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Human-made reservoirs are now recognized as potentially significant sources of greenhouse gases, comparable to
other anthropogenic sources, yet efforts to estimate these reservoir emissions have been hampered by the
complexity of the underlying processes and a lack of coherent budgeting approaches. Here we present a unique
modelling framework, the G-res Tool, which was explicitly designed to estimate the net C footprint of reservoirs
across the globe. The framework involves the development of statistically robust empirical models describing the
four major emission pathways for carbon-based greenhouse gases (GHG) from reservoirs: diffusive CO3 and CH4

emissions, bubbling CH4 emissions from the reservoir surface, and CH4 emissions due to degassing downstream
the reservoir, based on an extensive meta-analysis of published data from the past three decades. These empirical
models allow the prediction of reservoir-specific emissions, how they may shift over time and account for
naturally occurring GHG generating pathways in aquatic networks.

1. Introduction

The creation of reservoirs by damming of rivers is one of the oldest
and most profound landscape transformations exerted by humans. The
inundation of a largely terrestrial ecosystem can radically change the
carbon dynamics of the affected domain. Indeed, terrestrial systems are
generally viewed as carbon sinks while freshwater ecosystems are most
often sources of greenhouse gases (GHG) relative to the atmosphere
(Borges et al., 2014; Cole et al., 2007; Raymond et al., 2013; Tranvik
etal., 2009, Drake et al., 2018), with negative net ecosystem production
(e.g. Ferland et al., 2014). This is the case because such systems often
receive large amounts of organic carbon from the terrestrial ecosystems
they drain and because the inland water network is a site for intense C
processing. Unsurprisingly, freshwater reservoirs also emit GHGs, in
many cases at higher areal rates than their natural counterparts (lakes
and large rivers) because the flooded land under freshwater reservoirs
provides a new source of organic matter available for decomposition and
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because it creates new environments conducive to the production of
methane, a more potent GHG than CO,.

Recent studies have concluded that the magnitude of GHG emissions
from reservoirs can be of global significance. To date, most global as-
sessments have simply used averages of measured values per climatic or
geographic region that are then extrapolated worldwide. Although
reasonable as a first order estimate, the validity of this approach rests on
a number of implicit assumptions. For example, it assumes that the
sampled systems are statistically representative of the global population
of reservoirs. The accuracy of this method is also highly dependent upon
the sampling strategy used to obtain reservoir-wide annual estimates, a
potential shortcoming given the known large and highly skewed spatial
and temporal variability of such estimates, both within and among
reservoirs (Deemer et al., 2016; Deemer and Holgerson 2021; DelSontro
et al., 2018a,b; Grinham et al., 2011; Prairie et al., 2018; Prairie et al.,
2017; Rosentreter et al., 2021). Similarly, such an approach largely ig-
nores the known temporal decrease in emission rates after flooding
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(Abril et al., 2005; Barros et al., 2011; Teodoru et al., 2012). Lastly, not
all emissions occurring at the surface of reservoirs, specifically COq
emissions, should be considered new and attributable to impoundments
since organic carbon loading from upstream catchments would sustain
aquatic CO; emissions even in the absence of a reservoir (e.g., via CO5
emissions from lakes, rivers, estuaries, or the coastal ocean).

Tools to quantify the current and future carbon footprint of reser-
voirs have not yet been developed, in part due to the complexity of the
processes involved in generating reservoir GHG emissions, the multiple
pathways through which GHGs are emitted from reservoirs (diffusion,
ebullition and degassing), and the difficulty of accounting for pre-
flooding GHG balances. Hindering the development of such tools is
the fact that there have been only a handful of case studies that have
quantified the complete C footprint of individual reservoirs (Teodoru
et al., 2012; Abril et al., 2005), and these cannot be easily extrapolated
to other sites. In spite of this, there have been a number of regional or
global studies that have modelled specific aspects of reservoir C dy-
namics, such as CO, or CHy4 diffusive emissions (Barros et al., 2011;
Deemer et al., 2016), but there is presently no platform that integrates
the various aspects that make up the overall reservoir C footprint in a
coherent and predictive context. To this end, we have developed an
online modelling platform (hereafter the G-res Tool) that takes into
account the specific environmental conditions of a reservoir to predict
its associated emissions of both carbon dioxide (CO3) and methane
(CHy), partition fluxes among the main emission pathways, and char-
acterize the evolution of GHG fluxes over the expected lifetime of a given
reservoir, here assumed to be 100 years. In addition, the G-res Tool
estimates the GHG balance of the affected landscape prior to flooding,
thereby allowing the estimation of the net GHG impact of reservoir
creation by difference. The G-res Tool closely follows the conceptual
approach outlined in Prairie et al. (2018), which ultimately aims at
predicting the reservoir-induced change in GHG fluxes to the atmo-
sphere of the flooded landscape. The G-res Tool is applicable globally
(Harrison et al., 2021) and can be used with an Earth Engine function-
ality (Prairie et al., 2017) so that it can be used dynamically on existing
reservoirs as well as on potential or planned reservoir locations.

The core of the G-res Tool relies on a series of empirical models
developed from a synthesis of published literature on reservoir emis-
sions. These models are based on the influence of local to regional
environmental controls on GHG emission and on the characteristics of
the individual reservoirs and their catchments. In this paper, we report
on the development of the underlying models predicting the magnitude
of each emission pathway, their linkages with global databases as well as
their integration into a comprehensive and publicly available platform.
In addition, to further validate ability to predict the temporal evolution
of emissions in individual reservoirs, we compare model predictions
with measured GHG fluxes in two of the most-studied reservoirs located
in very contrasting climates (boreal and tropical) that were sampled
extensively over a 12-year and 20-year period, respectively.

2. Methods
2.1.1. Modelling approach

The G-res Tool is designed to assess, in a comprehensive manner, the
net GHG footprint of a reservoir over its lifetime (assumed to be 100
years, Gagnon et al., 2002; IAEA Advisoring Group, 1996; 1995),
including the footprint associated with its construction. However, the
present paper reports only on the biogenic components of the GHG
balance of the reservoir area (i.e., without the construction), both prior
to and after impoundment. The G-res Tool can therefore provide an
estimate of the net GHG impact of reservoir creation. Similarly, the G-res
Tool provides calculations to estimate the portion of GHG emissions that
are likely the result of nutrient enrichment (so-called Unrelated
Anthropogenic Sources, UAS (IPCC SRREN, Kumar et al., 2011), due to
phosphorus inputs associated with human activities in the reservoir
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catchment. Based on the expected difference in phosphorus load in the
absence of human-induced catchment perturbations (details of the
approach can be found in the G-res Tool technical document, Prairie
et al., 2017), the method is useful primarily in allocating reservoir GHG
emissions to particular services or practices. However, emissions
potentially attributable to UAS are not excluded from the present cal-
culations of the GHG footprint of reservoirs and are therefore not
addressed further in this paper (see Prairie et al., 2017 for further
details).

