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. Introduction 

The classical stochastic differential equation (SDE) 

u = f (u (t)) dt + b(u (t)) dW (1) 

ay be used to describe stochastic processes in many disciplined 

nd applications [12,16,26,41] . For instance, in the modeling of the 

andom movement of a Brownian particle in a surrounding vis- 

ous liquid, u = u (t) denotes the velocity of the Brownian particle, 

f (u ) represents the mean resistance of the surrounding medium 

er unit mass of the Brownian particle, and b(u (t)) dW represents 

he random force that accounts for the effect of the noise that is 

odeled by a Brownian motion or Wiener process [12,18,26] . 

However, for the random movement of a Brownian particle in 

 viscoelastic medium, the resistance has memory effect that leads 

o fractional SDEs [4,6–11,14,15,17,20,22,24,25,28,39] . Moreover, in 

any scenarios the structure of the materials may evolve with 

ime. For instance, in the random movement of a Brownian par- 

icle in a viscoelastic medium, the collisions of the particle with 

he molecules of the medium may change the structure of the 
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edium. In nonconventional hydrocarbon or shale gas recovery hy- 

rofracturing technique is used to increase the pore size of the 

edium to enhance the recovery of oil and shale gas. As the frac- 

ional order is determined by the fractal dimension of the media 

ia the Hurst index [23] , the structure change of porous materials 

eads to the change of the fractional order, yielding variable-order 

odels [1,5,13,15,19,27,31,33,37,40] . 

Finally, classical fractional differential equations yield solutions 

ith nonphysical initial weak singularity [32,36] , which would af- 

ect the accuracy of their numerical approximations. The funda- 

ental reason is that the classical fractional differential equations 

annot accurately model the multiple time scales in the underly- 

ng physical processes. Recall that the classical time-fractional dif- 

usion equation was derived as a stochastic limit when the number 

f particle jumps tends to infinity and hence holds only for large 

ime [23,24] . A two time-scale variable-order time-fractional dif- 

usion equation was analyzed and discretized in Wang and Zheng 

38] , Zheng and Wang [40] , which catch both the Fickian diffusive 

ransport behavior near the initial time and the power-law decay- 

ng behavior of the anomalously diffusive transport for large time. 

imilar phenomena happens in, e.g., the creep process of viscoelas- 

ic materials when an external loading is applied at the initial time 

nstant, the strain of the material has a certain jump due to the 

lastic component in the material and then gradually increases 

ue to the viscous component. Again, the conventional fractional 
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ifferential equation model does not catch the elastic behavior at 

he initial time zone [2,15,17,21,30] . A two-time scale variable-order 

ractional SDE (fSDE) was proposed in Zheng et al. [42] 

u = 

(
−λ R 

0 D 

α( t ) 
t u + f ( u ) 

)
dt + b ( u ) dW , t ∈ ( 0 , T ] ; u ( 0 ) = u 0 , (2) 

hich can describe the elastic behavior near the initial time zone 

hile modeling the viscoelastic behavior for large time and holds 

n the entire time interval. Here λ ≥ 0 and the variable-order frac- 

ional integral operator 0 I 1 −α(t) 
t and Riemann-Liouville fractional 

ifferential operator R 
0 
D 

α(t) 
t are defined by Shi and Wang [35] , 

heng et al. [42] 

 

 

D 

α( t ) 
t h := 

d 

dt 

[
0 I 1 −α( t ) 

t h 

]
, 0 I 1 −α( t ) 

t h ( t ) 

:= 

1 

�( 1 − α( t ) ) 

∫ t 

0 

h ( s ) ds 

( t − s ) 
α( t ) 

. 

Compared to conventional SDEs, the variable-order fSDE 

2) possesses non-Lipschitz weakly singular kernel with variable 

rder, and also loses the convolution structure. Extra work needs 

o be carried out in the discretization and the corresponding anal- 

sis of the model. In this paper we develop a generalized Euler- 

aruyama scheme for the nonlinear variable-order fSDE (2) and 

rove its strong convergence. The rest of the paper is structured as 

ollows: In Section 2 we prove the well-posedness of the variable- 

rder fSDE (2) . In Section 3 we develop a generalized Euler- 

aruyama scheme for problem (2) and prove its strong conver- 

ence. In Section 4 we carry out numerical experiments to investi- 

ate the performance of the numerical scheme and to support the 

heoretical analysis. In Section 5 we draw concluding remarks. In 

ppendix A we present auxiliary results that are used in the anal- 

sis in the previous sections. 

. Wellposedness and estimates of the variable-order fSDE (2) 

In this section we prove the well-posedness and moment es- 

imates of the variable-order fSDE (2) . We begin by reformulat- 

ng the variable-order fSDE (2) as follows [12,26] : Let 
(
�, F , P 

)
e a probability space, W (·) be a Brownian motion and u 0 be 

 second-order random variable that is independent of W (·) . Let 

(t) := U 
(
W (s ) (0 ≤ s ≤ t) , u 0 

)
denote the σ -algebra generated

y u 0 and the history of the Brownian motion up to time t . Fur- 

her, the data of Eq. (2) satisfy the following assumptions 

(a) α ∈ C 1 [0 , T ] , the space of continuously differentiable func- 

tions on [0 , T ] , with 0 ≤ α(t) ≤ α∗ for some 0 < α∗ < 1 . 

(b) There exists a positive constant L such that 

| f ( v ) | ≤ L ( 1 + | v | ) , | b ( v ) | ≤ L ( 1 + | v | ) , ∀ v ∈ R , 

| f ( v 1 ) − f ( v 2 ) | ≤ L | v 1 − v 2 | , 
| b ( v 1 ) − b ( v 2 ) | ≤ L | v 1 − v 2 | , ∀ v 1 , v 2 ∈ R . (3) 

We integral the Eq. (2) from 0 to t and use the fact that ∫ t 

0 

−λ R 
0 D 

α( s ) 
s u ( s ) ds 

= 

∫ t 

0 

−λ
d 

ds 

[
1 

�( 1 − α( s ) ) 

∫ s 

0 

u ( y ) dy 

( s − y ) 
α( s ) 

]
ds 

= 

∫ t 

0 

−λ d 

[
1 

�( 1 − α( s ) ) 

∫ s 

0 

u ( y ) dy 

( s − y ) 
α( s ) 

]

= −λ

[
1 

�( 1 − α( s ) ) 

∫ s 

0 

u ( y ) dy 

( s − y ) 
α( s ) 

]
| s = t s =0 

= 

−λ

�( 1 − α( t ) ) 

∫ t 

0 

u ( y ) dy 

( t − y ) 
α( t ) 
2 
= 

∫ t 

0 

−λ

�( 1 − α( t ) ) ( t − s ) 
α( t ) 

u ( s ) ds =: 

∫ t 

0 

k ( t, s ) u ( s ) ds (4) 

o find a stochastic process u (·) on [0 , T ] that is progressively mea-

urable with respect to F(·) such that for all times 0 ≤ t ≤ T 

 (t) = u 0 + 

∫ t 

0 

k (t, s ) u (s ) ds + 

∫ t 

0 

f (u (s )) ds + 

∫ t 

0 

b(u (s )) dW a.s. 

