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Abstract

Dissolved calcium concentration [Ca2+] is thought to be a major factor limiting the

establishment and thus the spread of invasive bivalves such as zebra (Dreissena pol-

ymorpha) and quagga (Dreissena bugensis) mussels. We measured [Ca2+] in 168 water

samples collected along �100 river-km of the lower Columbia River, USA, between

June 2018 and March 2020. We found [Ca2+] to range from 13 to 18 mg L�1 during

summer/fall and 5 to 22 mg L�1 during the winter/spring. Previous research indicates

that [Ca2+] < 12 mg L�1 are likely to limit the establishment and spread of invasive

bivalves. Thus, our results indicate that there is sufficient Ca2+ in most locations in

the lower Columbia River to support the establishment of invasive dreissenid mus-

sels, which could join the already widespread and abundant Asian clam (Corbicula

fluminea) as the newest invader to an already heavily invaded Columbia River ecosys-

tem. These new data provide important measurements from a heretofore under-

sampled region of the Columbia River and have important implications for the spread

of invasive bivalves and, by extension, the conservation and management of native

species and ecosystems.
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1 | INTRODUCTION

Calcium (Ca2+) is a major inorganic constituent of freshwater systems

globally. Major sources of Ca2+ in lakes and rivers include framework

silicates, ferromagnesian minerals, and carbonate rocks (Tipper

et al., 2010). The concentration of Ca2+ [Ca2+] varies widely in the

world's rivers, with an approximate range of 1–200 mg L�1 (ppm). In

the Columbia River (CR), USA, early measurements of [Ca2+] spanned

4.0–21.0 mg L�1 (Fuhrer, Tanner, Morace, McKenzie, & Skach, 1996).

Calcium plays an important role in freshwater biogeochemical

cycling, both as a critical component of organismal physiology and

biochemistry (e.g., neurotransmission) and as a resource necessary for

shell formation in bivalve mollusks. The range expansion and

establishment of several invasive bivalve species, including the Asian

clam, Corbicula fluminea, the zebra mussel, Dreissena polymorpha, and

the quagga mussel, Dreissena bugensis, have been linked to the avail-

ability of sufficient Ca2+ (Davis, Ruhmann, Acharya, Chandra, &

Jerde, 2015; Lucy, Karatayev, & Burlakova, 2012; McMahon, 1996).

Thus, the [Ca2+] in a water body is of great interest to aquatic

resource managers who are charged with preventing the establish-

ment of invasive bivalves (Counihan & Bollens, 2017).

This short communication has three objectives: (1) measure

[Ca2+] in the lower CR during two different seasons (summer/fall

2018 and winter/spring 2020); (2) compare our lower CR measure-

ments with basin-wide stream [Ca2+] data; and (3) investigate the

implications of these empirically determined [Ca2+] values for the
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establishment of invasive bivalves (i.e., the Asian clam C. fluminea and

the dreissenid mussels D. polymorpha and D. bugensis) in the CR.

2 | METHODS

Surface water samples were collected approximately monthly in the

lower CR from 14 dock stations (11 in “summer/fall” [June–October]

2018 and 12 in “winter/spring” [February–March] 2020, with nine

sampled during both seasons), for a total of 168 samples (Table 1).

Water was collected using a sterile 60-mL syringe and filtered in the

field via positive-pressure filtration through a 0.45-μm inline filter into

a new 50-mL polypropylene bottle and immediately frozen.

In the laboratory, water samples were thawed for 2 days prior to

acidification (final concentration of 1.5% HNO3), then processed

to determine [Ca2+] using an Agilent ICP-MS. One standard was run

for every 10 unknowns, with two blanks and conditioning and calibra-

tion standards included at the beginning and end of each run. Dupli-

cate samples were always within the range of the standards. Analysis

of internal standards indicated an analytical error of <2% for Ca2+.

Possible seasonal differences in mean [Ca2+] between summer/fall

2018 and winter/spring 2020 were tested for each station separately

and for the nine stations sampled both seasons, using a Welch's t-test

(because of unequal variances; Zar, 1996). We then combined [Ca2+]

data we measured (168 measurements from 14 sites) with the

20-year (2000–2019) surface water [Ca2+] dataset available from the -

U.S. Geological Survey (USGS) National Water Information System

(NWIS) online database (USGS, 2016) (4,778 measurements from

150 sites) in the lower CR. We then calculated mean concentrations

for sites where both winter/spring and summer/fall [Ca2+] measure-

ments were available (63 sites). These values were subsequently

imported into Arc Map 10.7 software for visualization.

3 | RESULTS

Calcium concentrations in the lower CR ranged from 13 to 18 mg L�1

during summer/fall (mean [SE] = 15.80 [0.27] mg L�1) and 5 to

22 mg L�1 during winter/spring (mean [SE] = 15.90 [0.97] mg L�1)

(Figure 1). There was no significant difference between seasons (p >

0.05; t-statistic = 1.26) when pooling the nine sites sampled during

both seasons. When each station was considered separately, how-

ever, one station showed a significant seasonal decrease in [Ca2+],

while five stations showed a significant seasonal increase in [Ca2+]

from summer/fall to winter/spring (Figure 1).

