] than we do in
our Lemma IV.2. Thus, the approach of [25] counts a smaller
number of good monomials and ends up with a weaker bound
on the rate.

Now, we prove our result. We begin with a lemma that will
be useful.

Lemma IV.1: Let s = 2% and ¢ = 2¢ with £, < ¢. The
number of a1,b; € {0,1,...,¢ — 1} such that at least one of
the following is true

¢g—1—a <5 by
q—2—a1 Sg b1

¢—s—a; <5 b @)

is at most 2- 37 (4/3)" = 2. 3. slog2(4/3),

Proof: Suppose we write the numbers (¢ — 1 — aq
mod ¢),(¢ — 2 — a1 mod q),...,(¢ — s — a3 mod q) in
binary with ¢ digits (possibly with leading zeros). As these
number span 2¢s consecutive integers mod ¢, when written
in this binary form, their most significant ¢ — /s coordinates

take on at most 2 values. Let ay = LW—@SH‘OMJ and
by = L;le so that ag,be € {0,...,2°7% — 1}, and ay and

by are the most significant ¢ — ¢4 coordinates of (¢ — 1 — aq
mod ¢) and by, respectively, when written in ¢-digit binary.
Then if one of the equations of (7) is true, then we must have
either ay <o by or ag — 1 <5 bo. This gives at most 2 - 3¢~
choices for the pair (az,b2). Given as and b, there are 2l
choices for each of a; and by, for a total of at most 2-3¢—¢=.4%s
solutions to (7). O
Lemma IV.2: Let r = 2¢, s = 2% and ¢ = 2¢ with £,., ¢, €
{1,...,¢—1}. The number of (g, r,7q — s)-good monomials
is at least ("11)4¢ — 3rslos2(4/3) . 3¢,
Proof: The number of type-r monomials is ( ¢ =
("$1)4%. A monomial M, is (¢, 7,rq — s)-good if, for every
a, 3 € F,, we have

b
a b __ i Qb—irpa+1i
T(aT + B)° = goa BT <Z> (8)

can be represented as a polynomial of degree less than
rq — s. Next, we apply Lemma III.3, which says that there
is a unique polynomial B(T') so that deg(B) < rq—1 so that
B(T) =, Ma,,3(T), and further that all of the coefficients

7‘-51)

Ma,b,a,,@(T) =
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[T€]B(T) for deg(Mg p.a,8) — (qr —7) < ¢ < gr are equal
to the corresponding coefficient of B(T'). As M, is type ,
we have |a/q| + |b/q] < r, so the degree of the polynomial
Mapapisatmost a+b < (r+1)g—2, and

(r+1)g—-2)—

for any allowed choice of ¢,r,s, so [T°]|B(T) =
Mg p,0,5(T) for all c so that

qr —s < c<qr.

(gr—r)=r+q—2<gqr—s
7]

Thus, to show that B(T") has degree less than gr —s, it suffices
to show that the coefficients of 79"~ 797 —s+1 Ta —1ip
Mg p,o,p are all zero.

Write a = apq+ a1 and b = bgg+ by where ag+by < r—1
and0<a1,b1 q — 1. Note that 1fa0+b0<7"—1 then
for s = 1,...,s coefficient [T795 | M, 4 .5 is always zero
except possibly when ag + by = 7"2— 2 and a; + b1 > 2q —
s. This can happen for at most - pairs (a,b). Hence, for
ao + bg < r — 1, there are < “z bad monomials (a,b).

Now assume ag + by = r — 1. For & = 1,...,s,
the coefficient of 779~%" in T*(aT + )" is 0 if rq — s’ < a
or a +b < rq— s'. Otherwise, the coefficient is

