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ABSTRACT 
Engineering designers currently use downstream 

information about product and component functions to facilitate 
ideation and concept generation of analogous products. These 
processes, often called Function-Based Design, can be reliant on 
designer definitions of product function, which are inconsistent 
from designer to designer. In this paper, we employ supervised 
learning algorithms to reduce the variety of component functions 
that are available to designers in a design repository, thus 
enabling designers to focus their function-based design efforts 
on more accurate, reduced sets of potential functions. To do this, 
we generate decisions trees and rules that define the functions of 
components based on the identity of neighboring components. 
The resultant decision trees and rulesets reduce the number of 
feasible functions for components within a product, which is of 
particular interest for use by novice designers, as reducing the 
feasible functional space can help focus the design activities of 
the designer. This reduction was evident in both case studies: one 
exploring a component that is known to the designer, and the 
other looking at defining function of an unrecognizable 
component. The work presented here contributes to the recent 
popularity of using product data in data-driven design 
methodologies, especially those focused on supplementing 
designer cognition. Importantly, we found that this methodology 
is reliant on repository data quality, and the results indicate a 

need to continue the development of design repository data 
schemas with improved data consistency and fidelity. This 
research is a necessary precursor for the development of 
function-based design tools, including automated functional 
modeling. 

 
INTRODUCTION 

Engineering designers are faced with solving multi-faceted 
global design problems and increasingly complex modern 
product design. In recent decades, design researchers are 
focusing on DfX areas such as designing for reduced 
environmental impact, full global market acceptance, optimized 
assembly, and end-of-life processing. Designers are challenged 
to meet design objectives through the use of memory, previous 
experience, and expertise, supplemented by external design 
tools. However, research finds that novice design engineers lack 
confidence in designing to meet complex DfX goals [1,2]. Today, 
there is a global push for creating multi-disciplinary design 
teams to supplement expertise and improve design innovation 
[3,4].  No longer is the designer title limited to classically trained 
engineers, but can now include medical, humanitarian, 
environmental, or trend-analysis professionals, to name a few. 
While being multi-disciplinary is important (as combining 
professional expertise results in improved designs), some 
foundational design principles, like function-based design, may 
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not be in the wheelhouse of these designers or novice design 
engineers, thus rendering these teams more reliant on other 
design tools. 

Foundational design is rooted in designing tools, systems, 
and products that serve a purpose by completing functions [5]. 
In this regard, we define function as a critical basis of design. 
Function in design, specifically through the use of functional 
modeling, is a fundamental step in the development of new 
concepts and design ideas [6]. Functional modeling is a tool that 
is used to identify the functional interactions that occur within a 
concept. One potential benefit of functional modeling is that 
designers can use them to inspire creative ways to solve 
functional needs [7]. However, even in function-based 
engineering design, there is subjectivity in how to define a 
function or functional model. Functional models for the same 
design, but created by different designers, often are widely 
different [8].  

Many previous works have looked into rectifying the 
subjectivity of function-based design. In 2000, Stone and Wood 
introduced standardized vocabulary to improve the readability, 
repeatability, and understanding of functional modeling [8]. In 
the following year, Hirtz et al. reconciled similar functional 
vocabulary methodologies into what is known as the functional 
basis [9]. The success of this research helped influence the 
creation of objective vocabularies to describe components, 
called the component basis terms [10]. Research since then has 
expanded the functional basis to include biological functions 
[11]. These works have undoubtedly reduced the subjectivity in 
function-based design by formalizing the vocabulary necessary 
for using function during the design process. However, when 
considering both the increasing complexity of design and the 
potential for less-experienced designers working on engineering 
design activities, we still observe the subjective assignment of 
functional basis terms to components. 

 Novice designers may be unaware of the nuanced 
differences between component functions; for example, the 
functions “couple” versus “secure.” Additionally, designers can 
be unfamiliar with components and the functions those 
components can perform. The assignment of functions to 
components is commonly thought to be an objective exercise, 
but can become subjective even when using the standardized 
functional basis terms. There is a need to explore how to limit 
the subjective assignment of component functions. In doing so, 
designers can make smarter decisions about designing for 
function.  

 In this paper, we use design repository data in conjunction 
with data mining techniques to limit the number of functions a 
component is likely to perform by considering both the 
components themselves and their neighboring components in the 
product assembly. We suggest that the methods presented here 
can limit a designer to only select from feasible, ‘correct’ 
functions while avoiding having to consider irrelevant ‘wrong’ 
functions. Providing a set of correct functions is relevant 
considering designers may not be familiar with the breadth of 
functions a component can perform or with a component itself, 

or the designer may lack significant experience in the function-
based design domain. 
 
