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ABSTRACT

The purpose of this research is to find the optimum val-
ues for threshold variables used in a data mining and predic-
tion algorithm. We also minimize and stratify a training set to
find the optimum size based on how well it represents the whole
dataset. Our specific focus is automating functional models, but
the method can be applied to any dataset with a similar struc-
ture. We iterate through different values for two of the threshold
variables in this process and cross-validate to calculate the aver-
age accuracy and find the optimum values for each variable. We
optimize the training set by reducing the size by 78% and strat-
ifying the data, whereby we achieve an accuracy that is 96% as
good as the whole training set and takes 50% less time. These
optimum values can be used to better predict the functions and
flows of any future product based on its constituent components,
which can be used to generate a complete functional model.

1 INTRODUCTION

There are many tools to help design engineers in the early
phases of modern product design [1]. Functional decomposition
is one of the tools that takes considerable investment to master
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but offers key insights during the concept generation phase. This
is a well-known technique that discretely connects the subfunc-
tions and flows in a product that can be formatted in a graphical
representation known as a functional model.

Functional models are helpful in the early design phase be-
cause they allow the designer to visualize the subfunctions and
flows throughout a product and ensure adherence to the customer
requirements [2] [3]. However, they may be highly subjective,
time-consuming, and difficult to make, which is why they are
often omitted from the design process [4]. Previous work has
helped to standardize the words used for functions and flows to
increase consistency in the language, known as the Functional
Basis terms [5] [6]. There are also Component Basis terms,
which help increase consistency in the language of product com-
ponents [7]. Despite this work, functional models are still highly
subjective and variable in terms of format and accuracy [8]. Au-
tomating the process of making functional models will increase
the use of this helpful tool in the early design phases by decreas-
ing the amount of time required to make them and increasing the
accuracy and consistency between different designers as data is
entered into the repository.

The ultimate goal of this research is to automate the gener-
ation of functional models to serve two purposes: 1) ease the
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workload associated with archiving products digitally; 2) in-
crease the likelihood that designers will utilize a functional de-
composition approach during product design. This paper primar-
ily reports on effects that align with purpose 1. In order to ac-
complish this, we first automate the process of finding the func-
tions and flows that a product’s constituent components usually
perform. After finding the most common functions and flows,
we can order them based on simple guidelines known as gram-
mar rules, which dictate the order of functions and flows within a
component [8] [9] [10]. If our algorithm found the most common
functions and flows of an electric cord component to be export
electrical energy, transfer electrical energy, and import electri-
cal energy, an example of grammar rules would be that import
must come before export and transfer must come before export
for the same flow. The linear functional chain for the flow of elec-
trical energy would then be: import electrical energy — transfer
electrical energy — export electrical energy. After finding the
linear functional chains of every component in a product, we can
then combine them all into a functional model based on the con-
nections of components within the product.

In this process of automating the functional chains of com-
ponents, there are several variables in the algorithm that deter-
mine which functions and flows are predicted to be in future
components. This work focuses on optimizing these variables
to find the values that give the highest accuracy with the least
amount of time spent on computation.

In our previous work, we hypothesized that we could in-
crease the accuracy of the automated generation of functional
models if we only found the functions and flows for components
in products that shared a similar component that was central to
the functionality of the products [11]. For example, one of our
datasets only contained products with a blade component, such
as jigsaws, lawnmowers, and food slicers. We found that restrict-
ing the dataset based on a single component does not increase
the accuracy of the automation. This work explores this idea fur-
ther by developing the overall similarity between products that
encompass more than a single component and tests if learning
from highly similar products is any better at predicting functions
and flows than somewhat similar products.

Our previous work also showed that increasing the size of
the dataset used for data mining increases the accuracy of our au-
tomation algorithm. When restricting the dataset based on simi-
lar components, we were essentially restricting the extent of that
data from which the algorithm could learn. This work explores
this idea further to find if there is a limit to the increase in accu-
racy with an increase in size.