2.2. Database

To develop the GHG emissions models, we undertook an extensive
review of the pre-2016 scientific literature and collected data from 223
globally distributed reservoirs with CO2 and CH4 emissions measure-
ments (279 field assessments of diffusive CO5 emissions, 205 of diffusive
CH4 emissions, 59 of bubbling CH4 emissions and 52 of degassing CH4
emissions; See Supplementary material Figure S1 and Reference list and
Prairie et al, 2017 and available at https://zenodo.
org/record/4711132#.YOiwxy2950M). This database is largely over-
lapping with the one developed by Deemer et al. (2016). Because the
assembled dataset of GHG emissions depended entirely on the avail-
ability of published data, we compared the size and climate distributions
of the sampled reservoirs with that of a more exhaustive and larger set of
reservoirs worldwide (GRanD database; Lehner et al., 2011). In general,
our database essentially covered the full range of reservoir surface areas.
Our dataset also covered all climate zones, although boreal (and to a
lower extent sub-tropical and tropical) reservoirs were somewhat
over-represented relative to the GRanD (See Supplementary material
Table S2).

In addition to GHG flux data, we also collated information on cli-
matic, geographic, edaphic and hydrologic conditions of each reservoir
and its catchment. These variables were obtained from a variety of open
sources including the literature, worldwide GIS layers (see Table 1) and
information contained in the GRanD database (Lehner et al., 2011). The
complete list of potential predictor variables from both reservoirs and
catchments used in the models is listed in Table 1.

Geographical information systems (GIS) were used to acquire two
sets of data, pertaining either to the reservoir themselves or their
catchments. We used the GIS polygons provided in the GRanD database
(156 reservoirs) when available and added 67 reservoirs that were
delineated using contemporary satellite imagery. Zonal statistics tools
applied to global raster layers were then used to estimate the variables of
interests for each reservoir (e.g., soil carbon content, surface tempera-
ture, and wind speed). Similarly, the catchment dataset was built largely
around the Hydrobasins GIS product (Lehner and Grill, 2013) to which
was added several catchments that were delineated using the digital
elevation model (DEM) of the shuttle radar topography mission (SRTM)
and hydrological spatial analysis tools.

2.3. Standardization of data

2.3.1. Annuadlization

Since the GHG emissions data of the 223 reservoirs gleaned from the
literature were sampled at different temporal scales (single time points,
seasonal averages, annual averages), we standardized all the diffusive
fluxes of CO, and CH4 and the CH4 bubbling flux extracted from the
literature using a procedure that combined the annual temperature cycle
at the reservoir location with the known temperature dependence
associated with CO3 and CHy4 production (Inglett et al., 2012; Liikanen
etal., 2002; Yvon-Durocher et al., 2014; also see Prairie et al., 2017). For
colder climates where reservoirs develop an ice cover, winter GHG
accumulation under ice is accounted for by assuming that gas produc-
tion occurs continuously at 4 degrees C, although it is likely that GHGs
produced during ice cover are released during a short period (spring
overturn). In brief, the procedure consisted of assigning a temperature to
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Table 1
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List of predictor variables used for modelling including the units to use, the source of data and supplemental information.

Predictor Variables Units Source” Supplemental information
Reservoir Country Literature, GRanD DB
variables Climate zone - Rubel and Kottek, 2010 4 categories compatible with the emission factor of IPCC (2006):
Koppen-Geiger climate classification Tropical, Subtropical, Temperate, Boreal
Dam coordinates DD Literature, GRanD DB
Impoundment year Literature, GRanD DB
Reservoir area km? Literature, GRanD DB, GIS
Reservoir volume km? Literature, GRanD DB
Maximum depth m Literature, GRanD DB, Estimated Dam height used as a proxy of this value if unavailable
Mean depth m Literature, GRanD DB, Estimated Reservoir area and reservoir volume used in order to estimate this
value if unavailable
Thermocline depth m Literature, Estimated Temperature, Reservoir area and Annual mean wind speed used in
order to estimate this value if unavailable
Littoral area % Literature, Estimated Maximum and Mean depth used in order to estimate this value if
unavailable
Water residence time yr Literature, Estimated Reservoir area, Mean depth, Catchment area and Annual runoff used
in order to estimate this value if unavailable
Mean monthly and annual air °C Global Climate database (Hijmans Average for the period 1950-2000
temperature et al., 2005)
Annual precipitation mm yr? Global Climate database (Hijmans Average for the period 1950-2000
et al., 2005)
Mean monthly and annual wind ~ m s~! NOAA GLOBE Task Team (Hastings
speed et al., 1999)
Reservoir mean global kWh SSE (NASA, 2008) See Appendix A. To convert to Cumulative global horizontal radiance
horizontal radiance m2d7! (kWh m~2 period’l).
Phosphorus concentration pg L1 Literature, Estimated Catchment land cover %, Catchment area, Water residence time and
Annual runoff used in order to estimate this value if unavailable
Soil carbon content of the kgCm 2 SoilGrids - global gridded soil Surface layer of the soil only (30 cm)
inundated reservoir area information (Heng! et al., 2017)
Catchment Catchment area km? Literature, GRanD DB, GIS
variables Mean annual runoff mm yr! Fekete et al. (2000)
Population density person CIESIN (2005)
km™!
Annual discharge m3s! Literature, Estimated
Land coverage % (ESA-CCI, 2014) 9 categories: Croplands, Forest, Grassland/Shrubland, Wetlands,

Settlements, Bare Areas, Water Bodies, Permanent Snow/Ice, No Data

# Literature: Data from scientific publications, See Supplementary material Figure S1 and Reference list; GRanD DB: Data found in the GRanD DB (Lehner et al.,
2011); Estimated: Using equation from the scientific literature (see Appendix A.); GIS: Data delineated using GIS spatial analysis, see section 2.1.

the observed GHG flux measurements and estimating the flux from the
unsampled period by modulating the measured flux up or downwards
using the temperature sensitivity metric appropriate for CO3 (Q0 = 2,
Inglett et al., 2012) and CHy4 (Q10 = 4, Yvon-Durocher et al., 2014). This
method was applied for each unsampled month and all months were
summed. This annualization procedure led to a modest adjustment
downward for diffusive CH4 emission (from an average 39.4 + 152.5
measured flux to an average 33.5 + 114.6 mg C m 2 d~! annualized
flux) because many measurements in regions with strong annual cycles
were done exclusively in the summer months. However, the significantly
reduced variability suggests that part of the initial noise in the collated
data set was the result of sampling regime differences. Reservoirs with
multiple years of measurements were used to evaluate the potential
impact of reservoir aging on GHG emissions (Barros et al., 2011). If
several independent measurements occurred at the same age, an average
of all the measurements was calculated.

2.3.2. System-wide estimate of CHy4 ebullition

In most cases, CH4 ebullition rates were reported either directly as
system-wide estimates or as littoral-specific rates with the correspond-
ing surface area. However, some studies reported littoral CH4 ebullition
rates without defining the surface the littoral zone encompassed. Since
bubbling intensity is known to decrease with depth (Bastviken et al.,
2008; DelSontro et al., 2010, DelSontro et al., 2011; Mcginnis et al.,
2006) applying the littoral emission rates to the whole reservoir surface
area would overestimate whole reservoir fluxes. To avoid this potential
bias, for all studies reporting only littoral flux measurements, CHy
ebullition flux rates were applied only to an area we defined as <3 m
depth (see Appendix A from details) and then expressed as rates per unit

surface area of the entire reservoir. We acknowledge that CH4 bubbling
can occur in some specific cases at greater depths (Mcginnis et al., 2006)
and that this assumption may therefore result in an underestimate of
reservoir-wide emissions. Nevertheless, given the physical inverse
dependence of bubbling on depth (Bazhin, 2003) , we view this as an
improvement over simply assuming littoral emissions rates occur over
an entire reservoir’s surface area at equal rates (Deemer et al., 2016).

