
On Coding for an Abstracted Nanopore Channel for
DNA Storage

Reyna Hulett
Stanford University

450 Serra Mall, Stanford, CA 94305
Email: rmhulett@stanford.edu

Shubham Chandak
Stanford University

450 Serra Mall, Stanford, CA 94305
Email: schandak@stanford.edu

Mary Wootters
Stanford University

450 Serra Mall, Stanford, CA 94305
Email: marykw@stanford.edu

Abstract—In the emerging field of DNA storage, data is
encoded as DNA sequences and stored. The data is read out
again by sequencing the stored DNA. Nanopore sequencing is a
new sequencing technology that has many advantages over other
methods; in particular, it is cheap, portable, and can support
longer reads. While several practical coding schemes have been
developed for DNA storage with nanopore sequencing, the theory
is not well understood. Towards that end, we study a highly
abstracted (deterministic) version of the nanopore sequencer,
which highlights key features that make its analysis difficult.
We develop methods and theory to understand the capacity of
our abstracted model, and we propose efficient coding schemes
and algorithms.

A full version of this paper is accessible at: https://arxiv.
org/pdf/2102.01839.pdf

I. INTRODUCTION

In the emerging field of DNA storage, data is encoded as
DNA sequences and stored; the data can be read back by
sequencing the stored DNA. This technology promises high
storage density and stability, as well as efficient duplication
of data and random access using PCR-based technologies;
we refer the reader to [1] and the references therein for an
excellent overview.

Both the synthesis and sequencing processes are noisy, and
as a result the data must be encoded before the synthesis stage
to ensure accurate data recovery. Prior work has studied meth-
ods for encoding data in order to protect it against (aspects of)
the noise introduced by these processes, for example [2]–[9].

In this work, we focus on one particular stage of this noisy
process, the nanopore sequencer. Nanopore sequencing—and
in particular the MinION sequencer developed by Oxford
Nanopore Technologies [10]—is an emerging sequencing tech-
nology. While initial works in DNA storage used Illumina se-
quencing, nanopore sequencing has been attracting interest due
to its portability, low cost, and ability to support significantly
longer reads than Illumina.

At a high level, the nanopore sequencer works as follows.
A single strand of DNA is passed through a pore, leading to
variations in a current readout. The pore can hold k nucleotides
(for our purposes, a nucleotide is just a value in {A,C,G, T})
at a time; in practice k is about six. The value of the current
readout depends on which nucleotides are in the pore. For
example, if the strand of DNA is ATGCCAGT, and the pore
sees the sub-strand ATGC, it will output one current reading.

k
ba

se
s

in
th

e
po

re
at

a
tim

e

T
G
A
C
C
G
T
A

time

current

Fig. 1. High-level view of the nanopore sequencer.

As the strand is passed through the pore, the contents of the
pore will shift, say from ATGC to TGCC, then to GCCA,
and so on. This will result in a change in the current reading,
according to some function f that maps k-mers to current
levels. The process is depicted in Figure 1. Given the current
readout, the goal is to recover the original DNA sequence.

This channel is difficult to analyze, for several reasons. First,
the output at any given time depends on k > 1 bases, and
so there is inter-symbol interference. Second, there may be
collisions in the output: two different pore contents may lead
to similar current readouts. Third, the current readout can be
noisy. Fourth, the amount of time that each k-mer spends in
the pore can vary, and sometimes never occur at all, leading
to synchronization errors in the output.

Due to this complexity, typical basecallers (that is, methods
for recovering the original sequence from the current read-
outs) rely on machine learning techniques [11]–[13]. This is
effective in practice, but difficult to get a theoretical handle
on. While there are several practical approaches to error
correction for nanopore sequencing in DNA storage [5]–[9],
the theoretical limits of this channel are not well understood.
The work [14] proposed a probabilistic model of the nanopore
sequencer and developed bounds on the capacity of the
resulting channel. As discussed more below, their model is
stochastic and captures the binary deletion channel.

In this work, we take a different approach to developing
a theoretical understanding of the nanopore sequencer. We

2465978-1-5386-8209-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
In

fo
rm

at
io

n
Th

eo
ry

 (I
SI

T)
 |

 9
78

-1
-5

38
6-

82
09

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IS

IT
45

17
4.