2 BACKGROUND

A design repository is a database that stores product data
that can be used to inform data-driven design decisions [12]. In
this work, we create an algorithm that mines data from a de-

sign repository that stores component-centric design informa-
tion about products. This multi-decade project is housed at Ore-
gon State University and it is simply called The Design Reposi-
tory! [10] [12] [13] [14] [15] .

Similarity in design has been studied to increase consistency
and understand the overlap between products in a product family
within the portfolio of a company [16]. If a company can make
a modular base of designs, it can quickly adapt to changes in
the market with negligible changes in design and manufacturing
processes, allowing them to put products on the market cheaper
and faster [17]. There are many ways to measure the similarity
between products [18]. This work measures the similarity be-
tween products as the percentage of components that they have
in common. The similarity metric is calculated for all products
in the dataset and then used for creating subsets of the data in the
optimization, but any similarity metric could be substituted into
the algorithm.

2.1 Data Mining, Classifiers, and Cross-Validation

Data mining is the process of examining information and
recording patterns to discover knowledge about data [19]. A
common use of data mining is to create a tool called a classi-
fier, which uses the patterns found within data to predict if a new
observation belongs to a class [20]. An example would be a clas-
sifier that predicts if an email is spam or not spam and moves
them either to the spam folder or the regular inbox [21]. The
classifier is “trained” by mining a dataset that contains examples
of emails that are labeled as either spam or not spam, it finds
the patterns within the data, and uses that information to predict
if any other email is spam or not spam [22]. The accuracy can
be quantified by making predictions for emails that are already
labeled and recording the number of correct and incorrect pre-
dictions.

A classifier does not know the class to which the new obser-
vation belongs— instead it calculates a probability of class mem-
bership and the designer chooses the threshold of probability to
switch between classes. This is known as a classification thresh-
old, and it is directly linked to the accuracy of a classifier [23].
For example, if a designer sets the classification threshold for a
spam email classifier at 99%, it would only label emails as spam
that have a very high probability of being spam. This would
not label very many emails as spam and there is a good chance
that some spam emails would end up in the regular inbox. How-
ever, if a designer sets the classification threshold to 50% then
there is a good chance that some emails that are not spam would
be mis-classified as spam and moved to the spam folder, which
is why some companies suggest you check your spam folder to
find missing emails from them. The classification threshold de-
termines the accuracy of the classifier and the optimum classifi-

'A basic web interface for The Design Repository is available at
ftest.mime.oregonstate.edu/repo/browse

Copyright © 2020 ASME



cation threshold changes for each dataset. This work data mines
a dataset with product information, uses a classifier to learn the
most common functions and flows for a component, and calcu-
lates the accuracy at different classification thresholds to find the
best value for each dataset.

Optimizing a classification threshold is not a novel topic,
and many researchers have shown effective methods for finding
the best values for these numbers in imbalanced datasets such as
ours (we describe how our data is imbalanced in the next section
on the F1 score) [24]. Due to the unique structure of product
data, it is not helpful to use these methods because they require
analyzing all components as if they are product-agnostic. As de-
signers, we know that the components of a product are intention-
ally symbiotic, and analyzing them independently of each other
would be diminishing the work of the designers that created these
products. A generalized example structure of our product data is
shown in Table 1.

TABLE 1: EXAMPLE PRODUCT DATA STRUCTURE

Product ID | Component | Function-Flow

Function-Flow 1

Component 1 | Function-Flow 2

Product 1 Function-Flow 3
Function-Flow 1
Component 2
Function-Flow 2
Component 1 | Function-Flow 1
Function-Flow 1
Product 2

Component 2 | Function-Flow 2

Function-Flow 3

A common tool for calculating the accuracy of a classifier
is known as cross-validation. This general term refers to any
method that separates the original dataset into two parts: one
used for training and one used for testing [25]. The training set is
the information that the data-mining algorithm uses to find pat-
terns and train the classifier. The testing set is the information
used to test the classifier and calculate how well it performed.
Testing with data from which the classifier did not learn is es-
sential for reducing bias in the results [26]. Due to the variabil-
ity in most datasets, cross-validation is often performed multiple
times with different testing and training sets and averaged over
all iterations. There are several methods of cross-validation, for
this work we use leave-one-out cross-validation. As the name
suggests, we pull a single product from the dataset to act as the
testing data, and the remaining products constitute the training
set [27].