(5) 

here 

 (t, s ) := 

−λ

�(1 − α(t))(t − s ) α(t) 
. (6) 

Throughout this paper we use Q,Q i , and Q̄ i to denote generic 

ositive constants, in which Q̄ i refer to the constant that occur 

rom the lemmas cited in the appendix and Q may assume dif- 

erent values at different occurrences. 

heorem 2.1. If Assumptions (a)-(b) hold, the variable-order fSDE 

2) has a unique solution u such that 

 

[
sup 

0 ≤s ≤t 

| u ( s ) | 2 
]

≤ Q 0 E 1 −α∗
(
Q 1 �( 1 − α∗) t 1 −α∗)

< ∞ , t ∈ [ 0 , T ] . (7) 

Here Q 0 and Q 1 are defined below, E p (z) is the Mittag-Leffler func- 

ion [29] 

Q 0 = 4 E 

[
u 

2 
0 

]
+ 8 L 2 T 

(
T + Q 1 

)
, 

Q 1 = 

(
4 λ2 T 1+ α∗

1 − α∗ + 8 L 2 
(
T + Q 1 

))
, 

 p ( z ) := 

∞ ∑ 

k =0 

z k 

�( pk + 1 ) 
, z ∈ R , p ∈ R 

+ (8) 

ith Q̄ 1 denoting the constant in Burkhölder-Davis-Gundy inequality 

65) in Lemma A.1 which can be found in the Appendix. 

roof. We employ the technique of Picard iteration to prove our 

xistence and uniqueness theorem. We define a sequence { z n } ∞ 

n =0 
y z 0 (t) := u 0 and for n ≥ 1 

 n ( t ) := u 0 + 

∫ t 

0 

k ( t, s ) z n −1 ( s ) ds + 

∫ t 

0 

f ( z n −1 ) ds 

+ 

∫ t 

0 

b ( z n −1 ) dW ( s ) . (9) 

As �(t) is decreasing on (0,1] and 0 < 1 − α∗ ≤ 1 − α(t) ≤ 1 for

 ∈ [0 , T ] , �(1 − α(t)) ≥ �(1) = 1 . We bound k (t, s ) in (6) by 

 k ( t, s ) | = 

λ( t − s ) 
α∗−α( t ) 

�( 1 − α( t ) ) ( t − s ) 
α∗

≤ Q 

α∗
2 λ

( t − s ) 
α∗ , Q 2 = max { 1 , T } . (10) 

For every n ≥ 1 and x ∈ [0 , T ] , observe that 

 n +1 ( x ) − z n ( x ) = 

∫ x 

0 

k ( x, s ) ( z n ( s ) − z n −1 ( s ) ) ds 

+ 

∫ x 

0 

f ( z n ( s ) ) − f ( z n −1 ( s ) ) ds 

+ 

∫ x 

0 

b ( z n ( s ) ) − b ( z n −1 ( s ) ) dW ( s ) . (11) 

Use Jensen’s inequality (66) in Lemma A.2 which can be found 

n the Appendix with m = 3 to bound (11) by 
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[
sup 

0 ≤x ≤t 

| z n +1 ( x ) − z n ( x ) | 2 
]

≤ 3 E 

[
sup 

0 ≤x ≤t 

| 
∫ x 

0 

k ( x, s ) ( z n ( s ) − z n −1 ( s ) ) ds | 
2 

+ sup 
0 ≤x ≤t 

| 
∫ x 

0 

f ( z n ( s ) ) − f ( z n −1 ( s ) ) ds | 
2 

+ sup 
0 ≤x ≤t 

| 
∫ x 

0 

b ( z n ( s ) ) − b ( z n −1 ( s ) ) dW ( s ) | 
2 
]

=: 

3 ∑ 

i =1 

H i . (12) 

Use Cauchy inequality, estimate (10) and (70) in Lemma A.5 in 

he Appendix to bound H 1 by 

 1 ≤ 3 E 

[
sup 

0 ≤x ≤t 

(∫ x 
0 | k ( x, s ) | ds 

∫ x 
0 | k ( x, s ) ‖ z n ( s ) − z n −1 ( s ) | 2 ds 

)]

≤ 3 E 

[
sup 

0 ≤x ≤t 

(
λ2 Q 2 α

∗
2 

x 1 −α∗

1 −α∗
∫ x 

0 ( x − s ) 
−α∗ | z n ( s ) − z n −1 ( s ) | 2 ds 

)]

≤ 3 λ2 Q 2 α
∗

2 
t 1 −α∗

1 −α∗
∫ t 

0 ( t − s ) 
−α∗

E 

[
sup 

0 ≤r≤s 

| z n ( r ) − z n −1 ( r ) | 2 
]

ds . 

(13) 

Apply Cauchy inequality along with assumption (3) to bound H 2 

y 

 2 ≤ 3 E 

[
sup 

0 ≤x ≤t 

| ∫ x 0 1 

2 ds 
∫ x 

0 L 
2 | z n ( s ) − z n −1 ( s ) | 2 ds | 

]

≤ 3 tL 2 
∫ t 

0 E 

[
sup 

0 ≤r≤s 

| z n ( r ) − z n −1 ( r ) | 2 
]

ds . 

(14) 

Use Burkhölder-Davis-Gundy inequality (65) in Lemma A.1 in 

he Appendix and Itô isometry to bound H 3 by 

 3 = 3 E 

[
sup 

0 ≤x ≤t 

| ∫ x 0 b ( z n ( s ) ) − b ( z n −1 ( s ) ) dW ( s ) | 2 
]

≤ 3 Q 1 E 

[ 
| ∫ t 0 b ( z n ( s ) ) − b ( z n −1 ( s ) ) dW ( s ) | 2 

] 
= 3 Q 1 E 

[∫ t 
0 | b ( z n ( s ) ) − b ( z n −1 ( s ) ) | 2 ds 

]
≤ 3 Q 1 L 

2 
E 

[∫ t 
0 | z n ( s ) − z n −1 ( s ) | 2 ds 

]
≤ 3 Q 1 L 

2 
∫ t 

0 E 

[
sup 

0 ≤r≤s 

| z n ( r ) − z n −1 ( r ) | 2 
]

ds . 