20
21

.9
51

82
36

Authorized licensed use limited to: Stanford University. Downloaded on September 16,2021 at 21:35:47 UTC from IEEE Xplore. Restrictions apply.

develop a highly abstracted, deterministic model, which high-
lights the first two sources of noise mentioned above: the inter-
symbol interference, and the possible collisions when multiple
k-mers lead to similar current outputs. We develop methods
and theory to understand the capacity of our abstracted chan-
nel, and we propose efficient coding schemes and algorithms.

Our goal in this work is to open up a research direction
towards a theoretical understanding of the nanopore sequencer.
We fully acknowledge that our work is not yet practical;
in particular our abstracted channel does not include noise
in the current readings or synchronization errors that can
arise from variable pore dwelling times. It is our hope that
a solid understanding of our abstracted channel can then be
combined with (much more well-studied) theories of coding
for substitution and synchronization errors, in order to make
progress on a more realistic channel model.

a) Contributions: First, we propose a novel abstraction
of the nanopore sequencer, which highlights the inter-symbol
interference and the prospect of collisions. This abstraction is
simple enough that it is tractable, yet complex enough that
it (i) captures some fundamental properties of the nanopore
sequencer, and (ii) already gives rise to extremely interesting
problems from a theoretical perspective. We hope that our
abstraction will lead to future work in this area.

Second, in Section III, we develop an algorithm to determine
the capacity of this channel. The algorithm is inefficient as
pore size k grows, but we can use it for small k.

Third, in Section IV, we develop simple bounds on the
“best” and “worst” capacity for an arbitrary pore size k (where
“best” and “worst” refer to the choice of the map from k-mers
to current readouts). We use our aforementioned algorithm to
compare these bounds to the exact values for k = 2.

Fourth, in Section V, we develop efficient coding schemes
for our abstracted channel. In particular, we develop a scheme
that achieves rate Cf−ε, where Cf is the capacity, that requires
preprocessing time O

(
1
ε · 4

1/ε
)
, and has encoding/decoding

time O(n), where the O(·) hides a constant that depends on f .
We also present an efficient coding scheme that improves over
the “naive” one with high probability, where the probability is
over a random map from k-mers to current readouts.

b) Related Work: DNA storage has been around as an
idea since the 1960’s, and there has been renewed interest in
the past decade, starting with the works [2], [15]. We refer
the reader to [1] for an excellent survey. Most works on DNA
storage have focused on other sequencing technologies like
Illumina, but recently there have been several which devel-
oped practical DNA storage systems for nanopore sequencers,
including [5]–[9]. All of these works developed practical
coding schemes for DNA storage with a nanopore sequencer,
but did not explicitly model the sequencer or analyze the
theoretical limits. The capacity of DNA storage systems has
been studied theoretically [16]–[20], but usually without regard
to the unique features of the nanopore sequencer.

Notably, the work [21] does perform a theoretical analysis
of the nanopore sequencer. However, they focus on a different
type of error than the present work: the variable amount of

time each k-mer spends in the pore. Specifically, they analyze
the effect of errors in the lengths of runs of identical bases
(without explicitly modeling the current readout), and analyze
the sample complexity rather than the capacity.

Perhaps the work most related to ours is that of [14],
who also developed a model of the nanopore sequencer
and studied the capacity of their model. In particular, they
give a multi-letter capacity formula for their channel, and
derive computable bounds for the capacity, in terms of a
Markov transition matrix P that captures the probability of
transitioning from one k-mer to the next in the pore. Our
work complements that work by focusing on different aspects
of the problem. First, the model in [14] is stochastic, while
ours is deterministic. As a result, they take an information-
theoretic approach, while our approach is more combinatorial.
Second, their model includes the possibility that k-mers might
get dropped; in particular, the binary deletion channel appears
as one part of their model. Since understanding the capacity
of the binary deletion channel is a difficult open problem, this
makes their problem extremely difficult. In contrast, we ignore
this aspect to more cleanly focus on the effects of the inter-
symbol interaction and collisions between k-mers. Third, that
work focuses on the nanopore sequencer for general appli-
cations (not necessarily for DNA storage), and in particular
does not consider efficient coding schemes. Finally, that work
derives bounds on the channel capacity for a particular choice
of (a stochastic analog of) the map f from k-mers to current
levels, derived from experimental data. In contrast, we are
interested in results for any f , and in particular for the best
and worst such functions f . While the former direction is
obviously of immediate interest for existing technology, it is
our hope that understanding how the capacity of the channel
changes with f could perhaps guide how nanopore technology
is developed in the future. We note that this is still an emerging
area and the technology is evolving; see [22] for an overview.

