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Abstract—We define wedge-lifted codes, a variant of lifted
codes, and we study their locality properties. We show that
(taking the trace of) wedge-lifted codes yields binary codes
with the t-disjoint repair property (t-DRGP). When t =
N1/2d, where N is the block length of the code and d ≥ 2
is any integer, our codes give improved trade-offs between
redundancy and locality among binary codes.

A full version of this paper is accessible at: https:
//arxiv.org/pdf/2011.12435.pdf

I. INTRODUCTION

In this work, we define and study Wedge-Lifted Codes,
and show they yield improved binary error correcting
codes for a notion of locality known as the t-disjoint
repair group property.

An error correcting code (or simply code) C ⊂ ΣN

is a set of strings of a fixed length N over an alphabet
Σ. If Σ = {0, 1}, C is called a binary code. We measure
the quality of a code by the redundancy, denoted K⊥,
defined as K⊥ = N −K, where K = log|Σ| |C| is the
dimension of the code. It is desirable for codes to be
larger, or equivalently to have less redundancy.

In this work we are interested in constructing better
(less redundant) binary codes with locality. There are
several notions of locality in this literature, but infor-
mally a code exhibits locality if we can correct one or
a small number of erasures by looking only locally at
a few other symbols of the codeword. In this work we
construct codes with a notion of locality known as the
t-disjoint repair group property (t-DRGP).

Definition I.1. A code C ⊆ ΣN has the t−disjoint repair
group property (t-DRGP) if for every i ∈ [N ], there is
a collection of t disjoint subsets S1, . . . , St ⊆ [N ] \ {i}
and functions f1, . . . , ft so that for all c ∈ C and j ∈ [t],
fj
(
c|Sj

)
= ci.

Codes with the t-DRGP are motivated by distributed
storage, where one desires efficient recovery from a
few erasures (see surveys [18], [21]). Codes with the t-
DRGP are also relevant to private information retrieval
(PIR) in cryptography, as all codes (with a systematic
encoding) with the t-DRGP also form (t+1)-PIR codes

[4]. Further, when t = Ω(N) is large, codes with the t-
DRGP are equivalent to locally correctable codes [12],
[26].

Previously the best constructions for codes with the
disjoint repair group property were given by lifted mul-
tiplicity codes [10], [15] (see also [28]), but these codes
have very large alphabet sizes, which is undesirable from
the perspective of distributed storage and PIR. Hence,
a natural question, explicitly asked in [15], is, what are
the best constructions of binary codes with the t-DRGP?
Our work makes progress on this question by giving new
constructions of binary codes with the t-DRGP with the
best known redundancy for some values of t.

Theorem I.2. For positive integers d and infinitely many
N , for t = N1/2d, there exist binary codes of length
N with redundancy tlog2(2−2−d)

√
N that have the the

(t− 1)-DRGP.

Theorem I.2 gives improved constructions of binary
codes with the t-DRGP when t = N1/2d for integers
d ≥ 2. (see Figure 1 for a visual comparison and Sec-
tion I-A for a more detailed comparison): When d = 2,
Theorem I.2 improves over a construction of [5]. When
d ≥ 3, Theorem I.2 improves over the constructions of
[4]. As all codes with the (t− 1)-DRGP are also t-PIR
codes, Theorem I.2 also gives improved constructions of
t-PIR codes in the same parameter settings.

It is an interesting question whether the construction
of [4] can be beaten for all t ∈ (1,

√
N). That is, for

all t = Nα with α ∈ (0, 1/2), are there binary codes
with the t-DRGP and redundancy O(t1−ε

√
N) for some

ε > 0 (possibly depending on α)? Our work shows
this is true for α = 1/2d when d is a positive integer.
Additionally, for a dense collection of α ∈ (0, 1/2), our
binary codes essentially match the redundancy bound of
O(t
√
N) from [4] (Theorem III.7). This is proved with

a naive bound, so it is possible that, with a more refined
analysis, our codes could achieve the improvement to
O(t1−ε

√
N) for all α ∈ (0, 1/2).

In the remainder of this section, we highlight some
related work and our approach. In Section II, we state
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some preliminaries. In Section III, we define and analyze
our construction of Wedge-Lifted Codes. In Section IV,
we show demonstrate how to turn the codes in Sec-
tion III, which are over a q-ary alphabet, into binary
codes, proving Theorem I.2.

logN (K⊥)
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logN (t)
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[4]

[6]
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[17], [27]
lower bound

[15] (big Σ)

[15] (binary)

This work

Fig. 1. The best trade-offs known between the number t of disjoint
repair groups and the redundancy K⊥, for t ≤ N1/4. Our results
appear as the red dots.

