

Calcium concentrations in the lower Columbia River, USA, are generally sufficient to support invasive bivalve spread

Stephen M. Bollens^{1,2} | John A. Harrison¹ | Marc G. Kramer¹ |
Gretchen Rollwagen-Bollens¹ | Timothy D. Counihan³ | Salvador B. Robb-Chavez¹ |
Sean T. Nolan¹

¹School of the Environment, Washington State University, Vancouver, Washington

²School of Biological Sciences, Washington State University, Vancouver, Washington

³U.S. Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, Washington

Correspondence

Stephen M. Bollens, School of the Environment, Washington State University, 14204 NE Salmon Creek Avenue, Vancouver, WA 98686-9600, USA.
Email: sbollens@wsu.edu

Funding information

M.J. Murdock Charitable Trust, Grant/Award Numbers: PIS-2014374, PIS-2016337; United States National Science Foundation, Grant/Award Numbers: EAR-1639458, DBI-1461057; United States Department of Agriculture, Grant/Award Number: 2017-67004-26131

Abstract

Dissolved calcium concentration $[Ca^{2+}]$ is thought to be a major factor limiting the establishment and thus the spread of invasive bivalves such as zebra (*Dreissena polymorpha*) and quagga (*Dreissena bugensis*) mussels. We measured $[Ca^{2+}]$ in 168 water samples collected along ~ 100 river-km of the lower Columbia River, USA, between June 2018 and March 2020. We found $[Ca^{2+}]$ to range from 13 to 18 mg L⁻¹ during summer/fall and 5 to 22 mg L⁻¹ during the winter/spring. Previous research indicates that $[Ca^{2+}] < 12$ mg L⁻¹ are likely to limit the establishment and spread of invasive bivalves. Thus, our results indicate that there is sufficient Ca^{2+} in most locations in the lower Columbia River to support the establishment of invasive dreissenid mussels, which could join the already widespread and abundant Asian clam (*Corbicula fluminea*) as the newest invader to an already heavily invaded Columbia River ecosystem. These new data provide important measurements from a heretofore undersampled region of the Columbia River and have important implications for the spread of invasive bivalves and, by extension, the conservation and management of native species and ecosystems.

KEY WORDS

Asian clam *Corbicula fluminea*, cation concentration, dreissenid mussels, shell formation, water chemistry

1 | INTRODUCTION

Calcium (Ca^{2+}) is a major inorganic constituent of freshwater systems globally. Major sources of Ca^{2+} in lakes and rivers include framework silicates, ferromagnesian minerals, and carbonate rocks (Tipper et al., 2010). The concentration of Ca^{2+} [Ca^{2+}] varies widely in the world's rivers, with an approximate range of 1–200 mg L⁻¹ (ppm). In the Columbia River (CR), USA, early measurements of $[Ca^{2+}]$ spanned 4.0–21.0 mg L⁻¹ (Fuhrer, Tanner, Morace, McKenzie, & Skach, 1996).

Calcium plays an important role in freshwater biogeochemical cycling, both as a critical component of organismal physiology and biochemistry (e.g., neurotransmission) and as a resource necessary for shell formation in bivalve mollusks. The range expansion and

establishment of several invasive bivalve species, including the Asian clam, *Corbicula fluminea*, the zebra mussel, *Dreissena polymorpha*, and the quagga mussel, *Dreissena bugensis*, have been linked to the availability of sufficient Ca^{2+} (Davis, Ruhmann, Acharya, Chandra, & Jerde, 2015; Lucy, Karataev, & Burlakova, 2012; McMahon, 1996). Thus, the $[Ca^{2+}]$ in a water body is of great interest to aquatic resource managers who are charged with preventing the establishment of invasive bivalves (Counihan & Bollens, 2017).

This short communication has three objectives: (1) measure $[Ca^{2+}]$ in the lower CR during two different seasons (summer/fall 2018 and winter/spring 2020); (2) compare our lower CR measurements with basin-wide stream $[Ca^{2+}]$ data; and (3) investigate the implications of these empirically determined $[Ca^{2+}]$ values for the

establishment of invasive bivalves (i.e., the Asian clam *C. fluminea* and the dreissenid mussels *D. polymorpha* and *D. bugensis*) in the CR.