2.3.3. Prioritization of data sources

For any given reservoir, several estimates of the same variables can
be extracted from various sources. When such cases occurred, data
gleaned directly from the scientific literature were prioritized for in-
clusion in the database, followed by the data from the GRanD database
(Lehner et al., 2011). If values were unavailable from the peer-reviewed
literature, we extracted the relevant values from global GIS layers (see
Table 1) or estimated them from general models found in the literature
(see Prairie et al., 2017 for details).

2.4. Statistical analysis and model development

Using the annualized GHG emission estimates described in section
2.2.1, we developed a series of multivariate statistical models to predict
each flux pathway using both reservoir and catchment predictor vari-
ables. Variable selection was carried out using the elastic net regression
procedure (see Prairie et al., 2017 for more details) implemented in JMP
Pro 14 or 15. Elastic net regression is a penalty based variable selection
method particularly well suited to modelling cases with a large number
of potential predictor variables, even in cases with low sample size n
(Zou and Hastie, 2005). The elastic net procedure reduces the variance
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inflation problem associated with highly collinear variables by imposing
a penalty on large coefficients. Depending on the penalty parameter, the
algorithm can reduce regression coefficients to zero (i.e., no effect)
thereby providing an objective variable selection procedure. Variable
transformations (mostly logarithmic) were necessary to fulfill assump-
tions of the regression approach (e.g. normality of residuals) or desir-
ability of the predictor variable distribution across their ranges. For each
emission pathway, outliers were identified using Cook’s distance (Cook,
1977) which combines the studentized residual and the observation’s
departure from the mean (using 3 times the mean, pp, as a threshold)
and removed from the analysis.

2.4. Pre-impoundment GHG footprint

Large landscapes are generally a mosaic of ecosystems (forests,
wetlands, cropland, settlements, lakes, streams, rivers, etc.) that all
process carbon in different ways. Each of these ecosystems can emit or
sequester carbon at different rates, contributing to the total carbon
footprint of a defined area. For example, growing forests absorb CO5
while wetlands tend to emit methane while sequestering CO,. Soil type
will also influence carbon processing, as organic soil will emit more GHG
than mineral soil. Natural waterbodies, on the other hand, generally
emit CO, and, to a lesser extent, methane. The pre-impoundment GHG
balance of a reservoir area is therefore the weighted sum of the GHG
balance of each landscape component. Because of the multiplicity of
ecosystem types, we associated each landscape component within the
impounded area with default CO; and CH4 emission factors (EF) from
the IPCC (IPCC, 2013). Specifically for the forest with mineral soils, we
have used the default value from Pan et al. (2011) and for the methane
emissions from water bodies, we used the equation developed in Rasilo
et al. (2014) combined with appropriate gas exchange coefficients
(Prairie et al., 2017; Vachon and Prairie, 2013). To follow the IPCC
classification of EF, the top 30 cm of soil was assigned as mineral or
organic soils using a threshold of 40 kg C m~2, and the land impounded
was associated to one of four climate zones: Tropical, Subtropical,
Temperate and Boreal (Table 1). The general equation to estimate the
pre-impoundment GHG balance was then:

Pre—impoundment GHG fooprint = Z

J

2
—1 i

8
(EFLC.i X Aretch_,-) /Areare:ewoir
—1

(2

where:

EF;c ;; Emission factor specific to each land cover category and each
gas (Prairie et al., 2017)

Areay ; Inundated area of each land cover category (km?)

i Land cover category (8 categories, see Table 1)

j Pre-impoundment CO2 or CH4 emissions

AreQreservoir Total reservoir area (km?), including both existing river/
lake area and inundated area

3. Results and discussion
3.1. Empirical modelling

For both CH4 and CO,, diffusive emissions, the age of the reservoirs
was selected as one of the strongest predictors (as also found in Barros
et al., 2011) and the regression equations therefore express emissions at
a specific reservoir age. To evaluate the net footprint over the total
lifetime of a reservoir, the non-linear regression equation was integrated
using basic calculus to yield the 100-yr average annual emission rate
(Equations 4 and 8, Table 2).

Methane emissions from reservoirs are more complex than CO,
because three different pathways (degassing, bubbling and diffusion)
can each deliver substantial amounts of CH4 to the atmosphere and
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because each pathway is controlled by different drivers and must thus be
modelled separately. The statistics of the four empirical models devel-
oped are detailed in Table 2.

3.1.1. CHy diffusive emissions

To predict diffusive CH4 emissions, the elastic net procedure retained
reservoir age, mean annual temperature, and percent littoral area
(Table 2, Eq. 3) as the only useful predictors (p < 0.0001). The age of the
reservoir had the strongest influence, particularly at high temperatures
(Fig. 1a). Similarly, the decrease in GHG emission with age was strongest
in reservoirs with extensive littoral zones (Fig. 1b). All three predictor
variables confirmed trends previously reported in the literature for
reservoirs and lakes (Barros et al., 2011; DelSontro et al., 2016; Liikanen
et al., 2002; Yvon-Durocher et al., 2014).

3.1.2. CHy4 bubbling emissions

CHy,4 is only sparingly soluble and can reach very high partial pres-
sures when produced in sediments, leading to bubble formation when
CH,4 partial pressure exceeds the sum of barometric and hydrostatic
pressures. As bubbles grow larger or after a sudden change in pressure,
bubbles can be released from the sediment into the water column,
largely bypassing exchange within the water column (Mcginnis et al.,
2006), and emitted directly to the atmosphere. Because of its depen-
dence on hydrostatic pressure, the release of CH4 bubbles is inversely
proportional to water depth and, in many aquatic systems, confined to
shallow zones in combination with areas of high sediment deposition.

A logarithmic equation using the cumulative global horizontal
radiance (following the work of Wik et al., 2014) and percent littoral
area as predictor variables was found to best represent CH4 bubbling
(reservoir-wide values). For CHy ebullition, the age of reservoir was not
selected as a useful predictor by the elastic net regression procedure,
which explains the absence of integrated model equation for this
pathway (Table 2, Eq. 5). Given the limited number of bubble flux
measurements (n = 46) and the wide confidence limits of the model, the
emissions estimates associated with this pathway carry more uncer-
tainty than the diffusive pathways (See Table 2). In this particular
model, 4 observations were deemed outliers using the u*3 cook’s dis-
tance criterion. Three of these systems were removed from the analysis,
but we retained one (Eastmain-1 reservoir) because it represented one of
the few points where the cumulative irradiance was low, thereby
extending the model prediction range. Its inclusion did not affect the
RMSE of the model but conferred more stability to the associated
regression coefficient.

3.1.3. CHy degassing emissions downstream of reservoirs

Reservoir outflows can originate from various depths through
various conduits (through turbines, spillways, bottom gates, and bypass
channels), with important implications for CH4 degassing fluxes. Deeper
intakes are often preferred for hydropower stations for added opera-
tional flexibility. For thermally stratified systems or periods, drawing
water from the hypolimnion can lead to high emission of methane
downstream of a dam because high concentrations of CHy4 often accu-
mulate in anoxic or sub-oxic hypolimnia. The sudden pressure drop after
exiting a turbine can release a large fraction of the dissolved gas directly
to the atmosphere, the so-called degassing process. CHs-rich water
drawn from a reservoir may also be released to the atmosphere in tur-
bulent waters downstream the reservoir. Note that degassing emissions
does not include these GHG emissions further downstream. This
component is particularly difficult to predict given that methane
oxidation can vary widely between ecosystems (Soued and Prairie,
2020; Thottathil et al., 2018, 2019).