A. Related work

a) Prior work on DRGP: We refer the reader to
Figure 1 for a picture of the best known constructions
of codes with the t-DRGP. For t ≤

√
N , [4] constructed

codes with t-DRGP and t
√
N bits of redundancy. We

show (Corollary III.7) that there always exist Wedge-
Lifted Codes that at least match the redundancy this
construction. However, the construction of [4] is not
optimal, at least when t is somewhat large. [6] showed
that Lifted Reed Solomon codes have the N1/2-DRGP
with redundancy at most N0.792 � t

√
N . A later work

[5] also improved [4] when t = N1/4, giving codes
with redundancy at most N0.714. When t = N1/4,
Theorem I.2 improves on [5] by giving codes with
redundancy roughly N0.702. When t = N1/2d for all
d ≥ 3, Theorem I.2 improves [4] by giving codes with
redundancy t1−εd

√
N .

Additional results are known for larger values of t
[1], [10]. We focus on the setting t ≤ N1/4 because
we believe this parameter regime is already interesting,
and because we believe that the improvements of Wedge-
Lifted Codes over existing binary codes are the strongest
in this parameter regime. We expect that generalizing our

bivariate construction of Wedge-Lifted Codes to more
than two variables would give improved binary codes
with the t-DRGP for larger values of t.

b) Other notions of locality: The t-DRGP is
closely related to other notions of locality, including PIR
codes [1], [2], [4], batch codes [1], [9], [11], [20], locally
correctable codes (LCCs) [6], [8], [13], [14] and locally
decodable codes (LDCs) [3], [12], [26], and LRCs with
availability [19], [23]–[25].

B. Our approach

The best known constructions of codes [5], [6], [10],
[15] with the DRGP leverage an idea called lifting [6].
The basic idea of lifting is to improve algebraic codes
like the Reed-Muller Code, which has some locality
properties, by relaxing the construction so that the local-
ity properties are preserved but so that the redundancy
decreases. In this work, we propose a variation of the
lifting technique which we call wedge-lifts. This method
avoids the large alphabets of lifted multiplicity codes
[10], [15], [16], [28], improves on the partially lifted
codes of [5], and additionally gives the best constructions
of codes with the t-DRGP for t = N1/2d for integers
d ≥ 2. Our wedge-lifted codes are not binary, but their
alphabets are small enough that we can make them
binary by taking the coordinate-wise trace of the code.
For a full overview of our approach, see [7].

II. PRELIMINARIES

In this section, we introduce the background and notation
we use throughout the paper.

A. Notation and basic definitions

Let Fq denote the finite field of order q and let F×q
denote its multiplicative subgroup. We study linear codes
C ⊆ FNq of block length N over an alphabet of size q.
Throughout this paper, we assume that Fq has charac-
teristic 2 and write q = 2`.

We need the following tools to reason about the
binary representations of integers. If x and y are two
non-negative integers with binary representations x =
x`−1 · · ·x0 and y = y`−1 · · · y0, then define the bitwise-
OR ∨ and bitwise-AND ∧ of x and y by

x ∨ y = max(x`−1, y`−1) · · ·max(x0, y0)

x ∧ y = min(x`−1, y`−1) · · ·min(x0, y0)

Furthermore, we say that x lies in the 2-shadow of y,
denoted x ≤2 y, if xi ≤ yi for all i ∈ {0, . . . , ` − 1}.
We are interested in 2-shadows because of the following
corollary of Lucas’s theorem.
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Theorem II.1 (Follows from Lucas’s Theorem). Let x =
x`−1 · · ·x0 and y = y`−1 · · · y0 be written in binary.
Then,

(
x
y

)
≡ 1 mod 2 if and only if y ≤2 x.

The codes C we consider are polynomial evaluation
codes. For a polynomial P ∈ Fq[X1, . . . , Xm], we write
its corresponding codeword as

evalq(P ) = 〈P (x1, . . . xm)〉(x1,...,xm)∈Fmq
.

For the rest of the paper, take m = 2. We are concerned
with the restriction of bivariate polynomials to lines. For
a line L : Fq → F2

q with L(T ) = (L1(T ), L2(T )) and
a polynomial P : F2

q → Fq , we define the restriction of
P on L, denoted P |L, to be the unique polynomial of
degree at most q−1 so that P |L(T ) = P (L1(T ), L2(T )).

B. Trace codes

Given a linear code C ⊆ FNp` , it is sometimes desirable
to construct another code C′ ⊆ FNp over a smaller
alphabet that maintains some properties of C. We briefly
describe how trace functions give such codes.

