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Abstract—Gradient codes use data replication to mitigate the
effect of straggling machines in distributed machine learning.
Approximate gradient codes consider codes where the data repli-
cation factor is too low to recover the full gradient exactly.
Our work is motivated by the challenge of designing approx-
imate gradient codes that simultaneously work well in both
the adversarial and random straggler models. We introduce
novel approximate gradient codes based on expander graphs.
We analyze the decoding error both for random and adversarial
stragglers, when optimal decoding coefficients are used. With
random stragglers, our codes achieve an error to the gradient that
decays exponentially in the replication factor. With adversarial
stragglers, the error is smaller than any existing code with
similar performance in the random setting. We prove convergence
bounds in both settings for coded gradient descent under stan-
dard assumptions. With random stragglers, our convergence rate
improves upon rates obtained via black-box approaches. With
adversarial stragglers, we show that gradient descent converges
down to a noise floor that scales linearly with the adversarial
error to the gradient. We demonstrate empirically that our
codes achieve near-optimal error with random stragglers and
converge faster than algorithms that do not use optimal decoding
coefficients.

Index Terms—Coded Computing, Gradient Coding, Optimiza-
tion, Random Graphs.

I. INTRODUCTION

ONSIDER the task of minimizing some loss function L
summed over N data points {(z;,y:)} Y ;:

N
meln;L(mi,yi;@).

When N is large, we can parallelize the computation of the
gradient of this function by distributing the data points among
m worker machines, as has become common practice for
large-scale machine learning problems [[1]]. Each machine com-
putes the gradient of the functions available to it and returns
the sum of these gradients to the parameter server. Recent work
has pointed out the prevalence of stragglers, i.e. machines
that are slow or unresponsive, which can significantly slow
down the execution of distributed computing tasks such as
synchronous gradient descent [2], [3]. To mitigate this effect,
previous work has used a technique called gradient coding,
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which involves replicating each data point and sending it to
multiple machines [4]. While this increases the computation
load and storage at each machine, it has the potential to speed
up convergence by allowing the parameter server to compute
an exact or closer approximation to the true gradient, even in
the presence of stragglers.

In a typical setting of gradient coding (e.g. [, [6]), we
let A € RVX™ be an assignment matrix of data points to
machines, such that A;; # 0 if and only if the ith data point
is held by machine j. We define the replication factor of an
assignment as follows.

Definition 1.1 (Replication Factor). The replication factor of
an assigment matrix A € RN*™ is the average number of
times a data point is replicated, that is, the number of non-
zero entries in A divided by N.

In coded gradient descent, at each round ¢ of computation,
the parameter server broadcasts the current point 6; to the
machines. Each non-straggling machine j returns the single
vector

N
g5 =3 _ Ai;Vfi(6y),
i=1
to the parameter server, where we have defined f;(0) :=
L(x;,y;;0). The parameter server then chooses some decoding
coefficient vector w € R™, where w; = 0 if machine j
straggles, and performs the update

Orp1 < 0 — 'Vijgj e8]
=1

for some learning rate . For any coefficient vector w, we
define a := Aw, such that the update in Equation (I)) can be

written
N

Orir 0 =Y iV fi(0y). 2)
i=1

If a coding scheme—that is, a matrix A and a way of
computing the coefficients w—can always achieve a@ = 1,
then it recovers the gradient exactly, and Equation can be
analyzed as full-batch gradient descent. While this is ideal, it
often requires an assignment matrix with a high replication
factor. If we cannot recover the full gradient exactly, we are
in the case of approximate gradient coding.

Most previous work on approximate gradient coding has
fallen into one of two categories. In one line of work, the
non-zero coefficients w; are fixed in advance ([5]) or only
depend on the number of stragglers ([6], [7]). In particular,
these non-zero coefficients do not depend on the identity of
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the stragglers. A second line of work ([8], [9], [1O]) chooses
the decoding coefficients w dynamically depending on which
machines straggle. This is called optimal decoding[]_-] because
the parameter server chooses w to be any vector

w* € arg min

w:w,; =0 if machine j straggles

|Aw — 13, 3)
where |-|2 denotes the 2-norm of a vector. In optimal decoding,
we will denote o* := Aw™*.

In this work we will study gradient coding schemes with
optimal decoding. The following formalizes the two definitions
of decoding error we study. Let [m] denote the set of integers
from 1 to m.

Definition 1.2 (Decoding Error under Random Straggler).
Given an assigment matrix A € RN*™ we define the random
decoding error under a p fraction of random stragglers to be

Es [Ja* — 1[3] =Es |Aw — 13

min

weR™
w;=0VjES
where S is a random subset of [m| that includes each value
with probability p.

In all future instances, we will omit the subscript S and take
E to mean the expectation over the random set of stragglers.

Definition 1.3 (Decoding Error under Adversarial Straggers).
Given an assigment matrix A € RNX™ we define the
adversarial decoding error under a p fraction of adversarial
stragglers to be

. 2
max [la* = 1]3] = max min  |Aw — 1]
Sc[m]:|S|<pm Sc[m]:|S|<pm weR™
w,;=0vj€S

Both random stragglers and adversarial stragglers arise in
practice. While random stragglers may arise due to system
level variabilities (such as maintainance activities) [2], adver-
sarial stragglers may arise due to hardware differences among
machines or in settings where gradients are slower to compute
at some data points.

The main objective in approximate gradient coding is to
design assignment matrices A with a small replication factor
and a small decoding error in the presence of stragglers. The
work [8]] showed that a particular fractional repetition code
(FRC) introduced by [4] achieves the optimal decoding error
with random stragglers, over all assigment matrices with the
same replication factor. However, the FRC of [4] performs
poorly over adversarially chosen stragglers relative to other
assignments with the same replication factor. This motivates
the main question behind our work:

Question 1. Are there gradient codes that simultaneously
achieve small decoding error under both random and adver-
sarial stragglers?

As pointed out in the open questions of [§]], this question is
challenging because of the difficulty of analyzing the decoding

It’s not necessarily the case the “optimal decoding” coefficient lead to
optimal convergence. However, we use the term to be consistent with the
literature [8], [7], [L1], [LO].
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error under random stragglers. Indeed, bounding the decod-
ing error with optimal decoding amounts to analyzing the
pseudoinverse of the random matrix generated by removing a
random set of columns (corresponding to straggling machines)
from the assignment matrix This is particularly challenging
with this random matrix is sparse, which arises when the
replication factor is small.