Finally, we note that our problem is related to coding for
constrained systems [23]. In particular, for a fixed mapping f ,
the set of possible current readouts forms a constrained system
(ignoring the question of which DNA strands give rise to
which current readouts). Thus, Algorithm 1 for computing the
capacity could instead have been written using the approach
of [23]: using the spectral radius of an appropriate irreducible
deterministic matrix, rather than the transfer matrix. Addition-
ally, the coding scheme of Theorem 5 is similar to a block
encoder as described in [23], with the added complication of
choosing the appropriate DNA sequences to create the current
readout blocks.

II. ABSTRACT MODEL OF NANOPORE SEQUENCER

In this section we formalize our model. As mentioned
above, our goal is to focus on (i) inter-symbol interference, and
(ii) the possibility of different k-mers producing similar current
readouts. With that in mind, we propose a very simple model
for the nanopore sequencer. As input, we take an encoded
string s0s1 · · · sn−1 ∈ {A,C,G, T}n. This is transformed into
a sequence of k-mers according to a sliding window, to obtain

2466
Authorized licensed use limited to: Stanford University. Downloaded on September 16,2021 at 21:35:47 UTC from IEEE Xplore. Restrictions apply.

(s0 · · · sk−1), (s1 · · · sk), . . . , (sn−k · · · sn−1). Finally, each of
these k-mers is mapped to one of b distinct current levels,
according to a mapping f : {A,C,G, T}k → {0, 1, . . . , b−1}.
This mapping f defines the channel.

Definition 1 (Abstract Nanopore Channel): Given a mapping
f : {A,C,G, T}k → {0, 1, . . . , b− 1} from k-mers to current
levels, let f∗ : {A,C,G, T}∗ → {0, 1, . . . , b − 1}∗ represent
the mapping from DNA strands to their current readout:

f∗(s0 · · · sn−1) = f(s0 · · · sk−1) ◦ · · · ◦ f(sn−k · · · sn−1).

We call f∗ the abstract nanopore channel given by f .
Given a mapping f , we are interested in the capacity Cf

(in bits-per-base), which we define as follows.
Definition 2: Let f : {A,C,G, T}k → {0, 1, . . . , b − 1}.

The capacity Cf of channel f∗ is defined as

Cf = lim
n→∞

log |{c | ∃s ∈ {A,C,G, T}n s.t. f∗(s) = c}|
n

.

Observe that if S ⊆ {A,C,G, T}n is a collection of strings
so that f∗(s) are all distinct for s ∈ S, then by assigning
a different message to each s ∈ S, we can communicate
perfectly (if not necessarily efficiently) across the channel.

III. COMPUTING THE CAPACITY

Our first contribution is an algorithm (Algorithm 1 below)
that computes Cf , given f . The basic idea is to consider a
finite automaton on the alphabet {0, 1, . . . , b− 1} that accepts
exactly those current readouts that can be generated by some
DNA strand; then we use the transfer matrix method [24], [25]
for counting accepting paths in that finite automaton.

Formally, an Nondeterministic Finite Automaton (NFA) is
a tuple (Q,Σ,∆, Q0, F) where Q is the set of states, Σ is
the alphabet, ∆ : Q × Σ → 2Q is the transition function,
Q0 ⊆ Q is the set of initial states, and F ⊆ Q is the set of
accepting states. Likewise, a Deterministic Finite Automaton
(DFA) is a tuple (Q,Σ, δ, q0, F), defined analogously except
that δ : Q×Σ→ Q is the transition function and there is only
a single initial state q0 ∈ Q.