2.2 Precision, Recall, and the F1 Score

Simple accuracy for a classifier is a ratio of the correct pre-
dictions to the total predictions, This number does not give a
holistic representation of how well the classifier performs for
most datasets, including ours. To account for the variety of ways
in which a classifier can be correct and incorrect, we use the met-
rics of precision, recall, and the F1 score. The F1 score is the
harmonic mean of precision and recall and is a replacement for
simple accuracy.

A classifier learns from the training set to predict whether or
not an item from the testing set is within a class, and that pre-
diction is validated based on the known data from the testing set.
Simply counting correct responses misses some of the additional
ways in which the automation can be wrong. Precision, recall,
and the F1 score account for these cases by using the confusion
matrix shown in Table 2 to calculate ratios of the true positives,
false positives, and false negatives [28].

TABLE 2: ACCURACY CONFUSION MATRIX

Predicted?

Actual?

Looking at the calculation for simple accuracy in Equation
1, if the value for True Negative was much larger than any other
value, the accuracy would tend toward 100%. The abbreviations
in the equations—TP, TN, FP, and FN—correspond to the values
in the confusion matrix in Table 2 of True Positive, True Nega-
tive, False Positive, and False Negative, respectively. Consider a
classifier that looks at medical data and predicts whether or not a
patient has Parkinson’s Disease. According to records, approxi-
mately one percent of people over the age of 60 have Parkinson’s
Disease [29]. If the classifier said that every patient over 60 did
not have Parkinson’s, it would be right 99% of the time because
this is a True Negative and most people don’t have Parkinson’s.
This high accuracy is misleading and not helpful. Our data is
similarly imbalanced and simple accuracy is a misleading indi-
cator of automation performance. Precision, recall, and the F1
score account for this imbalance and give a better understanding
of the accuracy of a classifier.

| TP+ TN 0
ccuracy =
YT TPYTNLFP+FN

Precision is the ratio of correct predictions to all predictions
made by the classifier (Eqn. (2)). This number is the ratio of
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predictions that were identified as being in the product that are
actually in the product.

Recall is the ratio of correct predictions to all actual results
made by the classifier (Eqn. (3)). This number is the ratio of the
actual results that were correctly predicted. Recall is represen-
tative of the confidence that no positives have been missed and
precision is representative of the confidence in the True Positives.

The F1 Score is the harmonic mean of precision and recall
and equally balances the importance of the two metrics. The har-
monic mean is defined as the reciprocal of the arithmetic mean of
the reciprocals of the observations. For two numbers, this equa-
tion simplifies to the version shown in Eqn. (4) as the harmonic
mean of Precision and Recall. This combination of values re-
places the simple accuracy metric and provides more meaningful
insight into the ability of an automation algorithm to predict re-
sults. Due to the multiplication in the numerator, very low values
of precision or recall will have very low F1 scores.

.. TP
Precision = —— ()
TP+FP
TP
Recall = ————
eca TP FN (3

Fl— 2 x precision x recall

“)

precision+ recall

The F1 score is one variation of the general F score in which
the values of precision and recall are equally weighted in the
harmonic mean. The F1 score is preferred for datasets that have
disproportionate values for True Negative results when the cost
of a wrong prediction is not very high. This can be changed, for
example, if the cost of a false positive is high (misdiagnosing a
disease), then an F2 score can be used to weight the precision
value differently in the harmonic mean.

This work uses the F1 score to calculate the accuracy of a
classifier at different classification and similarity thresholds.