A. Contributions

In this paper we develop schemes that achieve small de-
coding errors in both the random and an adversarial model
simultaneously. To ensure that gradient descent will converge
to the minimum of f := )", f; in the random straggler setting,
we construct codes that yield an unbiased approximation of the
gradient. That is, when each machine is chosen independently
to be a straggler with probability p,

EZ @iV fi(0;) = eV £(0y)

for some constant c. In such unbiased schemes, where E[a] =
cl, we will define & := % Here, and in rest of this paper,
we use the asymptotic notation big-O and little-o to denote
limiting behavior as d goes to co: We say that f(d) =
O(g(d)) if limsup, ., L9 < oo and f(d) = O(g(d)) if

g(d)
f(d)

limsupg_, o gy = 0. With this notation, our contributions

are as follows.

1) A new approach to analyzing optimal coefficient
decoding. While in general analyzing the optimal de-
coding coefficients is difficult, we develop a framework
in which it is tractable. More precisely, we construct
matrices A from a graph G by viewing the data blocks as
vertices of (G, and the machines as edges of G, holding
two data blocks each. (See Definition and Figure|1).
For a desired replication factor d, we partition the data
into blocks of size %, and assign each machine exactly
two blocks.

In both the random and the adversarial case, we relate
the decoding error to the spectral expansion of the graph
G, defined as the gap between the largest and second
largest eigenvalues of the adjacency matrix of G. In
particular, in the random case we are able to analyze
the optimal decoding coefficients by considering random
sparsifications of this graph.

Because of the structure of A, in our framework we can
compute the optimal decoding coefficients w* in ¢ X m
operations, where c is a universal constant. This is on the
same order of the number of operations for the parameter
server to compute the update in Equation (T)).

Progress on Question [I} Using our framework, we
construct assignment schemes based on expander graphs
(graphs with large spectral expansion) that achieve the
following bounds in both the random and adversarial
settings.

2)

2Formally, o* = A(p)(A(p)T A(p))T A(p)T1, where A(p) is the matrix
obtained by deleting each column of the assignment matrix A with probability
p. Here, for a matrix M, M T denotes the Moore-Penrose pseudoinverse of

M.
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Fig. 1. The assignment generated from the pictured graph. (a) A graph GG, where the vertices of G correspond to data blocks and the edges correspond to
machines. (b) The assignment matrix A generated from G. (c) The distribution of data blocks to machines.

3)

4)

o In the random setting with optimal decoding, we
show in Theorem that the decoding error
decays exponentially in the replication factor d:

+E [\a* - ]l\;} = p?¢=°(@_This nearly matches the

lower bound of p?/(1—p?) (see Proposition A.3 in
Appendix A) up to the o(d) term in the exponent.
In comparison, for all coding schemes with fixed
decoding coefficients, we show in Proposition A.1
in Appendix A that the error decays at best like 1/d:
VE 7 - 13] > it

o In the adversarial setting, for any choice of |pm|
stragglers, we show in Corollary that our coding
schemes achieve +|a* — 1\3 < %(1)&. For
small p, this is nearly a factor of two improvement
over the FRC of [4].

Provable convergence with random stragglers. With
random stragglers, our assignment schemes yield good
convergence rates under reasonable assumptions about
the f;. This is because we obtain an unbiased approx-
imation of the gradient and can additionally bound the
norm of the covariance matrix of a*. In particular, we
show in Proposition that as the desired convergence
threshold e approaches 0, the dominant term in the num-
ber of iterations of coded gradient descent required is
Mpd_"(d), where the little-o hides constant factors
that depend on p and the functions f;. We also provide
a black-boxE] method to debias any coding scheme for
random stragglers, that is, given any coding scheme
for random stragglers, our tool allows us to convert it
to an unbaised scheme without needing to know the
inner working of the code. This implies that any further
progress on Question [1| will yield convergence bounds
on gradient descent (see Proposition B.1 in Appendix B).
Provable convergence with worst-case stragglers.
With adversarial stragglers, it is not possible to guarantee
convergence to the minimizer 6* of f = Y." | fi.
However, if the strong convexity of f is larger than
the product of the adversarial decoding error |a* — 1|3
and the maximum Lipshitz constant of any Vf;, then
we can guarantee that coded gradient descent converges

3By black-box methods, we mean methods that only leverage the variance
of the gradient update and none of its other statistical properties.

down to some noise floor. We show that this noise floor
scales linearly with the adversarial quantity |a* — 1]3.
More precisely, we show in Corollary that we
can converge to a floor of |6, — 6.3 < O (Ja* —13),
where the big-O hides constant factors that depend on
the functions f;. To our knowledge, this is the first prov-
able convergence guarantee for adversarial stragglers in
coded gradient descent. Previous works have obtained
adversarial bounds on |a* — 1|3 without establishing
convergence results [6]], [9], [7]; Corollary also
implies convergence results for these works as well.

5) Empirical Success. Our algorithm produces good non-
asymptotic results. In Section |[VIIIl we demonstrate
empirically that in the random straggler setting, the

— 2] .
expected error E Da* — ]l|2 in our schemes nearly

meets the lower bound of p?/(1 — p?). We also show
that gradient descent converges in fewer iterations using
optimal decoding with our scheme than when using fixed
coefficient decoding, and in over d times fewer iterations
than an uncoded approach which simply ignores strag-
glers. In particular, after 50 iterations of our algorithm
with a replication factor of 3, we observe at least a
ﬁ improvement in mean squared error over fixed
coefficient decoding, and at least a ﬁ improvement in
mean squared error over an uncoded approach after 150
iterations. We observe that our approach converges at the
same rate or faster than the state-of-the-art approaches
of [10] and [6].