PREVIOUS RESEARCH 

Design repositories facilitate the use of design data in 
sophisticated methodologies and exist to enhance the availability 
of design knowledge [12,13]. Currently, design repositories 
house product information such as a bills of materials, cost data, 
CAD models, manufacturing processes, functional information, 
assembly data, and other DfX-relevant data. However, to 
encourage wider use of design repositories in both industry and 
research, efforts have been made to standardize product data 
schemas and the searchability of design repositories [14,15]. 
This research led to the creation of extensively peer-reviewed 
design repositories and the prevalence of repository data used in 
research [2,16,17].  

Repository data has been used to create tools and 
methodologies to influence automated concept generation. 
Rajagopalan et al. created assembly models from repository data 
to support concept generation [18]. Bryant et al. explored 
computational techniques to automate concept generation using 
repository data [19]. The following year, Bryant et al. validated 
this methodology by testing the automated concept generation 
tool with undergraduate researchers [20]. 

Recent research in repository use has focused on solving 
modern design challenges related to the DfX areas of 
environmental and social sustainability. In 2012, Gilchrist et al. 
used repository data to understand if innovative products were 
less environmentally friendly [21].  This research influenced the 
exploration of eco-labeling practices of design repository 
products [22]. Soria et al. introduced a function-human design 
method for identifying human error during the functional 
decomposition of a product [23]. Later, the function–human 
error design method (FHEDM) was tested using data from 148 
products sourced from a design repository [24]. Though this 
work is relevant, we suggest the future of repository data 
‘learning’ is going to stem from data mining techniques rather 
than product comparison or research validation.  

In product design research (outside of the use of repository 
data), there have been extensive efforts to use data mining. Here 
we highlight the area of cellular phone design to showcase a 
concise representation for data mining in product design. Tucker 
and Kim used decision trees to create 46 feasible cellular phone 
design concepts from 40,000 simulated customer responses. In 
this work, feasibility is measured by a profitability approach 
[25]. Tucker and Kim also used text mining and regression to 
characterize trends in cellphone design space. In 2011, Bae and 
Kim used association rules and decision trees to define the 
feasible design space of future successful cellphone design based 
on customer data [26]. Recently, Zhan et al. used association rule 
mining to identify the correlation between customer preference 
and essential phone features, thus again highlighting feasible 
areas of cellphone design improvement [27]. Other product 
design domains follow a similar progression of data-driven 
design research. However, we observe that there is an 
overabundance of research using generated data and customer 
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data, and an under-representation of product data in data-driven 
product design research. Only recently has product data, sourced 
from a design repository, been used in data-mining-based 
product design research. Thus, we suggest there is a gap in 
implementing novel methodologies using repository data and 
data mining. 

Wisthoff et al. leveraged the use of machine learning 
methods on repository data through quantifying the 
environmental impact of early design decisions using neural 
networks [28]. This work provides early evidence of success in 
using data mining to advance product design processes while 
using repository data versus consumer data. Soria et al. used 
association rule mining on repository data to provide an 
understanding of how humans interact with product systems and 
identifying human errors [29]. Tensa et al. used a similar 
methodology to advance techniques in automated functional 
modeling [30]. Based on the current state-of-the-art, our work 
continues the exploration of using data mining approaches on 
repository data to develop novel design methodologies that 
facilitate the design process. 
 
RESEARCH MOTIVATION & SCOPE 

Here we expand on previous research in data-driven design 
to improve the information quality provided to designers to 
supplement design cognition, particularly for novice designers or 
for designers working in novel DfX applications. Specifically, we 
aim to address empirical concerns in establishing repository-
based data-driven design methods, First, there is a struggle to 
comprehend bulk data and distill that information into readily 
applicable design knowledge. As such, we observed much of 
repository-based research focuses on drawing high-level DfX 
conclusions from data rather than developing methodologies 
directly applicable by designers. Second, though data-driven 
design research offers increased utility, we observed that data-
driven design employs the use of user data or generated test data. 
Our goal is to improve the utility of data-driven design by 
employing only high-fidelity function data from a product 
repository.  

In this paper, we use Classification based on Association 
(CBA) and CART (Classification and Regression Trees) with 
repository-based data [31,32]. The results of our work can offer 
supplemental knowledge in the form of visual-based decision 
trees and hard-and-fast rules that a designer can use to aid in the 
identification of component function(s).  

We hypothesize that this method can provide insight to 
designers and researchers alike by making function-based design 
approaches more truthful and useful. The goals of this research 
extend beyond just accurately classifying the function of known 
and unknown components. Additionally, we are looking to 
define and limit the feasible design space of function 
identification objectively. Reducing the subjectivity of function-
based design will enable designers to make more informed 
design decisions, and to approach the more subjective and 
creative elements of the design process with a firmer grip on 
functional knowledge. 
 