Thus, a first requirement in assessing degassing emissions is to
compare water intake and thermocline depths to determine whether
water flowing downstream from dams is from the hypolimnion. If it is, it
is likely to be CHyrich (leading to high degassing emissions).
Conversely, if the water flows downstream from the epilimnion, it is
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Table 2
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The four (4) empirical models (in mg C m~2d'or in t C yr?, for degassing). For models where Age of the reservoir is a predictor variable, equations are also provided
to calculate the integrated emissions over the assumed lifetime of reservoirs (100 years) and represent the average areal rates over that period. The number of ob-
servations deemed outliers using Cook’s D > 3 yp criterion were 15, 3, 2 and 3, respectively. RMSE is the Root Mean Square Error.

Predicted Empirical model equation Equation
Variables number
. o 1+
CHa c'hff:uswe (0.8032 — 0.01419 * Age + 0.4594 * log10 (M) + 0.04819 *Effective Temperature CHy, &
emissions At a specific age = 10 100 i
(mgC R? = 0.51 RMSE = 0.52 N = 160
m2d-1) &P
Integrated over lifetime (100yrs)” “@
% Littoral Area . .
0.8032 + 0.4594 * loglo| ———————— | + 0.04819 *Effective Temperature CH,
~10 100 *(1 _ 10(~(100 * 0.01419))
(100 * 0.01419 * In (10))
. o T
CHa I?ul?blmg (71.3104 +0.8515* logl0 <M> + 0.05198 * (Reservoir Cumulative Global Horizontal Radiance)) &)
emissions ~10 100
(mgC R? = 0.26 RMSE = 0.8 N = 46
m-2d-1) be
CH, degassing — 1((~6:9106 + 2.950 * logl0(CH4 Diffusive Emissions Integrated on 100 yrs) -+ 0.6017* loglo( WRT)) %1000 6)
emissions (t 1000000000
~1y b A
Gy * Catchment Area* 1000000 * (W) 0.9
R? = 0.68 RMSE = 0.81 N = 38
CO,, diffusive (1.860 — 0.330 *logl0(Age) + 0.0332 * Effective Temperature CO2 + 0.0799 * logl O(Reservoir Area) + )
emissions At a specific age = 10 0.0155 * Reservoir Surface Soil C Content + 0.2263 * log10(TP))
(inmg C R? = 0.36 RMSE = 0.39 N = 169
m 241y
Integrated over lifetime (100yrs)" = [€:))

<10(l.860 + 0.0332 * Effective Temperature CO + 0.0799 * logl0(Reservoir Area) + 0.0155* Reservoir Surface Soil C Content +0.2263 * logl0(TP) )

100(-0330 +1) _ (.5(-0.330 + 1)
(=0.330 + 1)*(100 — 0.5) )

@ The equation above uses the empirical model equation but also contains the operation necessary to integrate the emissions over 100 years (derived from calculus).
" Fluxes in COze were derived using a global warming potential (GWP) of 34 over a 100-year period.

¢ See Appendix A for Reservoir Cumulative Global Horizontal Radiance calculation.

4 Because of the logarithmic age term and the ensuing singularity at age = 0, the equation was integrated from 0.5 to 100 years.

n (] » o
o o o o

CH_diffusive emissions (mg C m=2d-)

—_
o

0 25 75

50
Age of reservoir

25%

15%

5%

0
100 0 25

75 100

50
Age of reservoir

Fig. 1. Model-predicted changes in annual CH, diffusive emissions through time (years) for an average reservoir with a) littoral area of 24% and at several air
temperatures; and b) a reservoir with a mean annual air temperature of 16.8 °C and for various littoral area.

likely to be comparatively CHs-poor, leading to low degassing emis-
sions. To account for this, the G-res Tool estimates degassing emissions
only when the water intake is located below the thermocline.

To develop the G-res CH4 degassing model, we calculated measured
degassing flux as the difference in published CH4 concentrations up-
stream and downstream of dams multiplied by mean annual flow
through the turbines. We then tested for significant predictors of the
difference between upstream (reservoir) and downstream CH4 concen-
trations. The magnitude of these concentration differences was best

predicted (Table 2, Eq. 6) as a function of water residence time (WRT)
and post-impoundment annual CHy diffusive emission (itself estimated
by the model described in section 3.1.1) as a proxy of CH4 production.
This provides an efficient method for predicting degassing emissions.
Average discharge through the turbines was estimated as 90% of the
annual runoff (as default value) although this value can vary substan-
tially depending on the reservoir operations and maintenance.
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3.1.4. CO diffusive emissions

The best model for diffusive CO, flux, also determined using an
elastic net regression procedure, includes reservoir age, mean annual
temperature, modelled phosphorus concentration (Prairie et al., 2017),
reservoir area and pre-inundation reservoir surface soil carbon content,
as shown in Table 2 (Eq. 7). Because of the logarithmic nature of the
relationship, negative CO; fluxes (i.e., reservoir acting as an atmo-
spheric sink) are currently not included in the modelling. Persistent CO5
influx is generally observed only under eutrophic conditions and/or
when there are very low organic allochthonous carbon inputs (Soued
and Prairie 2021). As a result, G-res can be construed as providing an
upper limit to the COy footprint of eutrophic systems. Compared to
diffusive CHy, the decline of CO, emissions over time is much steeper at
first and stabilizes more quickly to a new equilibrium (Fig. 2). This
temporal decrease has been reported in several cases (Abril et al., 2005;
Demarty and Tremblay, 2017; Galy-Lacaux et al., 1997; Teodoru et al.,
2012).

Predicted CO, diffusive emissions from both individual reservoirs
and reservoirs collectively are highly influenced by temperature
(Fig. 2a), and somewhat less sensitive to the amount of organic carbon
contained in the flooded soil (Fig. 2b; Harrison et al., 2021), suggesting
that diffusive CO, emissions from reservoirs could increase with
increasing water temperatures anticipated to accompany ongoing
climate change.

These models describe well both the main drivers and the temporal
trajectory of CO2 emissions and can therefore be used to estimate the
expected emissions at any particular time post-flooding. Unlike CH4
emissions (see Prairie et al., 2017), not all surface CO5 emissions should
be attributed to reservoir creation because, as with all inland aquatic
systems, reservoir CO, emissions are also sustained by the mineraliza-
tion (biological and photochemical) of allochthonous organic carbon
(largely dissolved) originating from the upstream catchment. In the
absence of a reservoir, allochthonous DOC would still have been
mineralized to CO», albeit mostly further downstream. Furthermore, the
longer water residence time of reservoirs relative to the river it replaced
allows for more DOC mineralization to occur at the reservoir site
(Algesten et al., 2005; Dillon and Molot, 1997; Vachon et al., 2017),
exacerbating the magnitude of “displaced emissions” (sensu Prairie
et al., 2017). The G-res Tool allows for an estimation of this portion of
the CO., diffusive flux that can be legitimately attributed to the creation
of a reservoir. To calculate this fraction, the G-res Tool assumes that the
predicted CO, emission rate at year 100 post-flooding corresponds to

2000
o
S
Q
o 1500
E
%)
=
kel
7
2 1000
§
o 25°C
=
7}
g 20°C
S 500
ON 15°C
O 10°C
5°C
0
0 20 40 60 80

Age of reservoir

a) 1

1

1

100

Environmental Modelling and Software 143 (2021) 105117

naturally sustained emissions which are subtracted from the temporal
trajectory to provide an estimate of the CO3 attributable to mineraliza-
tion of the flooded terrestrial biomass and soil C (see Prairie et al., 2017
for details). Under this assumption, the rate of decline through time (i.e.
the Age variable coefficient in the regression model, —0.330) can be
used to calculate that, over the 100-year lifetime of reservoirs, an
average of about 31 (+6) % of the CO; emissions can be attributed to the
impoundment, with the remaining being sustained by continuous
allochthonous organic carbon.