2 | METHODS

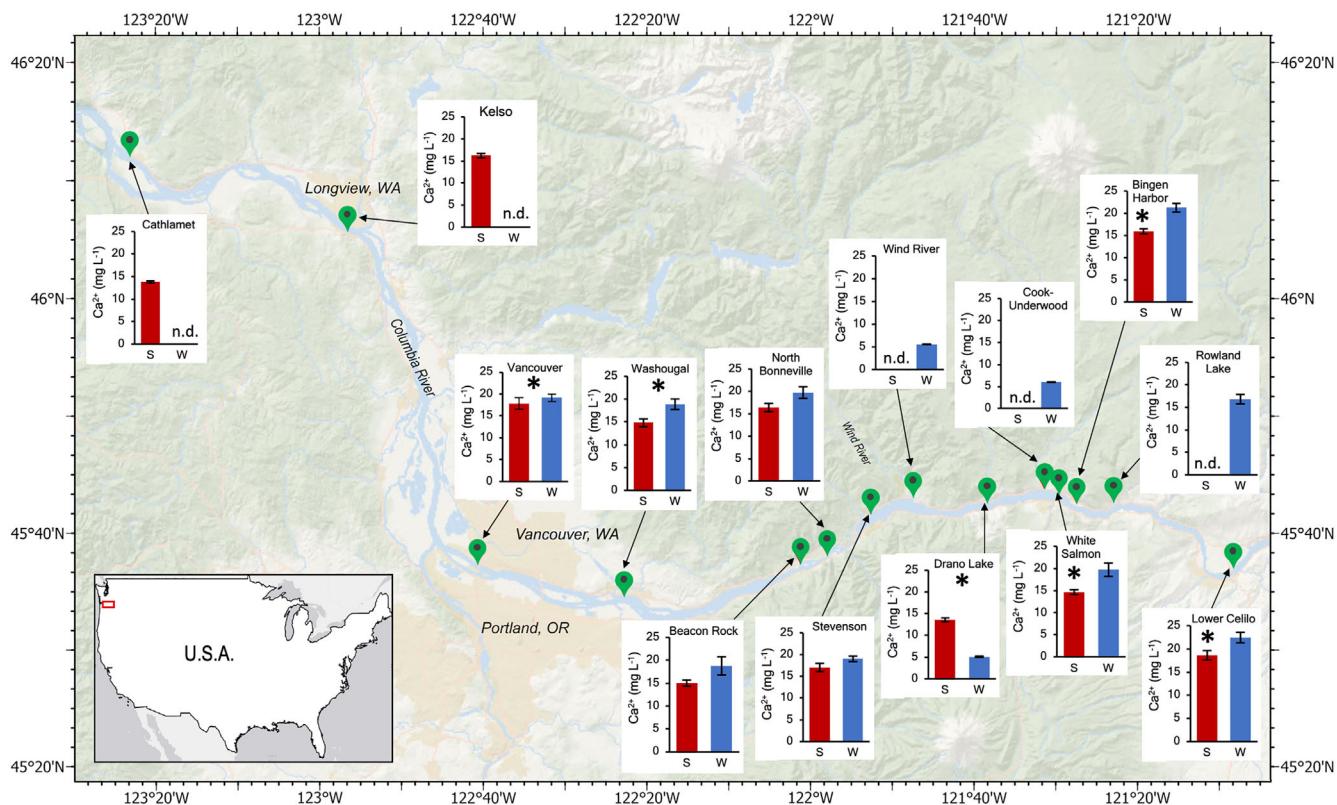
Surface water samples were collected approximately monthly in the lower CR from 14 dock stations (11 in “summer/fall” [June–October] 2018 and 12 in “winter/spring” [February–March] 2020, with nine sampled during both seasons), for a total of 168 samples (Table 1). Water was collected using a sterile 60-mL syringe and filtered in the field via positive-pressure filtration through a 0.45-μm inline filter into a new 50-mL polypropylene bottle and immediately frozen.

In the laboratory, water samples were thawed for 2 days prior to acidification (final concentration of 1.5% HNO_3), then processed to determine $[\text{Ca}^{2+}]$ using an Agilent ICP-MS. One standard was run for every 10 unknowns, with two blanks and conditioning and calibration standards included at the beginning and end of each run. Duplicate samples were always within the range of the standards. Analysis of internal standards indicated an analytical error of <2% for Ca^{2+} . Possible seasonal differences in mean $[\text{Ca}^{2+}]$ between summer/fall 2018 and winter/spring 2020 were tested for each station separately and for the nine stations sampled both seasons, using a Welch's *t*-test (because of unequal variances; Zar, 1996). We then combined $[\text{Ca}^{2+}]$ data we measured (168 measurements from 14 sites) with the 20-year (2000–2019) surface water $[\text{Ca}^{2+}]$ dataset available from the U.S. Geological Survey (USGS) National Water Information System (NWIS) online database (USGS, 2016) (4,778 measurements from 150 sites) in the lower CR. We then calculated mean concentrations for sites where both winter/spring and summer/fall $[\text{Ca}^{2+}]$ measurements were available (63 sites). These values were subsequently imported into Arc Map 10.7 software for visualization.