We consider the NFA M and the DFA M ′ described in
Algorithm 1. The NFA M has states indexed by strings in
{A,C,G, T}k−1 and alphabet Σ = {0, 1, . . . , b − 1}, the
current levels. Given a state (s0 · · · sk−2) and an input current
level i ∈ Σ, the NFA M can transition to any other state
of the form (s1 · · · sk−1) so that f(s0s1 · · · sk−1) = i. All
states are accepting states. By construction, a current readout
c ∈ Σn−k+1 can be an output f∗(s0s1 · · · sn−1) of the channel
if and only if c is accepted by M . The DFA M ′ accepts exactly
the same strings as M , and is obtained using the classic subset
construction [26], such that each state of the DFA corresponds
to a subset of the states of the NFA.

The transfer matrix method is a method for obtaining a
generating function gf (z) for the number of strings accepted
by a given DFA. In more detail, given the transfer matrix T
for the automaton (so that Ti,j is the number of transitions
from state i to state j), the transfer matrix method gives
an expression for a function gf (z) (in terms of T), so that

gf (z) =
∑∞
m=0Nmz

m, so that Nm is the number of strings
of length m accepted by the finite automaton. We will use the
notation [zm]gf (z) to denote the coefficient Nm on zm.

Lemma 1 (Transfer Matrix Method [24]): Given a DFA
D = (Q,Σ, δ, q0, F), let D′ = (Q∪qF ,Σ∪λ, δ′, q0, {qF }) be
obtained from the DFA D by adding a new state qF and new
symbol λ, along with λ-transitions from each of the accepting
states of D to qF . Let T be the transfer matrix of D′, where
Ti,j is the number of transitions from state i to state j, with
q0 being state 0 and qF being state |Q|. Then the generating
function for D′ is

gf (z) = (−1)|Q| × det(I − zT : |Q|, 0)

z det(I − zT)

where (I − zT : |Q|, 0) is the minor of index |Q|, 0, i.e., the
matrix I − zT with the |Q|th row and 0th column deleted.

In our case, the number of accepted strings [zm]gf (z) is the
number of current readouts of length m = n− k+ 1 that can
be generated by some DNA strand of length n.

From gf (z), we can derive the asymptotic behavior of the
number of possible current readouts required to determine Cf .
As shown in the proof below, it is related to the smallest
positive singularity of gf (z).

Algorithm 1 Calculate Cf
input: window size k, # of current levels b, mapping f

1: Q← {A,C,G, T}k−1

2: Σ← {0, 1, . . . , b− 1}
3: NFA M ← (Q,Σ,∆, Q,Q) where

∆(s0 · · · sk−2, i) = {s1 · · · sk−1 | f(s0 · · · sk−1) = i}
4: DFA M ′ ← (2Q,Σ, δ, q0, F) via subset construction
5: M ′ ← (2Q ∪ {qF },Σ ∪ {λ}, δ′, q0, {qF }) where

δ′(q, σ) =


δ(q, σ) q ∈ 2Q and σ 6= λ

qF q ∈ F and σ = λ

∅ otherwise
6: T ← transfer matrix of M ′, i.e.,

Ti,j = number of transitions from state i to state j
7: gf (z)← (−1)2|Q| × det(I−zT :2|Q|,0)

z det(I−zT)

8: r ← smallest positive root of the denominator of gf (z)
9: return log 1

r

Theorem 2: Given a mapping f : {A,C,G, T}k →
{0, 1, . . . , b− 1}, Algorithm 1 computes Cf .

Proof: First, observe that the NFA M accepts exactly
those current readouts that can be generated by some DNA
strand under the mapping f . For any current readout ac-
cepted by M , consider an arbitrary accepting path P =
s0 · · · sk−2, s1 · · · sk−1, . . . , sm · · · sm+k−2. By construction,
the DNA strand s0 · · · sm+k−2 generates that current readout.
In the other direction, for any DNA strand s0 · · · sm+k−2, the
path P is an accepting path for f∗(s0 · · · sm+k−2).

The DFA obtained from the subset construction accepts the
same current readouts as M [26]. Then we apply Lemma 1 to
obtain the generating function gf (z), which counts the number
of current readouts accepted by M .

2467
Authorized licensed use limited to: Stanford University. Downloaded on September 16,2021 at 21:35:47 UTC from IEEE Xplore. Restrictions apply.