METHODOLOGY 
In this research, we explore limiting the feasible space of 

component function identification through two case studies. 
Case Study 1 focuses on defining the feasible functional space 
of an unknown component, and Case Study 2 defines the feasible 
design space for a known component (in this case, a ‘bracket’). 
The two case studies are selected to explore conditions in which 
a designer is familiar and unfamiliar with an observed 
component. Both case studies feature a data subset sourced from 
the Oregon State Design Repository [14,16]. Each datum 
represents a component, the component’s function(s), and a list 
of neighboring components. Both of these case studies employ 
the use of CART decision trees and CBA analysis. 

 
Data Selection and Processing 

The Oregon State Design Repository (OSDR) [14,16]. 
features a peer-reviewed data schema that houses function-based 
product information, including components, functions, and 
assembly connections.  In addition to these product data, the 
OSDR incorporates Design for Assembly (DfA), Design for 
Human Interaction (DfHI), and Design for the Environment 
(DfE) data for some products and systems.  

The OSDR is selected as our data source due to the external 
validation of the functional analysis of products and components. 
Function in this context is the designed-for task that a component 
performs. The OSDR was created to help define objective 
aspects of functional design, which aligns closely with the goals 
of this research. One step toward this goal is the OSDR’s 
inclusion of using functional and component basis terms. 

From the OSDR, we sourced the common name and the 
component-basis name for components belonging to 234 unique 
products, including 7245 components. In the OSDR, 
components are described by a common name, assembly 
relationships (to other components), the name of the product in 
which they are found, material, function, and component basis. 
For the case studies, each datum represents a single component 
basis/function basis pair with three assembly-based data 
features: the parent, grandparent, and great-grandparent of the 
component.  

Here we define the component origin as the primary 
component we are assessing. As with classic familial hierarchy, 
the origin component is connected to the parent component, the 
parent component is connected to a grandparent component, and 
a grandparent component to a great-grandparent component. It is 
important to note that data fidelity decreases as we explore 
further into the component connections. In this case, great-
grandparents are often denoted by weakly descriptive basis 
names such as ‘assembly’ or ‘system.’ In light of this, we selected 
a depth of three familial components as further exploration is 
empirically deemed to be uninformative. 

From the 7245 components and corresponding component 
relation information, we selected two data subsets (based on 
component basis terms) that represent a functionally diverse 
known component (‘bracket’) and set of unknown components 
that are functional defined but otherwise not classified by a 
component basis term. The component basis terms are chosen 
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instead of the common names as common names are more 
subjective. All components in each data set share the same 
defined component basis name, while their common names are 
widely unique. Table 1 demonstrates a sample data point from 
the known ‘bracket’ data set and unknown component data set. 

 
 TABLE 1. SAMPLE DATA POINT FROM THE KNOWN AND 

UNKNOWN DATASETS 

 
For the two data points shown in Table 1, the bracket can 

also be identified by its common name of ‘Button Bracket’ and 
the unknown component has a common name of ‘Controller 
Antenna’. The common name is not used in this methodology 
but is retained for bookkeeping and can offer some insight into 
the components that designers are often misidentifying.  

The data mining tools described in the next section learn by 
finding meaningful splits in the data between the classifier and 
correlating data features. In this case, function is the classifier 
we aim to define by the familial features of each component. 
From a data standpoint, we aim to limit the number of reasonably 
feasible functions (the feasible function space), given a set of 
designer-identifiable assembly features, that a component can 
perform. 
 
Decision Tree and Data Mining Techniques 

Here, we use two unique data mining approaches to give 
varying styles of rule interpretation that a designer that could use 
while exploring a product to define unfamiliar components or 
component functions. The algorithms used are CART 
(Classification and Regression Trees) and CBA (Classification 
based on Association Rules). The programing language R is used 
to implement both algorithms [33]. 

 CART (Classification and Regression Trees) will allow the 
designer to quickly visualize the assembly order about the 
component of interest (define the parent, grandparent, and great-
grandparent components). The designer can follow the branches 
of the decision trees that best match their identification, finally 
reaching a node that can narrow down the available functions 
that component can perform and the likelihood of each function 
from the truncated set. As such, the proposed decision tree and 
ruleset has objectively reduced the feasible functional space. In 
theory, a designer can use their cognitive ability with other 

context clues to evaluate the subjective function of the unknown 
or known component.  