(15) 

We substitute estimates (13), (14) and (15) into (12) to obtain 

 

[
sup 

0 ≤x ≤t 

| z n +1 ( x ) − z n ( x ) | 2 
]

≤ Q T 

∫ t 
0 

E 

[
sup 

0 ≤r≤s 

| z n ( r ) − z n −1 ( r ) | 2 
]

�( 1 −α∗) ( t−s ) 
α∗ ds , 

(16) 

here the positive constant Q T is given by 

 T = 3�(1 − α∗) 
(λ2 Q 

2 α∗
2 T 1 −α∗

1 − α∗ + T L 2 + Q̄ 1 L 
2 
)
. (17) 

For n ≥ 1 we reformulate estimate (16) as follows 

 n ( t ) := E 

[
sup 

0 ≤x ≤t 

| z n +1 ( x ) − z n ( x ) | 2 
]

≤ Q T 

∫ t 

0 

g n −1 ( s ) 

�( 1 − α∗) ( t − s ) 
α∗ ds , (18) 

ased on which we bound g n by induction. 
3 
We bound g 0 similarly to (12) (except that using the growth 

ondition in place of the Lipschitz condition in (3) ) to get 

 0 ( t ) = E 

[
sup 

0 ≤x ≤t 

| z 1 ( x ) − z 0 ( x ) | 2 
]

≤ E 

[
u 

2 
0 sup 

0 ≤x ≤t 

(∫ x 
0 | k (x, s ) | ds 

)2 + sup 
0 ≤x ≤t 

(∫ x 
0 | f ( u 0 ) | ds 

)2 

+ sup 
0 ≤x ≤t 

(∫ x 
0 | b ( u 0 ) | dW ( s ) 

)2 

]
≤ 3 E 

[ 
u 

2 
0 

(∫ t 
0 | k ( x, s ) | ds 

)2 + 

(∫ t 
0 | f ( u 0 ) | ds 

)2 

+ Q 1 

(∫ t 
0 | b ( u 0 ) | dW ( s ) 

)2 
] 

≤ 3 λ2 Q 2 α
∗

2 
T 2 ( 1 −α∗ ) E [ u 2 0 ] 

( 1 −α∗) 2 
+ 6 L 2 

(
T 2 + Q 1 T 

)(
1 + E 

[
u 

2 
0 

])
=: Q 

′ 
T . 

(19) 

We combine (18) and (19) to conclude that 

 1 (t) ≤ Q T 

∫ t 

0 

Q 

′ 
T 

�(1 − α∗)(t − s ) α∗

ds = 

Q 

′ 
T Q T t 

(1 −α∗) 

�((1 − α∗) + 1) 
, t ∈ [0 , T ] . 

Suppose that for any 1 ≤ n ≤ m, Then an induction argument 

sing (18) shows that, for every n ≥ 1 

 n (t ) ≤ Q 

′ 
T Q 

n 
T t 

n (1 −α∗) 

�(n (1 − α∗) + 1) 
, t ∈ [0 , T ] . (20) 

We combine (18) and (20) and use s = tθ to get 

 m +1 ( t ) ≤ Q T 

∫ t 
0 

g m 

( s ) 

�( 1 − α∗) ( t − s ) 
α∗ ds 

≤ Q 

’ 
T Q 

m +1 
T 

�( m ( 1 − α∗) + 1 ) 

∫ t 

0 

s m ( 1 −α∗) 

�( 1 − α∗) ( t − s ) 
α∗ ds 

≤ Q 

’ 
T Q 

m +1 
T 

t ( m +1 ) ( 1 −α∗) B ( m ( 1 − α∗) + 1 , 1 − α∗) 
�( m ( 1 − α∗) + 1 ) �( 1 − α∗) 

≤ Q 

’ 
T Q 

m +1 
T 

t ( m +1 ) ( 1 −α∗) 

�( ( m + 1 ) ( 1 − α∗) + 1 ) 
. 

By mathematical induction, (20) holds for any n ∈ N . 

Consequently, the series defined by the right-hand side of 

20) converges to the Mittag-Leffler function in (8) 

∞ 

 

 =0 

Q 

’ 
T Q 

n 
T t 

n ( 1 −α∗) 

�( n ( 1 − α∗) + 1 ) 
= Q 

’ 
T E 1 −α∗

(
Q T t 

1 −α∗)
< ∞ , t ∈ [ 0 , T ] , 

hich implies 

∞ 

 

 =0 

E 

[ 
sup 

0 ≤t≤T 

∣∣z n +1 (t) − z n (t) 
∣∣2 

] 
< ∞ , a.s. (21) 

We apply Chebyshev’s inequality and use (20) and (21) to con- 

lude that 

 

(
sup 

t∈ [ 0 ,T ] 
| z n +1 ( t ) − z n ( t ) | ≥ 2 

−n 

)
≤ 4 

n 
E 

[
sup 

t∈ [ 0 ,T ] 
| z n +1 ( t ) − z n ( t ) | 2 

]

≤ 4 n Q ’ T ( Q T T 1 −α∗
) 

n 

�( n ( 1 −α∗) +1 ) 
. 

By the Borel-Cantelli lemma, the sequence 

 n (t) = 

n ∑ 

m =1 

(
z m 

(t) − z m −1 (t) 
)

+ u 0 (22) 

onverges uniformly on [0 , T ] to a limit u that solves (5) a.s.. To-

ether with the continuity of { z n } ∞ , we conclude the continuity 

n =0 
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h
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f u . That is, the variable-order fSDE (2) has a continuous solution 

 . 

Suppose that there exists another solution ˜ u to the variable- 

rder fSDE (2) , a similar derivation to (16) yields for all times 

 ∈ [0 , T ] 

 

[ 
sup 

0 ≤x ≤t 

∣∣u (x ) − ˜ u (x ) 
∣∣2 

] 
≤ Q T 

∫ t 

0 

E 

[ 
sup 

0 ≤r≤s 

| u (r) − ˜ u (r) | 2 
] 

�(1 − α∗)(t − s ) α∗ ds. 

We apply Gronwall inequality (67) in Lemma A.3 in the Ap- 

endix to conclude that u (t) = ˜ u (t) a.s., i.e., u and ˜ u are indistin-

uishable. Therefore, the variable-order fSDE (2) has a unique so- 

ution. 

We similarly bound the second moment of z n for n ≥ 1 and t ∈
0 , T ] by 

 

[
sup 

0 ≤x ≤t 

| z n ( x ) | 2 
]

≤ 4 E 

[
u 

2 
0 

]
+ 4 E 

[
sup 

0 ≤x ≤t 

(∫ x 
0 k ( x, s ) z n −1 ( s ) ds 

)2 

]

+ 4 E 

[
sup 

0 ≤x ≤t 

(∫ x 
0 f ( z n −1 ( s ) ) ds 

)2 

]

+ 4 E 

[
sup 

0 ≤x ≤t 

(∫ x 
0 b ( z n −1 ( s ) ) dW ( s ) 

)2 

]

≤ 4 E 

[
u 

2 
0 

]
+ 

4 λ2 Q 2 α
∗

2 
T 1 −α∗

1 −α∗
∫ t 

0 

E 

[
sup 

0 ≤r≤s 

| z n −1 ( r ) | 2 
]

( t−s ) 
α∗ ds 

+ 8 L 2 
(
T + Q 1 

) ∫ t 
0 1 + E 

[
sup 

0 ≤r≤s 

| z n −1 ( r ) | 2 
]

ds 

≤ Q 0 + Q 1 

∫ t 
0 

E 

[
sup 

0 ≤r≤s 

| z n −1 ( r ) | 2 
]

( t−s ) 
α∗ ds . 