Finally, we need to extract the asymptotic behavior of
[zm]gf (z). Since gf (z) is a generating function with non-
negative coefficients, the Exponential Growth Formula [25]
tells us that lim supm→∞ ([zm]gf (z))

1/m
= 1/r where r is

the smallest positive singularity of gf (z). Note that the number
of possible current readouts is monotonically non-decreasing
in m, so the lim sup is equal to the limit. Therefore, based
on Definition 2, and the fact that the length of the current
readouts for DNA strands of length n is m = n− k + 1,

Cf = lim
n→∞

log
(
[zn−k+1]gf (z)

)
n

= lim
n→∞

n− k + 1

n
log
(
[zn−k+1]gf (z)

)1/(n−k+1)

= log
1

r

Unfortunately, the DFA obtained from the subset construc-
tion has 24k−1

states, so the runtime of Algorithm 1 is
exponential in the problem size. It is possible that calculating
Cf may be hard, because computing such a statistic for
NFAs in general is PSPACE-complete [27]. Specifically, even
determining whether Cf = log b for b = 2 or 4 (in which case
Cf = log b is the best possible capacity over all mapping
functions f ; see Lemma 4) is equivalent to determining
whether the corresponding NFA is universal (i.e., accepts every
string in the alphabet). We make this precise in the following
lemma, the proof of which can be found in the full version.

Lemma 3: For b = 2 or 4 and any f , Cf is equal to log b
if and only if every current readout in {0, 1, . . . , b− 1}∗ can
be generated by some DNA strand.

Since the universality problem for NFAs is PSPACE-
complete, an efficient algorithm would have to in some way
leverage the highly structured nature of the NFAs correspond-
ing to abstract nanopore channels.

IV. BOUNDING THE CAPACITY

The above approach for computing Cf exactly given a map-
ping f is only practical for small window sizes k. However, we
can derive some general bounds that apply to any mapping f .
In particular, we are interested in the worst-case capacity (i.e.,
minf Cf), as well as the best-case capacity (i.e., maxf Cf).

However, note that if the mapping f is unrestricted, then
minf Cf = 0 — consider f(·) = 0. Therefore, in this section,
we will focus on balanced mappings f . These are mappings
so that |f−1(i)| is the same for all i ∈ {0, 1, . . . , b− 1}.

Lemma 4: For a given window size k and with b distinct
current levels, we have the following bounds on Cf :

1) maxf Cf = min(log(b), 2)

2) minf Cf ≥ log(b)
k

3) minf Cf ≤ 1 when b ≤ 2k

Proof: We defer the proofs of 1) and 3) to the full version.
For 2), regardless of the mapping f , we can always generate
at least bbn/kc distinct current readouts: any choice of desired
0th, kth, 2kth, etc. current readings can be obtained because

1 2
0

1

2

. . .
2k 2k+1

. . .
4k

b

bi
ts

-p
er

-b
as

e

Fig. 2. Bounds on the value of Cf . The dashed blue line is equal to maxf Cf .
The value of minf Cf must lie somewhere in the red shaded area.

1 2 4 8 16
0

1

2

b

bi
ts

-p
er

-b
as

e

Fig. 3. For k = 2, the true maxf Cf (dashed blue), minf Cf (solid red),
and EfCf (dotted green), superimposed over our bounds from Figure 2.

they correspond to non-overlapping length-k windows. Thus
minf Cf ≥ limn→∞

log bbn/kc

n = log(b)
k .

We plot these bounds in Figure 2. One might wonder about
the exact minf Cf , and also where Cf lies for a “typical”
mapping f . Using Algorithm 1, we can exactly calculate Cf
for every balanced mapping f with k = 2; the empirical
maximum, minimum, and average Cf are shown in Figure 3.

The bounds on minf Cf are curious. Our theoretical bounds
on minf Cf are not tight, but the k = 2 results suggest there
may be some “bumpiness” in the true bound. Also based
on the k = 2 results, it appears that random (balanced)
mappings are closer to the best-case scenario than the worst-
case. Section V-B illustrates one coding scheme that takes
advantage of a property shared by most random mappings for
b = 2, and we may hope there exist more general coding
schemes that perform well for random mappings.