Definition II.2. Let trp : Fp` → Fp be the trace function

trp(α) =

`−1∑
i=0

αp
i

We can extend trp : FNp` → FNp by defining

trp(v) = (trp(v1), . . . , trp(vN )) ∈ FNp

We can further extend it to codes C ⊆ FNp` by taking the
the trace of every vector in the code:

trp(C) = {trp(v) : v ∈ C} ⊆ FNp

Note that trp is a Fp-linear map. Hence, if C is a linear
code, then trp(C) is also a linear code. We can bound
the rate of trp(C) in terms of the rate of C using the
following corollary of Delsarte’s theorem.

Theorem II.3 (Follows from Delsarte’s theorem (see,
e.g., [22])). For any Fp` -linear code C ⊆ FNp` ,

dim C ≤ dim trp(C) ≤ ` · dim C.

III. WEDGE-LIFTED CODES

In this section, we define and analyze wedge-lifted
codes. As mentioned above, we focus on bivariate codes,
although as remarked above we believe our work could
be extended to more variables.

A. Definition of wedge-lifted codes

For a point ~p = (x, y) ∈ F2
q and a set H ⊆ Fq , we

define the wedge through ~p formed by H , denoted WH,~p,
as the set of affine lines passing through ~p whose slope
is in H ,

WH,~p = {L(T ) = (T, α(T − x) + y) : α ∈ H}.

For a wedge WH,~p and polynomial P ∈ Fq[X,Y ], we
define the wedge restriction of P to the wedge WH,~p,
denoted P |WH,~p

, to be the sum of the restrictions of P
to each line in the wedge,

P |WH,~p
=

∑
L∈WH,~p

P |L =
∑
α∈H

∑
T∈Fq

P (T, α(T −x)+y).

Note that when WH,~p consists of an odd number
of lines and the field has characteristic 2, the wedge-
restriction of P is equivalent to the sum of P ’s evalua-
tions of each point in the wedge,

P |WH,~p
=

∑
(x,y)∈WH,~p

P (x, y).

Definition III.1 (Wedge-lifted codes). LetH be a collec-
tion of disjoint subsets of Fq , with each H ∈ H having
odd size. The (H, q) wedge-lifted code is a code C over
alphabet Σ = Fq of length q2 given by

C =

{
evalq(P )

∣∣∣∣ P ∈ Fq[X,Y ], P |WH,~p
= 0

for all H ∈ H and ~p ∈ F2
q,

}
.

The number of disjoint repair groups for a wedge-
lifted code follows from the code’s definition (see full
paper for proof [7]).

Proposition III.2. The (H, q) wedge-lifted code has |H|
disjoint repair groups.

Following the approach of previous work [5], [6], [10],
[15], [16], we show that wedge-lifted codes contain the
evaluations of polynomials that lie in the span of “good”
monomials. Informally, a monomial is (H, q)-good if it
restricts nicely to all the wedges given by H.

Definition III.3 ((H, q)-good monomials). Let H be
a collection of disjoint subsets of Fq . We say that a
monomial P (X,Y ) = XaY b with 0 ≤ a, b ≤ q − 1
is (H, q)-good if for every H ∈ H and every ~p ∈ F2

q ,
P |WH,~p

= 0, and say it is (H, q)-bad otherwise.

By definition, the evaluations of all good monomials
lie within our wedge-lifted codes. Furthermore, monomi-
als XaY b with a, b ≤ q−1 form a basis for polynomials
of degree at most q− 1, which are in bijection with Fq2q
through the evalq map. Therefore, we can obtain a lower
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bound on the rate of our code by finding a lower bound
on the number of good monomials.

Observation III.4. For any (H, q) wedge-lifted code C,
the redundancy of C is at most the number of (H, q)-bad
monomials.

B. Wedge-lifted codes via cosets
In this section we analyze wedge-lifted codes that

arise whenH is a collection of cosets. Using cosets allow
us to leverage the following important fact.

Fact III.5. Let H ≤ F×q be a subgroup. For a nonnega-
tive integer n, the sum

∑
α∈H α

n is |H| if n is a multiple
of |H| and 0 otherwise.

Lemma III.6. Let H ≤ F×q be a subgroup, H be the
collection of cosets gH of F×q , and a, b be integers such
that 0 < a, b ≤ q−1. Then, a monomial XaY b is (H, q)-
bad if and only if both of the following conditions hold:

1) a ∨ b = q − 1
2) There exists an i ≡ b mod |H| such that i ≤2 a∧b.