3 | RESULTS

Calcium concentrations in the lower CR ranged from 13 to 18 mg L^{-1} during summer/fall (mean [SE] = 15.80 [0.27] mg L^{-1}) and 5 to 22 mg L^{-1} during winter/spring (mean [SE] = 15.90 [0.97] mg L^{-1}) (Figure 1). There was no significant difference between seasons ($p > 0.05$; *t*-statistic = 1.26) when pooling the nine sites sampled during both seasons. When each station was considered separately, however, one station showed a significant seasonal decrease in $[\text{Ca}^{2+}]$, while five stations showed a significant seasonal increase in $[\text{Ca}^{2+}]$ from summer/fall to winter/spring (Figure 1).

The data derived from the larger, regional USGS-NWIS database showed considerable spatial variability in mean annual $[\text{Ca}^{2+}]$ across the lower CR Basin (Figure 2). Average concentrations ranged from 0.74 to 47.24 mg L^{-1} , with higher values occurring in eastern Washington (Figure 2).


4 | DISCUSSION

4.1 | Calcium concentrations in the lower Columbia River

The $[\text{Ca}^{2+}]$ values for the lower CR that we report in this short communication fall within a range of mean annual concentrations reported for 315 globally distributed rivers and are similar to the median value amongst those rivers (mean: 27 mg L^{-1} ; median: 14 mg L^{-1} ; range 0.3–218 mg L^{-1} ; Meybeck & Ragu, 1997). Our $[\text{Ca}^{2+}]$ values are also similar to those for other, large temperate rivers in the UK (Neal & Robson, 2000) and China (Wu, Wang, Chen, Cai, & Deng, 2018), and generally fall within the range of the few other published values for the CR (4.0–21.0 mg L^{-1} ; Fuhrer

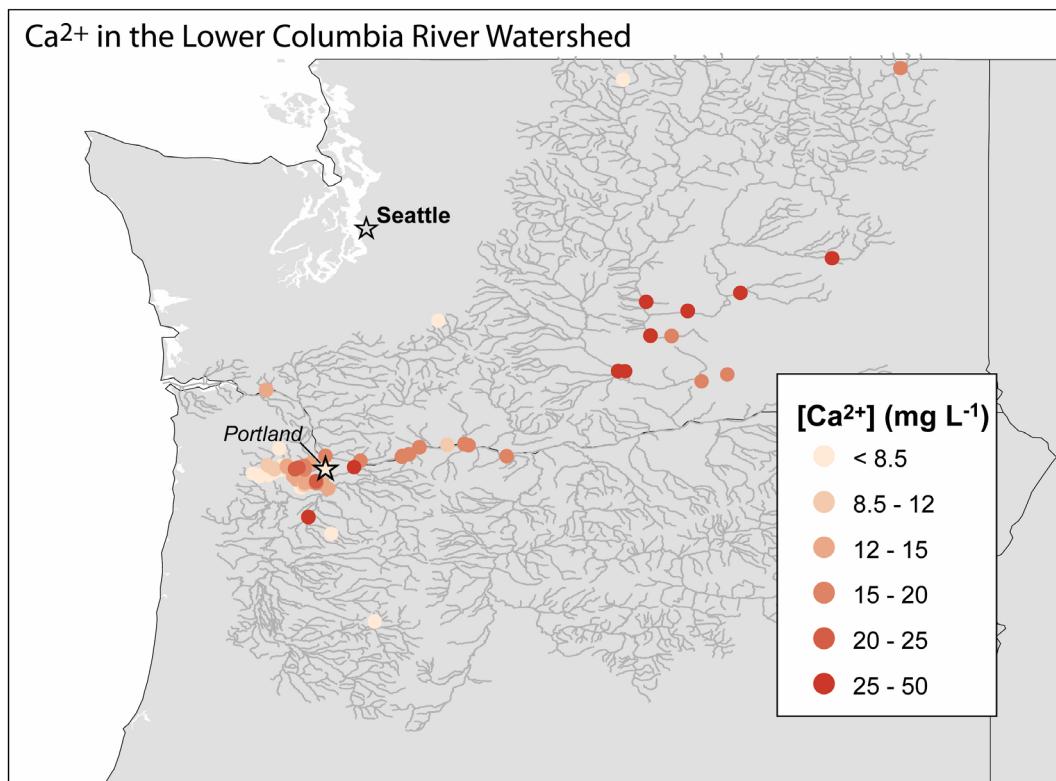
TABLE 1 Location and number of water samples collected for $[\text{Ca}^{2+}]$ in the lower Columbia River during 2018 and 2020

