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ABSTRACT

Engineering  designers currently use downstream
information about product and component functions to facilitate
ideation and concept generation of analogous products. These
processes, often called Function-Based Design, can be reliant on
designer definitions of product function, which are inconsistent
from designer to designer. In this paper, we employ supervised
learning algorithms to reduce the variety of component functions
that are available to designers in a design repository, thus
enabling designers to focus their function-based design efforts
on more accurate, reduced sets of potential functions. To do this,
we generate decisions trees and rules that define the functions of
components based on the identity of neighboring components.
The resultant decision trees and rulesets reduce the number of
feasible functions for components within a product, which is of
particular interest for use by novice designers, as reducing the
feasible functional space can help focus the design activities of
the designer. This reduction was evident in both case studies: one
exploring a component that is known to the designer, and the
other looking at defining function of an unrecognizable
component. The work presented here contributes to the recent
popularity of using product data in data-driven design
methodologies, especially those focused on supplementing
designer cognition. Importantly, we found that this methodology
is reliant on repository data quality, and the results indicate a
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need to continue the development of design repository data
schemas with improved data consistency and fidelity. This
research is a necessary precursor for the development of
function-based design tools, including automated functional
modeling.

INTRODUCTION

Engineering designers are faced with solving multi-faceted
global design problems and increasingly complex modern
product design. In recent decades, design researchers are
focusing on DfX areas such as designing for reduced
environmental impact, full global market acceptance, optimized
assembly, and end-of-life processing. Designers are challenged
to meet design objectives through the use of memory, previous
experience, and expertise, supplemented by external design
tools. However, research finds that novice design engineers lack
confidence in designing to meet complex DfX goals [1,2]. Today,
there is a global push for creating multi-disciplinary design
teams to supplement expertise and improve design innovation
[3,4]. No longer is the designer title limited to classically trained
engineers, but can now include medical, humanitarian,
environmental, or trend-analysis professionals, to name a few.
While being multi-disciplinary is important (as combining
professional expertise results in improved designs), some
foundational design principles, like function-based design, may
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not be in the wheelhouse of these designers or novice design
engineers, thus rendering these teams more reliant on other
design tools.

Foundational design is rooted in designing tools, systems,
and products that serve a purpose by completing functions [5].
In this regard, we define function as a critical basis of design.
Function in design, specifically through the use of functional
modeling, is a fundamental step in the development of new
concepts and design ideas [6]. Functional modeling is a tool that
is used to identify the functional interactions that occur within a
concept. One potential benefit of functional modeling is that
designers can use them to inspire creative ways to solve
functional needs [7]. However, even in function-based
engineering design, there is subjectivity in how to define a
function or functional model. Functional models for the same
design, but created by different designers, often are widely
different [8].

Many previous works have looked into rectifying the
subjectivity of function-based design. In 2000, Stone and Wood
introduced standardized vocabulary to improve the readability,
repeatability, and understanding of functional modeling [8]. In
the following year, Hirtz et al. reconciled similar functional
vocabulary methodologies into what is known as the functional
basis [9]. The success of this research helped influence the
creation of objective vocabularies to describe components,
called the component basis terms [10]. Research since then has
expanded the functional basis to include biological functions
[11]. These works have undoubtedly reduced the subjectivity in
function-based design by formalizing the vocabulary necessary
for using function during the design process. However, when
considering both the increasing complexity of design and the
potential for less-experienced designers working on engineering
design activities, we still observe the subjective assignment of
functional basis terms to components.

Novice designers may be unaware of the nuanced
differences between component functions; for example, the
functions “couple” versus “secure.” Additionally, designers can
be unfamiliar with components and the functions those
components can perform. The assignment of functions to
components is commonly thought to be an objective exercise,
but can become subjective even when using the standardized
functional basis terms. There is a need to explore how to limit
the subjective assignment of component functions. In doing so,
designers can make smarter decisions about designing for
function.

In this paper, we use design repository data in conjunction
with data mining techniques to limit the number of functions a
component is likely to perform by considering both the
components themselves and their neighboring components in the
product assembly. We suggest that the methods presented here
can limit a designer to only select from feasible, ‘correct’
functions while avoiding having to consider irrelevant ‘wrong’
functions. Providing a set of correct functions is relevant
considering designers may not be familiar with the breadth of
functions a component can perform or with a component itself,

or the designer may lack significant experience in the function-
based design domain.