The G-res platform also accounts for the CO, emissions from natural
aquatic ecosystems located within the impoundment area prior to
flooding. For example, when a lake is only slightly expanded by
impoundment or when several lakes were submerged, G-res calculates
reservoir CO3 emission by applying the predicted areal rates (Egs. 7 or 8)
only to the newly flooded area rates using:

% Water Body before impoundment

Newly impounded land ratio = 1 — 100

€)

3.2. Net GHG footprint

The sum of the 4 different components of emission gives the total
post-impoundment emissions, from which the pre-impoundment emis-
sions can be subtracted (or added) to obtain an estimate of the net GHG
footprint (illustrated in the Graphical Abstract).

3.3. Validation

3.3.1. G-res modelling approach versus averages of measured values

The range of GHG emission rates found in the literature, regardless of
emission pathway or ecosystem type, consistently shows a highly
skewed distribution, with a few very high values, leading to mean values
that are much higher than other measures of central tendency. By using
log-transformed models, predictions from the G-res correspond to the
geometric mean of the distribution of annualized, area-adjusted GHG
flux measurements. However, because G-res relies on the main drivers of
emissions from a set of local environmental factors through statistical
relationships, it is less prone to overestimation than the often-used
approach of simply applying the average value derived from a highly
skewed set of measured fluxes to estimate the flux of unsampled reser-
voirs. To validate this claim, we used reservoirs for which CH4 diffusive
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Fig. 2. Model-predicted changes in annual CO, diffusive emissions through time (years) for an average reservoir with a) a soil organic carbon content of 10.7 kgC
m~2 and at several air temperatures; and b) a reservoir with a mean annual air temperature of 16.7 °C and for various soil carbon contents in the flooded soil.
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emissions had been measured to compare the predictive ability of our G-
res model estimation of reservoir-wide CHy4 diffusive emissions with
those calculated by simply applying the average of all measured areal
emission rates (38.5 mg C m—2 d’l, from measurements used in this
comparison) to the same systems. As expected, G-res predictions did not
deviate significantly from the 1:1 line (Fig. 3a), while simply applying
the observed mean to all reservoirs overestimated reservoir emissions in
84.1% of the cases and by an average of nearly an order of magnitude
over the entire range of prediction (Fig. 3b). The corresponding Nash-
Sutcliffe Efficiency statistics were 0.67 and 0.25, respectively. This un-
derlines the importance of model-based predictions when dealing with
highly skewed data. The same pattern was observed, albeit to a varying
degree, when the individual pathways were examined separately (See
Supplementary material Figure S2 and Table S1).

3.4. Emissions through time: the case study of two contrasting reservoirs

The general decline in GHG as a function of age of the reservoir
observed in our models (Eq. 3 and 7) and reported elsewhere (Barros
etal., 2011) is cross-sectional in nature, i.e., through the observations of
different reservoirs of varying ages. To explore the longitudinal appli-
cability of the models to individual reservoirs over time, we tested it to
two well-studied but contrasting reservoirs from a boreal (Eastmain-1)
and a tropical climate (Petit-Saut).

Eastmain-1, a 603 km? reservoir in the boreal region of Quebec
(53°N), was flooded over the November 2005 to February 2006 period.
The reservoir emissions were monitored and published in the scientific
literature for seven (7) years after impoundment (year 2006-2009
(Bastien and Demarty, 2013; Demarty et al., 2009; Demarty and Trem-
blay, 2017; Teodoru et al., 2012; Tremblay et al., 2008; Tremblay et al.,
2009), and further measured recently in 2018 (unpublished data, P. del
Giorgio). Prior to flooding, the impounded area was dominated by forest
(74%), with a small coverage of grassland/shrubland (10.5%), water
bodies (11.5%) and wetlands (3%), and the impounded soils have
organic carbon-rich content (22.3 kg C m~2 on average). This remote
area has very limited human occupation or activities, and the reservoir is
considered oligotrophic (total phosphorus concentration estimated by
the G-res is 7.1 pg L™! and measured as 9.3 pg L™ in 2018 (unpublished
data, P. del Giorgio).

In contrast, Petit-Saut is a tropical reservoir (4° N) located in French
Guiana where 305.5 km? of forest (37%), wetlands (25.7%) and water
bodies (32.9%) were flooded in 1994. The reservoir emissions were
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measured and published in the scientific literature for the first ten (10)
years after impoundment (year 1994-2004, Abril et al., 2005), but were
also continuously monitored in 2004-2014 (unpublished data, V. Cha-
nudet). The impounded soil carbon content is 10.4 kgC m™~2 on average
and the reservoir is considered oligotrophic.

To compare Eastmain-1 observations with G-res Tool predictions,
eight years of measurements for the ice-free period were annualized to
account for the seasonal temperature cycle and corresponding GHG
production (See section 2.2.1, Prairie et al., 2017b). For Petit-Saut, no
such annualization was necessary given that measurements (monthly)
were available from all seasons. For the purpose of this comparison, we
did not distinguish between natural and anthropogenic CO, emissions
(section 3.2.4, Prairie et al., 2017a,b). Also, because of the lack of
time-series data on multiple GHG emission pathways, the comparison
was only possible for CO, and CHy diffusive emissions.

For COq, Fig. 4a and b shows that both the magnitude and the decline
in the rate of post-impoundment CO, emissions are, for the two con-
trasting reservoirs, reasonably well-predicted by G-res. As predicted, the
initial emission rates were much higher in Petit-Saut than in Eastmain-1
Eastmain 1a but exhibited a similar rate of relative decline. Neverthe-
less, the model underpredicted emissions in the initial years at Eastmain-
1 but G-res estimations and observations converged after a few years
post-impoundment (Fig. 4a). For Petit-Saut, the G-res model predicted
the initial rates quite well but tended to overestimate later on.

While the details of the temporal projections are important, the long-
term cumulative footprint is particularly relevant given the overall
purpose of the G-res platform. Fig. 4c—d illustrate how the estimated and
observed cumulative CO5 footprints track one another. For Eastmain-1,
the G-res cumulative footprint was, on average 17%, lower that the
cumulative observed CO5 over the course of the observation period (12
years). For Petit-Saut, the cumulative COy emission curve was nearly
perfectly matched by G-res estimation (Fig. 4d).

For CH4, the G-res model correctly predicted the one order of
magnitude difference between diffusive CH4 emission rates of the two
reservoirs (Fig. 5). However, the temporal trends in measured emissions
did not follow the G-res predicted rate of decline. For the tropical
reservoir Petit-Saut, the observed decline was faster than predicted
while the Eastmain-1 reservoir exhibited the reverse pattern (G-res
predicted diffusive CH4 flux to decline faster than it actually did). This
suggests that, in its current form (Table 2, Eq. 3), the G-res CH4 diffusive
model apparently captures an average rate of decline but that the cross-
sectional data was unable to detect the slower decline in very cold
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environments and the steeper decline in tropical climates. This putative
interaction between climate and the rate of temporal decline following
impoundment can only be resolved by the incorporation of multiple long
time-series of CH4 from other reservoirs.