Sampling locations	Latitude	Longitude	2018					2020	
			June	July	Aug	Sept	Oct	Feb	Mar
Lower Celilo Pool	45.617542	−121.136062	1	2	2	4	4	2	2
Rowland Lake	45.709544	−121.381131						2	2
Bingen Harbor	45.708513	−121.457393	1	2	2	4	4	2	2
White Salmon	45.722746	−121.493679	1	2	2	4	4	2	2
Cook-Underwood Rd.	45.729416	−121.523418						2	2
Drano Lake	45.710801	−121.638799	1	2	2	4	4	2	2
Wind River	45.717913	−121.789161						2	2
Stevenson	45.694138	−121.877472	1	2	2	4	4	2	2
North Bonneville	45.633738	−121.965208	1	2	2	3	3	2	1
Beacon Rock	45.621675	−122.019967	1	2	2	3	4	2	1
Washougal Marina	45.577757	−122.381085	1	2	2	4	4	2	2
Vancouver	45.622235	−122.677263	1	2	2	2		2	2
Rainier City Park	46.094235	−122.943185	1	2	2	2			
Cathlamet, WA	46.201146	−123.386603	1	2	2	2			

FIGURE 1 Mean $[\text{Ca}^{2+}]$ during summer/fall 2018 (red bars) and winter/spring 2020 (blue bars) in the lower Columbia River, USA. Significant (two-tailed Welch's t-tests; $p < 0.05$) seasonal differences denoted by (*); "n.d." indicates no data were collected during that season; error bars represent 1 SE [Color figure can be viewed at wileyonlinelibrary.com]

et al., 1996); notably, however, they are consistently higher than the low-end values reported historically.

In temperate and high latitude freshwater systems, seasonal differences in $[\text{Ca}^{2+}]$ might be expected to occur because of both physical and biological processes. Globally, limestone rivers show a seasonal increase in $[\text{Ca}^{2+}]$ during high flow periods, while many other noncarbonate temperate and tropical river systems report a decrease in $[\text{Ca}^{2+}]$ during peak flow (winter/spring) months (Rothwell et al., 2010; Tipper et al., 2010). Several (five of nine) of our stations showed somewhat higher $[\text{Ca}^{2+}]$ during winter/spring than in summer/fall; these high values could be due to contributions of several calcium-rich magnesium carbonate-bearing upstream drainages and/or changes in the relative contribution from Ca^{2+} -rich waters during the wet season (Santos, 1965). Most of the basin-wide USGS stations upstream of our sampling (in the mainstem CR) show a similar pattern of increasing winter $[\text{Ca}^{2+}]$ compared to summer (U.S. Geological Survey, 2016).


In contrast, three of our stations (Wind River, Drano Lake, Cook-Underwood Rd; Figure 1) showed quite low ($<10 \text{ mg L}^{-1}$) $[\text{Ca}^{2+}]$ during winter/spring, suggesting the possibility of site-specific, local dilution effects during high-precipitation, high-flow seasons in adjacent tributaries. For the basin-wide USGS-NWIS dataset, many stations in Oregon (south of the mainstem CR) show a trend of decreasing winter $[\text{Ca}^{2+}]$ compared to summer (USGS, 2016), possibly due to the

noncarbonate lithologies/sediments (e.g., Missoula flood deposits and Andesitic mudstone) and/or the more rain- (as opposed to snow-) dominated precipitation regime in this region.

As a separate matter, biological productivity in the CR would be expected to be highest in summer and fall, when temperatures are highest. For instance, in the invasive Asian clam *C. fluminea*, both feeding (Rollwagen-Bollens et al., 2021) and growth (Henricksen & Bollens, In Review) are temperature-dependent and highest during summer in the lower CR. Bivalve shell formation, and thus Ca^{2+} uptake, would also be expected to be temperature-dependent and thus highest during summer. The relative importance of these physical and biological processes in controlling $[\text{Ca}^{2+}]$ is poorly understood and in need of further research.