PREVIOUS RESEARCH

Design repositories facilitate the use of design data in
sophisticated methodologies and exist to enhance the availability
of design knowledge [12,13]. Currently, design repositories
house product information such as a bills of materials, cost data,
CAD models, manufacturing processes, functional information,
assembly data, and other DfX-relevant data. However, to
encourage wider use of design repositories in both industry and
research, efforts have been made to standardize product data
schemas and the searchability of design repositories [14,15].
This research led to the creation of extensively peer-reviewed
design repositories and the prevalence of repository data used in
research [2,16,17].

Repository data has been used to create tools and
methodologies to influence automated concept generation.
Rajagopalan et al. created assembly models from repository data
to support concept generation [18]. Bryant et al. explored
computational techniques to automate concept generation using
repository data [19]. The following year, Bryant et al. validated
this methodology by testing the automated concept generation
tool with undergraduate researchers [20].

Recent research in repository use has focused on solving
modern design challenges related to the DfX areas of
environmental and social sustainability. In 2012, Gilchrist et al.
used repository data to understand if innovative products were
less environmentally friendly [21]. This research influenced the
exploration of eco-labeling practices of design repository
products [22]. Soria et al. introduced a function-human design
method for identifying human error during the functional
decomposition of a product [23]. Later, the function—human
error design method (FHEDM) was tested using data from 148
products sourced from a design repository [24]. Though this
work is relevant, we suggest the future of repository data
‘learning’ is going to stem from data mining techniques rather
than product comparison or research validation.

In product design research (outside of the use of repository
data), there have been extensive efforts to use data mining. Here
we highlight the area of cellular phone design to showcase a
concise representation for data mining in product design. Tucker
and Kim used decision trees to create 46 feasible cellular phone
design concepts from 40,000 simulated customer responses. In
this work, feasibility is measured by a profitability approach
[25]. Tucker and Kim also used text mining and regression to
characterize trends in cellphone design space. In 2011, Bae and
Kim used association rules and decision trees to define the
feasible design space of future successful cellphone design based
on customer data [26]. Recently, Zhan et al. used association rule
mining to identify the correlation between customer preference
and essential phone features, thus again highlighting feasible
areas of cellphone design improvement [27]. Other product
design domains follow a similar progression of data-driven
design research. However, we observe that there is an
overabundance of research using generated data and customer
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data, and an under-representation of product data in data-driven
product design research. Only recently has product data, sourced
from a design repository, been used in data-mining-based
product design research. Thus, we suggest there is a gap in
implementing novel methodologies using repository data and
data mining.

Wisthoff et al. leveraged the use of machine learning
methods on repository data through quantifying the
environmental impact of early design decisions using neural
networks [28]. This work provides early evidence of success in
using data mining to advance product design processes while
using repository data versus consumer data. Soria et al. used
association rule mining on repository data to provide an
understanding of how humans interact with product systems and
identifying human errors [29]. Tensa et al. used a similar
methodology to advance techniques in automated functional
modeling [30]. Based on the current state-of-the-art, our work
continues the exploration of using data mining approaches on
repository data to develop novel design methodologies that
facilitate the design process.

RESEARCH MOTIVATION & SCOPE

Here we expand on previous research in data-driven design
to improve the information quality provided to designers to
supplement design cognition, particularly for novice designers or
for designers working in novel DfX applications. Specifically, we
aim to address empirical concerns in establishing repository-
based data-driven design methods, First, there is a struggle to
comprehend bulk data and distill that information into readily
applicable design knowledge. As such, we observed much of
repository-based research focuses on drawing high-level DfX
conclusions from data rather than developing methodologies
directly applicable by designers. Second, though data-driven
design research offers increased utility, we observed that data-
driven design employs the use of user data or generated test data.
Our goal is to improve the utility of data-driven design by
employing only high-fidelity function data from a product
repository.

In this paper, we use Classification based on Association
(CBA) and CART (Classification and Regression Trees) with
repository-based data [31,32]. The results of our work can offer
supplemental knowledge in the form of visual-based decision
trees and hard-and-fast rules that a designer can use to aid in the
identification of component function(s).