 
CART, by default, creates an easy-to-understand diagram 

that a designer can follow to converge on a set of feasible 
functions for a component. Less visually, The CBA algorithm 
supplies direct text rules that can be used identify the feasible 
functions of a component. One purpose of using the CBA 
algorithm in this approach is to verify the design tree rules 
through an unrelated algorithm. In practice, if a user is still 
challenged by functional identification via decision trees, they 
can move to the hard-and-fast rules developed by the CBA 
algorithm. The approaches are chosen because they provide 
meaningful results that can directly be useful to the designer. 
This research marks our initial efforts to bridge the gap between 
information from data mining methodologies and usefulness to 
real-world designers.  
 
CART (Classification and Regression Trees) 

Classification and Regression Trees were introduced in 
1984 by Breiman et al. [32]. The data mining classification 
method, CART, creates a decision tree that splits data based on 
purity. Purity is the percentage of data points that are classified 
toward the most popular label. If a given dataset has three 
possible classification labels, but 90% of the dataset is classified 
by one of the labels, then the dataset (or subset) is 90% pure. The 
algorithm examines each possible split—in our case parent, 
grandparent, and great grandparent—and quantifies the purity of 
the data if the algorithm were to split on a given feature. This 
split is representative of whether the feature is present or not. If 
the feature is split from the dataset and improves the purity of the 
most popular classification, then the split is accepted. The CART 
algorithm chooses to split on a feature that will most increase the 
purity. This splitting and purity search recursively continues until 
a purity criterion is met, where splitting the data no longer 
reasonably purifies the dataset. 

The CART algorithm is implemented through the use of the 
R package, RPart [34]. This package creates a decision tree using 
the Gini splitting criteria (a type of purity measure). The program 
creates an exhaustive decision tree that is pruned according to a 
user-specified complexity parameter. This value is generally 
tuned to reduce cross-validation error, thus reducing overfitting 
the tree. Here we are looking for representative trees of our data 
rather than optimally fit trees. As such, we reduced the 
complexity parameter (CP) from 0.01 to 0.005. The complexity 
parameter is an advisory parameter that defines the threshold of 
purity improvement per split. The CP saves computing time by 
not fully exploring all possible splits. 

 RPart uses cross validation to help users define the ‘best’ 
CP for creating a pruned tree with the lowest classification error 
rate. Cross validation is the measure of ‘risk’ or classification 
error rate completed by leaving out a portion of the training set. 
The excluded portion is then used as a test set to quantify the 
error rate. However, the cross-validation error remained 
inconsequentially changed between a CP of 0.01 and 0.005. This 
finding indicates that the higher CP value over-prunes the 

 Known Component: 
‘Bracket’ 

Unknown 
Component 

Common Name Button Bracket 
Controller 
Antenna 

Component Basis 
Name 

Bracket Unclassified 

Function Secure Export 

Parent Electric Switch Circuit Board 

Grand Parent Housing Assembly 
Great Grand 

Parent 
System System 
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resulting decision trees. In this case, we are looking for 
exhaustive decision trees and set the CP at the lowest possible 
value without incurring a substantial change in classification 
error rate.  

The trees developed in this research are not sufficiently 
accurate at classifying regardless of changes to the parameters of 
CART. This is due to the low purity of the terminal nodes, and 
the CART algorithm can no longer meaningfully split the data 
without overfitting. Fortunately, low classification error is not 
essential for the methodology presented. What is essential are the 
splits that do occur in the tree, as these splits improve the purity 
of the next set of nodes. In the context of this work, improving 
the purity of the data creates a feasible functional design space 
by reducing the number of infeasible functions presented to the 
designer. 
 
Classification based on Association Rules (CBA) 

Classification based on Association Rules was introduced 
by Lui et al. 1998 [31]. Association rules identify the frequency 
of data features and classifications occurring together as 
measured by support, confidence, and lift [35,36]. The CBA 
algorithm works by finding all the association rules in a given 
dataset and identifies the most reliable rules based on 
confidence. Then the algorithm tests the set of rules against the 
training dataset. If the classification is wrong, the algorithm will 
look at other, similar strong rules that will result in higher 
accuracy when classifying for that category. Once improvements 
in classification cannot be made by replacing rules, the algorithm 
reports the best set of rules. 

The CBA algorithm is implemented with the R package 
arulesCBA [37]. We use this algorithm to identify association 
rules that are the most relevant to the reduction of the feasible 
function space. We measure importance by the lift parameter 
reported by the CBA algorithm. In both case studies, the 
confidence threshold is set to 30%, and the support threshold set 
to 0.05%. In the context of this work, confidence is the frequency 
that a function appears given a specific set of components. 
Support is the measure of the frequency of which the 
function/familial combination occurs in the entire data set. By 
setting the support low, the algorithm is encouraged to conclude 
from low-occurrence data-feature combinations. These 
parameters ensure that the resulting rules are representative of 
the most likely functions given a selection of parent, 
grandparent, and great grandparent components. 