Proof. Say that ~p = (x, y) for any x, y ∈ Fq , we aim
to show that P |WgH,~p

= 0 for any choice of x, y if and
only if the two conditions hold. First, in the case that
gH is a coset of a subgroup H ≤ F×q , we can simplify
P |WgH,~p

to (see [7] for details)

P |WgH,~p
=
∑
α∈H

∑
T∈Fq

b∑
i=0

(
b

i

)
(gα)i(y − gαx)b−iT a+i.

For brevity, we assume a + b < 2q − 2. The case
a = b = q − 1 is similar, negligible, and handled in
the full paper [7]. With this assumption and the fact that∑
T∈Fq T

a+i = 1 if a+ i = q − 1 and 0 otherwise, we
can simplify the above sum.

P |WgH,~p
=
∑
α∈H

(
b

q − 1− a

)
(gα)−a(y−gαx)b+a−(q−1)

Theorem II.1 states that
(

b
q−1−a

)
= 1 if and only if

q− 1−a ≤2 b, which is equivalent to a∨ b = q− 1. So,
if a ∨ b 6= q − 1, P |WgH,~p

= 0, so P is good.
It remains to show that if a∨b = q−1, then P |WαH,~p

=
0 if and only if there exists an i ≡ b mod |H| such that
i ≤2 a ∧ b. We then expand the binomial term (y −
gαx)b+q−(q−1) in the sum of the above expression and
use Fact III.5 to get that P |WgH,~p

is

b+a−(q−1)∑
0≤i≤b+a−(q−1)
i≡b mod |H|

(
a+ b− (q − 1)

i

)
yixa+b−(q−1)−igb−i.

Then, if we view this as a bivariate polynomial in x, y,
we see that it has degree at most q− 1 in each variable,
so it is 0 for every x, y ∈ Fq if and only if every
coefficient of x and y is 0. Therefore, P is bad if and
only if gb−i

(
a+b−(q−1)

i

)
6= 0 for some i ≡ b mod |H|.

Because a ∨ b = q − 1 in this case, we can compute
that a + b − (q − 1) = a ∧ b. Moreover, g 6= 0, so
applying Theorem II.1 to

(
a∧b
i

)
gives us the following

equivalence.

gb−i
(
a+ b− (q − 1)

i

)
6= 0⇐⇒ i ≤2 a ∧ b,

which immediately yields the lemma statement.

We can apply this result with a naive bound on the
number of a, b such that those two conditions hold:
essentially, there are t = (q − 1)/|H| possible values of
b−i, and each choice of b−i yields

√
N = q possible bad

pairs (a, b) (see [7] for details). This demonstrates that
wedge-lifted codes are no worse than the non-algebraic
constructions of [2], [4].

Corollary III.7. Let H ≤ F×q be a subgroup and let H
be the collection of cosets gH of F×q . Then, for t = (q−
1)/|H|, the (H, q) wedge-lifted code has the t-DRGP
and redundancy at most t

√
N .

By standard arguments [7], in Corollary III.7, t can be
taken to be Nα+o(1) for any α ∈ (0, 1/2) when q and
H are appropriately chosen, so our construction indeed
matches that of [2], [4] in the whole parameter regime
t = Nα for α ∈ (0, 1/2).

C. Instantiations

We now give a better bound on the redundancy of
wedge-lifted codes. We continue to assume that H is
a collection of cosets gH , examining the special case
where each coset inH has order |H| = (q−1)/(q1/d−1)
where d is an integer and ` = log2(q) is a multiple of
d. Under these conditions, we give a precise description
of the monomials that fail to satisfy Lemma III.6. The
key observation is that multiples of (q − 1)/(q1/d − 1)
that are less than q have repeating bit patterns.

Observation III.8. Let q = 2`
′d for positive inte-

gers `′ and d. Then any nonnegative integer a < q
with binary representation ad`′−1 · · · a0 is a multiple
of (q − 1)/(q1/d − 1) if and only if a`′−1 · · · a0 =
a2`′−1 · · · a`′ = · · · = ad`′−1 · · · a(d−1)`′ .

Combining this observation with Lemma III.6, we can
prove the following characterization of bad monomials
when |H| = (q − 1)/(q1/d − 1).
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Lemma III.9. Let q = 2`
′d for some natural numbers

`′ and d. Let H ≤ F×q be a subgroup of order |H| =

(q − 1)/(q1/d − 1) and H be the collection of cosets
gH . Then any monomial XaY b with 0 ≤ a, b ≤ q−1 is
(H, q)-bad if and only if both of the following conditions
hold:

1) a ∨ b = q − 1

2) There do not exist j ∈ {0, 1, . . . , `′ − 1} and r, s ∈
{0, 1 . . . , d− 1} such that br`′+j = as`′+j = 1 and
ar`′+j = bs`′+j = 0.