3 METHODS

While the ultimate goal of this research is to generate func-
tional models for a product based on its constituent components,
the intermediate step is to predict the functions and flows for each
component individually. We accomplish this by finding the most
common functions and flows for each component and assuming
that future components will likely have some of the same results.
This work and the following methods focus on optimizing two

of the variables in this process that are used to tune the algorithm
that generates a functional model, which are not the same steps
that we use when strictly predicting functions and flows for the
components of a product. The results of the optimization ap-
proach will help us increase the accuracy of the predictions and
create better functional models.

We separate the dataset into two parts: the testing set and
the training set. The testing set is a single product because the
input for the automatic generation of functional models is a sin-
gle product. The training set is some subset of the rest of the
products that are above a threshold of similarity (the similarity
threshold is expanded upon later). In this work, the dataset of
all consumer products within the design repository consists of
139 products, so each testing set is one product and the training
sets consist of some subset of the remaining 138 products. The
testing set is comprised of products for which the functions and
flows are known for each component, so that information is used
to verify what the automation algorithm predicts, and we calcu-
late how well the algorithm performed with the F1 score.

The overall algorithm is shown below. Each step is detailed
in the following sections.

1. Query repository

2. Compute similarity between all products

3. Tterate through different values for two algorithm variables

4. Cross-validate dataset to find accuracy for each combination
of variables

5. Find optimal values for variables

3.1 Query Repository and Find Similarity

We query for the product ID, component, subfunction, and
inflow data for each consumer product in the repository. This
data is imported to Python v3.7 for computation % [30]. For this
work, the similarity between each product is determined by the
percentage of components they have in common. The similarities
are computed for each combination of products in an n x n matrix
with the product IDs as the row and column headers. The main
diagonal of this matrix consists of ones because every product is
100% similar to itself, but the matrix is not symmetric because
each product can contain a different number of components. For
example, consider a case where Product 1 has 20 components
and Product 2 has 40 components. If they have 10 components
in common, the similarity between Product 1 and Product 2 is
10/20 = 50%, but the similarity between Product 2 and Product
1 is 10/40 = 25%. The first product of the pair is known as the
“generating” product. A 5x5 subset of the 139x139 similarity
matrix is shown in Table 3 (The same matrix is in Appendix A
with product names instead of product IDs).

2The software used for all of the computation in this and previous work is
available at https://github.com/AlexMikes/AutoFunc
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TABLE 3: 5x5 SUBSET OF SIMILARITY MATRIX

ID | 286 203 206 288 591

286 | 1.000 | 0.294 | 0.192 | 0.667 | 0.313
203 | 0.263 | 1.000 | 0.269 | 0.556 | 0.313
206 | 0.263 | 0.412 | 1.000 | 0.778 | 0.438
288 | 0.316 | 0.294 | 0.269 | 1.000 | 0.188
591 | 0.263 | 0.294 | 0.269 | 0.333 | 1.000

3.2 Cross-Validate Dataset to Find Accuracy

As described in the background (section 2.1), we use leave-
one-out cross-validation to calculate the accuracy of our classi-
fier. At the beginning of each iteration, one product is extracted
from the main dataset and it is used as the testing set. The rest of
the products are eligible to be in the training set but are only used
if they fall within the threshold of similarity with the product in
the testing set (we explain the process of selecting products for
the training set in the next subsection). Once training and test-
ing sets have been established, we use the training set to find
and predict the functions and flows for each of the components
in the testing set. A graphical example of leave-one-out cross-
validation is shown in Table 4.

TABLE 4: LEAVE-ONE-OUT CROSS-VALIDATION EXAM-
PLE

Dataset
Product 1 ‘ Product 2 ‘ Product 3 ‘ Product4  Product 5

Iteration #
1 Product I | Product2 | Product 3 | Product4 Product 5
2 Product 1 | Product2 | Product3 | Product4 Product 5
3 Product 1 | Product2 | Product3 | Product4 Product5
4 Product 1 | Product2 | Product3 | Product4 Product 5
5 Product 1 | Product2 | Product3 | Product4 Product 5

Train Test

The testing set comes from the original data, so the ac-
tual functions and flows are known and can be used to validate
whether or not the predicted functions and flows are correct. We
use this information to calculate the precision, recall, and F1
scores 139 times so that each product is used for the testing set.