The CBA algorithm will not provide a designer with an 
exhaustive list of rules to follow. However, it provides additional 
information to a designer in addition to the information provided 
by a decision tree. Using the rules list, a designer can view what 
set(s) of components lead to the classification of a function. The 
rule list provides more information that the decisions tree as there 
is support, confidence, and lift reported for each rule.  Using 
these metrics—especially lift—a designer can determine the 
trust to put in following a rule for identifying a function. 
 
 
 

Case Studies  
  The two case studies we explored are representative of what 
a designer may face during the classification of a component 
function.  Case Study 1 simulates a scenario in which a designer 
analyzing a product or product concept discovers an unfamiliar 
component and, as such, cannot define the purpose or function 
of the part. Case Study 2 demonstrates a scenario where a 
designer can identify the component but cannot distinguish 
function, likely due to the component’s ability to perform 
multiple, unique functions. An example of such a component is 
a “bracket” that is capable of multiple functions, such as couple, 
position, secure, or guide. However, it is often challenging to 
define the specific function performed by the component. 
 
Case Study 1 – Unknown Component 

 In Case Study 1, we examine the functional space of 
unknown components sourced from unclassified components in 
the design repository. We selected this data subset as a way to 
demonstrate the full breadth of the methodology as represented 
by a multitude of functions and components, rather than a single 
component with few unique functions. We theorize that the 
methods presented in this paper reach maximum utility by 
assuming the designer is entirely unaware of how to define a 
selected component and any possible functions the component 
can perform. The goal of this case study is to demonstrate the 
ability of these methods to reduce the number of tractable 
functions contributing to function-based design approaches, 
while still requiring the creative work of the designer to complete 
the functional analysis of the unknown component.  

 The unknown component data subset features 279 
unclassified components that perform one of 25 unique 
functions. In this dataset, there are 12 possible parents, five 
grandparents, and four great-grandparents. Table 3 shows the 25 
unique functions performed by the unknown components. Table 
4 lists the component basis terms and familial locations of the 
components that are attached to an unknown component in at 
least one occurrence.  

 
TABLE 3. CASE STUDY 1 – UNKNOWN COMPONENT 

OBSERVED FUNCTIONS 

# 
Observed 
Functions 

# 
Observed 
Functions 

# 
Observed 
Functions 

1 Actuate 10 Import 18 Sense 
2 Change 11 Inhibit 19 Separate 
3 Condition 12 Position 20 Stabilize 
4 Convert 13 Process 21 Stop 
5 Couple 14 Regulate 22 Store 
6 Detect 15 Remove 23 Support 
7 Distribute 16 Rotate 24 Transfer 
8 Export 17 Secure 25 Transmit 
9 Guide - - - - 
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TABLE 4. CASE STUDY 1 – UNKNOWN COMPONENT 
ASSEMBLY DATA 

# Component Parent G_Parent GG_Parent 

1 Actuator ü û û 
2 Assembly ü	 ü ü 
3 Biological û û ü 
4 Blade ü û û 
5 Circuit Board ü û û 
6 Converter ü û û 
7 Electric Motor ü û û 
8 Fan ü û û 
9 Housing ü ü û 
10 Insert ü û û 
11 Sensor  ü û 
12 Support ü û û 
13 System ü ü ü 
14 Unclassified ü ü ü 
û     signifies a component is not present in that position 
ü signifies a component is present in that position 
 
Case Study 2 – Known Component 

In Case Study Two, we explore how the methodology 
could be applied to accurately identify the function of a 
component that a designer can only define by name. This study 
looks into applying the methodology on a narrower, better-
defined set of potential functions. It is unclear whether the 
current functional basis definitions are detailed enough to 
provide meaningful results when considering a known 
component.  In this case study, we can start to conclude how 
we may further define/classify function, thus increasing the 
robustness of this methodology.  

In design practice, we theorize that by providing defined 
feasible functions for a standard part that are limited by the 
familial relationship to other components, designers can use the 
provided decision tree and ruleset to more accurately define 
component functions. The results of Case Study Two can 
provide meaningful insight into inexperienced designers who 
may be unable to define the most likely function of a 
component accurately. 

The known component data subset features 108 bracket 
components that perform one of 10 unique functions (Table 5), 
with 12 possible parents, four grandparents, and two great-
grandparents. Table 6 lists the component basis terms and 
familial locations of the parental components that are attached to 
a bracket component on at least one occurrence.  