4.2 | Implications for invasive bivalves

Aquatic invasive species pose a growing threat to freshwater ecosystems worldwide (Dexter & Bollens, 2020; Havel, Kovalenko, Thomaz, Amalfitano, & Kats, 2015; Lodge et al., 2006). Indeed, the lower CR is now a highly invaded ecosystem, hosting several species of invasive copepods (Connelly, Rollwagen-Bollens, & Bollens, 2020; Cordell, Bollens, Draheim, & Sytsma, 2008; Dexter et al., 2018; Dexter, Bollens, Cordell, & Rollwagen-Bollens, 2020; Rollwagen-Bollens

FIGURE 2 Mean $[\text{Ca}^{2+}]$ in the lower Columbia River Basin using data from the USGS NWIS (2,132 data points collected from 54 sites between 2000 and 2019), and this study (142 data points from nine sites collected in 2018 and 2020) for which both winter/spring and summer/fall measurements were available [Color figure can be viewed at wileyonlinelibrary.com]

et al., 2021), an invasive cladoceran (Dexter, Bollens, Rollwagen-Bollens, Emerson, & Zimmerman, 2015; Smits, Litt, Cordell, Kalata, & Bollens, 2013), and the invasive Asian clam *C. fluminea* (Bolam, Rollwagen-Bollens, & Bollens, 2019; Hassett et al., 2017). Some of these invasive taxa seem to be increasing in abundance along with long-term (decadal) increases in water temperature (Dexter, Bollens, & Rollwagen-Bollens, 2020). Thus, there is increasing interest—and indeed, urgency—in predicting when and where further invasions might occur, and what management actions, such as early detection monitoring and watercraft inspections, might be undertaken to reduce or mitigate their spread. This is especially true of dreissenid mussels, which are global invaders (Nalepa & Schloesser, 2014; Strayer et al., 2019) that have crossed the North American continental divide into the western U.S. (Wong et al., 2010) and now threaten the CR Basin, amongst other regions.

Bivalve mollusks require calcium for the formation of their shells, and several studies have indicated that $[\text{Ca}^{2+}]$ is often an important environmental predictor of the presence of freshwater bivalves (Davis et al., 2015; Lucy et al., 2012; McMahon, 1996). However, the minimum $[\text{Ca}^{2+}]$ required for dreissenid growth and survival is poorly constrained and may vary between species and even between life stages within a species (Davis et al., 2015). Applying the reported $[\text{Ca}^{2+}]$ needed for growth and survival of dreissenid mussels, Neary and Leach (1992) defined a waterbody's risk of establishment as: low ($< 12 \text{ mg L}^{-1}$), medium ($12\text{--}20 \text{ mg L}^{-1}$), and high ($> 20 \text{ mg L}^{-1}$). More recently, Counihan and Bollens (2017) defined risk as very low

($\leq 12 \text{ mg L}^{-1}$), low ($> 12 \text{ and } \leq 15 \text{ mg L}^{-1}$), medium ($> 15 \text{ and } \leq 25 \text{ mg L}^{-1}$), and high ($> 25 \text{ mg L}^{-1}$). Based on these previous studies, as well as our observations of $[\text{Ca}^{2+}]$ reported herein, the lower CR is at risk of invasion by dreissenids, though perhaps at only a moderate level.

The $[\text{Ca}^{2+}]$ requirements for the Asian clam, *C. fluminea*, are not well understood (McMahon, 2002), and in fact, there are somewhat conflicting reports in the literature. For instance, Karataev, Padilla, Minchin, Boltovskoy, and Burlakova (2007), citing Boltovskoi (unpubl.), reported that *C. fluminea* can survive in waters with $[\text{Ca}^{2+}]$ as low as 3 mg L^{-1} , whereas Zhao, Schöne, and Mertz-Kraus (2017) stated that “*C. fluminea* appears to be less tolerant to low Ca^{2+} concentrations than *D. polymorpha*,” implying a substantially higher minimum $[\text{Ca}^{2+}]$ requirement. But, as noted above, *C. fluminea* has become widespread in the CR (Bolam et al., 2019; Hassett et al., 2017), and thus it appears that $[\text{Ca}^{2+}]$ as low as $5\text{--}22 \text{ mg L}^{-1}$ (our results) can support populations of *C. fluminea*. If Zhao et al. (2017) are correct that dreissenids are more tolerant of low $[\text{Ca}^{2+}]$ than *C. fluminea*, then this would suggest that regions already invaded by *C. fluminea* (like the CR) may also be at risk of invasion by dreissenids.