3.3 Iterate Through Classification and Similarity
Thresholds

We find the F1 score while iterating through two of the
automation algorithm variables for every combination of train-
ing and testing sets. For this work, we increment the similarity
threshold from O to 100 in increments of ten and the classification
threshold from 10 to 100 in increments of five. We chose these
increments through experimenting to find where the resolution
became too large to notice small changes. There are 18 values of
classification thresholds (10, 15, 20, 25...95%) and 10 values of
similarity thresholds (0, 10, 20...90%). There are 139 combina-
tions of testing and training sets, the same number of products in
the dataset.

After applying a similarity threshold, the training set de-
creases in size. There are 139 products in the whole dataset. One
is used for the testing set and the other 138 are eligible for the
training set. At each similarity threshold, the algorithm chooses
the products that meet the similarity threshold and builds a train-
ing set from those products. If the similarity threshold is 0% then
all 138 products are in the training set, but any similarity thresh-
old higher than that will cause the training set to be smaller than
138.

The algorithm finds the frequency of each combination of
component, function, and flow. For each component, these com-
binations sum to 100% to capture all of the functions and flows
in the training set. Each component, function, and flow combi-
nation is an individual percentage that represents the frequency
of each combination out of all of the functions and flows for that
component. The classification threshold is a cutoff point for the
sums of these individual frequencies per component. An exam-
ple of some component, function, and flow combinations with
their individual and summed frequencies for the component Bat-
tery is shown in Table 5. These combinations are sorted from
largest to smallest individual frequency. The right column shows
how a 70% threshold determines which combinations are pre-
dicted for future instances of the Battery component. The first
two combinations have individual frequencies of 34% and 28%
respectively, so they sum to 62% of the total functionality of that
component. With a threshold of 50%, only these two functions
and flows would be kept. With a threshold of 70%, more func-
tions and flows would be added to the sum. The next function
and flow combination has an individual frequency of 17%, which
brings the sum to 79%, which satisfies the threshold and those top
three functions and flows are predicted for future Battery compo-
nents.
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TABLE 5: EXAMPLE OF CLASSIFICATION THRESHOLD
APPLICATION

Individual | Running sum of

Battery 70% Threshold
frequency | frequencies

Store electrical 0.34 0.34 Keep

Supply electrical 0.28 0.62 Keep

Transfer electrical | 0.17 0.79 Keep

Import electrical 0.12 0.91 Reject

Position solid 0.09 1 Reject

Our algorithm iterates through the testing set product in an
outermost loop, the similarity threshold for the second loop, and
the classification threshold for the third loop. For example, sup-
pose we are using the Delta jigsaw as a testing product. We
find all products that fall within the similarity threshold, then
find the F1 scores at all 18 classification thresholds (10, 15, 20,
25...95%). We increment the similarity threshold by ten percent
and again find the F1 scores for all 18 classification thresholds.
We repeat this process for each similarity threshold, then change
testing products and repeat the entire process. We perform 180
calculations for each testing/training set (10 similarity thresholds
x 18 classification thresholds), which is repeated 139 times (once
for each product as the testing set).

3.4 Find Optima

The accuracy of the automation algorithm is captured by the
F1 scores that are calculated for each combination of input vari-
ables for each combination of testing and training sets. We av-
erage the 139 F1 scores for each combination of similarity and
classification thresholds to find the combination that yields the
highest average F1 score. This is unique for each dataset, so this
cross-validation method can be performed to find the optimum
values before using it to predict any results. After calculating all
of the F1 scores, we find the optimum values and use them for
our classifier to make more accurate future predictions.