 
TABLE 5. CASE STUDY 2 – KNOWN COMPONENT – 

BRACKET- OBSERVED FUNCTIONS 

# Observed Functions # 
Observed 
Functions 

1 Couple 6 Position 
2 Distribute 7 Regulate 
3 Export 8 Secure 
4 Guide 9 Support 
5 Import 10 Transfer 

TABLE 6. CASE STUDY 2 – KNOWN COMPONENT 
(BRACKET) ASSEMBLY DATA 

# Component Parent G_Parent GG_Parent 

1 Assembly ü ü ü 

2 Bearing ü û û 

3 Belt ü û û 

4 Circuit Board ü û û 

5 Cover ü û û 

6 
Electric 
Switch 

ü û û 

 Handle  ü û 

7 Housing ü ü û 
8 Lever ü	 û û 
9 Reservoir ü û û 
10 System ü ü ü 
11 Unclassified ü û û 

12 Wheel ü û û 
û       signifies a component is not present in that position 
ü signifies a component is present in that position 
 
Assumptions and Limitations 

The data selected from the OSDR are subject to the 
assumptions used during the creation of the repository. The case 
study data are defined by the component basis name rather than 
the common component name. Using component basis names 
limits the uniqueness and subjectivity of empirically named 
components. Furthermore, we found that common-named 
components that were named similarly to a basis term often are 
represented by a differing basis term (e.g., a brake bracket 
represented as the basis term support).  

The familial (assembly) component data in the ODSR is 
limited to a depth of three. Many of the identified component 
assembly chains terminated on the system basis term by the 
great-grandparent component; system is synonymous with 
product. The fidelity of the component basis name also reduces 
further in the chain. It is observed that the grandparent and great-
grandparent components are often denoted as assembly rather 
than a more descriptive basis term. 

A low number of data features and low feature fidelity of the 
data limits the predictive capability of the algorithms used in this 
study. In the context of this research, our data has three features 
(parent, grandparent, great grandparent). Though we are not 
particularly looking to classify new data accurately, the effects 
of low data fidelity can limit the amount the presented 
methodology can reduce the feasible design space. In future 
implementations, higher data fidelity (such as expanding our 
data features to include children and great-great-grandparents) 
will lead to further defined solution space and reduce the number 
of presented feasible functions. 
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RESULTS AND DISCUSSION  
In this section, we show the CART diagrams and CBA rules 

for each case study. The first figure shown in each section 
denotes the spread and frequency of functions observed in each 
case study. In addition, the order of the functions observed in 
Figures 1 and 3 are representative of the order of the functions in 
bar graphs located at the bottom of the CART decision trees 
shown (Figures 2, 4, and 5).  

 
Case Study 1 – Unknown Component Results  

Figure 1 shows that the unknown components found in the 
OSDR are completing a wide array of functions. The most 
popular functions—secure, transfer, position, guide, and 
couple—appear to be generally well-known functions. In 
addition, the less common functions - import, export, transfer, 
transmit, and convert – are also subject to being assigned to 
unknown components. We have observed that the trained design 
engineers responsible for the construction of the OSDR seemed 
to have challenges naming components during the reverse-
engineering process, even if the components were completing 
well-known functions. 

The resulting decision tree from the CART algorithm for the 
unknown component case study is shown in Figure 2 (this 
diagram is an abridged version to improve clarity; the full 
diagram is shown in Figure 5 in the appendix) The full tree has 
several branches; a designer can reach a terminal node by 
identifying the neighboring components around the component 
whose function they wish to identify. The resultant bar plots 
represent the probability that an unknown component, with a 
given set of neighbors, will have a particular function.  

As shown in Figure 2, if the parent of the unknown 
component is a converter or electric motor (branch 1), the most 
probable set of functions are change, condition, covert, detect, 
process, and regulate; with convert being the most likely 
function. Thus, it is concluded that the component connected to 
an electric motor or converter is probably performing a 
performance-based function commonly associated with 
electrical motors. This branch shows how the proposed 
methodology produces a set of probable function suggestions 
that limit the feasible design area of function definition. We 
suggest that the designer can more easily use design intuition to 
explore these six functions versus the original 25.  

The left branch shown in Figures 2 and 5 denotes the first 
meaningful split where the parent component is a converter or 
electric motor. The CART algorithm will choose to split the data 
on the most purifying split. For the unknown component CART 
decision tree, we observe that splitting the ‘parent - converter and 
electric motor’ off creates a pure subset (left branch) that does 
not meet the splitting criteria to continue splitting. Concisely, the 
grandparent and great-grandparent features data in the left 
branch are not relevant enough to pose another split. Thus, the 
left branch is the purest split as only one feature is needed to 
define the functional space of the component that has a parent of 
converter or electric motor. 