V. CODING SCHEMES

In the proof of Lemma 4, we observed that given a mapping
f with window size k and b distinct current levels, we can
achieve a rate of log(b)

k by coding only on the 0th, kth, 2kth,
etc. current readings. Here, we propose two generalizations
of this trivial scheme to improve the rate with additional
preprocessing based on the mapping f .

2468
Authorized licensed use limited to: Stanford University. Downloaded on September 16,2021 at 21:35:47 UTC from IEEE Xplore. Restrictions apply.

A. “Block” Encoding

Instead of coding on non-overlapping windows of length
k, each of which maps to one of b current readings, we
may instead choose a block length ` ≥ k and code on non-
overlapping blocks of length `. This requires precomputing an
alphabet Σ(`) ⊆ {A,C,G, T}` such that each DNA strand
in Σ(`) generates a unique current readout, and together they
generate every possible current readout of length ` − k + 1
permitted by the mapping f . Provided our desired strand
length n is divisible by `, this coding scheme obtains the rate

Cf (`) =
log |{c | ∃s ∈ {A,C,G, T}` s.t. f∗(s) = c}|

`
,

which equals log |Σ(`)|
` . Since lim`→∞ Cf (`) = Cf , we can

get arbitrarily close to capacity by picking ` sufficiently large.
Theorem 5: Given a mapping f , for all ε > 0, there is a

coding scheme achieving rate Cf−ε with linear time encoding
and decoding that requires preprocessing time O(1

ε · 41/ε),
where the O(·) hides constants that may depend on f .

Proof: We will exhibit such a scheme by choosing an
appropriate block length `. Let |Σ(`)| be the number of distinct
current readouts that can be generated from DNA strands of
length `. Equivalently, |Σ(`)| = [z`−k+1]gf (z) is the number
of current readouts of length `− k + 1 accepted by the NFA
M constructed by Algorithm 1. Because gf (z) is a counting
function for a regular language, and because [z`−k+1]gf (z) is
non-decreasing in `, the asymptotic behavior of [z`−k+1]gf (z)
has a simple form ([25], Theorem V.3):

|Σ(`)| = [z`−k+1]gf (z) = Θ(Π(`− k + 1)(2Cf)`−k+1)

where Π(x) is a polynomial.
Therefore, there must exist some constants `0 and C,

depending only on the mapping f , such that for all ` ≥ `0, we
have |Σ(`)| ≥ C(2Cf)`−k+1. Thus, provided that we choose
` ≥ max

(
`0,

Cf ·(k−1)−logC
ε

)
, we see that

Cf (`) =
log |Σ(`)|

`
≥

log
(
C(2Cf)`−k+1

)
`

= Cf −
Cf · (k − 1)− logC

`
≥ Cf − ε.

Therefore, to achieve rate Cf − ε, we should choose ` propor-
tional to 1/ε, with the constants depending only on f .

Given the block length `, we now describe how to compute
the alphabet Σ(`). We will construct an array E containing the
alphabet Σ(`) and a hash table D mapping current readouts
of length `− k + 1 to the index in E of the DNA strand that
generates that readout.

For each DNA strand s of length `, compute f∗(s). If f∗(s)
has not yet been added to the hash table D, append s to the
end of array E and map f∗(s) to the appropriate index. This
preprocessing takes O(`) time for each of 4` DNA strands,
for a total of O(` · 4`) = O(1

ε · 4
1/ε).

Encoding and decoding are straightforward: Convert the
message to base |Σ(`)| and use array E to map each digit to
a block of length `. Similarly, decode each block of `− k+ 1

current readings using the hash table D (skipping the k − 1
readings that straddle each pair of adjacent blocks).

As an example, consider the case when b = 2 or 4 and
f is any mapping with best-case capacity, Cf = log b. Per
Lemma 3, this implies that every current readout can be
generated by some DNA strand, so |Σ(`)| = b`−k+1 and
Cf (`) = (`−k+1) log(b)

` . In this case, we can calculate the
dependence of ` on ε exactly. For Cf (`) ≥ Cf − ε, we need

` ≥ (k − 1) log(b)

ε
.

For instance, when k = 2, b = 2, and ε = 0.1, we would
require ` = 10.