We hypothesize that this method can provide insight to
designers and researchers alike by making function-based design
approaches more truthful and useful. The goals of this research
extend beyond just accurately classifying the function of known
and unknown components. Additionally, we are looking to
define and limit the feasible design space of function
identification objectively. Reducing the subjectivity of function-
based design will enable designers to make more informed
design decisions, and to approach the more subjective and
creative elements of the design process with a firmer grip on
functional knowledge.

METHODOLOGY

In this research, we explore limiting the feasible space of
component function identification through two case studies.
Case Study 1 focuses on defining the feasible functional space
of an unknown component, and Case Study 2 defines the feasible
design space for a known component (in this case, a ‘bracket’).
The two case studies are selected to explore conditions in which
a designer is familiar and unfamiliar with an observed
component. Both case studies feature a data subset sourced from
the Oregon State Design Repository [14,16]. Each datum
represents a component, the component’s function(s), and a list
of neighboring components. Both of these case studies employ
the use of CART decision trees and CBA analysis.

Data Selection and Processing

The Oregon State Design Repository (OSDR) [14,16].
features a peer-reviewed data schema that houses function-based
product information, including components, functions, and
assembly connections. In addition to these product data, the
OSDR incorporates Design for Assembly (Df4), Design for
Human Interaction (DfHI), and Design for the Environment
(DfE) data for some products and systems.

The OSDR is selected as our data source due to the external
validation of the functional analysis of products and components.
Function in this context is the designed-for task that a component
performs. The OSDR was created to help define objective
aspects of functional design, which aligns closely with the goals
of this research. One step toward this goal is the OSDR’s
inclusion of using functional and component basis terms.

From the OSDR, we sourced the common name and the
component-basis name for components belonging to 234 unique
products, including 7245 components. In the OSDR,
components are described by a common name, assembly
relationships (to other components), the name of the product in
which they are found, material, function, and component basis.
For the case studies, each datum represents a single component
basis/function basis pair with three assembly-based data
features: the parent, grandparent, and great-grandparent of the
component.

Here we define the component origin as the primary
component we are assessing. As with classic familial hierarchy,
the origin component is connected to the parent component, the
parent component is connected to a grandparent component, and
a grandparent component to a great-grandparent component. It is
important to note that data fidelity decreases as we explore
further into the component connections. In this case, great-
grandparents are often denoted by weakly descriptive basis
names such as ‘assembly’ or ‘system.’ In light of this, we selected
a depth of three familial components as further exploration is
empirically deemed to be uninformative.

From the 7245 components and corresponding component
relation information, we selected two data subsets (based on
component basis terms) that represent a functionally diverse
known component (‘bracket’) and set of unknown components
that are functional defined but otherwise not classified by a
component basis term. The component basis terms are chosen
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instead of the common names as common names are more
subjective. All components in each data set share the same
defined component basis name, while their common names are
widely unique. Table 1 demonstrates a sample data point from
the known ‘bracket’ data set and unknown component data set.

TABLE 1. SAMPLE DATA POINT FROM THE KNOWN AND
UNKNOWN DATASETS

Known Component: Unknown
‘Bracket’ Component
Common Name Button Bracket Controller
Antenna
Cloinoiif B Bracket Unclassified
Name
Function Secure Export
Parent Electric Switch Circuit Board
Grand Parent Housing Assembly
Great Grand
Parent System System

For the two data points shown in Table 1, the bracket can
also be identified by its common name of ‘Button Bracket’ and
the unknown component has a common name of ‘Controller
Antenna’. The common name is not used in this methodology
but is retained for bookkeeping and can offer some insight into
the components that designers are often misidentifying.

The data mining tools described in the next section learn by
finding meaningful splits in the data between the classifier and
correlating data features. In this case, function is the classifier
we aim to define by the familial features of each component.
From a data standpoint, we aim to limit the number of reasonably
feasible functions (the feasible function space), given a set of
designer-identifiable assembly features, that a component can
perform.

Decision Tree and Data Mining Techniques

Here, we use two unique data mining approaches to give
varying styles of rule interpretation that a designer that could use
while exploring a product to define unfamiliar components or
component functions. The algorithms wused are CART
(Classification and Regression Trees) and CBA (Classification
based on Association Rules). The programing language R is used
to implement both algorithms [33].

CART (Classification and Regression Trees) will allow the
designer to quickly visualize the assembly order about the
component of interest (define the parent, grandparent, and great-
grandparent components). The designer can follow the branches
of the decision trees that best match their identification, finally
reaching a node that can narrow down the available functions
that component can perform and the likelihood of each function
from the truncated set. As such, the proposed decision tree and
ruleset has objectively reduced the feasible functional space. In
theory, a designer can use their cognitive ability with other

context clues to evaluate the subjective function of the unknown
or known component.