4 RESULTS

The initial objective of this research was to find the optimum
values for classification and similarity thresholds for a dataset
used for automating functional modeling. All of the previous
methodologies address this objective and the results are follow-
ing in Section 4.1. In the process of developing those methodolo-
gies and analyzing the results, we explored the idea of creating
an optimized training set. This is a second optimization that was
inspired by the interesting observations from the first optimiza-
tion. The methods and results for the optimized training set are
discussed in Section 4.2.

4.1 Optimizing Thresholds

The highest average of 139 F1 scores for this dataset was
0.445 with a similarity threshold of 0.2 and a classification
threshold of 0.55. Figure 1 shows a 3D scatter plot of all data
points for the calculation of these numbers. Each dot represents
an average of 139 numbers.
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FIGURE 1: 3D SCATTER PLOT OF SIMILARITY THRESH-
OLD, CLASSIFICATION THRESHOLD, AND F1 SCORE

Figure 2 shows a plot of the average F1 scores against the
classification threshold for the optimum similarity threshold of
0.2. This line can also be seen on the 3D scatter plot and clearly
shows a maximum value of the F1 score at the optimum classifi-
cation threshold.
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Adjusting the similarity threshold affects the number of
products in the training set. Figure 3 shows the number of prod-
ucts in the training set decrease as the similarity threshold in-
creases. Without a similarity threshold (0%), all 138 products
are in the training set. With a similarity threshold of 50%, there
are 28 products in the training set.

Number of Products in Training Set
2 & 2 2 g B &
” ” ” ”

=)
L

00 02 04 06 08
Similarity Threshold

FIGURE 3: NUMBER OF PRODUCTS VS. SIMILARITY
THRESHOLD

Figure 4 shows how the average F1 score changes with the
number of products in the training set. There is a clear plateau
around 30 products where adding additional data has very little
effect on the accuracy. The similarity threshold is the indepen-
dent variable that we are optimizing and the number of products
in the training set is the dependent variable that changes as the
result of changing the similarity threshold.
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FIGURE 4: AVERAGE F1 SCORE VS. NUMBER OF PROD-
UCTS

Figure 5 shows how the average F1 score changes with the
similarity threshold at the optimum 0.55 classification threshold.
There is little change from 0% to 50% and then a sharp decrease
in accuracy with increasing similarity threshold.
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FIGURE 5: F1 SCORE VS. SIMILARITY THRESHOLD

Figure 6 shows the computation time change with the num-
ber of products in the training set. Training sets with 30 products
and 138 products have roughly the same accuracy, but compu-
tation time is roughly doubled. Our previous work showed that
using more data in the training set yields better results, but this
work showed that idea is true to a point, after which there is no
benefit to the accuracy despite an increase in computation time.
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FIGURE 6: NUMBER OF PRODUCTS IN TRAINING SET VS.
COMPUTATION TIME
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Combining the results from Figures 1-6, we find that for our
data, we obtain roughly the same average accuracy by training
from 30 products and 130 products. However, using less than
20 products results in a steep decline in average accuracy. If we
only used 30 random products in our training sets, we would not
have the same accuracy for each testing set because the products
would change and some would be better or worse than the av-
erage. Despite finding some optimum number of products that
maximizes average accuracy and minimizes computation time,
using all available data will increase the likelihood of being able
to predict the functions and flows for a future product at the ex-
pense of computation time.

4.2 Optimizing Training Set

To further explore this idea of an optimal dataset, we looked
at which training sets had the best performance with high aver-
age F1 scores and low numbers of products. To ensure that the
smaller training set was still representing all of the data, we fil-
tered training sets by the ratio of unique component basis terms
that are covered by the products in the training set. We calcu-
lated the total number of unique component basis terms in the
entire dataset, and for each training set, we calculated the ratio
of unique component basis terms covered by the products in the
training set.

The results in Figure 4 show the accuracy increasing as prod-
ucts are added to the training set, and then a plateau after which
there is little change as more products are added. We used this
data to plot the change in the average F1 score versus the number
of products. When this line goes to zero, adding more products to
the training set does not change the average F1 scores. We over-
laid the data showing how the ratio of component basis terms
in the training set changes with the number of products in the
dataset. At the point where the F1 score stops changing, there
are an average of 28 products and a ratio of 75% of component
basis terms in the training sets. These results are shown in Figure
7.