B. Related Work

Gradient coding techniques for distributed optimization
were first considered in [4], where some assignment schemes
based on fractional repetition codes (FRC) were used to
recover the exact gradient under worst-case stragglers. In the
particular FRC used by [4], the data points and the machines
are each partitioned into an equal number of disjoint blocks,
and each machine in a block receives all the data points in
the corresponding block of data points. This body of work on
gradient coding was continued in [12], [[13], [11], [14] and
[15], which established the exact trade-off between computa-
tion load, worst-case straggler tolerance, and communication
complexity.
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Coding Scheme Decoding +E [la — 1]3] Worst Case Convergence Proof?
Coefficients o —1]3
Expander Code (Cor. Fixed - < % Yes (random stragglers)
23 [6])
Pairwise Balanced Fixed > ﬁ (by ??7) - Yes (random stragglers)
(5
BIBD ( Const. 1 [7]) Fixed and - O(Tlﬁ) No
Optimal d=0/m)
BRC ([9]) Optimal —6(d) - No
rBGC ([8]) Fixed < a=py - No
FRC of [4] (and Optimal p P Yes (random stragglers)
(LO])
Theorem [IV.1] Optimal pl—od) % Yes (both random and
Corollary adversarial stragglers)
TABLE I

COMPARISON OF RELATED WORK. THE COLUMN CONTAINING THE QUANTITY E [|a — ]1|§} IS IN EXPECTATION OVER A p FRACTION OF RANDOM
STRAGGLERS. THE COLUMN CONTAINING THE QUANTITY |a — ]l|% IS THE WORSE CASE VALUE OVER A p FRACTION OF STRAGGLERS. FOR UNBIASED
CODING SCHEMES, THE RESULTS PERTAIN TO & INSTEAD OF a.

A line of work ([6], [L1O], [Sl, [16l, [8], [7]) initiated by
[6]] explores the landscape of approximate gradient coding,
where the gradient is not recovered exactly. The work [6]
considers both exact and approximate gradient codes. The
approximate gradient codes in [[6] are based on regular ex-
pander graphs, and the non-zero decoding coefficients w are
fixed up to the number of stragglers. They achieve a decoding
error that decays like 1/d in the replication factor d, even
when the straggling machines are chosen adversariallyE] They
then relax the assumption of adversarially chosen stragglers,
and bound the convergence of their coded gradient descent
under random stragglers, showing that the run time decreases
inversely with d. The work of [5] combines pair-wise balanced
coding schemes with a tight convergence analysis to yield
convergence times that decay like 1/d; that work also uses
fixed decoding coefficients w. The work [7] considers the
problem of approximate gradient recovery when the straggling
machines are chosen adversarially, and shows that for assign-
ment matrices based on balanced incomplete block designs
(BIBD), an optimal decoding vector w* will always have fixed
coefficients.

The most related works to ours are [8] and [9]], which
consider optimal decoding under random stragglers. The work
[8] was the first to use optimal decoding in the approximate
gradient setting, and established that the the FRC-based assign-
ment of [4] (which is also identical to that in [[10]) achieves
the decoding error %]E|a* — 1|2 = p? over random stragglers,
which is optimal over all schemes with a replication factor
of d. They show that the this FRC performs poorly in the
adversarial setting, and so they also provide a random con-
struction called a regularized Bernoulli Gradient Code (rBGC),
which they suggest is harder to exploit by a computationally
bounded adversary. In [10]], the authors provide bounds on the
convergence rate of coded gradient descent using the FRC

4This follows by using a Ramanujan expander in Corollary 23 of [6].

and optimal decoding under random stragglers. The work
[9] provides upper and lower bounds on the computational
load required to achieve a desired decoding error with high
probability over random stragglers. Their upper bound is based
on a construction using batch raptor codes (BRC) which
achieves +E|a* — 1|3 = 1/e°(9). We summarize the most
relevant results from the work on approximate gradient codes
in Table [l To our knowledge, ours is the first analysis of an
assignment scheme that achieves a decoding error decaying
exponentially in d for random straggler and a decdoing error
less than 5= for adversarial stragglers. We show that the
decoding error under random stragglers in our scheme is near-
optimal as a function of the computational load, while the
decoding error with adversarial stragglers is nearly twice as
small as that of the FRC of [4].

Unlike many previous works that only study the decoding
error |a* — 1|y [6], [9, [7], we also provide convergence
results for both the random and adversarial settings. To the
best of our knowledge, our work gives the first provable
convergence results for approximate gradient coding with
adversarial stragglers, although we note that there have been
convergence results shown in other adversarial settings of
gradient descent [[17], [18].

Other work such as [16] also considers the problem of
approximate gradient coding, but differs from our framework
in that their codes are not based on assignment matrices, or
require specific types of loss functions.

C. Organization

In Section [II, we describe our construction of approximate
gradient codes, and give some intuition for why we can show
good bounds on the decoding error of our constructions. In
Section [T, we characterize the optimal coefficents w+ and
the resulting vector a* = Aw* in terms of the the straggling
machines in a graph assignment scheme. In Section we
prove our main result Theorem on the performance of
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m Number of machines blocks to machines, rather than the N x m assignment matrix
N Number of data points of points to machines. Thus, all of our results are in terms
n Number of data blocks in a graph-based scheme of the replication factor d = 27’”, which is independent of the
¢ | Computational load (maximum points per machine) block size.

d Replication Factor (averaged over all data points)

TABLE I
PARAMETERS IN THIS WORK. WE ALWAYS HAVE d = 2m/n = m{/N. A
USEFUL PARAMETER REGIME TO KEEP IN MIND IS THE SETTING WHERE
N =mAND/{ =d.

graph-based assignment schemes in the setting of random
stragglers. In Section [V] we prove Corollary on the
robustness of graph-based assignment schemes to adversarial
stragglers. In Section we state Proposition on the
convergence of gradient descent for random stragglers. In
Section |VIIl we state Proposition on the convergence of
gradient descent for adversarial stragglers. In Section we
provide simulations which demonstrate our theoretical claims.
We conclude in Section Some proofs are deferred to the
appendix.

D. Notation

We will use | - |2 to denote the 2-norm of a vector or the
operator norm of a matrix. For a graph G = (V| E) and any
sets of vertices S, T C V, we will denote by E(S,T') the set
of edges between vertices in S and vertices in 7. We will
denote by J(S) the edges E(S,V \ S). For an edge e € E,
we denote by d(e) the two endpoints of the edge e.

Let S,, denote the symmetric group on n elements, and for
a graph G = (V, E) on n vertices, let Aut(G) C S,, denote
the set of graph automorphisms of G. We say that a graph
is vertex transitive if for any vertices u,v € V, there exists
some automorphism o € Aut(G) such that o(u) = v. We
denote the action of an automorphism ¢ on a set S C V in
the following natural way: o(S) = {o(v) : v € S}. For a
permutation p € S,,, we denote the action of p on a vector 3
in the following way: p(8); = B, ().

