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Abstract:  We analyze an optical control plane algorithm designed to operate in real-
time to improve generalized-optical signal-to-noise ratio (gOSNR) quality-of-transmission-
estimation (QoT-E), based on OSNR monitoring. We report QoT-E performance improve-
ments of up to 1 dB. © 2021 The Author(s)

1. Introduction

Optical network disaggregation has recently emerged as a networking model to enable the use of multi-vendor
components in optical systems. This has also advanced the development of open software-defined networking
(SDN) control planes. However, the use of heterogeneous components can increase uncertainty on system perfor-
mance, for example reducing the predictability of quality of transmission (QoT). This in turn imposes the use of
large optical signal-to-noise ratio (OSNR) margins, which adversely affects network efficiency and complicates
fault diagnosis. For this reason, improving QoT estimation (QoT-E) and monitoring has become a key target for
open systems. Although analytical systems have been used for estimation of fibre nonlinearities [1], the use of
active components, such as erbium-doped fiber amplifiers (EDFAs) create uncertainty that is difficult to model
analytically. This is again exacerbated by the component vendor diversity in disaggregated optical systems.

In order to improve lightpath QoT-E, the use of machine-learning (ML) algorithms has received much attention
[2,3]. While promising, the practical application of ML estimation models in operational networks is complicated
by the need for large data sets, including in-service performance measures. An alternative technique is the use
of components for real-time monitoring of OSNR in selected network locations, which can provide data and/or
reduce the need for large data sets. Meng et al. [5] have proposed a real-time OSNR monitoring algorithm that
can intelligently select which optical signals to monitor in an optical link, and use this information to infer the
OSNR levels of neighboring signals. Another option is the use of coherent receivers to estimate lightpath QoT
given the characteristics of the optical link, which can effectively provide gOSNR monitoring as well as other
power anomaly detection measures through digital backpropagation [4, 6].

In this paper, we address two key questions for the control and
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to QoT-E inaccuracy. In particular, we address the complication of OSNR monitor-
ing considering that the OSNR is inversely related to the gOSNR
for high transmission power, as shown in Figure 1. Thus, for a channel whose power is higher than originally
estimated, OSNR monitoring alone would indicate that the QoT is higher than the QoT-E. However, since the
nonlinear interference increases with absolute power, at high transmission power (e.g. due to gain ripple power di-
vergence), the presence of nonlinear interference renders the actual QoT lower than its OSNR-based value would
indicate. This is particularly important for monitoring scenarios in which the noise figure of an amplifier can be
expected to be relatively constant, but the channel powers will vary based on the loading scenario, which is the
main focus of this work.
In this work we use an optical control plane application capable of retrieving live OSNR information from
OPMs in the network and use it to determine the QoT to compare that with the QoT-E based on design parameters
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alone, without any monitoring. Our control plane operations were tested with the Mininet-Optical [7] packet-
optical network emulator, which allows testing of optical control planes over large size virtual optical network
topologies.

2. Optical SDN control plane algorithms

First introduced in [7], Mininet-Optical enables the development and testing of optical SDN control plane al-
gorithms by providing a south-bound interface to emulated optical components (i.e., transponders, ROADMs,
EDFAs and OPMs). Thus, researchers can test their control plane algorithms and operations in a virtual environ-
ment, which reproduces both control elements and physical impairments of a real disaggregated optical network.
Mininet-Optical models the physical effects of optical network transmission (i.e., optical signal power propaga-
tion, Stimulated Raman Scattering (SRS), single- and cross-channel interference (SCI and XCI)). The latter is used
to model the gOSNR, and it is based on the nonlinear noise model found in the GNPy project [8]. Additionally,
it simulates the wavelength-dependent gain of EDFAs, which is one of the main sources of uncertainty in QoT-
E models, providing a more realistic environment to test the performance of QoT-E algorithms. The monitoring
capabilities of Mininet-Optical allow us to collect optical signal power, ASE and NLI noise data of individual
channels and study collective effects that can manifest over a large network. The collection of this data is enabled
through virtual OPM components that emulate OSNR monitors or reference receivers [4] that can recover esti-
mates of the full gOSNR, either of which can be interrogated through a control plane interface. We can place these
OPM modules at any location of an optical link. Thus, the data collected from these monitors can be used in ML
algorithms to better diagnose faults or control the network.

In order to provide a comparison for our control plane QoT-E implementation, we produce a baseline estimation
algorithm that is typical of offline planning tools (e.g., GNPy integration with the ONOS controller [8]). This
baseline estimation is provided considering, for any given optical transmission, the ASE and NLI noise levels for
every channel at every location that the channels traverse.