B. “Greedy” Encoding
Instead of changing the lengths of the blocks used in the

trivial scheme, we may relax the “non-overlapping” require-
ment. This may not always be possible, depending on the
mapping f . In the worst case, it is possible that once you
have fixed the first k bases, the next k − 1 current readings
may also be fixed—for instance, if the first k bases are all A,
and all windows starting with A map to the same current level.
However, this bad case shouldn’t happen for most mappings.

Consider the case of b = 2 current levels, and suppose
that for some length 1 ≤ ` < k, for every “prefix” p ∈
{A,C,G, T}`, at least one window in f−1(0) and at least one
window in f−1(1) starts with that prefix. Then it is possible
to have every (k − `)th current reading code for one binary
symbol independently. This would give us a rate of 1

k−` rather
than 1

k . Such an event is not too unlikely with a random
mapping f . This is formalized in the following lemma, the
proof of which may be found in the full version.

Lemma 6: Given a random mapping f with b = 2 distinct
current levels and a length 1 ≤ ` < k, f admits the coding
scheme described above with rate 1

k−` with probability at least

1− 4` · 2 ·
(

1
2

)4k−`

. Furthermore,
1) we can determine whether such a scheme exists for a

given f and ` in O(4k).
2) we can find the maximum ` for which such a scheme

exists for a given f in O(k4k).
3) we can implement such a scheme with O(k4k) prepro-

cessing and linear encoding and decoding.
For example, with k = 6, ` = 4, we see that we can obtain

a rate of 1/2 (compared to the trivial 1/6) with probability at
least 1− 1

128 .

VI. CONCLUSION

We have initiated a theoretical study of coding for a highly
abstracted version of the nanopore sequencer for DNA storage.
We have provided algorithms and bounds for understanding
the capacity, and we have given efficient coding schemes.
However, we view our work as the tip of an iceberg. First, even
for this abstracted model, much remains open. Can one derive
better bounds on the capacity, or compute it efficiently for,
say, k = 6? Second, we hope that our insights will generalize
to more practical models, including with substitution and
synchronization errors.

2469
Authorized licensed use limited to: Stanford University. Downloaded on September 16,2021 at 21:35:47 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] L. Ceze, J. Nivala, and K. Strauss, “Molecular digital data storage using
DNA,” Nature Reviews Genetics, vol. 20, no. 8, pp. 456–466, 2019.

[2] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust,
B. Sipos, and E. Birney, “Towards practical, high-capacity, low-
maintenance information storage in synthesized DNA,” Nature, vol. 494,
no. 7435, pp. 77–80, 2013.

[3] M. Blawat, K. Gaedke, I. Huetter, X.-M. Chen, B. Turczyk, S. Inverso,
B. W. Pruitt, and G. M. Church, “Forward error correction for DNA data
storage,” Procedia Computer Science, vol. 80, pp. 1011–1022, 2016.

[4] Y. Erlich and D. Zielinski, “DNA Fountain enables a robust and efficient
storage architecture,” Science, vol. 355, no. 6328, pp. 950–954, 2017.

[5] S. H. T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and error-free
DNA-based data storage,” Scientific reports, vol. 7, no. 1, pp. 1–6, 2017.

[6] L. Organick, S. D. Ang, Y.-J. Chen, R. Lopez, S. Yekhanin,
K. Makarychev, M. Z. Racz, G. Kamath, P. Gopalan, B. Nguyen et al.,
“Random access in large-scale DNA data storage,” Nature biotechnol-
ogy, vol. 36, no. 3, p. 242, 2018.

[7] H. H. Lee, R. Kalhor, N. Goela, J. Bolot, and G. M. Church,
“Terminator-free template-independent enzymatic DNA synthesis for
digital information storage,” Nature communications, vol. 10, no. 1, pp.
1–12, 2019.

[8] R. Lopez, Y.-J. Chen, S. D. Ang, S. Yekhanin, K. Makarychev, M. Z.
Racz, G. Seelig, K. Strauss, and L. Ceze, “DNA assembly for nanopore
data storage readout,” Nature communications, vol. 10, no. 1, pp. 1–9,
2019.