Here Q 0 and Q 1 are defined in (8) . Pass to the limit as n → ∞
nd use Gronwall inequality (67) in Lemma A.3 which can be 

ound in the Appendix with β = 1 − α∗ to obtain (7) . �

emark 2.1. The above proof can be extended to estimate 

 

[
sup 

0 ≤s ≤t 

| u (s ) | p ] for 2 ≤ p < ∞ provided E 

[| u 0 | p ] < ∞ . 

. A Euler-Maruyama and its strong convergence 

We derive a Euler-Maruyama scheme for the variable-order 

SDE (2) and prove its strong convergence. 

.1. Derivation of the scheme 

Define a uniform partition of [0 , T ] by t n := nτ for 0 ≤ n ≤ N

ith τ := T /N. At time step t n for 1 ≤ n ≤ N, we use the Euler

uadrature to discretize the integrals on the right-hand side of (5) . 

e begin with the discretization of the second term by 
 t n 
0 f ( u ( s ) ) ds = 

∑ n −1 
l=0 

∫ t l+1 

t l 
f ( u ( s ) ) ds 

≈ ∫ t l+1 

t l 
f ( u ( t l ) ) ds = τ

∑ n −1 
l=0 f ( u ( t l ) ) . 

(23) 

We similarly discretize the last term on the right-hand side of 

5) by 
 t n 
0 b ( u ( s ) ) dW ( s ) = 

∑ n −1 
l=0 

∫ t l+1 

t l 
b ( u ( s ) ) dW ( s ) 

≈ ∑ n −1 
l=0 

∫ t l+1 

t l 
b ( u ( t l ) ) dW ( s ) 

= 

∑ n −1 
l=0 b ( u ( t l ) ) 
W l , 

(24) 

here 
W l := W (t l+1 ) − W (t l ) ∼ N(0 , τ ) is a Gaussian random

ariable. 
4 
Note that the kernel in the first term on the right-hand side 

f (5) is nonlocal and has no convolution structure, which is not 

ommon in conventional SDEs or constant-order fSDEs. We extend 

he L − 1 discretization to the current context 
 t n 
0 k ( t n , s ) u ( s ) ds 

= − λ
�( 1 −α( t n ) ) 

∑ n −1 
l=0 

∫ t l+1 

t l 

u ( s ) 

( t n −s ) 
α( t n ) 

ds 

≈ − λ
�( 1 −α( t n ) ) 

∑ n −1 
l=0 

∫ t l+1 

t l 

u ( t l ) 

( t n −s ) 
α( t n ) 

ds 

= − λu ( t l ) 
�( 2 −α( t n ) ) 

∑ n −1 
l=0 

[
( t n − t l ) 

1 −α( t n ) − ( t n − t l+1 ) 
1 −α( t n ) 

]
. 

(25) 

We incorporate the discretizations (23) –(25) into Eq. (5) to 

btain a Euler-Maruyama scheme to the variable-order fSDE (2) : 

iven the initial data u 0 in the variable-order fSDE (2) , find v n for

 ≤ n ≤ N such that 

 n = u 0 + 

n −1 ∑ 

l=0 

b n,l v l + τ
n −1 ∑ 

l=0 

f (v l ) + 

n −1 ∑ 

l=0 

b(v l )
W l (26) 

here the coefficients b n,l for 0 ≤ l ≤ n − 1 are given by 

 n,l = −λ
(t n − t l ) 

1 −α(t n ) − (t n − t l+1 ) 
1 −α(t n ) 

�
(
2 − α(t n ) 

) . (27) 

heorem 3.1. For 1 ≤ n ≤ N, the solution v n to the Euler-Maruyama 

cheme (26) satisfies the moment estimate 

 

[
v 2 n 

]
≤ Q 3 

[
1 + E 1 −α∗ (Q 4 ,λ�(1 − α∗)) 

]
=: M 1 ,λ. (28) 

Here the constants Q 3 and Q 4 ,λ are given by 

 3 = 4 E 

[
u 

2 
0 

]
+ 8 L 2 T ( T + 1 ) , 

 4 ,λ = 8 L 2 T ( T + 1 ) + 

2 2+ α∗
Q α

∗
2 

T 2 ( 1 −α∗) λ2 

( 1 −α∗) 2 
. 

(29) 

roof. Use Jensen’s inequality (66) in the Appendix with m = 4 and 

auchy inequality to bound v n in (26) by 

 

[
v 2 n 

]
≤ 4 E 

[
u 

2 
0 

]
+ 4 E 

⎡ 

⎣ 

( 

n −1 ∑ 

l=0 

b n,l v l 

) 2 
⎤ 

⎦ 

+ 4 τ 2 
E 

⎡ 

⎣ 

( 

n −1 ∑ 

l=0 

f ( v l ) 

) 2 
⎤ 

⎦ 

+ 4 E 

⎡ 

⎣ 

( 

n −1 ∑ 

l=0 

b ( v l ) 
W l 

) 2 
⎤ 

⎦ . (30) 

We now bound the last three terms on the right-hand side. We 

se Cauchy inequality and assumption (3) to bound the third term 

n the right-hand side by 

2 
E 

[ (∑ n −1 
l=0 f ( v l ) 

)2 
] 

≤ 2 L 2 T τ
∑ n −1 

l=0 E 

[(
1 + v 2 

l 

)]
≤ 2 L 2 T 2 + 2 L 2 T τ

∑ n −1 
l=0 E 

[
v 2 

l 

]
. 

(31) 

We use Ito’s isometry and assumption (3) to bound the last 

erm on the right-hand side of (30) by 

 

[ (∑ n −1 
l=0 b ( v l ) 
W l 

)2 
] 

= τ
∑ n −1 

l=0 E 

[
b ( v l ) 2 

]
≤ 2 L 2 τ

∑ n −1 
l=0 E 

[
1 + v 2 

l 

]
≤ 2 L 2 T + 2 L 2 τ

∑ n −1 
l=0 E 

[
v 2 

l 

]
. 