5 | CONCLUSIONS AND IMPLICATIONS

Our observations of $[\text{Ca}^{2+}]$ ranged from 5 to 22 mg L^{-1} , with most (74.4%) values in the $15\text{--}22 \text{ mg L}^{-1}$ range. Previous research in other

waterbodies indicates that low $[Ca^{2+}]$ (e.g., $<12\text{ mg L}^{-1}$) is likely to limit the establishment and thus the spread of invasive bivalves (Davis et al., 2015; Oliveira, Calheiros, Jacobi, & Hamilton, 2011; Strayer et al., 1996). Therefore, the results we report in this short communication indicate that there is usually sufficient $[Ca^{2+}]$ in the lower CR to support the establishment of invasive dreissenid mussels, which could join the currently widespread and abundant Asian clam (*C. fluminea*) as the newest bivalves to invade an already heavily invaded CR ecosystem. Understanding the suitability of the lower CR to support invasive bivalves will help managers direct the limited resources available for early detection monitoring and watercraft inspections to areas that are at risk of invasion.

ACKNOWLEDGEMENTS

We thank Luke Reyes for operating the ICP-MS, Julie Zimmerman for assistance in the laboratory, and Jade Jacobs for assistance with literature review. This research was supported in part by the United States National Science Foundation (grant # DBI-1461057 to GRB and SMB, and grant # EAR-1639458 to JH), the United States Department of Agriculture (grant # 2017-67004-26131 to JH), and the Murdock Charitable Trust's Partners in Science Program (grant # PIS-2016337 to SMB, and grant # PIS-2014374 to GRB). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

DATA AVAILABILITY STATEMENT

The authors confirm that the data supporting the findings of this study are available within the article.

ORCID

Stephen M. Bollens <https://orcid.org/0000-0001-9214-9037>

REFERENCES

Bolam, B. A., Rollwagen-Bollens, G., & Bollens, S. M. (2019). Feeding rates and prey selection of the invasive Asian clam, *Corbicula fluminea*, on microplankton in the Columbia River, USA. *Hydrobiologia*, 833(1), 107–123. <https://doi.org/10.1007/s10750-019-3893-z>

Connelly, K. A., Rollwagen-Bollens, G., & Bollens, S. M. (2020). Seasonal and longitudinal variability of zooplankton assemblages along a river-dominated estuarine gradient. *Estuarine, Coastal and Shelf Science*, 245, 106980. <https://doi.org/10.1016/j.ecss.2020.106980>

Cordell, J. R., Bollens, S. M., Draheim, R., & Sytsma, M. (2008). Asian copepods on the move: Recent invasions in the Columbia–Snake River system, USA. *ICES Journal of Marine Science*, 65(5), 753–758.

Counihan, T. D., & Bollens, S. M. (2017). Early detection monitoring for larval dreissenid mussels: How much plankton sampling is enough? *Environmental Monitoring and Assessment*, 189(3), 98. <https://doi.org/10.1007/s10661-016-5737-x>

Davis, C. J., Ruhmann, E. K., Acharya, K., Chandra, S., & Jerde, C. L. (2015). Successful survival, growth, and reproductive potential of quagga mussels in low calcium lake water: Is there uncertainty of establishment risk? *PeerJ*, 3, e1276. <https://doi.org/10.7717/peerj.1276>

Dexter, E., & Bollens, S. M. (2020). Zooplankton invasions in the early 21st century: A global survey of recent studies and recommendations for future research. *Hydrobiologia*, 847(1), 309–319. <https://doi.org/10.1007/s10750-019-04096-x>

Dexter, E., Bollens, S. M., Cordell, J., Soh, H. Y., Rollwagen-Bollens, G., Pfeifer, S. P., ... Vuilleumier, S. (2018). A genetic reconstruction of the invasion of the calanoid copepod *Pseudodiaptomus inopinus* across the north American Pacific coast. *Biological Invasions*, 20(6), 1577–1595. <https://doi.org/10.1007/s10530-017-1649-0>

Dexter, E., Bollens, S. M., Cordell, J. R., & Rollwagen-Bollens, G. (2020). Zooplankton invasion on a grand scale: Insights from a 20-year time-series across 38 Northeast Pacific estuaries. *Ecosphere*, 11(5), e03040. <https://doi.org/10.1002/ecs2.3040>