The right branch in Figures 2 and 5 includes all observed 
components other than a converter or electric motor. This data 
benefits from further splitting based on data features. As such, 
we observe multiple splits based on parent, grandparent, and 
great-grandparent components. When observing a well-defined 
path, such as the branch ending in ‘parent – actuator, circuit 
board, housing, insert,’ we see that the feasible function space is 
further reduced when compared to a path heavy in the 
components assembly, system, and unclassified. However, the 
results of these low-fidelity branches still indicate that the 
functional space can be reduced even when operating under 
higher uncertainty. These branches can also stimulate a reduction 
in the functional space when a designer using these trees can only 
poorly define the surrounding components, either due to a lack 
of knowledge or obscurity in design or component locations. 

We have observed that well-defined paths result in a better 
reduction of the feasible functional space. However, when 
observing the ‘parent – actuator, circuit board, housing, insert’ 
terminal node, it can be seen that the feasible functions lack the 
cohesion found in the ‘parent – converter, electric motor’ node. 
The former node graph includes actuate, export, guide, secure, 
support, and transmit.  A novice engineer may use this tree and 
assume a ‘parent – actuator’ would likely have a child 

FIGURE 1: GRAPHICAL REPRESENTATION OF THE 
FUNCTIONAL SPREAD OF THE UNKNOWN COMPONENT 

CASE STUDY 

FIGURE 2: ABRIDGED CART DECISION TREE 
REPRESENTING THE DECISION PATHS TAKEN WHEN 

DECIDING THE FUNCTION OF AN UNKNOWN COMPONENT 
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component function of actuate. However, it is unlikely that a 
child component is actuating onto an actuator. Thus, we include 
the CBA rule set to improve confidence in identifying function 
from a low-cohesion terminal node, as shown in Table 7.  

 
TABLE 7. CASE STUDY 1 – UNKNOWN COMPONENT 

FUNCTION DEFINING ASSOCIATION RULES  
# Observed Component Function Lift 

1 Grandparent = Assembly 
G_Grandparent = Assembly 

Couple 9.00 

2 Parent = Actuator Export 23.50 
3 Parent = Insert Export 23.35 
4 Parent = Electric Motor Convert 8.71 
5 Parent = Circuit Board 

Grandparent = System 
Transmit 23.25 

6 Parent = Circuit Board 
Grandparent = Assembly 

Import 13.95 

7 Parent = Unclassified 
Grandparent = Unclassified 
G_Grandparent = System 

Stabilize 27.90 

8 Parent = Support Remove 139.50 
9 Parent = Blade Position 6.07 
10 G_Grandparent = Assembly Couple 3.60 
11 Grandparent = Assembly 

G_Grandparent = Biological 
Import 5.58 

12 G_Grandparent = Unclassified Position 4.04 
13 Parent = Assembly 

G_Grandparent = Biological 
Transmit 7.75 

14 Parent = Fan Guide 3.32 
15 Parent = Unclassified 

G_Grandparent = System 
Stabilize 16.74 

16 Parent = Assembly 
Grandparent = Unclassified 
G_Grandparent = System 

Transfer 4.65 

 
The CBA ruleset shows promise in further defining the 

functional space of a terminal node. In the actuator example, we 
observe that the CBA ruleset is suggesting that the designer 
consider the function export for an actuator parent. The lift value 
denotes how reliable the rule is. Higher lift values should 
promote a designer to strongly consider subsequent rules, and 
lower lifts should at least be considered. However, we notice that 
there is sometimes a high lift value assigned to illogical 
combinations such as ‘support – remove’.  Figure 1 shows that 
remove makes up a small portion of the functions in the unknown 
dataset. The CBA results suggesting ‘parent – support’ is related 
to removing are likely due to a few data points classified as 
‘remove,’ but all share the same parent. This result suggests a 
fringe case that should not be discounted but solidifies the point 
that the CBA rules should be explored if the decision tree is 
unable to reduce the functional feasibility enough to inspire 
confidence by the designer.  

 
 
  

Case Study 2 – Known Component Results  
In Figure 3, we observe that the bracket component’s most 

popular functions (secure, guide, position, and couple) follow a 
logical functional assignment. In contrast, the functions transfer, 
export, import, regulate, and distribute are unlikely functions for 
a bracket. The unlikely functions may be hard for a novice 
designer to consider given they may be unaware that a bracket 
can perform such functions. The function frequency results 
suggest that the drive for this research is meaningful in that there 
are is a significant frequency of non-classical functions assigned 

to the known component that likely would remain unexplored by 
novice engineers.  