The data derived from the larger, regional USGS-NWIS database

showed considerable spatial variability in mean annual [Ca2+] across

the lower CR Basin (Figure 2). Average concentrations ranged from

0.74 to 47.24 mg L�1, with higher values occurring in eastern

Washington (Figure 2).

4 | DISCUSSION

4.1 | Calcium concentrations in the lower
Columbia River

The [Ca2+] values for the lower CR that we report in this short com-

munication fall within a range of mean annual concentrations

reported for 315 globally distributed rivers and are similar to the

median value amongst those rivers (mean: 27 mg L�1; median:

14 mg L�1; range 0.3–218 mg L�1; Meybeck & Ragu, 1997). Our

[Ca2+] values are also similar to those for other, large temperate riv-

ers in the UK (Neal & Robson, 2000) and China (Wu, Wang, Chen,

Cai, & Deng, 2018), and generally fall within the range of the few

other published values for the CR (4.0–21.0 mg L�1; Fuhrer

TABLE 1 Location and number of water samples collected for [Ca2+] in the lower Columbia River during 2018 and 2020

Sampling locations Latitude Longitude

2018 2020

June July Aug Sept Oct Feb Mar

Lower Celilo Pool 45.617542 �121.136062 1 2 2 4 4 2 2

Rowland Lake 45.709544 �121.381131 2 2

Bingen Harbor 45.708513 -121.457393 1 2 2 4 4 2 2

White Salmon 45.722746 �121.493679 1 2 2 4 4 2 2

Cook-Underwood Rd. 45.729416 �121.523418 2 2

Drano Lake 45.710801 �121.638799 1 2 2 4 4 2 2

Wind River 45.717913 �121.789161 2 2

Stevenson 45.694138 �121.877472 1 2 2 4 4 2 2

North Bonneville 45.633738 �121.965208 1 2 2 3 3 2 1

Beacon Rock 45.621675 �122.019967 1 2 2 3 4 2 1

Washougal Marina 45.577757 �122.381085 1 2 2 4 4 2 2

Vancouver 45.622235 �122.677263 1 2 2 2 2 2

Rainier City Park 46.094235 �122.943185 1 2 2 2

Cathlamet, WA 46.201146 �123.386603 1 2 2 2
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et al., 1996); notably, however, they are consistently higher than the

low-end values reported historically.

In temperate and high latitude freshwater systems, seasonal dif-

ferences in [Ca2+] might be expected to occur because of both physi-

cal and biological processes. Globally, limestone rivers show a

seasonal increase in [Ca2+] during high flow periods, while many other

noncarbonate temperate and tropical river systems report a decrease

in [Ca2+] during peak flow (winter/spring) months (Rothwell

et al., 2010; Tipper et al., 2010). Several (five of nine) of our stations

showed somewhat higher [Ca2+] during winter/spring than in sum-

mer/fall; these high values could be due to contributions of several

calcium-rich magnesium carbonate-bearing upstream drainages

and/or changes in the relative contribution from Ca2+-rich waters

during the wet season (Santos, 1965). Most of the basin-wide USGS

stations upstream of our sampling (in the mainstem CR) show a similar

pattern of increasing winter [Ca2+] compared to summer (U.S. Geolog-

ical Survey, 2016).

In contrast, three of our stations (Wind River, Drano Lake, Cook-

Underwood Rd; Figure 1) showed quite low (<10 mg L�1) [Ca2+] dur-

ing winter/spring, suggesting the possibility of site-specific, local dilu-

tion effects during high-precipitation, high-flow seasons in adjacent

tributaries. For the basin-wide USGS-NWIS dataset, many stations in

Oregon (south of the mainstem CR) show a trend of decreasing winter

[Ca2+] compared to summer (USGS, 2016), possibly due to the

noncarbonate lithologies/sediments (e.g., Missoula flood deposits and

Andesitic mudstone) and/or the more rain- (as opposed to snow-)

dominated precipitation regime in this region.

As a separate matter, biological productivity in the CR would be

expected to be highest in summer and fall, when temperatures are

highest. For instance, in the invasive Asian clam C. fluminea, both

feeding (Rollwagen-Bollens et al., 2021) and growth (Henricksen &

Bollens, In Review) are temperature-dependent and highest during

summer in the lower CR. Bivalve shell formation, and thus Ca2+

uptake, would also be expected to be temperature-dependent and

thus highest during summer. The relative importance of these physical

and biological processes in controlling [Ca2+] is poorly understood

and in need of further research.