OSNR/gOSNR estimation and correction algorithm

In this study, we look at how OPM monitoring at intermediate nodes in a link can help to improve the estimation
of gOSNR levels of individual channels along a path. We use the estimated power (Pz), ASE noise (ASEg) and NLI
noise (NLIg) to compute the estimated gOSNR with gOSNRg = Pr /(ASEg + NLIg ). We test three different types
of gOSNR estimation models: model (i) updates the ASE noise levels from the baseline model estimate based
on the expected noise levels given by the OSNR monitoring, where it is available; model (ii) uses this OSNR
monitoring information together with channel monitoring information to build a model for the optical power
levels between monitoring points and gOSNR estimates based on these values; model (iii) uses reference receiver
monitors that directly measure gOSNR, which is used to set the QoT values to perform subsequent estimations
along the path.

More specifically, in model (i) we replace the Py and ASEE values in the QoT-E procedure by the monitored
power Py and ASE noise ASE);. These updated performance metrics are then used to compute the QoT-E at
the subsequent locations in the optical link. Note that such OSNR monitoring is sensitive to uncertainties in
the amplifier noise figures, which would be reflected in the ASE noise power measurement. We then propose
model (ii), where in addition to the operations in model (i), we also compute the difference between Pr and Py
to produce a NLIg correction factor, p..., for the gOSNR estimation formula. This measured power difference
is then assumed to be uniformly distributed among each span between monitoring locations (i.e. assuming a
linear ramp). Thus, at every OPM location i, for every channel ch, we compute p_corre,, = |Pmchi/ PEch,-|3 for
the nonlinear noise and ramping it for each span between monitoring locations. Then we apply this correction
factor to NLIg, resulting in a corrected NLI noise (NLI¢), which is used to compute an updated gOSNRg. Last,
model (iii) replaces all estimated metrics by direct gOSNR measurements, effectively resetting the QoT-E to a
new starting value at that node for use in subsequent estimation along the path. Model (iii) provides the most
accurate results and requires more expensive reference receivers. It is important to understand the relative merits
of different monitoring strategies to balance against their potential costs.

3. System setup and results

With Mininet-Optical we model the Cost239 European Network topology with 11 nodes and 26 links. For this
analysis, we focus on the London to Copenhagen link, measuring 1000 km, composed of 20x50km fibre spans.
We assume that all spans are optically compensated by EDFAs with target gains of 11 dB. Then, our optical SDN
controller configures the transponders to set the wavelength channels and launch power. Also, the controller must
configure the ROADM nodes to switch lightpaths appropriately. We include a boost amplifier after every ROADM,
compensating for an overall insertion loss of 17 dB. We also include channel power equalization procedures at the
ROADM nodes and at every 6th span in the links, carried out through variable optical attenuators (VOAs) in the
ROADMs or equivalent channel gain equalizers.
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Our first goal is to analyze the performance of the three models presented in Section 2 to assist gOSNR esti-
mation. Thus, we configured a 15-channel transmission configuration to traverse the link. The 15-channel set was
randomly allocated in the C-band channels (191.6 - 195.6 THz), with channel spacing of S0GHz and launch power
of 0 dBm per channel. In Figure 2a we show the performance of the three models when OPMs are co-located with
channel leveling locations (every 6th span), in addition to each intermediate location between these. Thus, we con-
sider 8 OPM nodes out of 21 possible locations (evenly-spaced across the link). In the figure, the green solid curve
represents the maximum error produced by the baseline QoT-E model (when we do not monitor at any location).
This maximum QoT error is computed considering the estimations for all 15 channels, predicted at each potential
monitoring location. The light-blue curves correspond to the performance of model (i) described above, the red
curves to model (ii), and the dark-blue curves to model (iii). We can see that simply correcting data points with
OSNR information (model (i)) reduces the error compared to the unmonitored scenario. However, peak errors are
still similar. Here we consider peak errors as the main indicator of estimator performance, as these will affect most
the required system margins. The key finding is that our proposed model (ii) (red curve) is able to lower the peak
error by over 0.5 dB, using the exact same amount of OSNR information. Indeed it is capable of reducing peak
errors considerably.

Figure 2b focuses on the trade-off between the model used and the number of OPM locations. Here we can see
that even with a higher number of OPM locations (16 out of 21 locations), simply correcting OSNR data points
(model (1)) is not effective in reducing the peak estimation error, which remains similar to the unmonitored curve
at location 11. Our proposed model (ii) can instead reduce the peak error by 0.7 dB, even using a smaller number
of OPMs (12 are considered here). Comparing the red and dark blue curve, we can also notice the we can trade
simple OSNR monitors with more complex gOSNR solutions, if we increase their number. When coupled with
our proposed model (ii), using 12 ONSR monitors provides comparable peak error (0.1 dB lower) than using 6
gOSNR monitors.

The comparison between the three models as a function of the number of OPM locations, is finally reported in
Figure 2c, which reports the peak error for each scenario. We can observe that model (ii) outperforms model (i)
by up to 1 dB. In addition, for increasing number of OPM locations, the discrepancy with model (iii) is reduced
to less than 0.5 dB.
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Fig. 2: (a): comparison of different QoT-E correction models with 8 OPMs; (b): comparison of model (i) with 16
OPMs, model (ii) with 12 and model (iii) with 6; (c): comparison of the impact of increasing the number of OPM

locations for the three models.
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