arq—s/—aﬁb—rq—i-s/-i-a ( b )
rq—s —a

) bog + bll ) . )
0 +q—5 —a1

By Proposition II.1, the binomial coefficient is nonzero
(mod 2) if and only if bgg+ g — s’ — a1 <5 boq + by, which,
as ¢ is a power of 2, happens only if g — s’ —a; gg b1. Hence,
if ap + by = r — 1, the monomial M, 4 is (r, ¢ — s)-bad only
if some s’ = 1,...,s satisfies ¢ — s’ — a; <% b;. Hence,
by Lemma IV.1, for a fixed ag, by with ag+ by = r — 1, there
are at most 2s5'°22(4/3)3¢ bad monomials M, 3, so there are at
most 7 - 51°82(4/3)3 bad monomials M, ;, over all ag, by with
ag +bg = r — 1. As we showed, there are at most § bad
monomials when ag 4+ by < r — 1. Hence, there are at least
("I 4t —2pslosa(4/3)30 1t > (TH1) g2 3y gloa(4/3) gloga (3)
good monomials, as desired. O

Lemma I'V.2 and Lemma III.8 together imply Corollary IV.3,
which in turn implies the informal result stated at the begin-
ning of the section.

Corollary IV.3: Let r = 2%, s = 2% and ¢ = 2¢ with
by ls €{1,...,0—1}. A (q,r,rq— s) lifted multiplicity code
has rate at least 1 — 61 5'082(4/3) glog2(3/4)

Remark 1V.4: We apply Corollary IV.3 for r = s < g,
giving that a lifted multiplicity code of rate at least
1 — 6rlo82(2/3)glog2(3/4) " By comparison [14], a 2-variate
multiplicity code of order evaluatlons of degree at most rqg—r
polynomials over F, has rate q +1 <1-— Q(r) which is
smaller than the rate of lifted multlphclty codes for r < q.

Remark 1V.5 (Quantitative Comparison to [25]): The
work [25] also studies lifted multiplicity codes, but focuses
on a different parameter regime than we focus on here (where
t is large, rather than ¢t < v/N). Perhaps because they focus
on a different parameter regime, the approach of [25] does
not yield any nontrivial results in our parameter regime, and
consequently our analysis of lifted multiplicity codes is much
stronger.

’ ’
— s —aﬁb—rq+s +a

q2

For example, for degree d = rq—1r codes, [25] bounds 3 the
rate of the code below by 1 —©(£)!/(32"2), This is a weaker
bound than the straightforward bound of 1—¢'°¢2(3/4) sketched
at the beginning of this section, and significantly weaker than
our bound in Corollary IV.3 of 1 — 6r1°82(2/3)glog2(3/4) for
all » and ¢. Moreover, for r > q1/23, the bound of [25] is
even weaker than the lower bound on the rate of (non-lifted)
multiplicity codes, which is 1 — Q(1/r).

Remark IV.6 (The Value of Bivariate Lifts): In addition to
likely giving better bounds than m-variate lifts (see Why only
bivariate lifts? in Section [-A), another reason that we study
only bivariate lifts in this paper is that it makes the com-
putations much more tractable. In the proof of Lemma IV.2,
we study My p o 5(T) = (T*)(aT + 3)°, and expand out the
terms to apply Lucas’s theorem. If we were to consider, say,
trivariate lifts, we would have to expand expressions of the
form (T%)(aT + B)°(yT + 6)¢, and it would become more
complicated to keep track of the coefficients on various pow-
ers. Analyzing m-variate lifts would become more complicated
still. In particular, it seems harder to get as tight a bound on
the codimension of the code for m-variate lifts for m > 2
as we are able to get for m = 2. Given that we are already
able to obtain good codes for bivariate lifts, we restrict our
attention to this simpler case.

V. DISJOINT REPAIR GROUPS OF
LIFTED MULTIPLICITY CODES

Finally, we prove Theorem 1.2, which we repeat below.
Theorem (Theorem 1.2, Restated): Let r = 2% and g = 2¢
with ¢, < ¢ and C be the (g, r,rq—r) lifted multiplicity code.

o The length of the code is ¢°.
o The rate of the code is at least 1 — 611082(2/3) glog2(3/4)
o The code has the ¢/r-disjoint repair group property.