[9] S. Chandak, J. Neu, K. Tatwawadi, J. Mardia, B. Lau, M. Kubit,
R. Hulett, P. Griffin, M. Wootters, T. Weissman et al., “Overcoming
high nanopore basecaller error rates for DNA storage via basecaller-
decoder integration and convolutional codes,” in ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2020, pp. 8822–8826.

[10] M. Jain, H. E. Olsen, B. Paten, and M. Akeson, “The Oxford Nanopore
MinION: delivery of nanopore sequencing to the genomics community,”
Genome biology, vol. 17, no. 1, pp. 1–11, 2016.

[11] R. R. Wick, L. M. Judd, and K. E. Holt, “Performance of neural network
basecalling tools for Oxford Nanopore sequencing,” Genome biology,
vol. 20, no. 1, pp. 1–10, 2019.

[12] “Flappie: Flip-flop basecaller for Oxford Nanopore reads,” https://github.
com/nanoporetech/flappie, last accessed: January 2021.

[13] “Scrappie: A technology demonstrator for the Oxford Nanopore Re-
search Algorithms group,” https://github.com/nanoporetech/scrappie, last
accessed: January 2021.

[14] W. Mao, S. N. Diggavi, and S. Kannan, “Models and information-
theoretic bounds for nanopore sequencing,” IEEE Transactions on
Information Theory, vol. 64, no. 4, pp. 3216–3236, 2018.

[15] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital infor-
mation storage in DNA,” Science, vol. 337, no. 6102, pp. 1628–1628,
2012.

[16] R. Heckel, I. Shomorony, K. Ramchandran, and D. N. C. Tse, “Fun-
damental limits of dna storage systems,” in 2017 IEEE International
Symposium on Information Theory (ISIT), 2017, pp. 3130–3134.

[17] M. Kovačević and V. Y. F. Tan, “Codes in the space of multisets—coding
for permutation channels with impairments,” IEEE Transactions on
Information Theory, vol. 64, no. 7, pp. 5156–5169, 2018.

[18] J. Sima, N. Raviv, and J. Bruck, “On coding over sliced information,”
in 2019 IEEE International Symposium on Information Theory (ISIT),
2019, pp. 767–771.

[19] I. Shomorony and R. Heckel, “Capacity results for the noisy shuffling
channel,” in 2019 IEEE International Symposium on Information Theory
(ISIT). Institute of Electrical and Electronics Engineers Inc., 7 2019.

[20] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding over
sets for dna storage,” IEEE Transactions on Information Theory, vol. 66,
no. 4, pp. 2331–2351, 2020.

[21] A. Magner, J. Duda, W. Szpankowski, and A. Grama, “Fundamental
bounds for sequence reconstruction from nanopore sequencers,” IEEE
Transactions on Molecular, Biological and Multi-Scale Communications,
vol. 2, no. 1, pp. 92–106, 2016.

[22] Y. Goto, R. Akahori, I. Yanagi, and K.-i. Takeda, “Solid-state nanopores
towards single-molecule DNA sequencing,” Journal of human genetics,
vol. 65, no. 1, pp. 69–77, 2020.

[23] B. Marcus, R. Roth, and P. Siegel, An Introduction to Coding for
Constrained Systems, 2001.

[24] A. Aydin, L. Bang, and T. Bultan, “Automata-based model counting for
string constraints,” in Computer Aided Verification, D. Kroening and
C. S. Păsăreanu, Eds. Cham: Springer International Publishing, 2015,
pp. 255–272.

[25] P. Flajolet and R. Sedgewick, Analytic Combinatorics. Cambridge
University Press, 1 2009.

[26] M. O. Rabin and D. Scott, “Finite automata and their decision problems,”
IBM Journal of Research and Development, vol. 3, no. 2, pp. 114–125,
1959.

[27] N. Rampersad, J. Shallit, and Z. Xu, “The computational complexity
of universality problems for prefixes, suffixes, factors, and subwords
of regular languages,” CoRR, vol. abs/0907.0159, 2009. [Online].
Available: http://arxiv.org/abs/0907.0159

2470
Authorized licensed use limited to: Stanford University. Downloaded on September 16,2021 at 21:35:47 UTC from IEEE Xplore. Restrictions apply.