3.5. Uncertainty estimation

The G-res Tool ultimately aims at predicting the GHG footprint of
reservoirs over their assumed lifetime (100 years) and therefore implies
the integration over time of each of four statistical models summarized
in Table 2. This operation is akin to estimating the long-term mean
emission rate. As a result, we developed an uncertainty estimate to
reflect the error variability of the estimated mean GHG footprint using
Monte Carlo simulations. In brief, the predicted fluxes (log scale) from
each emission pathway were contaminated randomly with normally
distributed noise corresponding to the standard error of the residuals of
each model and then summed after log de-transformation. We repeated
the procedure to obtain 1000 estimates of the reservoir GHG emissions
footprint from which we extracted the non-parametric 95% confidence
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limits. While these varied between reservoirs, the average lower and
upper values corresponded to 87 and 120% of the mean. Note that if the
G-res equations are instead used to estimate a reservoir’s GHG footprint
at a given age, uncertainty limits will be wider than for its lifetime in-
tegrated footprint and would require accounting for de-transformation
bias.

3.6. G-res tool user interface

To make the predictive models described above widely available, we
developed a web interface, hereafter called the G-res Tool. This online
tool (www.hydropower.org/gres-tool) allows users to use reservoir-
specific input data to calculate net GHG footprint estimates. The G-res
Tool also provides auxiliary modules to estimate emissions for the
construction phase as well as to allocate GHG footprint to the different
services associated with a particular reservoir (Hydroelectricity, Water
supply, Flood control, Irrigation, Fisheries, Recreation, Navigation and
Environmental flow). The methods used in these modules are described
in more detail in a technical document (Prairie et al., 2017). In this
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Fig. 5. Mean annual CH, diffusive emission values (mg C m 2 d ') predicted with the G-res model (Black) compared to mean field measurements (Grey) for the same

period (12 years for Eastmain-1 and 20 years for Petit-Saut).

paper, we focus only on the pre- and post-flooding GHG balance of the
reservoir area.

From the main Introductory G-res Tool web-page, nine other inter-
acting tabs can be selected and used for several purposes, including: 1)
entering input variables (about the reservoir and its catchment), 2)
entering information about the usage of the reservoir (to allocate ser-
vices), 3) entering information about the construction phase of the
reservoir (to estimate construction-related GHG footprint), 4) viewing
calculated reservoir post-impoundment GHG emissions, including the
relative contribution of each emissions pathway and each GHG, the
magnitude of unrelated anthropogenic sources, and an estimate of Total
GHG flux (including an evaluation of the pre- and post-impoundment
footprint), and 5) implementing a pre-programmed Earth Engine func-
tionality to assist in obtaining all relevant and required input informa-
tion from globally available and consistent sources (Prairie et al., 2017).
This latter functionality can be used to obtain all required data by
providing basic information (dam location, dam height) for existing
reservoirs but can also be used to explore the GHG footprint of future or
planned sites. Since the G-res Tool is cloud-based, the user can save
input parameters locally and re-import them back in a subsequent use of
G-res. Various report and export functions are available. Fig. 6 displays
the main user interface outlook and the Total GHG footprint results
page.

The G-res Tool has been available for use since 2017 (from version 1
onwards) and is now recommended by multiple stakeholders and in-
ternational organizations with now more than 900 registered users and
an average of 150 visits per month. While the G-res has been mostly used
to estimate the carbon footprint of individual reservoirs, it has recently
been used to estimate the biogenic GHG component in a Life Cycle
Assessment of hydroelectricity generation for the whole province of
Quebec (Levasseur et al., 2021). A further strategic importance of G-res
lies in its ability to estimate GHG emissions for future projects, allowing
better decision-making to build new reservoirs that have low carbon
footprint. For example, estimates of high degassing emissions can lead to
dam design changes (i.e. water intake depth) to reduce the importance
of this pathway. Similarly, estimating the total GHG footprint is

particularly important for banking institutions in their decision to
finance future reservoir projects.

4. Discussion
4.1. Comparison to previous models

It is important to emphasize that there is currently no other model-
ling platform that can be used to compute, in a comprehensive and
globally applicable framework, all four GHG emission pathways. The G-
res integration of several components and flux estimates due to indi-
vidual GHG emissions pathways moves beyond past efforts to quantify
GHG emission from reservoirs (Barros et al., 2011; Bastviken et al.,
2011; Deemer et al., 2016; Hertwich, 2013; St-Louis et al., 2000).
Similarly, the ability to distinguish between natural and anthropogenic
CO4 emissions is unique to G-res as well as the estimation of the net GHG
footprint through the estimation and accounting of the landscape GHG
balance prior to flooding. Thus, the comparison between G-res and
previously published models revolves around the driver variables
identified, the extensiveness of the database used and, consequently, the
robustness of the individual empirical models.

Barros et al. (2011) highlighted the influence of age and temperature
(using latitude) on reservoir GHG emissions using 85 reservoirs. Simi-
larly, the more recently published study from Deemer et al. (2016) has
improved the estimation of GHG emissions from reservoirs by using a
much bigger database (267 reservoir-years, largely overlapping with
ours), as well as showing that reservoir productivity plays an important
role in GHG emissions, along with age, temperature and hydrology. The
G-res model developed here builds on these studies and has confirmed
many of these drivers previously identified while integrating several
new ones to develop a globally consistent modelling platform for each
component of reservoir GHG emission based on a much larger number of
potential predictor variables (>40; see Table 2 for the variables
retained). The incorporation of the more recently available GHG mea-
surements into empirical models has improved predictive power and, in
particular, the robustness of the estimated model coefficients. For
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models where the age of the reservoir was deemed a significant pre-
dictor (diffusive CO, and CH4 emissions), the larger dataset helped
better define the temporal evolution of emissions and therefore the in-
tegrated lifetime (100 years) GHG footprint, also a unique feature of
G-res. While their predictive abilities are far from perfect,
regression-based models are also less prone to introduce biases than a
simple application of average per-area rates, particularly in the case of
GHG pathways (mostly for CH4) known to have a highly skewed dis-
tribution. For example, regional or global estimates of GHG emissions
from reservoirs derived from simply applying an average value inher-
ently assumes that the sampled systems are representative of the pop-
ulation distribution. Validation of the G-res models provided in this
study (Fig. 4) illustrates that the regression-based approach can
considerably reduce biases.

Another important feature unique to the G-res modelling platform is
that it can provide estimates of so-called displaced emissions of CO, i.e.
emissions that take place at the reservoir surface that are sustained by
upstream loading of organic carbon mineralized within the reservoir but
that would have occurred regardless of the presence of the reservoir,
albeit elsewhere downstream in the hydrological network (Section
3.1.4, sensu Prairie et al., 2018).

4.2. Partitioning among emission pathways

The heterogeneity of the modelling database precluded the direct
comparison of the relative importance of the various GHG components
because very few reservoirs had concurrent measurements of all emis-
sion pathways. However, the modelled emission rates to the same
dataset shows that, excluding the CH,4 degassing component, the overall
GHG footprint is dominated by the CO- diffusion pathway in about 73%
of the cases while CH,4 diffusion and bubbling is the main pathway in 10
and 16% of the reservoirs, respectively (See Supplementary material
Figure S3). In this analysis, CH4 degassing was omitted because its
contribution to the overall GHG footprint was relatively small (mean:
14%, median: 4%) and it would assume that all reservoirs have the
required configuration for significant degassing to occur (i.e. hydro-
power reservoirs with deep water intake). Note that these numbers
apply specifically to the dataset assembled here and can differ in a more
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global context (Harrison et al., 2021).