4.2 | Implications for invasive bivalves

Aquatic invasive species pose a growing threat to freshwater ecosys-

tems worldwide (Dexter & Bollens, 2020; Havel, Kovalenko, Thomaz,

Amalfitano, & Kats, 2015; Lodge et al., 2006). Indeed, the lower CR is

now a highly invaded ecosystem, hosting several species of invasive

copepods (Connelly, Rollwagen-Bollens, & Bollens, 2020; Cordell,

Bollens, Draheim, & Sytsma, 2008; Dexter et al., 2018; Dexter,

Bollens, Cordell, & Rollwagen-Bollens, 2020; Rollwagen-Bollens

F IGURE 1 Mean [Ca2+] during summer/fall 2018 (red bars) and winter/spring 2020 (blue bars) in the lower Columbia River, USA. Significant
(two-tailed Welch's t-tests; p < 0.05) seasonal differences denoted by (*); “n.d.” indicates no data were collected during that season; error bars
represent 1 SE [Color figure can be viewed at wileyonlinelibrary.com]
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et al., 2021), an invasive cladoceran (Dexter, Bollens, Rollwagen-

Bollens, Emerson, & Zimmerman, 2015; Smits, Litt, Cordell, Kalata, &

Bollens, 2013), and the invasive Asian clam C. fluminea (Bolam,

Rollwagen-Bollens, & Bollens, 2019; Hassett et al., 2017). Some of

these invasive taxa seem to be increasing in abundance along with

long-term (decadal) increases in water temperature (Dexter, Bollens, &

Rollwagen-Bollens, 2020). Thus, there is increasing interest—and

indeed, urgency—in predicting when and where further invasions

might occur, and what management actions, such as early detection

monitoring and watercraft inspections, might be undertaken to reduce

or mitigate their spread. This is especially true of dreissenid mussels,

which are global invaders (Nalepa & Schloesser, 2014; Strayer

et al., 2019) that have crossed the North American continental divide

into the western U.S. (Wong et al., 2010) and now threaten the CR

Basin, amongst other regions.

Bivalve mollusks require calcium for the formation of their shells,

and several studies have indicated that [Ca2+] is often an important

environmental predictor of the presence of freshwater bivalves (Davis

et al., 2015; Lucy et al., 2012; McMahon, 1996). However, the mini-

mum [Ca2+] required for dreissenid growth and survival is poorly con-

strained and may vary between species and even between life stages

within a species (Davis et al., 2015). Applying the reported [Ca2+]

needed for growth and survival of dreissenid mussels, Neary and

Leach (1992) defined a waterbody's risk of establishment as: low

(<12 mg L�1), medium (12–20 mg L�1), and high (> 20 mg L�1). More

recently, Counihan and Bollens (2017) defined risk as very low

(≤12 mg L�1), low (>12 and ≤ 15 mg L�1), medium (>15 and

≤25 mg L�1), and high (>25 mg L�1). Based on these previous studies,

as well as our observations of [Ca2+] reported herein, the lower CR is

at risk of invasion by dreissenids, though perhaps at only a moderate

level.

The [Ca2+] requirements for the Asian clam, C. fluminea, are not

well understood (McMahon, 2002), and in fact, there are somewhat

conflicting reports in the literature. For instance, Karatayev, Padilla,

Minchin, Boltovskoy, and Burlakova (2007), citing Boltovskoi (unpubl.),

reported that C. fluminea can survive in waters with [Ca2+] as low as

3 mg L�1, whereas Zhao, Schöne, and Mertz-Kraus (2017) stated that

“C. fluminea appears to be less tolerant to low Ca2+ concentrations than

D. polymorpha,” implying a substantially higher minimum [Ca2+] require-

ment. But, as noted above, C. fluminea has become widespread in the

CR (Bolam et al., 2019; Hassett et al., 2017), and thus it appears that

[Ca2+] as low as 5–22 mg L�1 (our results) can support populations of

C. fluminea. If Zhao et al. (2017) are correct that dreissenids are more

tolerant of low [Ca2+] than C. fluminea, then this would suggest that

regions already invaded by C. fluminea (like the CR) may also be at risk

of invasion by dreissenids.

5 | CONCLUSIONS AND IMPLICATIONS

Our observations of [Ca2+] ranged from 5 to 22 mg L�1, with most

(74.4%) values in the 15–22 mg L�1 range. Previous research in other

F IGURE 2 Mean [Ca2+] in the lower Columbia River Basin using data from the USGS NWIS (2,132 data points collected from 54 sites
between 2000 and 2019), and this study (142 data points from nine sites collected in 2018 and 2020) for which both winter/spring and summer/
fall measurements were available [Color figure can be viewed at wileyonlinelibrary.com]
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waterbodies indicates that low [Ca2+] (e.g., <12 mg L�1) is likely to

limit the establishment and thus the spread of invasive bivalves (Davis

et al., 2015; Oliveira, Calheiros, Jacobi, & Hamilton, 2011; Strayer

et al., 1996). Therefore, the results we report in this short communica-

tion indicate that there is usually sufficient [Ca2+] in the lower CR to

support the establishment of invasive dreissenid mussels, which could

join the currently widespread and abundant Asian clam (C. fluminea) as

the newest bivalves to invade an already heavily invaded CR ecosys-

tem. Understanding the suitability of the lower CR to support invasive

bivalves will help managers direct the limited resources available for

early detection monitoring and watercraft inspections to areas that

are at risk of invasion.
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