Proof. We prove the forward direction and leave the
reverse direction to the full version [7]. If XaY b is
(H, q)-bad, then there exists i ≡ b mod |H| such
that i ≤2 a ∧ b by Lemma III.6. Since i ≤2 b and
b− i ≡ 0 mod |H|, if there exist r, s ∈ {0, 1 . . . , d−1}
and j ∈ {0, 1, . . . , `′ − 1} such that br`′+j = 1 and
bs`′+j = 0, then ir`′+j = 1 and is`′+j = 0. Note that
i ≤2 a and ir`′+j = 1 together imply that ar`′+j = 1.
Note also that a ∨ b = q − 1 and bs`′+j = 0 together
imply that as`′+j = 1. Hence, it is never the case that
br`′+j = as`′+j = 1 and ar`′+j = bs`′+j = 0.

With the description of (H, q)-bad monomials in hand,
we can give an exact count: essentially, for each values
of j ∈ {0, . . . , `′−1}, there are 2d+1−1 choices for the
bits whose positions are j mod `′ (bits ar`′+j , br`′+j
for r ∈ {0, . . . , d− 1}) of a bad monomial XaY b.

Corollary III.10. Let q = 2`
′d for some natural numbers

`′ and d. Let H ≤ F×q be a subgroup of order |H| =

(q−1)/(q1/d−1) and H be the collection of cosets gH .
Then, there are (2d+1 − 1)`

′
(H, q)-bad monomials.

We summarize the properties of the wedge-lifted
codes constructed from our special choice of H.

Theorem III.11. Let q = 2`
′d for some natural numbers

`′ and d. Let H ≤ F×q be a subgroup of order |H| =

(q−1)/(q1/d−1) and H be the collection of cosets gH .
Then, the (H, q) wedge-lifted code has

• length q2.
• alphabet size q.
• redundancy at most (2d+1 − 1)`

′
.

• and the (2`
′ − 1)-disjoint repair group property.

One can check that, for t = 2`
′
, this gives the desired

code for Theorem I.2, except that the code is not binary.
To obtain a binary code, we take the coordinate-wise
trace of the codewords, described in the next section.

IV. TRACE OF WEDGE-LIFTED CODES

In this section, we take the trace of our codes in
Theorem III.11 and set parameters, in order to prove
our main theorem, Theorem I.2.

The key lemma says that we can take the coordinate-
wise trace of a code over a field of characteristic two
without hurting the redundancy or locality.

Lemma IV.1. Let C ⊆ Fq2q be a (H, q)-wedge-lifted
code. Then, there exists a binary code C′ ⊆ Fq

2

2 with
the same or lower redundancy and the same number of
disjoint repair groups.

Proof. For any polynomial P such that eval(P ) ∈ C,
H ∈ H, and (x, y) = ~p ∈ F2

q , we know that P |WH,~p
= 0.

Therefore, using the fact that tr2 commutes with addi-
tion,

tr2(0) = tr2

∑
α∈H

∑
T∈Fq

P (T, α(T − x) + y)


=
∑
α∈H

∑
T∈Fq

tr2(P (T, α(T − x) + y))

Therefore, if we view the code tr2(C) as a code over
Fq

2

2 with coordinates indexed by F2
q , any index ~p of a

codeword eval(tr2 ◦ P ) of tr2(C) can be repaired by
summing over the lines whose slopes are in H . So,
tr2(C) and C both have |H| disjoint repair groups.

Furthermore, Theorem II.3 states that dim(tr2(C)) ≥
dim(C), so because these codes have the same length,
tr2(C) has the same or lower redundancy as C.

We obtain Theorem I.2 by applying Lemma IV.1 to
Theorem III.11. As a corollary of Lemma IV.1, we can
also make the codes of Corollary III.7, which match [4]
for a dense collection of α ∈ (0, 1/2), into binary codes.
See [7] for details.

V. CONCLUSION

In this paper, we introduced wedge-lifted codes, which
give an improved construction of binary codes with the
t-DRGP for several t ≤

√
N . We conclude with some

open questions.
1) For all α ∈ (0, 1/2) with t = Nα, are there

binary codes with the t-DRGP and redundancy
O(t1−ε

√
N) for some ε > 0, possibly (but ideally

not) depending on α? Our work shows this is true
for α = 1/2d when d is any positive integer. The
work of [15] showed this is true (with an absolute
ε = 0.425) for nonbinary codes.

2) Can we improve [17], [27] to prove better lower
bounds on the redudancy of t-DRGP codes?
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