II. OUR CONSTRUCTION

In our construction, each machine holds exactly two data
blocks, each comprised of % data points. We introduce the
parameter n = 277" to denote the number of data blocks. We
summarize these parameters in Table [[I}

Remark IL.1. Because our assignment schemes are regular—
that is, each data block is replicated an equal number of
times—each data point will be replicated exactly d times.
Observe that the computational load {, the maximum number
of data points per machine, equals dWN. As the regime m = N
is the most commonly studied, it is convenient to think of d as
equal to { when comparing our results to other work, some
of which state results in terms of L. In general, when m = N,
we must have ¢ > d.

We can describe these assignment schemes using a graph
on n vertices with m edges. We abuse notation and use the
assignment matrix A to denote the n X m assignment matrix of

Definition II.2. A graph assignment scheme corresponding
to a graph G with n vertices and m edges is a matrix A €
{0,1}™*™ in which A;; = 1 if the jth edge of G has i as an
endpoint.

An example of Definition is shown in Figure

Remark IL1.3. In contrast to other works (such as [16]]), which
have also designed codes based on graphs, the graph we
consider is not a bipartite graph where left vertices correspond
to data blocks and right vertices correspond to machines.
Rather, it is the non-bipartite graph where the data blocks
are the vertices and the machines are the edges.

Recall that to minimize the decoding error, we want to show
that o* is close to 1, such that the gradient updates given in
Equation (1)) are as close as possible to those in batch gradient
descent. By thinking of an assignment scheme as a graph
G as above, we are able to characterize o in terms of the
connected components of a random sparsification of G. In
Section we show that o will be close to 1 if vertex 7 is
in component which is either non-bipartite, or bipartite with
close to balanced sides.

Expanders are good examples of sparse graphs which have
large non-bipartite components under random sparsification.
We show this in Corollary by proving that randomly
sparsified expanders have a giant connected component with
high probability (Theorem[IV.3). To additionally guarantee that
our gradient descent converges to the true minimum, we use
vertex transitive expanders, such as Cayley graph expanders,
which guarantee that E[a*] = cl.

III. CHARACTERIZATION OF o*

In this section, we characterize o™ in terms of the straggling
machines in a graph assignment scheme. This will allow us
to prove the desired properties of a* by studying randomly
sparsified graphs.

Suppose we have some graph assignment scheme A corre-
sponding to a graph G. Recall that o* = Aw*, where

w* € arg min |1 — Aw|s.

w:w,; =0 if machine j straggles
We define G(p) to be the random graph where each edge of
G is deleted with probability p.

We can think of w* as a weight vector which has one
(possibly) non-zero coordinate w for each edge e in G(p).
We can think of a* as a vector where each coordinate o}
is the sum of weights w} of each edge e incident to v. See
Figure [2] for some examples of these.

It follows from Equation that for any edge e = (u,v),
o satisfies

ay, + oy = 2.

“4)

Indeed, at the optimum we have 0 = AT (1 — Aw*) = AT (1—
a*), which implies that for all edges ¢ = (u, v) (which index
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the rows of AT), we have (1 — ) + (1 — o) = 0, yielding
Equation ().

We can make the following observations which follow from
Equation (@):

1) For any set of vertices v in a single connected compo-
nent, |1 — «| is the same. Indeed, for an edge (u,v),
Equation (@) implies that 1 — o} = aj — 1, and this
relationship extends to a whole connected component.

2) If a component contains an odd cycle of vertices (i.e.,
is not bipartite), then o = 1 for all of the vertices in
the component. Indeed, as above, the sign of 1 — o}
alternates along edges of the component, which would
produce a contradiction if 1 — « was not 0 at every
vertex in the odd cycle.

3) If a component C = L U R is bipartite with |L| >

_ |LI-|R| - —
|]l-:{,ilenazfl e fuw e Rand aj =1—
IL‘I;I‘RI‘ if v € L. This is true because the sum of all edge

weights going into vertices in L is equal to the sum of all
edge weights going into vertices in R, s0 ) . p i =
Zve ;, a. Using items (1) and (2) to conclude that o
is constant on © € R and o, = 2 — ¢, is constant on
v € L yields the statement.
These observations suggest the approach that we will use in
Section we can bound the contribution to |a* — 1|3 of a
particular connected component by simply knowing whether
that component is bipartite.

Algorithmically, given the set of non-straggling machines,
the observations above allow the parameter server to compute
the optimal coefficients w* in linear time in m. First the
parameter server performs a breadth-first search on G(p) to
divide the graph into connected components, and determines
the two sides L and R of any bipartite components. For each
connected component, the parameter server can then compute
o for each v in the component. Finally, the parameter server
performs a depth-first search on each component to label each
edge with the a value w] such that the sum of all edges
incident to vertex v equal «,. Note that the value of w} may
depend on the order edges are discovered in the depth-first
search, but the vector o is unique.

IV. THE DECODING ERROR |a* — 1|3 UNDER RANDOM
STRAGGLERS

In this section we prove our main result about expander
graph assignments under random stragglers.

Theorem IV.1. Let G = (V, E) be any vertex transitive graph
with n vertices, m edges, and spectral expansion ). Let A
be the assignment matrix given by G, in accordance with
Definition Suppose for some positive e,

1) A> 1.5

2) (3+ 1)1 —pet?)>1+¢

3) (1 _ ezp*(lfﬁ) A—(2d—)) M) > e

(1_pel/)\)2 (1_pel/)\)2
4) n_ S 4(1;s-e)

log(n)? = €

If each machine straggles independently with probability p,
then

1) Ela*] =71 for somer>1—2 —¢;

2) Foralli, E[(af —7)?] < 8 +¢;
3) [El[(a” —r1)(a* —r1)T]|y < 2k2 (t + 8)7 + 24,
(lfpel/*)2 ’

@ (2log(n) — 2log(e) + 2log(1 + ¢) — log(1 - p)),

where t =

k =
and all expectations are over the random stragglers.

Remark IV.2. The expected error 1E [[a* — 13] is lower-
bounded by p?, because this is the probability that a fixed
data block is stored only at straggling machines. Theorem
implies that, for good expanders, the variance of o* shrinks
exponentially in the replication factor, d. One example of such
graphs are the Lubotzky-Phillips-Sarnak (LPS) construction
[19] of Ramanujan Cayley graphs, where A > d — 2+/d — 1.
In this sense, our result is tight in d up to factors of p°@.