CART, by default, creates an easy-to-understand diagram
that a designer can follow to converge on a set of feasible
functions for a component. Less visually, The CBA algorithm
supplies direct text rules that can be used identify the feasible
functions of a component. One purpose of using the CBA
algorithm in this approach is to verify the design tree rules
through an unrelated algorithm. In practice, if a user is still
challenged by functional identification via decision trees, they
can move to the hard-and-fast rules developed by the CBA
algorithm. The approaches are chosen because they provide
meaningful results that can directly be useful to the designer.
This research marks our initial efforts to bridge the gap between
information from data mining methodologies and usefulness to
real-world designers.

CART (Classification and Regression Trees)

Classification and Regression Trees were introduced in
1984 by Breiman et al. [32]. The data mining classification
method, CART, creates a decision tree that splits data based on
purity. Purity is the percentage of data points that are classified
toward the most popular label. If a given dataset has three
possible classification labels, but 90% of the dataset is classified
by one of the labels, then the dataset (or subset) is 90% pure. The
algorithm examines each possible split—in our case parent,
grandparent, and great grandparent—and quantifies the purity of
the data if the algorithm were to split on a given feature. This
split is representative of whether the feature is present or not. If
the feature is split from the dataset and improves the purity of the
most popular classification, then the split is accepted. The CART
algorithm chooses to split on a feature that will most increase the
purity. This splitting and purity search recursively continues until
a purity criterion is met, where splitting the data no longer
reasonably purifies the dataset.

The CART algorithm is implemented through the use of the
R package, RPart [34]. This package creates a decision tree using
the Gini splitting criteria (a type of purity measure). The program
creates an exhaustive decision tree that is pruned according to a
user-specified complexity parameter. This value is generally
tuned to reduce cross-validation error, thus reducing overfitting
the tree. Here we are looking for representative trees of our data
rather than optimally fit trees. As such, we reduced the
complexity parameter (CP) from 0.01 to 0.005. The complexity
parameter is an advisory parameter that defines the threshold of
purity improvement per split. The CP saves computing time by
not fully exploring all possible splits.

RPart uses cross validation to help users define the ‘best’
CP for creating a pruned tree with the lowest classification error
rate. Cross validation is the measure of ‘risk’ or classification
error rate completed by leaving out a portion of the training set.
The excluded portion is then used as a test set to quantify the
error rate. However, the cross-validation error remained
inconsequentially changed between a CP of 0.01 and 0.005. This
finding indicates that the higher CP value over-prunes the
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resulting decision trees. In this case, we are looking for
exhaustive decision trees and set the CP at the lowest possible
value without incurring a substantial change in classification
error rate.

The trees developed in this research are not sufficiently
accurate at classifying regardless of changes to the parameters of
CART. This is due to the low purity of the terminal nodes, and
the CART algorithm can no longer meaningfully split the data
without overfitting. Fortunately, low classification error is not
essential for the methodology presented. What is essential are the
splits that do occur in the tree, as these splits improve the purity
of the next set of nodes. In the context of this work, improving
the purity of the data creates a feasible functional design space
by reducing the number of infeasible functions presented to the
designer.

Classification based on Association Rules (CBA)

Classification based on Association Rules was introduced
by Lui et al. 1998 [31]. Association rules identify the frequency
of data features and classifications occurring together as
measured by support, confidence, and lift [35,36]. The CBA
algorithm works by finding all the association rules in a given
dataset and identifies the most reliable rules based on
confidence. Then the algorithm tests the set of rules against the
training dataset. If the classification is wrong, the algorithm will
look at other, similar strong rules that will result in higher
accuracy when classifying for that category. Once improvements
in classification cannot be made by replacing rules, the algorithm
reports the best set of rules.

The CBA algorithm is implemented with the R package
arulesCBA [37]. We use this algorithm to identify association
rules that are the most relevant to the reduction of the feasible
function space. We measure importance by the lift parameter
reported by the CBA algorithm. In both case studies, the
confidence threshold is set to 30%, and the support threshold set
to 0.05%. In the context of this work, confidence is the frequency
that a function appears given a specific set of components.
Support is the measure of the frequency of which the
function/familial combination occurs in the entire data set. By
setting the support low, the algorithm is encouraged to conclude
from low-occurrence data-feature combinations. These
parameters ensure that the resulting rules are representative of
the most likely functions given a selection of parent,
grandparent, and great grandparent components.