Dexter, E., Bollens, S. M., & Rollwagen-Bollens, G. (2020). Native and invasive zooplankton show differing responses to decadal-scale increases in maximum temperatures in a large temperate river. *Limnology and Oceanography Letters*, 5, 403–409. <https://doi.org/10.1002/lo2.10162>

Dexter, E., Bollens, S. M., Rollwagen-Bollens, G., Emerson, J., & Zimmerman, J. (2015). Persistent vs. ephemeral invasions: 8.5 years of zooplankton community dynamics in the Columbia River: Persistent vs. ephemeral invasions. *Limnology and Oceanography*, 60(2), 527–539. <https://doi.org/10.1002/lo.10034>

Fuhrer, G., Tanner, D., Morace, J., McKenzie, S., & Skach, K. (1996). Water quality of the lower Columbia River basin: analysis of current and historical water-quality data through 1994 (No. 95-4294; Water-Resources Investigations Report, p. 157). US Geological Survey. <https://doi.org/10.3133/wri954294>

Hassett, W., Bollens, S. M., Counihan, T. D., Rollwagen-Bollens, G., Zimmerman, J., Katz, S., & Emerson, J. (2017). Veligers of the invasive Asian clam *Corbicula fluminea* in the Columbia River basin: Broadscale distribution, abundance, and ecological associations. *Lake and Reservoir Management*, 33(3), 234–248. <https://doi.org/10.1080/10402381.2017.1294218>

Havel, J. E., Kovalenko, K. E., Thomaz, S. M., Amalfitano, S., & Kats, L. B. (2015). Aquatic invasive species: Challenges for the future. *Hydrobiologia*, 750(1), 147–170. <https://doi.org/10.1007/s10750-014-2166-0>

Henricksen, S., & Bollens, S. M. (In Review). Growth and condition of the invasive Asian clam, *Corbicula fluminea*, in the lower Columbia River, USA. *Aquatic Invasions*,

Karatayev, A. Y., Padilla, D. K., Minchin, D., Boltovskoy, D., & Burlakova, L. E. (2007). Changes in global economies and trade: The potential spread of exotic freshwater bivalves. *Biological Invasions*, 9(2), 161–180. <https://doi.org/10.1007/s10530-006-9013-9>

Lodge, D. M., Williams, S., MacIsaac, H. J., Hayes, K. R., Leung, B., Reichard, S., ... McMichael, A. (2006). Biological invasions: Recommendations for U.S. policy and management. *Ecological Applications*, 16(6), 2035–2054. <https://doi.org/10.1890/1051-0761>

Lucy, F., Karatayev, A., & Burlakova, L. (2012). Predictions for the spread, population density, and impacts of *Corbicula fluminea*. *Aquatic Invasions*, 7(4), 465–474. <https://doi.org/10.3391/ai.2012.7.4.003>

McMahon, R. F. (1996). The physiological ecology of the zebra mussel, *Dreissena polymorpha*, in North America and Europe. *American Zoologist*, 36(3), 339–363. <https://doi.org/10.1093/icb/36.3.339>

McMahon, R. F. (2002). Evolutionary and physiological adaptations of aquatic invasive animals: R selection versus resistance. *Canadian Journal of Fisheries and Aquatic Sciences*, 59(7), 1235–1244. <https://doi.org/10.1139/f02-105>

Meybeck, M., & Ragu, A. (1997). *River discharges to oceans: An assessment of suspended solids, major ions and nutrients* (Environment Information and Assessment Technical Report, p. 245) [Technical Report]. UN Environmental Programme. Nairobi, Kenya and Geneva, Switzerland: WHO. <https://digitallibrary.un.org/record/414839?ln=en>

Nalepa, T. F., & Schloesser, D. W. (2014). *Quagga and zebra mussels: Biology, impacts, and control*. Boca Raton, FL: CRC Press.