Theorem [IV.I]is a consequence of Theorem [[V.3] and Corol-
lary below. We will state these results and then prove
Theorem [[V.I] assuming them. We prove Theorem [IV.3] and
Corollary in Appendix C.

Theorem IV.3. Let G be any d-regular A-spectral expander
with n vertices and suppose for some positive e,
1) A> 1.5
) G+DI-p21+e
3) otz > 20D (log(e(1+ €) fe) — log(1 — p)).
Let G(p) be a random sparsification of G, where each edge
of G is deleted randomly with probability p. With probability
at least 1 — %
) G(p) s a
ep 173
L= T
2) Every vertex is either in a component of size at most k,
where k is as in Theorem [[V] or is in a component of
size greater than n /2.

has a giant component of size at least

> vertices;

Corollary IV4. Let G be any d-regular \-spectral expander
with, and suppose for some positive e,
1) A> 1.5

2) G+DA-pe)>1+¢

e2 A(lf%) o2 )A(l—%)
3) (1 - Ly A—(Qd—A)M)>E;
D gtz 2 4(1€2+e) 2log(e(1 + €)/€) — log (1 7pe%)).

Let G(p) be a random sparsification of G, where each
edge of G is deleted randomly with probability p. Then with
probability at least 1 — %,

1) G(p) has a non-bipartite giant component of size at least
- )
(1—pet/2)2 J*

2) Every vertex is either in a component of size at most k,

where k is as in Theorem or is in a component of

size greater than n /2.

2 — 2log(e€) + 2log(1 + €) — log (1 - pe§?lz,begin by proving Theorem [[V.I] assuming Theorem [[V.3]

orollary

Proof. (Theorem [[V.1) Recall that because the graph G is
vertex-transitive, the distribution of « is equivalent for every

an
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(a) Paths.

(b) Tree.

(c) Non-bipartite component.

Fig. 2. The optimal choice of w* (edge labels) and a* (vertex labels) in various connected components.

vertex 4, and so E[a*] is some multiple of 1. Throughout we
will use the fact that by Corollary [V.4] with probability at
least 1 — S, at least (1 — t)n vertices ¢ are in a non-bipartite
components, and hence have of = 1. Here, ¢ is as in the
statement of Theorem [V.1]

For the first statement, for any ¢, because o > 0, we have

o1. =
Ele;] > Pr[a; = 1] > Pr[vertex i is in a non-bipartite componeﬂﬁn;t

For the second statement,

6
El(oj —E[e]])*] <E[(o] —1)*] <1-Prlaj =1] < — +t,
n
where we used the fact that |1 — of| <1 always.
The third statement follows from the following lemma,
which we prove in Appendix C:

Lemma IV.5. Given the assumptions in Theorem[[V.]| we have

2
E[(e* —r1)(a” = r1)T]|z < 247 (t + fi) +24,

where .t and k are as defined in Theorem |IV.]

V. THE DECODING ERROR |a* — 1|2 UNDER
ADVERSARIAL STRAGGLERS

In this section we show how the spectral properties of an
assignment matrix A can be leveraged to bound the adversarial
error |a* —1|3. We show that graph-based assignment schemes
which use graphs with large expansion perform nearly twice
as well as the FRC of [4] in the adversarial setting.

The following proposition and its proof are almost the same
as Proposition 29 in [6].

Proposition V.1. Let A € RN*™ be any assignment matrix on
N data points, for which each data point is replicated exactly
d times, and each machine holds exactly { data points. Let o4
be the second largest singular value of A. For any set of S of
s stragglers, there exist some decoding coefficients w = w(S)

such that i‘ 1‘2<i<9>2
N 2=y 7y

sm

m—s

Proof. For any set S of s stragglers, let w; = ﬁ for
i ¢S and w; =0 for ¢ € S. Then
12
la—1)2 = ‘Aw—dAIL = |Az|2, (5)
2

where z = w — é]l. We observe that A has top singular value
= v/ and top right singular vector 1/y/m; this follows
e_f%l&tthat AT A evidently has top eigenvector 1/y/m
and top eigenvalue /d.
Observe that z L 1 and |2[3 = & (s + (m — s)ﬁ) -
ﬁ. Thus

02\2 sm
4213 < o123 < (22)

d m—s
as desired. O

Corollary V.2. Let A € R™™™ be a graph assignment scheme
corresponding to some d-regular graph G with spectral expan-
sion \. Then for any set of |pm]| stragglers, there exists some
decoding coefficients w such that

2d—\ p

(1-p)

Proof. Let A(G) denote the adjacency matrix of G such that
M (A(G)) = d and \2(A(G)) = d — A. Observe that because
A has exactly two ones per column, we have AT A = A(G)+
dI, such that oo(A) = \/A2(ATA) = v/2d — \. Applying
Proposition [V.I] implies that

1
—la—1J5 <
n|0< 5 < 2

1 12d—X p
lao—-12< =227
n|a |2_n d? (1—p)m
Using the fact that d = 2m/n concludes the proof. O

Corollary V.3. Let A € R™™™ be a graph assignment scheme
corresponding to some d-regular graph G with spectral ex-
pansion A. Let X\ be the spectral gap of G and suppose
A = d — o(d). Then for any set of |pm]| stragglers, there
exists some decoding coefficients w such that
l|a “12< LO(DL.
n 2 (1-p)
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Proof. Plugging in A = d — o(d) to Corollary we have
2d—X p  1+0o(1) p

2d (1-p) 2 1-p
as desired. O

Remark V.4 (Tightness of Corollary [V.3). This bound is
nearly tight for graph assignment schemes when p is small.
Indeed, for any graph assignment scheme on with mp strag-
glers and replication factor d, we can adversarially choose the
stragglers such that at least ”;lp data blocks are not held at any
non-straggling machines. Thus, for any decoding coefficients

o we have

1
“Ja—1]3 <
n‘a 5 <

using the fact that nd = 2m for graph-based schemes.

While our scheme improves by nearly a factor of two
over the FRC of [4], it is worse by an order of d/8 from
the expander code of [6], which meets the lower bound in
adversarial error up to constant factors for a replication factor
of d (See Table ). We leave it as an open question to improve
on our scheme for adversarial stragglers while maintaining our
performance for random stragglers.