(32) 

We now turn to the estimate of the second term on the right- 

and side of (30) , which is not common in the analysis of numer- 

cal approximations to conventional SDEs. For 0 ≤ l ≤ n − 2 we use 
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he mean-value theorem to conclude 

 

t n − t l ) 
1 −α∗ − ( t n − t l+1 ) 

1 −α∗ ≤ ( 1 − α∗) τ ( t n − t l+1 ) 
−α∗

= 

( 1 −α∗) T 
N 

(
[ n −( l+1 ) ] T 

N 

)−α∗

= 

( 1 −α∗) T 1 −α∗

N 1 −α∗
( n −( l+1 ) ) 

α∗ = 

( 1 −α∗) T 1 −α∗
( n −l ) 

α∗

N 1 −α∗
( n −l ) 

α∗
( n −l−1 ) 

α∗

= 

( 1 −α∗) T 1 −α∗

N 1 −α∗
( n −l ) 

α∗
(
1 + 

1 
n −l−1 

)α∗
≤ ( 1 −α∗) 2 α

∗

( n −l ) 
α∗

(
T 
N 

)1 −α∗
. 

We incorporate the estimate into (27) to bound | b n,l | for 0 ≤ l ≤
 − 2 by 

 b n,l | = λ| ( t n −t l ) 
1 −α( t n ) −( t n −t l+1 ) 

1 −α( t n ) 

�( 2 −α( t n ) ) 
| 

≤ 2 α
∗
λ

�( 1 −α( t n ) ) ( n −l ) 
α∗

(
T 
N 

)1 −α∗
≤ 2 α

∗
λ

( n −l ) 
α∗

(
T 
N 

)1 −α∗
. 

(33) 

For l = n − 1 , we have 

 b n,n −1 | = | λτ 1 −α(t n ) 

�

(
2 −α(t n ) 

) ∣∣∣ = 

λ(
1 −α(t n ) 

)
�

(
1 −α(t n ) 

)(
T 
N 

)
1 −α∗

≤ λ
1 −α∗

(
T 
N 

)
1 −α∗

. 

(34) 

We combine (33) and (34) to bound | b n,l | by 

 b n,l | ≤ 2 

α∗
λ

(1 − α∗)(n − l) α∗

(
T 

N 

)
1 −α∗

, 0 ≤ l ≤ n − 1 . (35) 

We use (10), (25) and (27) to bound 

 n −1 
l=0 | b n,l | = 

λ
�( 1 −α( t n ) ) 

∑ n −1 
l=0 

∫ t l+1 

t l 

ds 

( t n −s ) 
α( t n ) 

= 

λ
�( 1 −α( t n ) ) 

∫ t n 
0 

ds 

( t n −s ) 
α( t n ) 

≤ ∫ t n 
0 

λQ α
∗

2 
ds 

( t n −s ) 
α∗ = 

Q α
∗

2 
t 1 −α∗

n λ
1 −α∗ . 

(36) 

Use (35) and (36) to bound the second term on the right side 

f (30) by 

 

[ ( n −1 ∑ 

l=0 

b n,l v l 
)

2 
] 

≤
n −1 ∑ 

l=0 

| b n,l | E [ v 2 l ] 

n −1 ∑ 

l=0 

| b n,l | 

≤ 2 α
∗

Q α
∗

2 
T 2(1 −α∗ ) λ2 

(1 −α∗) 2 N 1 −α∗

n −1 ∑ 

l=0 

E | v l | 2 
(n − l) α∗ . 

(37) 

We incorporate estimates (31), (32) and (37) into (30) to ob- 

ain 

 

[
v 2 n 

]
≤ 4 E 

[
u 

2 
0 

]
+ 8 L 2 T ( T + 1 ) + 8 L 2 ( T + 1 ) τ

∑ n −1 
l=0 E | v l | 2 

+ 

2 2+ α∗
Q α

∗
2 

T 2 ( 1 −α∗) λ2 

( 1 −α∗) 2 N 1 −α∗
∑ n −1 

l=0 
E | v l | 2 

( n −l ) 
α∗

≤ Q 3 + 

Q 4 ,λ
N 1 −α∗

∑ n −1 
l=0 

E | v l | 2 
( n −l ) 

α∗

(38) 

ith Q 3 and Q 4 ,λ being given in (29) . 

We apply the generalized discrete Gronwall’s inequality 

69) with β = 1 − α∗ to arrive at (28) . �

.2. An auxiliary equation and its error estimates 

To analyze the strong convergence of the Euler-Maruyama 

cheme, we define an auxiliary continuous time stochastic process 

 (t) on [0 , T ] using the step function ˆ s = ˆ s (s ) such that ˆ s := t n for

 ∈ [ t n , t n +1 ) and 0 ≤ n ≤ N − 1 

 (t) = u 0 + 

∫ t 

0 

k (t, s ) v ( ̂  s ) ds + 

∫ t 

0 

f 
(
v ( ̂  s ) 

)
ds + 

∫ t 

0 

b 
(
v ( ̂  s ) 

)
dW. 

(39) 
5 
emma 3.2. Let { v n } N n =0 
be the solution of the Euler-Maruyama 

cheme and v be the continuous time stochastic process defined by 

39) . Then v (t n ) = v n for 0 ≤ n ≤ N. 

roof. It is clear that v (0) = u 0 = v 0 . Suppose that v (t m 

) = v m 

for

 ≤ m ≤ n − 1 ≤ N − 1 . We evaluate the integrals on the right-hand 

ide of (39) similarly to (23) –(25) to obtain 

 ( t n ) = u 0 + 

∫ t n 

0 

k ( t n , s ) v 
(

ˆ s 
)
ds + 

∫ t n 

0 

f 
(
v 
(

ˆ s 
))

ds + 

∫ t n 

0 

b 
(
v 
(

ˆ s 
))

dW 

= u 0 + 

n −1 ∑ 

m =0 

∫ t m +1 

t m 

k ( t n , s ) v 
(

ˆ s 
)
ds + 

n −1 ∑ 

m =0 

∫ t m +1 

t m 

f 
(
v 
(

ˆ s 
))

ds 

+ 

n −1 ∑ 

m =0 

∫ t m +1 

t m 

b 
(
v 
(

ˆ s 
))

dW 

= u 0 − λ

�( 1 − α( t n ) ) 

n −1 ∑ 

m =0 

∫ t m +1 

t m 

v ( t m 

) 

( t n − s ) 
α( t n ) 

ds 

+ 

n −1 ∑ 

m =0 

∫ t m +1 

t m 

f ( v ( t m 

) ) ds + 

n −1 ∑ 

m =0 

∫ t m +1 

t m 

b ( v ( t m 

) ) dW 

= u 0 + 

n −1 ∑ 

m =0 

b n,m 

v ( t m 

) + τ
n −1 ∑ 

m =0 

f ( v ( t m 

) ) + 

n −1 ∑ 

m =0 

b ( v ( t m 

) ) 
W m 

= u 0 + 

n −1 ∑ 

m =0 

b n,m 

v m 

+ τ
n −1 ∑ 

m =0 

f ( v m 

) + 

n −1 ∑ 

m =0 

b ( v m 

) 
W m 

= v n . 