Neal, C., & Robson, A. J. (2000). A summary of river water quality data collected within the Land–Ocean interaction study: Core data for eastern

UK rivers draining to the North Sea. *Science of the Total Environment*, 251–252, 585–665. [https://doi.org/10.1016/S0048-9697\(00\)00397-1](https://doi.org/10.1016/S0048-9697(00)00397-1)

Neary, B. P., & Leach, J. H. (1992). Mapping the potential spread of the zebra mussel (*Dreissena polymorpha*) in Ontario. *Canadian Journal of Fisheries and Aquatic Sciences*, 49(2), 406–415. <https://doi.org/10.1139/f92-046>

Oliveira, M. D., Calheiros, D. F., Jacobi, C. M., & Hamilton, S. K. (2011). Abiotic factors controlling the establishment and abundance of the invasive golden mussel *Limnoperna fortunei*. *Biological Invasions*, 13(3), 717–729. <https://doi.org/10.1007/s10530-010-9862-0>

Rollwagen-Bollens, G., Bolam, B. A., Bollens, S. M., Henricksen, S., Sandison, C., & Zimmerman, J. (2021). Temperature-dependent functional response of the invasive Asian clam, *Corbicula fluminea*, feeding on natural phytoplankton. *Inland Waters*, 24, 1–7. <https://doi.org/10.1080/20442041.2020.1843933>

Rothwell, J. J., Dise, N. B., Taylor, K. G., Allott, T. E. H., Scholefield, P., Davies, H., & Neal, C. (2010). A spatial and seasonal assessment of river water chemistry across north West England. *Science of the Total Environment*, 408(4), 841–855. <https://doi.org/10.1016/j.scitotenv.2009.10.041>

Santos, J. F. (1965). Quality of surface waters in the lower Columbia River Basin (No. 1784; Water Supply Paper, p. 82). US Geological Survey. <http://doi.org/10.3133/wsp1784>

Smits, A., Litt, A., Cordell, J., Kalata, O., & Bollens, S. (2013). Non-native freshwater cladoceran *Bosmina coregoni* (Baird, 1857) established on the Pacific coast of North America. *BioInvasions Records*, 2(4), 281–286. <https://doi.org/10.3391/bir.2013.2.4.03>

Strayer, D. L., Adamovich, B. V., Adrian, R., Aldridge, D. C., Balogh, C., Burlakova, L. E., ... Jeschke, J. M. (2019). Long-term population dynamics of dreissenid mussels (*Dreissena polymorpha* and *D. rostriformis*): A cross-system analysis. *Ecosphere*, 10(4), e02701. <https://doi.org/10.1002/ecs2.2701>

Strayer, D. L., Powell, J., Ambrose, P., Smith, L. C., Pace, M. L., & Fischer, D. T. (1996). Arrival, spread, and early dynamics of a zebra mussel (*Dreissena polymorpha*) population in the Hudson River estuary. *Canadian Journal of Fisheries and Aquatic Sciences*, 53, 1143–1149.

Tipper, E. T., Gaillardet, J., Galy, A., Louvat, P., Bickle, M. J., & Capmas, F. (2010). Calcium isotope ratios in the world's largest rivers: A constraint on the maximum imbalance of oceanic calcium fluxes. *Global Biogeochemical Cycles*, 24(3), GB3019. <https://doi.org/10.1029/2009GB003574>

US Geological Survey. (2016). *Water data for the nation*. National Water Information System. <http://waterdata.usgs.gov/nwis>

Wong, W. H., Tietjen, T., Gerstenberger, S., Holdren, G. C., Mueting, S., Loomis, E., ... Hannoun, I. (2010). Potential ecological consequences of invasion of the quagga mussel (*Dreissena bugensis*) into Lake Mead, Nevada–Arizona. *Lake and Reservoir Management*, 26(4), 306–315.

Wu, Z., Wang, X., Chen, Y., Cai, Y., & Deng, J. (2018). Assessing river water quality using water quality index in Lake Taihu Basin, China. *Science of the Total Environment*, 612, 914–922. <https://doi.org/10.1016/j.scitotenv.2017.08.293>

Zar, J. (1996). *Biostatistical analysis* (3rd ed.). New York, NY: Pearson. <https://www.pearson.com/us/higher-education/program/Zar-Biostatistical-Analysis-3rd-Edition/PGM322881.html>

Zhao, L., Schöne, B. R., & Mertz-Kraus, R. (2017). Delineating the role of calcium in shell formation and elemental composition of *Corbicula fluminea* (Bivalvia). *Hydrobiologia*, 790(1), 259–272. <https://doi.org/10.1007/s10750-016-3037-7>

How to cite this article: Bollens, S. M., Harrison, J. A., Kramer, M. G., Rollwagen-Bollens, G., Counihan, T. D., Robb-Chavez, S. B., & Nolan, S. T. (2021). Calcium concentrations in the lower Columbia River, USA, are generally sufficient to support invasive bivalve spread. *River Research and Applications*, 37(6), 889–894. <https://doi.org/10.1002/rra.3804>