VI. CONVERGENCE WITH RANDOM STRAGGLERS

In this section, we bound the convergence rate of our
coded gradient descent algorithm with random stragglers. This
algorithm begins by distributing the data blocks according to
the assignment matrix A. We additionally shuffle our assign-
ment of data blocks to machines using a random permutation
p. The iterative computation phase of the algorithm follows
Equation @ in the introduction, where the coefficients w are
given by the optimal decoding coefficients in Equation (3. For
the reader’s convenience, we summarize the logical view of
this algorithm with random straggers in the algorithm below.

Note that in this algorithm, the optimal decoding vector
w* computed by the parameter server might not be unique,
but the vector o* := Aw™ is unique. Indeed, for a straggler
rate of p, let A(p) be the random matrix which is a copy of
A with each column replaced with zeros independently with
probability 1 — p. Then o is the unique projection of the
all-ones vector onto the space spanned by A(p), namely

a* = A(p)(A(p)" A(p)) T A(p)" 1. (6)

Given a matrix A, let P, be the distribution of the
random vector o* defined in Equation (6). Similarly let
P— be the distribution of «*, which we recall is defined
to be the normalization o* |E|[i‘f] S Then for any unbi-
ased decoding scheme, GCOD(A, p, xo,7, {fi}, k) is stocas-
tically equivalent to the gradient descent algorithm, SGD-
ALG(Ps+, o, vE[a1], {fi}, k), given in Algorithm

We provide convergence analysis of SGD-ALG in the fol-
lowing proposition, for distributions Ps with Egp,[3] = 1.

Proposition VL1. Let f = Y ! fi be a p-strongly convex
Sfunction with an L-Lipshitz gradient, and suppose each f; is
convex, and all gradients V f; are L'-Lipshitz. Let x* be the
minimizer of f. Let 02 =Y, |V f;(z*)|3.

Algorithm 1 Gradient Coding with Optimal Decoding
(GCOD): Logical View with Random Stragglers
procedure GCOD( A, p, 0y, 7v,{fi}, k)
> Distribution Phase
> p is a random permutation

p ~ Uniform(S,,)
for : =1 to n do
Send f,(;) to all machines j such that A; ; # 0
end for
> Computation Phase
for ¢t =1 to k do
Parameter server: Send x;_; to each machine
for Machine j € [m] do
B; ~ Bernoulli(p)
if B; = 1 then
Machine j: Send g; = >, Ai;V fyiiy(0:-1)
to parameter server.
end if
end for
Parameter server: Computes w* €
arg min,,.,, —o if B_7:0(|Aw — 1)
Parameter server: 6; < 6;_1 — Zj:BFl w;‘gj
end forreturn 6,
end procedure

Algorithm 2 SGD-ALG(Ps, 0o, 7, {fi}, k)

procedure SGD-ALG(Pg,6p,7,{fi}, k)
p ~ Uniform(S,,) > p is a random permutation
for ¢t =1 to k do
B~ Ps
Op <= Or—1 — > BiV [y (0i-1)
end forreturn 6,
end procedure

Suppose we run the gradient descent as in Algorithm [2}
SGD-ALG(Pg, xo,7,{f:}, k), starting from x for k iterations
with some step size v < ﬁ and some distribution Pg such
that E[8] = 1. Let r := +E[|3 —1]3], and s := |E[(8 —
1)(8 — 1)T]|. Then

* k *
E [|zx — 23] < (1= 2yu (1 = y(sL' + L))" |zo — *[3
yr (1 + ﬁ) o2
+ )
n(1=~(sL/ + L))

)

where the expectation is over p and {BY) : j < k}.

Corollary VL.2. For any desired accuracy €, we can choose
a step size

pe
’y =
2pe(sL! + L) + 2r (1 + ﬁ) o2

such that after

sL’+L+T<1+ﬁ)02
1

k = 2log(2¢g/€
(2€0/e) p 2
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steps, E [|z, — 27|3] < €, where g = |z — x*|?.

Given our results on the decoding error E|a* — 1|3 and
covariance of a* in Theorem we can use Proposition
to bound the convergence time of coded gradient descent with
a graph-based assignment scheme in the setting of random
stragglers. This yields the following propostion.

Proposition VL.3. Ler f = Y7 f; be a p-strongly convex
function with an L-Lipshitz gradient, and suppose each f; is
convex, and all gradients V f; are L'-Lipshitz. Let 0* be the
minimizer of f, and define o* := >, |V f;(0%)]3.

Suppose we perform gradient coding with optimal decoding
as in Algorithm I\ with an assignment matrix corresponding to
a d-regular vertex-transitive graph with spectral gap d—o(d),
such that the number of machines m = "7‘1. Let p be the
probability of a machine straggling.

Then for any desired accuracy €, we can choose some step
size v such that after

2d70(d)£/ N pdfo(d)0.2
I p2e

steps of gradient descent, we have E [|9k - 9*|§} < €, where
€0 = ‘90 - 9*|2

k = 2log(eg/e) (i +log?(n)p

Remark VI.4. Our results improve over black-box methods
for establishing convergence of gradient descent (such as
Theorem 34 in [6l]) for two reasons. First, we leverage
the structure of the covariance matrix of o to control the
dependence on the Lipshitz constants of gradients of each data
block. Second, by shuffling the data blocks before assignment,
we are able to bound E UZZ"ZI oz;‘Vfi(G*)@} much more
tightly than the naive bound E [|a* — E[a*][3] 3, [V fi(6*) 3.
This quantity controls the constant that appears in front of 1/e
in Proposition These improvements allow us to converge
up to a factor of n faster than black-box methods, though the
exact improvement depends on the functions f;.

Remark VL.5. The step size used in Propostion scales
inversely with the quantity E|a* — 1|3, which controls the vari-
ance of the gradient estimate. Choosing a step size inversely
proportional to this variance term is common in other work

(eg. [O], [20]).

Remark VI.6. Proposition relies on the assignment
scheme being unbiased. However, it can be applied more
generally at the expense of doubling the computation load: we
show in Appendix B how to debias any assignment scheme.

We provide proofs of Proposition and Corollary in
Appendix E. Combining Proposition with Theorem

yields Proposition

VII. CONVERGENCE WITH ADVERSARIAL STRAGGLERS

In this section, we show that with adversarial stragglers,
coded gradient descent can converge down to a noise floor
which scales with the maximum value |a* — 1]3.