By mathematical induction, we prove the lemma. �

heorem 3.3. The following estimate holds for the continuous time 

tochastic process v defined by (39) for any t ∈ [ t n , t n +1 ) with 0 ≤ n ≤
 − 1 

 

[(
v (t) − v (t n ) 

)
2 
]

≤ M 2 ,λτ
2(1 −α∗) + M 3 ,λτ, (40) 

here M 2 ,λ and M 3 ,λ are given by 

 2 ,λ = 6 λ2 M 1 ,λ

(
4 Q 

2 α∗
2 T 1 −α∗‖ α‖ 

2 
C 1 [ 0 ,T ] 

+ 

9 + 2 Q 5 Q 

2 
2 

( 1 − α∗) 2 

)
, 

 3 ,λ = 12 L 2 
(
1 + M 1 ,λ

)
, Q 5 = 

(‖ α‖ C 1 [0 ,T ] max t∈ [1 −α∗, 1] | �′ (t) | )2 
. 

(41) 

In particular, if λ = 0 (i.e. for conventional SDEs) estimate (40) re- 

uces to 

 

[
( v (t) − v ( t n ) ) 2 

]
≤ 12 L 2 

{[
1 + E 1 −α∗

(
8 L 2 T (T + 1)�( 1 − α∗) 

)]
×

[
4 E 

[
u 

2 
0 

]
+ 8 L 2 T (T + 1) 

]
+ 1 

}
τ. (42) 

roof. For t ∈ [ t n , t n +1 ) with 0 ≤ n ≤ N − 1 , we subtract Eq. (39) at

ime t n from Eq. (26) and apply Jensen’s inequality with m = 3 to 

btain 

E 

[
( v ( t ) − v ( t n ) ) 2 

]
≤ 3 E 

[ (∫ t 

0 

k ( t, s ) v 
(

ˆ s 
)
ds −

∫ t n 

0 

k ( t n , s ) v 
(

ˆ s 
)
ds 

)2 
] 

+3 E 

[ (∫ t 

0 

f 
(
v 
(

ˆ s 
))

ds −
∫ t n 

0 

f 
(
v 
(

ˆ s 
))

ds 

)2 
] 

+3 E 

[ (∫ t 

0 

b 
(
v 
(

ˆ s 
))

dW ( s ) −
∫ t n 

0 

b 
(
v 
(

ˆ s 
))

dW ( s ) 

)2 
] 

≤ 6 E 

[ (∫ t n 

0 
( k ( t, s ) − k ( t n , s ) ) v 

(
ˆ s 
)
ds 

)2 
] 
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+6 E 

[ (∫ t 

t n 

k ( t, s ) v 
(

ˆ s 
)
ds 

)2 
] 

+3 E 

[ (∫ t 

t n 

f 
(
v 
(

ˆ s 
))

ds 

)2 
] 

+ 3 E 

[ (∫ t 

t n 

b 
(
v 
(

ˆ s 
))

dW ( s ) 

)2 
] 

. (43) 

We use assumption (3) and Theorem 3.1 to bound the third 

erm by 

E 

[ (∫ t 

t n 

f 
(
v 
(

ˆ s 
))

ds 

)2 
] 

≤ τ

∫ t 

t n 

E 

[ 
f 
(
v 
(

ˆ s 
))2 

] 
ds 

≤ 2 L 2 τ

∫ t 

t n 

(
1 + E [ | v n | ] 2 

)
ds ≤ 2 L 2 

(
1 + M 1 ,λ

)
τ 2 . (44) 

We use Itô isometry and assumption (3) to bound the last term 

n the right-hand side of (43) by 

 

[ (∫ t 
t n 

b 
(
v 
(

ˆ s 
))

dW ( s ) 
)2 

] 
= E 

[ ∫ t 
t n 

b 
(
v 
(

ˆ s 
))2 

ds 

] 
≤ 2 L 2 

(
1 + E 

[
v 2 n 

])
τ

≤ 2 L 2 
(
1 + M 1 ,λ

)
τ. 

(45) 

We are now in the position to the estimate of the first two 

erms on the right-hand side of (43) , which are not common in 

he context of conventional SDEs and constant-order fSDEs. We use 

auchy inequality to bound the second term on the right side of 

43) by 

E 

[ (∫ t 

t n 

k ( t, s ) v 
(

ˆ s 
)
ds 

)2 
] 

≤
∫ t 

t n 

| k ( t, s ) | E 

[
v 
(

ˆ s 
)]2 

ds 

∫ t 

t n 

| k ( t, s ) | ds 

≤ M 1 ,λ

(∫ t 

t n 

| k ( t, s ) | ds 

)2 

≤ M 1 ,λλ
2 τ 2 ( 1 −α∗) 

( 1 − α∗) 2 
. (46) 

We now turn to the estimate of the first term on the right-hand 

ide of (43) 

 

[ (∫ t n 

0 
( k ( t, s ) − k ( t n , s ) ) v 

(
ˆ s 
)
ds 

)2 
] 

≤
∫ t n 

0 

| k ( t, s ) − k ( t n , s ) | E 

[
v 
(

ˆ s 
)]2 

ds 

∫ t n 

0 

| k ( t, s ) − k ( t n , s ) | ds 

≤ M 1 ,λλ
2 

(∫ t n 

0 

| ( t − s ) 
−α( t ) 

�( 1 − α( t ) ) 
− ( t n − s ) 

−α( t n ) 

�( 1 − α( t n ) ) 
| ds 

)2 

≤ 2 M 1 ,λλ
2 

(∫ t n 

0 

| ( t − s ) 
−α( t ) − ( t n − s ) 

−α( t n ) | 
�( 1 − α( t ) ) 

ds 

)2 

+ 2 M 1 ,λλ
2 

(∫ t n 

0 

1 

( t n − s ) 
α( t n ) 

| 1 

�( 1 − α( t ) ) 
− 1 

�( 1 − α( t n ) ) 
| ds 

)2 

= 2 M 1 ,λλ
2 J 1 + 2 M 1 ,λλ

2 J 2 . (47)

We bound the second term on the right-hand side of (47) by 

0

6 
 2 ≤
(∫ t n 

0 
1 

( t n −s ) 
α( t n ) 

| �( 1 −α( t ) ) −�( 1 −α( t n ) ) | 
�( 1 −α( t ) ) �( 1 −α( t n ) ) 

ds 

)2 

≤ Q 5 τ
2 

(∫ t n 
0 

ds 

( t n −s ) 
α( t n ) 

)2 

≤ Q 5 Q 
2 
2 τ

2 

( 1 −α∗) 2 

(48) 

ith Q 5 being introduced in (41) . 