The CBA algorithm will not provide a designer with an
exhaustive list of rules to follow. However, it provides additional
information to a designer in addition to the information provided
by a decision tree. Using the rules list, a designer can view what
set(s) of components lead to the classification of a function. The
rule list provides more information that the decisions tree as there
is support, confidence, and lift reported for each rule. Using
these metrics—especially lift—a designer can determine the
trust to put in following a rule for identifying a function.

Case Studies

The two case studies we explored are representative of what
a designer may face during the classification of a component
function. Case Study 1 simulates a scenario in which a designer
analyzing a product or product concept discovers an unfamiliar
component and, as such, cannot define the purpose or function
of the part. Case Study 2 demonstrates a scenario where a
designer can identify the component but cannot distinguish
function, likely due to the component’s ability to perform
multiple, unique functions. An example of such a component is
a “bracket” that is capable of multiple functions, such as couple,
position, secure, or guide. However, it is often challenging to
define the specific function performed by the component.

Case Study 1 — Unknown Component

In Case Study 1, we examine the functional space of
unknown components sourced from unclassified components in
the design repository. We selected this data subset as a way to
demonstrate the full breadth of the methodology as represented
by a multitude of functions and components, rather than a single
component with few unique functions. We theorize that the
methods presented in this paper reach maximum utility by
assuming the designer is entirely unaware of how to define a
selected component and any possible functions the component
can perform. The goal of this case study is to demonstrate the
ability of these methods to reduce the number of tractable
functions contributing to function-based design approaches,
while still requiring the creative work of the designer to complete
the functional analysis of the unknown component.

The wunknown component data subset features 279
unclassified components that perform one of 25 unique
functions. In this dataset, there are 12 possible parents, five
grandparents, and four great-grandparents. Table 3 shows the 25
unique functions performed by the unknown components. Table
4 lists the component basis terms and familial locations of the
components that are attached to an unknown component in at
least one occurrence.

TABLE 3. CASE STUDY 1 - UNKNOWN COMPONENT
OBSERVED FUNCTIONS

Observed Observed Observed
# . # . # .
Functions Functions Functions
1 Actuate | 10 Import 18 Sense
2 Change | 11 Inhibit 19 Separate
3 | Condition | 12 Position 20 Stabilize
4 | Convert | 13 Process 21 Stop
5 Couple 14 Regulate 22 Store
6 Detect 15 Remove 23 Support
7 | Distribute | 16 Rotate 24 Transfer
8 Export 17 Secure 25 Transmit
9 Guide - - - -
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TABLE 4. CASE STUDY 1 - UNKNOWN COMPONENT

TABLE 6. CASE STUDY 2 — KNOWN COMPONENT

ASSEMBLY DATA (BRACKET) ASSEMBLY DATA

# Component Parent G _Parent GG_Parent # Component Parent G Parent | GG _Parent

1 Actuator v x x 1 Assembly v v v

2 Assembly v v v 2 Bearing v x

3 Biological x x v 3 Belt v « <

4 Blade v x x —

5 | Circuit Board v x x 4 | Circuit Board Y = =

6 Converter v x x 5 Cover v = *

7 | Electric Motor v x x 6 Electric v x x

3 Fan v x x Switch

9 Housing v v x Handle v x

10 Insert v x x 7 Housing v v x

11 Sensor v & 8 Lever v * =

12 Support v * x 9 Reservoir v x x

13 System v v v 10 System v v v

14 | Unclassified v \ v 11 | Unclassified v * &
x  signifies a component is not present in that position 12 Wheel v x o2

v’ signifies a component is present in that position

Case Study 2 — Known Component

In Case Study Two, we explore how the methodology
could be applied to accurately identify the function of a
component that a designer can only define by name. This study
looks into applying the methodology on a narrower, better-
defined set of potential functions. It is unclear whether the
current functional basis definitions are detailed enough to
provide meaningful results when considering a known
component. In this case study, we can start to conclude how
we may further define/classify function, thus increasing the
robustness of this methodology.