Proposition VIL1. Let f = >_" f; be a p-strongly convex
Sfunction with an L-Lipshitz gradient, and suppose each f; is
convex, and all gradients V f; are L'-Lipshitz. Let x* be the

minimizer of f, and define 0 := ", |V fi(x*)|3. Suppose we
perform gradient descent with the update

Thpr =Tk =YY otV fi(an), (®)

2
such that at each iteration, alk) — ]l|2 <72 Leta=1-—
r:/ff?, and suppose a > 0. For any 0 < € < 1, we can choose

a constant step size of

B ea
1T WI22r Ll + 42(L1)?)

such that for some

a2 2 2
21 + ) log (il

k<
- 3ryaue
2 2 2
A IR 2L+ (L)) g (ot
- 302262
9
iterations, we have
ro
|z — iz < (1 +6€)—. (10)
ap

Plugging in € = 1, we obtain the following corollary:

Corollary VIL2. Let f = >_" f; be a p-strongly convex
Sfunction with an L-Lipshitz gradient, and suppose each f; is
convex, and all gradients V f; are L'-Lipshitz. Let 0* be the
minimizer of f, and define o® := >, |V f;(0%)]3.

Suppose we perform gradient descent with the update
Oryr = O — v, ozgk)Vfi, such that at each iteration,
|a(k) — ]l|§ < r. Assume p > rL’.

Then we can choose some step size v such that for some

3(L+2v7L)?log (4%

k< 3 ,
(n—vprL’)
we have |0), — 0*|3 < %, where ¢y = |0y — 0%].
u—/pur

Plugging in our decoding error bound on |a* — 1|3 from
Corollary shows that we can converge to a noise floor of

40°n(2d — \)p
p(v/2d(1 = p)p — \/n(2d = N)pL')?

Remark VIL.3. In the case of a linear regression problem,

where f;(0) = (a0 — b;)?, if the vectors a; ~ N(0, 1) and

values b; = {a;,0) + z; for z; ~ N(0,(?), we expect to have
2

p~ 2N (1—4/£), and L' < 10max (X, k) with high

probability [21)]. Assuming N > 4k, Corollary |VIL2| shows
that for p < 0.05min(1, 2Y), we can converge to a noise

) nk
floor of 720’"}55%2.
We defer the proof of this proposition to Appendix F.

VIII. EXPERIMENTS
In this section, we demonstrate empirically that our scheme
achieves near-optimal error [E {|a* - ]l|§} in the random
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>

stragglers model, and further that our scheme converges
in fewer iterations with optimal decoding coefficients than
with fixed coefficients. We demonstrate the advantage of our
coded approach to uncoded gradient descent, and compare
the convergence of our scheme to previous work on coded
gradient descent. We run our convergence experiments in both
a simulated setting and in a distributed compute cluster, which
we describe in more detail in Section [VIII-Bl

Our experiments are conducted in two different parameter
regimes. The first regime is in a setting with m = 24
machines and N = 60000 data points, where each data point
is replicated d = 3 times such that the compuational load
is £ = 7500. The second regime has m = 6552 machines
and N = 6552 data points, and each data point is replicated
d = 6 times such that £ = 6. In the first regime, for our coded
approach, we use an assigment matrix A; which corresponds
to a random 3-regular graph on n = 16 vertices with m = 24
edges. While this graph is not vertex-transitive, and hence may
result in a biased approximation of the gradient, it represents a
practical regime with 24 machines, and is with high probability
a good expander. In the second regime, we use an assignment
matrix A, which corresponds to the degree 6 LPS expander
of [19] on n = 2184 vertices with 6552 edges. We chose this
graph because it is the smallest vertex-transitive expander.

In each of these two parameter regimes, we compare the
performance the performance of the following four coding
schemes:

1) Our coded approach using A; or As with optimal
decoding.

Our coded approach using A; or A, with fixed decoding.
The coded approach of [6]. With m = 24, we use the
for the assignment matrix the adjacency matrix of a
random graph on 24 vertices of degree 3. In this regime,
we conduct optimal decoding. With m = 6552, we use
a random graph on 6552 vertices of degree 6. Due to
the computational complexity of decoding, we use fixed
decoding coefficients in this regime.

The coded approach of [10] (which uses an FRC) with
replication factor d = 3 or d = 6.

2)
3)

4)

For fixed decoding, we use the decoding vector w™¢ where
fixed _ ) if 5 3 : fixed _ 1
w;*% = 0if j is a straggler and otherwise w;**" = PR In

ermission. See http://www.ieee.org/

with m = 6552, d = 6. The points for the Expander code do not appear as they are significantly

this manner, we have E[Aw™d] = 1.

A. The decoding error E[|a* — 1|3]

In our first set of experiments, shown in Figure 3] we
compare the decoding error E [+;|@ — 1|3] and the norm
of the covariance |E(a — 1)(a — 1)T|; under a p fraction
of random stragglers for the first four schemes above. In
Figure Eka)(b), we consider the first regime with d = 3,
and in Figure c)(d) the second regime where d = 6. We
note that the FRC of [4] achieves the theoretical optimum
of +E[a* — 13 = ﬁ—dd, and hence we plot this optimum
in place of the results from the FRC. Similarly, for the FRC
assigment,we have

_ _ —
|E [(@® — 1)(« —IL)THZZNIE\Q — 12

This equation holds because the covariance matrix has zeros
everywhere except in entries corresponding to two data points
in the same block. In all these three settings, we use N =n
data points, such that the computational load is ¢ = 6.
Figure 3| demonstrates that for both assignments A; and As,
our scheme with optimal coefficients achieves near-optimal
error £ U?— ]l’z] for small values of p, and significantly
outperforms fixed coefficient decoding and the approach of

[6]].

B. Convergence of Coded Gradient Descent

We compare the performance of coded gradient descent in
the four coding schemes listed above in addition to an uncoded
scheme which ignores stragglers.

Data. We run gradient descent on a least squares problem
ming | X6 — Y3, where X € RV** is chosen randomly with
i.id. rows from N(0, +1), and § ~ N(0, I;). The observa-
tions Y are noisy observations of the form YV = X0 + Z,
where Z ~ 2N (0,1Iy). In our first parameter regime with
m = 24, we use N = 60000, £ = 20000, and o = 100. In our
second parameter regime with m = 6552, we use N = 6552,
k = 200, and o = 1. We initialize 6 at the origin, and let 6,
be the minimizer (X7 X)1XTY.