Proof: The first item follows from the definition of C, and
the second item is by Corollary IV.3. To see the third item,
we observe that, given a point (v,d) € F2, lines Ly, ..., L,
passing through (v,4), and P(<")(y) at all points y on
the lines L1, ..., L, except (v,9) itself, we can (efficiently)
recover P(<")(v, ). This guarantees the ¢/r-disjoint repair
group property, because we can group the ¢ lines of L
of the form L(T) = (T,aT + () passing through (v,9)
arbitrarily into groups of r, giving ¢/r disjoint repair groups.
For any line Ly, the polynomial Py, (7') has degree at most
rq —r — 1, as P is (g,r,qr — r)-good. By taking linear
combinations of directional derivatives (Lemma II.5), we can
efficiently compute Pézk) (') forevery i =0,...,7 — 1, every
k =1,...,r, and every v/ # ~. We can compute P, (T)
using a generalization of polynomial interpolation. This can
be done in O(D log D) time, where D < rq is the degree of

SThe details are as follows: using some notation from [25], for a rate 1 —«
code in our parameter reglme n = 2 variables, a prime p = 2, a parameter
b= [logpn]+1 =2, q=pt, r=p r (they use m for r, s for £, and t for
lr), o = N 7 = O(a) (here Na(r) :

N2 (r)

— ~ (o4
17N,,(pt’7 ) T ~ 1-1/16
Np (p?7)

= (T'gl), and we assume > 1), ¢ = bp?™ In a% 4+ /¢, = 32In a% + 4,
d = (1 — p~%)rq. In our setting, we choose d = rq — r, which requires
p¢=g¢q,s0c=4Ls0L— Ll = 321n— =32In2- log— — O(1). Thus,

a _@(Q(IT—/)/(321112)) ( )1/(321112)
q
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the polynomial (see e.g. [3]) Hence, by Corollary I1.6, from
P (T),..., Py, (T), we can efficiently compute P(") (v, )
forall 4,7 with 0 <i+j <r—1. O

VI. CONCLUSION

We conclude with some open questions.

1) We have shown that lifted multiplicity codes with redun-
dancy O(t585\/N) have the t-DRGP for a range of
t < V/N. However, we do not know of any general
lower bounds when ¢ € (1,v/N) beyond the lower
bound for ¢ = 2, which implies that the redundancy
must be at least Q(v/N) for any t. When t > v/N, there
is a stronger redundancy lower bound of €(t), which
holds simply because a code with the ¢-DRGP must have
Hamming distance at least ¢. Thus, it is an open question
whether or not our bound is tight or whether one can do
better.

2) Lifted multiplicity codes display better locality for the
t-DRGP problem for ¢ < VN ; it is a natural question to
ask whether they can be used for larger ¢, and in partic-
ular whether they could lead to improved constructions
of locally correctable codes. In particular, it would be
interesting if lifted multiplicity codes could qualitatively
out-perform (un-lifted) multiplicity codes as high-rate
LCCs, for example by maintaining the high rate while
achieving sub-polynomial query complexity.® We note
that for the LCC problem, one typically does not care
about pinning down the rate, so long as it is close to 1,
instead focusing on the query complexity. In contrast,
in this work, we have focused on pinning down the rate
much more precisely.

3) Related to the above, it would be natural to understand
the rate and locality of lifted multiplicity codes over
more than two variables.

4) The alphabet size of lifted multiplicity codes is ¢{'% ),
which, if the multiplicity is » = ¢® for a constant
a > 0, is exponential type in the code length ¢.
In practical applications, a smaller alphabet size is
desirable. It would be interesting to achieve the results
of Corollary 1.3 with a code whose length grows inde-
pendently of the alphabet size.

5) In this paper, we studied the ¢-DRGP locality property,
which requires that each symbol has many disjoint
repair groups. Another common notion of locality is
an Locally Recoverable Code (LRC) with locality d,
which requires that each symbol has one repair group of
size at most d. These two notions are combined in the
notion of an LRC with locality d and availability ¢ (see,
e.g. [17], [21], [26]), combines these two notions. This
requires that each symbol have ¢ disjoint repair groups,
each of size at most d. The techniques in this paper yield
codes with locality rq and availability g/r, where r is the
multiplicity. It would be interesting to construct codes

6As noted in the introduction, the work [25] showed the lifted multiplicity
codes are good LCCs with lower-order derivatives than were required by the
(un-lifted) multiplicity codes of [14], but it does not show how to improve
the query complexity to sub-polynomial.

with a better trade-off between locality and availability,
possibly using lifting and/or multiplicity techniques.