We use (10) and the facts that for t ≥ t n ,t 
1 −α − t 1 −α

n ≤ (t −
 n ) 1 −α and (t − t n ) | ln (t − s ) | is bounded to obtain 

 1 ≤ 2 

(∫ t n 
0 | ( t − s ) 

−α( t n ) − ( t − s ) 
−α( t ) | ds 

)2 

+2 

{ ∫ t n 
0 

(
1 

( t n −s ) 
α( t n ) 

− 1 

( t−s ) 
α( t n ) 

)
ds 

} 2 

≤ 2 

(∫ t n 
0 

| ( t−s ) 
α( t ) −α( t n ) −1 | 

( t−s ) 
α( t ) ds 

)2 

+ 

2 

(
t 

1 −α( t n ) 
n + ( t−t n ) 

1 −α( t n ) −t 1 −α( t n ) 

)2 

( 1 −α( t n ) ) 
2 

≤ 2 Q 

2 α∗
2 ‖ α‖ 

2 
C 1 [ 0 ,T ] 

(∫ t n 
0 

( t−t n ) | ln ( t−s ) | 
( t−s ) 

α∗ ds 

)2 

+ 

4 ( t−t n ) 
2 ( 1 −α( t n ) ) 

( 1 −α( t n ) ) 
2 

≤ 2 Q 

2 α∗
2 ‖ α‖ 

2 
C 1 [ 0 ,T ] 

τ 2 

(∫ t n 
0 

( t−s ) 
1 −α∗

2 | ln ( t−s ) | 
( t−s ) ( 

1+ α∗ ) / 2 ds 

)2 

+ 

4 τ 2 ( 1 −α∗) 

( 1 −α∗) 2 

≤
(

2 Q 

2 α∗
2 T 1 −α∗‖ α‖ 

2 
C 1 [ 0 ,T ] 

+ 

4 

( 1 −α∗) 2 

)
τ 2 ( 1 −α∗) . 

(49) 

We incorporate (48) and (49) into (47) to bound the first term 

n the right-hand side of (43) by 

 

[ (∫ t n 
0 ( k ( t, s ) − k ( t n , s ) ) v 

(
ˆ s 
)
ds 

)2 
] 

≤ 2 M 1 ,λλ
2 

(
2 Q 

2 α∗
2 T 1 −α∗‖ α‖ 

2 
C 1 [ 0 ,T ] 

+ 

4 

( 1 −α∗) 2 

)
τ 2 ( 1 −α∗) 

+ 

2 M 1 ,λλ
2 Q 5 Q 

2 
2 τ

2 

( 1 −α∗) 2 
. 

(50) 

We combine (43), (44), (45), (46) and (50) to finish the proof of 

stimate (40) . If λ = 0 ,M 2 ,λ in (40) vanishes. M 1 ,λ in (28) reduces

o 

 1 , 0 = Q 3 

[
1 + E 1 −α∗ (8 L 2 T (T + 1)�(1 − α∗)) 

]
(51)

ith Q 3 given in (29) . Incorporate (51) into (40) to finish the proof

f estimate (42) . �

.3. Error estimate of the Euler-Maruyama scheme (26) 

We now prove the main result of this paper, the strong conver- 

ence of Euler-Maruyama scheme (26) . Now, we turn to estimate 

he error of u (t) − v (t) . 

heorem 3.4. Let u and v be the solutions to the variable-order fSDE 

2) and the auxiliarty Eq. (39) , respectively. Then the following esti- 

ate holds 

max 
∈ [0 ,T ] 

E 

[| u (t) − v (t) | 2 ] ≤ M 4 ,λτ
2(1 −α∗) + M 5 ,λτ. (52) 

Here M 4 ,λ and M 5 ,λ are given by 

 4 ,λ = Q 6 E 1 −α∗
(
Q 7 �( 1 − α∗) T 1 −α∗)

M 2 ,λ, 

 5 ,λ = Q 6 E 1 −α∗
(
Q 7 �( 1 − α∗) T 1 −α∗)

M 3 ,λ, 

Q 6 = 

6 λ2 Q 2 α
∗

2 
T 2 ( 1 −α∗) 

( 1 −α∗) 2 
+ 6 L 2 T ( T + 1 ) , 

Q 7 = 

6 λ2 Q 2 α
∗

2 
T 1 −α∗

1 −α∗ + 6 L 2 T α
∗
( T + 1 ) . 

(53) 

The following error estimate holds for the Euler-Maruyama scheme 

26) 

max 
 ≤n ≤N 

E 

[| u (t n ) − v n | 2 
]

≤ M 4 ,λτ
2(1 −α∗) + M 5 ,λτ. (54) 
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Table 1 

Convergence of scheme (26) for the linear fSDE (2) in Example 1 . (
α(0) , α(1) 

) (
0 . 2 , 0 . 1 

) (
0 . 6 , 0 . 3 

) (
0 . 8 , 0 . 5 

)
N e τ κ e τ κ e τ κ

8 3.32E −2 4.17E −2 4.73E −2 

16 2.23E −2 0.57 3.25E −2 0.36 4.16E −2 0.19 

32 1.51E −2 0.55 2.52E −2 0.37 3.73E −2 0.16 

64 1.00E −2 0.59 1.88E −2 0.42 3.30E −2 0.18 

min { 1 − α∗, 0 . 5 } 0.50 0.40 0.20 
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In particular, if λ = 0 (when fSDE (2) reduces to a conventional 

DE), the estimate (55) reduces to the following standard estimate for 

he Euler-Maruyama scheme 

max 
 ≤n ≤N 

E 

[| u (t n ) − v n | 2 
]

≤ M 5 , 0 τ. (55) 

roof. For any t ∈ [0 , T ) , let t ∈ [ t n , t n +1 ) for some 0 ≤ n ≤ N − 1 . We

ubtract Eq. (39) from Eq. (5) to obtain 

 

[
( u ( t ) − v ( t ) ) 2 

]
≤ 3 E 

[ (∫ t 
0 k ( t, s ) 

(
u ( s ) − v 

(
ˆ s 
))

ds 
)2 

] 
+ 3 E 

[ (∫ t 
0 f ( u ( s ) ) − f 

(
v 
(

ˆ s 
))

ds 
)2 

] 
+ 3 E 

[ (∫ t 
0 b ( u ( s ) ) − b 

(
v 
(

ˆ s 
))

dW 

)2 
] 

=: 
∑ 3 

j=1 I j . 