Xplore. Restrictions apply.
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Platform and Implementation. In the first regime, we
run our experiments on m = 24 processors in Stanford’s
high compute cluster Sherlock, which contains any of the
following four processors: Intel E5-2640v4, Intel 5118, AMD
7502, or AMD 7742. We implement the algorithms in Python
using MPI4py, an open-source MPI implementation. At each
iteration, the PS waits to receive gradient updates from the
first [m(1 — p)] processors using MPL.Request. Waitany. Then
the PS computes optimal or fixed decoding coefficents (as
specified by the scheme), takes a gradient step, and sends
the next iterate 6 to all of the processors. We plot the error
|0 — 0..|? after 50 iterations in Figure 4} We start timing once
the data has been loaded and the first iteration starts.

In the second regime with m = 6552 machines (which is
too large for us to test on the Sherlock cluster) we simulate
coded gradient descent on a single machine by computing the
gradients update used that would be used in the presence
of a specified set of stragglers. We artificially select the
stragglers independently with probability p. Precisely, our
simulations implement Algorithm [2] with a specific input
distribution Pg which depends on the coding scheme. Recall
that Algorithm [2)is stochastically equivalent to Algorithm [T]if
the input distribution Pg equals the distribution of o*. Hence
for optimal decoding with an assignment matrix A, we let
the input Pz to Algorithm [2| be the distribution of o* =
A(p)(A(p)T A(p))T A(p)T1 given by Equation @ Recall here
that A(p) is the matrix A where each column is deleted with
probablility p. That is, at each iteration, we randomly sample 3
to be this random vector. For fixed decoding with assignment
matrix A, we let P be the distribution of Aw™d. We plot
the error |0; — 0,|? after 50 iterations in Figure [S| As per
Remark below, in the uncoded approach, we do 300
iterations.

Remark VIIL.1. If the same number of machines are used in
both coded and uncoded approaches, but the coded approach
has a replication factor of d, then each machine in the coded
approach has a gradient computation that is d times bigger. We
compensate for this by performing d times as many iterations
in the uncoded scheme. Note that if the communication time is
the bottleneck, then each iteration of coded gradient descent
will take less than d times as long as an iteration of uncoded
gradient descent: indeed, the communication times should be
the same, while the computation time should increase by a
factor of d. In this case, we expect the advantage of our
approach over an uncoded approach to be greater than our
simulations suggest.

To be fair to all algorithms, for all experiments discussed,
we use a grid search to find the best step size. We give more
details and show the step size chosen by this grid search in
Table IV in Appendix G for all algorithms discussed below.

We observe that our algorithm substantially outperforms the
expander code and the uncoded approach, and converges to
error comparable with the FRC of [4] (we recall that the
FRC of [4] achieves the optimal E [[o* — 1|3] for random
stragglers, but is substantially sub-optimal for worst-case
stragglers). We note that our algorithm in many cases even
outperforms the FRC: indeed, Figure f(a) demonstrates faster

ermission. See http://www.ieee.org/

convergence, and the table in Figure [4[b) shows that the final
error is typically much smaller for our algorithm than for the
FRC on the Sherlock cluster. We conjecture that our algorithm
is able to outperform the FRC (the theoretical optimum) on
a real cluster because the assumption of i.i.d. stragglers is
not perfectly correct: indeed, we observe that which machines
are straggling tends to stay stagnant throughout a run. We
conjecture that the comparatively better performance of our
algorithm on worst-case stragglers (relative to the FRC) gives
it an advantage in such settings.

IX. CONCLUSION

In this work, we present an approximate gradient coding
scheme based on expander graphs, which performs well both
in the adversarial and random straggler settings. We show
how to analyze the optimal decoding error of our codes
by relating a* to the connected components in a randomly
sparsified graph. We give provable convergence results in both
the adversarial and random straggler settings. We conclude
with a few open questions.

1) We have developed a technique for controlling the vari-
ance and covariance of the random variable a* generated
by the optimal decoding coefficients when each machine
holds two data blocks, by analyzing the sparsification
of random graphs. It is an interesting open question to
extend our techniques, or develop new ones, to work for
a larger number of data blocks per machine.

2) While our scheme gives the best known error |a* — 1|3
in the adversarial setting given near-optimal error against
random stragglers, it could be improved. Is there a
coding scheme which achieves near-optimal error |a* —
1|3—that is, decaying like p®~°(¥)—while simultane-
ously achieving near-optimal adversarial error—that is,
decaying like é?
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Fig. 4. Comparison of coded gradient descent on a distributed cluster with m = 24, N = 60000. (a) Convergence of gradient descent with p = 0.2. (b)
|0r — 04 |§ after 60 seconds. Values are averaged over 8 runs, with error bars for standard deviation.

[ ] A A, with optimal decoding (our algorithm)
10 4 . ® A; with fixed decoding
’. } Uncoded Ignore Stragglers
+ * Expander Code
N 13
K ¥ FRC
10-14 X:o::*x,, -
0000g * * ks
X ko .
a % *ﬁ**u—***i*ﬁ*ttittitﬁ**
@ X
L B
D 10-3 A *:Xx
++x*x
+ X;
Tﬁ g * ALl
1075 VY I |
0 10 20 30 40 50

Iterations of Gradient Descent

(a)

0.040

A A, with optimal decoding (our algorithm)
0.0354 ® A;with fixed decoding
I Uncoded Ignore Stragglers
0.0304 ¥ Expander Code with fixed decoding
% FRC ‘
0.025 A l
o
& +
D 0,020 | +
| |
D 0.015 I +
J ¢
0.010- ) ¥ ¢
¥ N L]
0.005 A
* °
°
0.0007 x X X X X X
0.05 0.10 0.15 0.20 0.25 0.30

Straggler rate p

(b)

Fig. 5. Comparison of simulated gradient descent algorithms with m = 6552, N = 6552. (a) Convergence of gradient descent with p = 0.2; the uncoded
approach uses 6x as many iterations as shown. Values are averaged over 20 runs, with error bars for standard deviation. (b) |0y — 0 |§ after 50 iterations.
Values are averaged over 20 runs, with error bars for standard deviation.
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