APPENDIX
Proof of Proposition I1.4: By part 2 of Proposition I1.3,

T
P(i)(X) — Z H DUK) (X9 — X).
Jrtetie=i k=1

We have D) (X9 — X) = 1 (the field has characteristic 2).
For 2 < i < ¢, the ith derivative of X9 — X is (?) X477,
which is 0, as () is even by Proposition II.1. The summand
above is nonzero if and only if j1, jo,...,j, < 1. Whent < r,
this happens when 7 of the j;’s are 1 and r» — ¢ are 0, which
happens for (7) choices of (ji, ..., jr). This gives P()(X) =
(M) (X7 —X) =" for 0 < i < r. When i > r, some jj is at
least 2, in which case P(")(X) =0 forr <i < q. O
Proof of Lemma I1.5: Let a;, denote the vector (1, ay),
and let by denote the vector (0, 8;). By assumption, we have
that agy + by = (7,0). By the definition of Hasse derivatives,

we have, forall k =1,...,r

(10)

P, (T+Z7) = PagT +by+a,2)
= Y PO(@T +by) (a;2)
ieN2
= Y PO(@T +by) - al,z"®
ieN2
P (T+2) = Y P(T)Z! (11)
i>0
Hence, for all : > 0 and k = 1,...,r, we have
PT) = 3 PO@yT +by)al (12)

itwt(i)=1

By pluggingin 7' = v, we have foralli > Oand k = 1,...,7,
Py = > PO(y,6)al. (13)

iwt(i)=1
Rewriting this in matrix form gives the desired result. O

It was shown in [6] that bivariate lifted parity-check codes
over F,, where ¢ = 2¢, have co-dimension 3¢. Here, we give
an alternative proof using dual codes. The techniques in this
proof are not directly related to the techniques that we used
in the main body of the paper, but we found this alternative
proof illuminating so we include it.

Let ¢ = 2° Recall £ is the set of lines expressible as
L(T) = (T,aT + ) where a,3 € F,. One way to think
about codes with locality is by considering their dual code.
If the code is a subset of ngq, then the dual code corresponds
to lines of repair groups. Given a line L(T') in £, define the
corresponding dual codeword:

o J 1 (ig) = L(t) for some t € F,
(c1)ij = { 0 o/w (14)
Let
Ve = span {cJL‘ L e L:} . (15)

Note that V. is spanned by 4° elements, so the trivial bound on
the dimension is 4°. We give the following improved bound,
matching the analysis of [6].

Lemma A.1: The subspace V has dimension at most 3.
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Proof: A codeword cj is the evaluation of the following
polynomial on [F§*<:

P(X,Y) = [] (X +5-Y).
B#BL
If (X,Y) ¢ L, then the polynomial evaluates to 0 as

Y — ap X # (1, and otherwise it evaluates to

[TB-80=]]8=1

B#BL BEF;:

For a+b > g, the coefficient of XY in Pr,(X,Y) is 0. For
a+ b < g, the coefficient of X?Y? in Pr(X,Y) is

(16)

A7)

a+b a-1-a-b

a b ]

( u )%(—1) > I s a9
B1y--Bg—1—a—b€Fg  j=1

distinct,#31,
This is because we first chose a+b terms that contain X or Y,
then choose which terms are X and which terms are Y, and
this gives us @ many «a;,’s and b many —1’s, and we sum over
the choices of the [ terms that we choose. Hence, the only
a,b such that [X°Y?|Pp(X,Y) # 0 for any L are the pairs
(a,b) such that a + b < ¢ — 1 and (“Zb) = 1 mod 2.
There are at most 3° pairs by Proposition IL1. It follows
that the polynomials Pr,(X,Y") are spanned by 3¢ monomials
XY with (“jl'b) =1 mod 2. Hence, the vector space V is
spanned by 3¢ dual codewords in [F>? and thus has dimension
at most 3. L
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