In design practice, we theorize that by providing defined
feasible functions for a standard part that are limited by the
familial relationship to other components, designers can use the
provided decision tree and ruleset to more accurately define
component functions. The results of Case Study Two can
provide meaningful insight into inexperienced designers who
may be unable to define the most likely function of a
component accurately.

The known component data subset features 108 bracket
components that perform one of 10 unique functions (Table 5),
with 12 possible parents, four grandparents, and two great-
grandparents. Table 6 lists the component basis terms and
familial locations of the parental components that are attached to
a bracket component on at least one occurrence.

TABLE 5. CASE STUDY 2 - KNOWN COMPONENT -
BRACKET- OBSERVED FUNCTIONS

# Observed Functions # Obseryed
Functions
1 Couple 6 Position
2 Distribute 7 Regulate
3 Export 8 Secure
4 Guide 9 Support
5 Import 10 Transfer

x signifies a component is not present in that position
v’ signifies a component is present in that position

Assumptions and Limitations

The data selected from the OSDR are subject to the
assumptions used during the creation of the repository. The case
study data are defined by the component basis name rather than
the common component name. Using component basis names
limits the uniqueness and subjectivity of empirically named
components. Furthermore, we found that common-named
components that were named similarly to a basis term often are
represented by a differing basis term (e.g., a brake bracket
represented as the basis term support).

The familial (assembly) component data in the ODSR is
limited to a depth of three. Many of the identified component
assembly chains terminated on the system basis term by the
great-grandparent component; system is synonymous with
product. The fidelity of the component basis name also reduces
further in the chain. It is observed that the grandparent and great-
grandparent components are often denoted as assembly rather
than a more descriptive basis term.

A low number of data features and low feature fidelity of the
data limits the predictive capability of the algorithms used in this
study. In the context of this research, our data has three features
(parent, grandparent, great grandparent). Though we are not
particularly looking to classify new data accurately, the effects
of low data fidelity can limit the amount the presented
methodology can reduce the feasible design space. In future
implementations, higher data fidelity (such as expanding our
data features to include children and great-great-grandparents)
will lead to further defined solution space and reduce the number
of presented feasible functions.
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RESULTS AND DISCUSSION

In this section, we show the CART diagrams and CBA rules
for each case study. The first figure shown in each section
denotes the spread and frequency of functions observed in each
case study. In addition, the order of the functions observed in
Figures 1 and 3 are representative of the order of the functions in
bar graphs located at the bottom of the CART decision trees
shown (Figures 2, 4, and 5).

Case Study 1 — Unknown Component Results

Figure 1 shows that the unknown components found in the
OSDR are completing a wide array of functions. The most
popular functions—secure, transfer, position, guide, and
couple—appear to be generally well-known functions. In
addition, the less common functions - import, export, transfer,
transmit, and convert — are also subject to being assigned to
unknown components. We have observed that the trained design
engineers responsible for the construction of the OSDR seemed
to have challenges naming components during the reverse-
engineering process, even if the components were completing
well-known functions.

Unknown Component Function Occurrence
(n=279)
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FIGURE 1: GRAPHICAL REPRESENTATION OF THE
FUNCTIONAL SPREAD OF THE UNKNOWN COMPONENT
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FIGURE 2: ABRIDGED CART DECISION TREE
REPRESENTING THE DECISION PATHS TAKEN WHEN
DECIDING THE FUNCTION OF AN UNKNOWN COMPONENT

The resulting decision tree from the CART algorithm for the
unknown component case study is shown in Figure 2 (this
diagram is an abridged version to improve clarity; the full
diagram is shown in Figure 5 in the appendix) The full tree has
several branches; a designer can reach a terminal node by
identifying the neighboring components around the component
whose function they wish to identify. The resultant bar plots
represent the probability that an unknown component, with a
given set of neighbors, will have a particular function.

As shown in Figure 2, if the parent of the unknown
component is a converter or electric motor (branch 1), the most
probable set of functions are change, condition, covert, detect,
process, and regulate; with convert being the most likely
function. Thus, it is concluded that the component connected to
an electric motor or converter is probably performing a
performance-based function commonly associated with
electrical motors. This branch shows how the proposed
methodology produces a set of probable function suggestions
that limit the feasible design area of function definition. We
suggest that the designer can more easily use design intuition to
explore these six functions versus the original 25.