In Figure 4, we observe a reduction of the feasible design 
space in each terminal. In each terminal node bar graph, at least 
two functions are removed from consideration. Accordingly, the 
untraditional functions are overshadowed by the popular 
functions found for brackets. The overshadowing observed could 
lead to limited consideration of less common functions by 
designers using this decision tree. The issues raised from this 
result are only reinforced by the results shown in Table 8—the 

FIGURE 3: GRAPHICAL REPRESENTATION OF THE 
FUNCTIONAL SPREAD OF THE KNOWN (BRACKET) 

COMPONENT CASE STUDY 

FIGURE 4: CART DECISION TREE REPRESENTING THE 
DECISION PATHS TAKEN WHEN DECIDING THE 

FUNCTION OF AN KNOWN COMPONENT 
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CBA rules developed for identifying the functions of a known 
(bracket) component. The rules do not suggest that a designer 
considers any of the untraditional functions. These results 
identify areas of improvement, such as defining a function-type 
schema for design repositories.  

 
TABLE 8. CASE STUDY 2 – KNOWN- BRACKET - 

COMPONENT FUNCTION DEFINING ASSOCIATION RULES  
# Observed Component Function Lift 

1 G_Grandparent = Assembly Secure 4.00 
2 Parent = Belt Secure 4.00 
3 Parent = Cover Couple 4.69 
4 Parent = Unclassified Couple 2.82 
5 Parent = Lever Position 2.57 
6 Parent = Reservoir Guide 3.37 
7 Grandparent = Assembly Secure 1.57 
8 Grandparent = None Position 1.89 
9 G_Grandparent = System Secure 1.43 
10 Parent = Circuit Board Guide 2.25 
11 Parent = Housing Position 1.71 
12 Parent = Wheel Guide 2.25 

 
CONCLUSION 

In this paper, we introduce a novel approach aimed at 
increasing function-based design knowledge for novice 
designers by using data mining techniques. The methodology 
presented employs Classification and Regression Trees (CART) 
and Classification based on Association Rules (CBA) algorithms 
to create rules and visual guides that help novice designers 
identify the function of components. The decision trees and rules 
generated are based on the identification of neighboring 
components about the component whose function needs to be 
identified. The goal of this work is to provide an objectively 
defined functional design space. The results of our work help 
reduce the feasible function space for function-based design, 
which will enable novice designers to more accurately undertake 
functional assignment. To do this, we created visual decision 
trees and provided hard-and-fast function defining rules. The 
decision trees and rules aid untrained designers to determine 
component function by identifying the components around the 
defined component. The methodology is tested in two case 
studies. 

In case study one, we explored defining the function of a 
component that is unfamiliar to the designer. In case study two, 
we tested the methodology with a component a designer can 
likely identify—in this case, a bracket—but whose functions 
may be nebulous. The results suggest that our method is viable 
in limiting the number of feasible functions given the 
identification of components. However, we discovered that the 
rules provided by the CBA algorithm could be misleading if used 
alone to identify the component function. In this regard, we 
maintain that a designer should use the decision tree first, then 
confer with the set of CBA rules if necessary. We also found that 
an overabundance of popular functions can obscure the ability to 
consider uncommon-but-important functions. This sentiment is 

apparent in case study two, where the generated CBA rules only 
implicate popular functions. It does not indicate a scenario where 
a designer may need to consider a specialized or less traditional 
function.  

In terms of designer utility, our proposed methodology is 
still reliant on (and thus limited by) designer cognition, 
specifically in subsequent product design and functional analysis 
processes. However, we assert that efforts explored here allow 
for designers with incomplete domain knowledge to define 
function more successfully. The limited design space increases 
focus on a likely set of functions for a component. We suggest 
that even with weak domain knowledge, this methodology can 
provide a less daunting feasible function space that the designer 
can succinctly explore. 

We suggest future work explore increasing the utility of the 
presented methodology and repository data by creating a data 
schema that categorizes functions on a high level. This new 
schema can promote designers to consider weakly represented 
but essential functions. Using high-level function classification 
can be used as a new data feature, or simply as a grouping 
method to signal a difference of function-type in the resulting 
decisions trees and rules. 

 We find that over-simplified repository data limits the 
ability to converge on a reasonably reduced feasible design 
space. In this regard, the repository data used in this research can 
benefit from increasing the fidelity of naming neighboring 
components. Finally, in the future, we aim to test tools developed 
from this methodology by observing novice designers using the 
decision trees and rule sets in human studies research.    
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