4.3. Limitations of the models

While the G-res model predictions carry large numerical uncertainty,
the G-res Tool is, to our knowledge, the most complete and the only
globally consistent framework to predict the GHG footprint of reser-
voirs. However, proper usage of G-res also requires an understanding of
its current limitations. For example, because the models are regression-
based, one of the inherent limits of application is the observation range
in the predictor variables of the assembled model dataset. While the
observational ranges in our dataset captures most the variability of the
global database provided in the GRanD database (Lehner et al., 2011)
(Table S2), we recommend applying G-res only to reservoirs that fall
within the limits of the current data. Furthermore, the G-res develop-
ment has helped identify a number of knowledge gaps that deserve
additional attention and research. These include: 1) the impact on GHG
fluxes of reservoir location, operation and water transfers between res-
ervoirs and power plants within watersheds, 2) the potential for reser-
voirs to act as GHG sinks, 3) newly identified flux pathways, 4) potential
carbon burial in sediments and 5) the impact of eutrophication on
reservoir GHG emissions.

The first important element not considered in the G-res framework is
the prediction for cascade systems, where outflow from one reservoir (or
a series of reservoirs) flows into one or more reservoirs further down-
stream. At present, reservoirs are considered independent and G-res
therefore assumes that carbon processing in one reservoir does not affect
that of downstream reservoirs. There is very little empirical information
in the scientific literature on whether this assumption is reasonable.
However, given that part of the allochthonous organic carbon input to
the first reservoir of a cascade will be mineralized and lost from the
hydrological system, one would hypothesize that at least the CO,
emission in a downstream reservoir is likely to be lower than it would
have been in the absence of a reservoir upstream. CH4 emissions are less
likely to be affected by upstream conditions since they result largely
from the creation of new anoxic environments (Liu et al., 2020).
Nevertheless, given that systems of cascading reservoirs and inter-basin
transfers are common in many areas of the world, measurement
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campaigns aiming to test these hypotheses would be useful.

Another area that would benefit the development of more robust CO5
models is the ability to quantify reservoirs with negative diffusive COy
fluxes (i.e., where reservoirs act as COg sinks). The logarithmic nature of
our models is not well-suited for this purpose. While not common, CO4
uptake has been observed (Chanudet et al., 2011), generally in eutrophic
reservoirs although recent report shows that it can also occur periodi-
cally in oligotrophic conditions with very low organic carbon concen-
trations (Soued and Prairie 2021). It also highlights that predicting CO5
fluxes sustained by allochthonous input is paramount to the accurate
estimation of the true CO; footprint of reservoirs. A related limitation of
the current G-res version is the absence of an explicit carbon sedimen-
tation component. Cases of persistent negative fluxes indicate reservoirs
that necessarily accumulate carbon, through sedimentation and burial.
Recent measurements have shown that sediment carbon accumulation
can be large in reservoirs (Mendonca et al. 2014, 2017). While the
ensuing carbon accumulation cannot, from a mass-balance perspective,
be simply subtracted from the flux at the air-water interface (see Prairie
et al., 2017 for details) to obtain a net footprint, there are circumstances
in which a portion of the carbon burial can be construed as a new sink
(Isidorova et al., 2019), i.e. carbon burial that would not otherwise
occur either at the reservoir site or further downstream. There are
currently too little data to estimate the portion of the carbon accumu-
lation that can be rightfully considered a new sink but future versions of
G-res and other, yet-to-be-created, reservoir GHG models should incor-
porate this pathway to offer a more complete representation of the
reservoir GHG footprint.

Another limitation of the current G-res model is that new emission
pathways are being identified but for which observations are too few
and therefore difficult to generalize. Identified nearly two decades ago
(Fearnside 2002), recent studies have suggested that GHG fluxes from
drawdown zones can be important although highly variable because
they depend, in part, on the carbon and moisture content of the exposed
soil/sediments (Marcé et al., 2019; Serca et al., 2016). Such emissions
have been shown to be very high in some systems (Amorim et al., 2019).
Given the paucity of literature on the subject, the emissions from
drawdown areas are not explicitly included in G-res (although assumed
implicitly to be of same magnitude as surface flux since G-res uses the
maximum surface of the reservoir in the footprint calculations). Simi-
larly, assessments of degassing emissions have been largely confined to
CH4 although CO; is known to be also emitted through this pathway.
However, as additional data become available, GHG emissions from
these pathways should be modelled explicitly and integrated in future
iterations of G-res.

Another improvement would be the incorporation of an explicit
representation of the relationship between GHG emissions and trophic
status. Recent analyses have reported strong, positive correlations be-
tween CHy4 emissions and lake trophic status both within single lakes
across time and space (Grinham et al., 2018; Li et al., 2018) and in
multiple-lake syntheses (Beaulieu et al., 2019; Deemer et al., 2016;
DelSontro et al., 2018; Harrison et al., 2017). A positive relationship
between primary production and CH,4 emissions makes sense as organic
matter can stimulate CH4 production as an organic substrate for aceto-
clastic CH4 production, and it can also foster the anaerobic conditions
necessary for CH4 production (and inhibit CH4 oxidation). Limited
experimental work has also indicated a relationship between CH4 pro-
duction and organic C quality (West et al., 2016). Intriguingly, recent
work also shows that direct production of CHy in oxic surface waters by
cyanobacteria could strongly link primary production and CH4 emis-
sions (Bizic et al., 2020), although the importance of this process in
controlling CH4 emissions is under debate (Giinthel et al., 2021; Peeters
and Hofmann 2021). Furthermore, future emissions are likely to be
sensitive to changes in organic C delivery (Bayer et al., 2019). To-date,
the absence of global-scale information on Chl a concentrations or tro-
phic status has precluded the effective incorporation of such a driver in
the global G-res model. However, efforts are underway to develop such
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information, and it may soon be possible to include such information in
a global reservoir GHG model. As eutrophication may often be linked to
UAS loading (see 2.1.1), improving the incorporation of the relationship
between GHG emissions and trophic state will also be useful for iden-
tifying the impact of UAS.

Lastly, the net GHG footprint, i.e., the difference in the GHG balance
before and after impoundment, currently relies on generic CH4 and CO2
emissions factors from the IPCC for different land cover types in
different climate zones. Application of our current approach to our
modelling dataset suggests that, while significant in areas where the
flooded terrestrial landscape is rich in highly organic soils or if the
flooded land has special characteristics leading to large fluxes of GHG,
the importance of the GHG balance of the pre-flooding landscape is
generally modest, altering the median footprint by only 4%. While a
useful first order approach, we fully acknowledge that further im-
provements will require a more explicit modelling approach to the GHG
balance of the individual components of the terrestrial mosaic in place
before flooding.