The left branch shown in Figures 2 and 5 denotes the first
meaningful split where the parent component is a converter or
electric motor. The CART algorithm will choose to split the data
on the most purifying split. For the unknown component CART
decision tree, we observe that splitting the ‘parent - converter and
electric motor’ off creates a pure subset (left branch) that does
not meet the splitting criteria to continue splitting. Concisely, the
grandparent and great-grandparent features data in the left
branch are not relevant enough to pose another split. Thus, the
left branch is the purest split as only one feature is needed to
define the functional space of the component that has a parent of
converter or electric motor.

The right branch in Figures 2 and 5 includes all observed
components other than a converter or electric motor. This data
benefits from further splitting based on data features. As such,
we observe multiple splits based on parent, grandparent, and
great-grandparent components. When observing a well-defined
path, such as the branch ending in ‘parent — actuator, circuit
board, housing, insert,” we see that the feasible function space is
further reduced when compared to a path heavy in the
components assembly, system, and unclassified. However, the
results of these low-fidelity branches still indicate that the
functional space can be reduced even when operating under
higher uncertainty. These branches can also stimulate a reduction
in the functional space when a designer using these trees can only
poorly define the surrounding components, either due to a lack
of knowledge or obscurity in design or component locations.

We have observed that well-defined paths result in a better
reduction of the feasible functional space. However, when
observing the ‘parent — actuator, circuit board, housing, insert’
terminal node, it can be seen that the feasible functions lack the
cohesion found in the ‘parent — converter, electric motor’ node.
The former node graph includes actuate, export, guide, secure,
support, and transmit. A novice engineer may use this tree and
assume a ‘parent — actuator’ would likely have a child

7 Copyright © 2020 by ASME



component function of actuate. However, it is unlikely that a
child component is actuating onto an actuator. Thus, we include
the CBA rule set to improve confidence in identifying function
from a low-cohesion terminal node, as shown in Table 7

TABLE 7. CASE STUDY 1 —- UNKNOWN COMPONENT
FUNCTION DEFINING ASSOCIATION RULES

# Observed Component Function Lift

—_—

Grandparent = Assembly
G_Grandparent = Assembly

Couple 9.00

2 Parent = Actuator Export 23.50
3 Parent = Insert Export 23.35
4 Parent = Electric Motor Convert 8.71
5 Parent = Circuit Board Transmit 23.25
Grandparent = System
6 Parent = Circuit Board Import 13.95
Grandparent = Assembly
7 Parent = Unclassified Stabilize 27.90
Grandparent = Unclassified
G_Grandparent = System
8 Parent = Support Remove 139.50
9 Parent = Blade Position 6.07
10 G_Grandparent = Assembly Couple 3.60
11 Grandparent = Assembly Import 5.58

G_Grandparent = Biological

12 | G Grandparent = Unclassified | Position 4.04

13 Parent = Assembly Transmit 7.75

G_Grandparent = Biological

14 Parent = Fan Guide 3.32

15 Parent = Unclassified Stabilize 16.74
G_Grandparent = System

16 Parent = Assembly Transfer 4.65

Grandparent = Unclassified
G_Grandparent = System

The CBA ruleset shows promise in further defining the
functional space of a terminal node. In the actuator example, we
observe that the CBA ruleset is suggesting that the designer
consider the function export for an actuator parent. The lift value
denotes how reliable the rule is. Higher lift values should
promote a designer to strongly consider subsequent rules, and
lower lifts should at least be considered. However, we notice that
there is sometimes a high lift value assigned to illogical
combinations such as ‘support — remove’. Figure 1 shows that
remove makes up a small portion of the functions in the unknown
dataset. The CBA results suggesting ‘parent — support’ is related
to removing are likely due to a few data points classified as
‘remove,” but all share the same parent. This result suggests a
fringe case that should not be discounted but solidifies the point
that the CBA rules should be explored if the decision tree is
unable to reduce the functional feasibility enough to inspire
confidence by the designer.

Case Study 2 — Known Component Results

In Figure 3, we observe that the bracket component’s most
popular functions (secure, guide, position, and couple) follow a
logical functional assignment. In contrast, the functions transfer,
export, import, regulate, and distribute are unlikely functions for
a bracket. The unlikely functions may be hard for a novice
designer to consider given they may be unaware that a bracket
can perform such functions. The function frequency results
suggest that the drive for this research is meaningful in that there
are is a significant frequency of non-classical functions assigned

Known Component - Bracket Function Occurrence
(n=108)
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FIGURE 3: GRAPHICAL REPRESENTATION OF THE
FUNCTIONAL SPREAD OF THE KNOWN (BRACKET)
COMPONENT CASE STUDY
to the known component that likely would remain unexplored by
novice engineers.