We used the results from Figure 7 to find the products that
appear most often in the optimal training sets and keep those as
a static training set to cross-validate the rest of the data. Figure 8
shows the ratio of component basis terms covered vs. the num-
ber of products in the training sets. Each dot in the scatter plot
represents a training set. The lines are thresholds used for high-
lighting the “best” training sets, with a ratio of component basis
terms greater than 70% and less than 40 products. The optima
were found around 75% and 30 products, so we used a buffer of
10 products and a five percent ratio of component basis terms for
this analysis.

After finding the optimal training sets, we looked at which
products most often appear in these sets. While each product has
its own ratio of component basis terms, they are relatively low
individual numbers. The benefit of a high ratio of component
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FIGURE 7: F1 SCORE AND RATIO OF COMPONENT BASIS
TERMS VS. NUMBER OF PRODUCTS IN TRAINING SET
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FIGURE 8: RATIO OF COMPONENT BASIS TERMS COV-
ERED VS. NUMBER OF PRODUCTS IN TRAINING SET
WITH THRESHOLDS APPLIED TO HIGHLIGHT THE BEST
TRAINING SETS

basis terms in the training set comes from combining products
that each cover different component basis terms to give a high
overall ratio. Figure 9 shows the top 20 products that appear most
often in the “’best” training sets (The bottom 10 were removed for
figure clarity; the full 30 can be seen in Figure 11 in Appendix
B). The most frequent product in these training sets is a Datsun
truck, which is more complex and contains more components
than many of the other products in the dataset. The Datsun truck
has 205 appearances in the 217 optimal training sets, but only
has a 12% individual ratio of component basis terms covered.
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datsun truck
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FIGURE 9: FREQUENCY OF PRODUCTS IN THE BEST
TRAINING SETS

We used the 30 products that are most often found in the
optimal training sets to make a static training set that we used
to cross-validate the rest of the dataset (we will call these the 30
”best” products). Similar to the method explained previously, we
used every other product in the dataset as a testing set with the
30 ”best” products as a training set and found average F1 scores
through each classification threshold. The reduced training set is
78% smaller than a full training set (30 products instead of 138
products). Figure 10 shows the same data from Figure 2 with the
average F1 scores from the entire dataset alongside the average
F1 scores from the reduced dataset of the 30 "best” products.
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FIGURE 10: AVERAGE F1 SCORES VS. CLASSIFICA-
TION THRESHOLDS FOR THE FULL AND REDUCED
DATASETS

Using the optimized and reduced dataset gave us similar re-
sults as using the whole dataset. If the goal is to find the ab-
solute best accuracy possible with little concern for data size,
computation power, or time requirements, then restricting the
dataset would not be necessary. If the goal is to get good ac-
curacy while reducing data size, computation power, or time re-
quirements, then using a subset of data that represents the whole
dataset is ideal. The difference in average accuracies between the
full dataset and the reduced dataset is the largest at the optimum
classification threshold of 0.5. For this point, the F1 score for
the reduced dataset is 0.4103 and for the full dataset is 0.4428.
At this point of its worst performance, the reduced dataset is
still 93% as accurate as the full dataset. At its best, the reduced
dataset is 6% better than the full dataset at a classification thresh-
old of 0.95. On average, the reduced dataset is 96% as accurate
as the full dataset.

The computation time in Figure 6 shows that a training set of
30 products takes 0.012 seconds and a training set of 138 prod-
ucts takes 0.024 seconds, which means our optimized dataset
takes 50% less computation time.