5. Conclusion

The G-res model framework proposes a novel integrative approach to
the prediction of Net GHG footprint from reservoirs whereby predictions
include the local environmental conditions and physical configuration
of each reservoir in a globally consistent predictive framework. It allows
for a quantification of relative contribution of various emission path-
ways of CH4 and CO5 and how emissions of these gases change over time
after impoundment. Accounting for temporal trends provides a means to
assess its GHG footprint over the lifetime of reservoirs and also the
estimation of the share of CO2 emissions that are sustained by external
organic inputs that would have occurred even in the absence of the
reservoir, the so-called displaced emissions (Prairie et al., 2018).

The G-res Tool and associated models are freely available in a cloud-
based modelling portal that will allow the scientific community to
further probe the past and future geography of carbon emissions from
reservoirs by applying the framework to larger datasets than the one
used to develop it. The framework and its components will continue to
evolve as new data become available that allow for the core models to be
extended and improved, as new information on reservoir functioning
emerges, and as users provide feedback and insight on its structure and
components.

In a changing world where assessing GHG emissions of projects such
as reservoir creation becomes standard practice, such a tool will be
essential for decision makers to quantitatively evaluate alternative
projects in order to select those with the lowest possible environmental
footprints. The tool could also help in locating and designing new dams
and their corresponding reservoirs, in guiding the operation of existing
reservoirs, and in the potential retro-fitting of existing hydropower
plants and dams to reduce GHG emissions.
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Appendices.

A. Additionnal equations used

A.1. Air Density (kg/m>)

101325

Air Density =
i Densiy = 58705 * (Mean Temperature of the 4 Warmer Months + 273.15)

A.2. Bottom Temperature (°C)

o If Mean Temperature of the Colder Month > 1.4:

Bottom Temperature = 0.656*Mean Temperature of the Colder Month + 10.7

o If Mean Temperature of the Colder Month < 1.4:

Bottom Temperature = 0.2345*Mean Temperature of the Colder Month + 10.11

A.3. Bottom Water Density (kg/m>)

Bottom Temperature + 288.9414

Bottom Water Density = |1 —
orsom Water Density 508929.2 * (Bottom Temperature + 68.12923)

* (Bottom Temperature — 3.9863)2” *1000

A.4. Surface Temperature (°C)

Surface Temperature = Mean Temperature of the 4 Warmer Months

A.5. Surface Water Density (kg/m°)

Surface Temperature + 288.9414

s Water Density = |1 —
urface Water Density 508929.2 * (Surface Temperature + 68.12923)

* (Surface Temperature — 3.9863)2>} *1000

A.6. CD
CD =If (Reservoir Mean Wind Speed < 5 ; 0.001 ; 0.000015 )

A.7. Annual Wind Speed at 10m (m/s)

cD°s 10\ \ '
Annual Wind Speed at 10 m = Reservoir Mean Wind Speed at X m* (1 - ( 04 ) * Log 10<7> )

**X equal 50 m in our database.

A.8. Reservoir Volume (km3)

Reservoir Volume = Reservoir Area*(Mean Depth / 1000)

12
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A.9. Reservoir Area (km?)

Reservoir Volume

R jr Areq = o L0 L0
VoI ATea = oan Depth/1000

A.10. Mean Depth (m)
Mean Depth = Volume /Reservoir Area*1000

A.11. Thermocline Depth (m)

CD*Air Density*A [ Wind Speed at 10m?
Thermocline Depth—Z.O*\/ ir Denstty” Annual Wind Speed at Tm )*\/ vV Reservoir Area*1000000

9.80665* (Bottom Water Density — Surface Water Density

**(Gorham and Boyce, 1989).

A.12. Temperature Correction Coefficient CHy4 (To do for Each Month)

Temperature Correction Coefficient CH, = 10(Temperature per Month*0.052)

** 0.052 is the slope of the temperature vs CH4 flux function in our database.

** If Temperature per month lower then 4 °C, use 4 °C.

A.13. Temperature Correction Coefficient CO2 (To do for Each Month)

Temperature Correction Coefficient CO, = 10(Temperatre per Mont*0.05)

** (.05 is the slope of the temperature vs CO- flux function in our database.
** If Temperature per month lower then 4 °C, use 4 °C.
A.14. Effective Temperature CH4(°C)

log10(Average (12 Month Temperature Correction Coefficient CH, ))

Effective Temperature CH; = 0,05

** (0.052 is the slope of the temperature vs CHy4 flux function in our database.

A.15. Effective Temperature CO2 (°C)

log10(Average (12 Month Temperature Correction Coefficient CO, ))

Effective Temperature CO, = 0.05

** (.05 is the slope of the temperature vs CO- flux function in our database.

A.16. k600
k600 = 0.24 * ( 2.51 4 1.48 * Annual Wind Speed at 10m* +0.39 * Annual Wind Speed at 10m* * log ( Reservoir Area))

** Vachon and Prairie (2013).

A.17. kh

kh = exp (( —115.6477 — 6.1698 * (Effective Temperature CHy + 273.15) / 100) + (155.5756 / ((Effective Temperature CHy + 273.15) / 100) )
+ (65.2553 * In ((Effective Temperature CHy + 273.15) / 100) )) * (1000 / 18.0153)

** (Lide, 1994).

A.18. pCHy4

pCH4 _ 10( ( 146 + 0.03 * Effective Temperature CHy) — 0.29 * log (Reservoir Area) )

** Rasilo et al. (2014).

A.19. Surface Water CH4 Concentration

Surface Water CHy4 Concentration =kh * pCH,

13
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A.20. CH4 Emission Factor for Water Bodies (kg CH4/ha/yr)

, 365

CH, Emission Factor for Water Bodies = Surface Water CH, Concentration * k600 * 16 100

A.21. g-bathymetric Shape

Maxi Depth
g — bathymetric shape = % -
A.22. % Littoral Area
3 q — bathymetric shape
% Littoral Area=|1—(1—-——+"——— *100
Maximum Depth

A.23. Phosphorus Load - Forest (kg/ha/yr)

<0_914 ~ logl0 ( (Can»hmmr Land Gprer % = me) * Catel Arw) *0.014
10

100

Phosphorus Load factor — Forest =

A.24. Phosphorus Load - Croplands (kg/ha/yr)

(1.818 ~ logl0 ( (am»hmm Land Cover % — cmpmm) * Catch Aml) *0.227
10

100

Phosphorus Load factor — Croplands =

A.25. Population in the Catchment (person)

Population in the Catchment = Catchment Area* Population Density

A.26. Annual discharge (mm/yr)
Annual Discharge = Annual Runoff * 0.001 * Catchment Area*1000000/31536000

A.27. Water Residence Time (WRT, yrs)

Mean Depth*Reservoir Area

WRT =
Catchment Area* Annual Runoff

*1000

A.28. River Area Before Impoundment (km?)

River Length Before Impoundment*5.9* Catchment area ***

River Area Before I dment =
iver Area Before Impoundmen 1000000

A.29. Reservoir Cumulative Global Horizontal Radiance (kWh/mZ/period)

e If 40 > Latitude > —40:

Reservoir Cumulative Global Horizontal Radiance = (Average (12 Month Reservoir Mean Global Horizontal Radiance) * Number of month over 0°C)

e If 40 < Latitude

%

Reservoir Cumulative Global Horizontal Radiance = (Average (May; June; July; August; September Reservoir Mean Global Horizontal Radiance)
Number of month over 0°C)

14
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e If - 40 > Latitude

Environmental Modelling and Software 143 (2021) 105117

Reservoir Cumulative Global Horizontal Radiance = (Average (November; December; January; February; March Reservoir Mean Global Horizontal Radiance) *

Number of month over 0°C)
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