In Figure 4, we observe a reduction of the feasible design
space in each terminal. In each terminal node bar graph, at least
two functions are removed from consideration. Accordingly, the
untraditional functions are overshadowed by the popular
functions found for brackets. The overshadowing observed could
lead to limited consideration of less common functions by
designers using this decision tree. The issues raised from this
result are only reinforced by the results shown in Table 8—the

T
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system wheel ‘
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FIGURE 4: CART DECISION TREE REPRESENTING THE
DECISION PATHS TAKEN WHEN DECIDING THE
FUNCTION OF AN KNOWN COMPONENT
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CBA rules developed for identifying the functions of a known
(bracket) component. The rules do not suggest that a designer
considers any of the untraditional functions. These results
identify areas of improvement, such as defining a function-type
schema for design repositories.

TABLE 8. CASE STUDY 2 — KNOWN- BRACKET -
COMPONENT FUNCTION DEFINING ASSOCIATION RULES

# Observed Component Function Lift
1 | G Grandparent = Assembly Secure 4.00
2 Parent = Belt Secure 4.00
3 Parent = Cover Couple 4.69
4 Parent = Unclassified Couple 2.82
5 Parent = Lever Position 2.57
6 Parent = Reservoir Guide 3.37
7 Grandparent = Assembly Secure 1.57
8 Grandparent = None Position 1.89
9 G_Grandparent = System Secure 1.43
10 Parent = Circuit Board Guide 2.25
11 Parent = Housing Position 1.71
12 Parent = Wheel Guide 2.25
CONCLUSION

In this paper, we introduce a novel approach aimed at
increasing function-based design knowledge for novice
designers by using data mining techniques. The methodology
presented employs Classification and Regression Trees (CART)
and Classification based on Association Rules (CBA) algorithms
to create rules and visual guides that help novice designers
identify the function of components. The decision trees and rules
generated are based on the identification of neighboring
components about the component whose function needs to be
identified. The goal of this work is to provide an objectively
defined functional design space. The results of our work help
reduce the feasible function space for function-based design,
which will enable novice designers to more accurately undertake
functional assignment. To do this, we created visual decision
trees and provided hard-and-fast function defining rules. The
decision trees and rules aid untrained designers to determine
component function by identifying the components around the
defined component. The methodology is tested in two case
studies.

In case study one, we explored defining the function of a
component that is unfamiliar to the designer. In case study two,
we tested the methodology with a component a designer can
likely identify—in this case, a bracket—but whose functions
may be nebulous. The results suggest that our method is viable
in limiting the number of feasible functions given the
identification of components. However, we discovered that the
rules provided by the CBA algorithm could be misleading if used
alone to identify the component function. In this regard, we
maintain that a designer should use the decision tree first, then
confer with the set of CBA rules if necessary. We also found that
an overabundance of popular functions can obscure the ability to
consider uncommon-but-important functions. This sentiment is

apparent in case study two, where the generated CBA4 rules only
implicate popular functions. It does not indicate a scenario where
a designer may need to consider a specialized or less traditional
function.

In terms of designer utility, our proposed methodology is
still reliant on (and thus limited by) designer cognition,
specifically in subsequent product design and functional analysis
processes. However, we assert that efforts explored here allow
for designers with incomplete domain knowledge to define
function more successfully. The limited design space increases
focus on a likely set of functions for a component. We suggest
that even with weak domain knowledge, this methodology can
provide a less daunting feasible function space that the designer
can succinctly explore.

We suggest future work explore increasing the utility of the
presented methodology and repository data by creating a data
schema that categorizes functions on a high level. This new
schema can promote designers to consider weakly represented
but essential functions. Using high-level function classification
can be used as a new data feature, or simply as a grouping
method to signal a difference of function-type in the resulting
decisions trees and rules.

We find that over-simplified repository data limits the
ability to converge on a reasonably reduced feasible design
space. In this regard, the repository data used in this research can
benefit from increasing the fidelity of naming neighboring
components. Finally, in the future, we aim to test tools developed
from this methodology by observing novice designers using the
decision trees and rule sets in human studies research.
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