This method of reducing a dataset based on the ratio of the
component basis terms in the training set is similar to stratifica-
tion in cross-validation, which ensures a ratio of each class in a
training set. Our method differs from stratified cross-validation
because it does not ensure a ratio of class membership, but in-
stead a ratio of representation of a type of data. The structure
of product data has three levels, as shown previously in Table 1.
In the hierarchy of Product — Component — Function-Flow,
we are stratifying the ratio of the representation of the Compo-
nent level. This entire method can be generalized to many ap-
plications of automation and data mining classifiers, especially
those with a similar structure to product data. Our results show
that reducing the data and stratifying the second level of the data
hierarchy can yield results with an average of 96% accuracy in
50% of the time when compared to the full dataset.

4.3 FUTURE WORK

In future work, we will automate the ordering of functions
within a flow based on existing grammar rules, as well as develop
more grammar rules. We plan to treat each subfunction as po-
tentially housing different input and output flows. For example,
suppose the component Electric motor has the functions Import
electrical energy, Convert electrical energy, and Export mechan-
ical energy. We will update the algorithm such that the Con-
vert subfunction accommodates different inflows and outflows,
of Electrical energy and Mechanical energy, respectively.

Future work will also explore optimizing the classification
threshold separately for individual components, as well as sub-
assemblies or common groups of components. Additionally,
while this work is a starting point that helps maintain accuracy
at reduced computational cost, we intend to fully automate the
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functional modeling of a product by building on this work.

5 CONCLUSION

Functional modeling is a helpful tool in the early design
stages but is often omitted because of the time requirement. Even
when functional models are used, the accuracy and consistency
can vary between the designers that make them. Automating
functional modeling will help standardize the format and syn-
tax, decrease the time required to make functional models, and
increase the prevalence and accuracy of functional models in de-
sign and design repositories. This work builds toward automat-
ing functional modeling by optimizing the variables for an algo-
rithm that mines a design repository of product information and
uses that to predict functions and flows of components. Optimiz-
ing these values will further increase the accuracy and consis-
tency of automated functional models.

The accuracy of a classification algorithm depends on the
values of threshold variables. The structure of product data re-
quires iteration through these variables to determine their opti-
mum values, as opposed to some types of problems that can be
optimized analytically. This work uses a cross-validation method
to optimize classification and similarity thresholds that are used
for data mining a design repository to find the most common
functions and flows for components as a step toward automating
functional modeling.

To automate functional modeling, the designer will input a
list of components and their connections within a product. We
found that optimizing a classification threshold can increase the
accuracy of this automation. We also found that enforcing a
threshold of similarity between the input component and the
products used in the training set can reduce computational ex-
pense while maintaining accuracy, but the results are variable
and change with each product used for testing. Stratifying the
reduced dataset helps minimize the variance and increase the av-
erage accuracy. We found that we could achieve 96% of the total
accuracy with a stratified reduced dataset used for training. Op-
timizing the classification threshold but not enforcing the sim-
ilarity threshold will maximize the number of products in the
training set and maximize the overall accuracy when not cross-
validating and evaluating averages. If reducing data size, compu-
tation power, or time requirements is necessary, then optimizing
the classification threshold using a stratified subset of data can
achieve similar results with somewhat reduced accuracy.
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Appendix A: 5x5 Similarity Matrix With Product Names

TABLE 6: 5x5 SUBSET OF SIMILARITY MATRIX WITH PRODUCT NAMES

Product

Air Hawg
Toy Plane

Alcohawk Digital
Alcohol Detector

Epson All-In-

One Printer

Apple USB

Mouse

Black & Decker

Can Opener

Air Hawg Toy Plane

1.000

0.294

0.192

0.667

0.313

Alcohawk Digital
Alcohol Detector

0.263

1.000

0.269

0.556

0.313

Epson All-In-One Printer

0.263

0.412

1.000

0.778

0.438

Apple USB Mouse

0.316

0.294

0.269

1.000

0.188

Black & Decker Can Opener

0.263

0.294

0.269

0.333

1.000

Appendix B: 30 Most Common Products in Top Training Sets
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FIGURE 11: FREQUENCY OF PRODUCTS IN THE BEST TRAINING SETS
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