(56) 

We use Cauchy inequality, assumption (3) and Theorem 3.3 to 

ound I 2 by 

 2 ≤ 3 T L 2 
∫ t 

0 

E 

[| u ( s ) − v 
(

ˆ s 
)| 2 ]ds 

≤ 6 T L 2 
∫ t 

0 

(
E 

[| u ( s ) − v ( s ) | 2 ] + E 

[| v ( s ) − v 
(

ˆ s 
)| 2 ])ds 

≤ 6 T L 2 
∫ t 

0 

E 

[| u ( s ) − v ( s ) | 2 ]ds + 6 T 2 L 2 
(
M 2 ,λτ

2 ( 1 −α∗) + M 3 ,λτ
)
. 

(57) 

We use Itô isometry, assumption (3) , Theorem 3.3 and split 

 (s ) − v ( ̂ s ) = 

(
u (s ) − v (s ) 

)
+ 

(
v (s ) − v ( ̂ s ) 

)
to bound I 3 by 

 3 = 3 

∫ t 

0 

E 

[ (
b ( u ( s ) ) − b 

(
v 
(

ˆ s 
)))2 

] 
dW 

≤ 3 L 2 
∫ t 

0 

E 

[| u ( s ) − v 
(

ˆ s 
)| 2 ]ds 

≤ 6 L 2 
∫ t 

0 

(
E 

[| u ( s ) − v ( s ) | 2 ] + E 

[| v ( s ) − v 
(

ˆ s 
)| 2 ])ds 

≤ 6 L 2 
∫ t 

0 

E 

[| u ( s ) − v ( s ) | 2 ]ds + 6 T L 2 
(
M 2 ,λτ

2 ( 1 −α∗) + M 3 ,λτ
)
. 

(58) 

We similarly bound I 1 by 

 1 ≤ 6 E 

[ (∫ t 
0 k ( t, s ) ( u ( s ) − v ( s ) ) ds 

)2 
] 

+6 E 

[ (∫ t 
0 k ( t, s ) 

(
v ( s ) − v 

(
ˆ s 
))

ds 
)2 

] 
=: I 1 , 1 + I 1 , 2 . 

(59) 

We use Cauchy inequality and (10) to bound I 1 , 1 by 

 1 , 1 = 6 

∫ t 

0 

E 

[| u ( s ) − v ( s ) | 2 ] | k ( t, s ) | ds 

∫ t 

0 

| k ( t, s ) | ds 

≤ 6 Q 

2 α∗
2 T 1 −α∗

λ2 

1 − α∗

∫ t 

0 

E 

[| u ( s ) − v ( s ) | 2 ]
(t − s ) α∗ ds . (60) 

We use Cauchy inequality and Theorem 3.3 to bound I 1 , 2 by 

 1 , 2 ≤ 6 

∫ t 
0 E 

[| v (s ) − v ( ̂  s ) | 2 ] | k (t, s ) | ds 
∫ t 

0 | k (t, s ) | ds 

≤ 6 λ2 Q 2 α
∗

2 
T 2(1 −α∗ ) 

(1 −α∗) 2 

(
M 2 ,λτ

2(1 −α∗) + M 3 ,λτ
)
. 

(61) 

Substitute estimates (57), (58), (59), (60) and (61) into (56) to 

btain 

 

[
( u ( t ) − v ( t ) ) 2 

]
≤ Q 6 

(
M 2 ,λτ

2 ( 1 −α∗) + M 3 ,λτ
)

+ Q 7 

∫ t 
0 

E | u ( s ) −v ( s ) | 2 
( t−s ) 

α∗ ds . 

Here Q and Q are given by (53) . 
6 7 

7 
Apply the generalized Gronwall’s inequality (67) in the Ap- 

endix to complete the proof of (52) . If we choose t = t n in the

stimate (52) , v (t n ) = v n by Lemma 3.2 . Then estimate (52) reduces

o the estimate (54) . In particular, if λ = 0 ,M 2 ,λ = 0 by (41) . Hence,

 4 ,λ = 0 by (53) . Thus, (54) reduces to (55) . �

. Numerical experiments 

We carry out numerical experiments to investigate the perfor- 

ance of the Euler-Maruyama scheme (26) . All the numerical ex- 

eriments were implemented using MATLAB R2018b on a ThinkPad 

431 Laptop with Inter Core i5 (2.60 GHz) CPU and 8.0G RAM. 

.1. Strong convergence of the Euler-Maruyama scheme (26) 

We perform numerical experiments to test the strong conver- 

ence of the Euler-Maruyama scheme (26) for the variable-order 

SDE (2) . Let u (t n , ω j ) be the jth independent sample path of the

SDE (2) evaluated at t n with the numerical approximation v n (ω j ) 

y the Euler-Maruyama scheme (26) for n = 0 , 1 , 2 , . . . , N and j =
 , 2 , . . . , M. Then we compute the sample mean of the error as fol-

ows 

 τ := max 
0 ≤n ≤N 

[ 
1 

M 

M ∑ 

j=1 

∣∣u (t n , ω j ) − v n (ω j ) 
∣∣2 

] 1 2 

≤ QN 

−κ (62) 

nd fit the convergence rate κby 

:= log 2 
e τ

e τ/ 2 

. (63) 

In the numerical experiments the time interval [0 , T ] = [0 , 1] ,

= 1 , M = 2 10 = 1 , 024 and the variable order α is chosen to be

f the form 

( t ) = α( 1 ) + ( α( 0 ) − α( 1 ) ) 

(
( 1 − t ) − sin ( 2 π( 1 − t ) ) 

2 π

)
. (64) 

Since the true solution is not known a priori, we use a fine 

esh size of N re f = 2 10 to compute the reference solutions. 

xample 1. A linear variable-order fSDE. We choose f (u ) = b(u ) = 

u and u 0 = 0 . 1 in the variable-order fSDE (2) . We present the

rror e τ for different mesh size N and difference choices of α(0) 

nd α(1) in (64) in Table 1 . We observe that the Euler-Maruyama 

cheme (26) demonstrates the convergence rates that are in agree- 

ent with the theoretical analysis in Theorem (3.4) . 
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Fig. 1. Plots of SDE solutions with a same sample: integer-order SDE solutions (‘blue color’), the variable-order fSDE solutions (‘red color’) with 
(
α(0) , α(1) 

)
= 

(
0 . 2 , 0 . 1 

)
for 

cases (i) left λ = 0 . 1 and (ii) right λ = 1 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Plots of SDE solutions with a same sample: integer-order SDE solutions (‘blue color’), the variable-order fSDE solutions (‘red color’) with 
(
α(0) , α(1) 

)
= 

(
0 . 8 , 0 . 5 

)
for 

cases (i) left λ = 0 . 1 and (ii) right λ = 1 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 

Simulation of the linear fSDE 

(2) with λ = 0 in Example 1 . 

N e τ κ

8 2.75E −2 

16 1.96E −2 0.49 

32 1.38E −2 0.51 

64 9.55E −3 0.53 

Predict 0.50 

o

p

E

c

d

(

E

m

 

E

t

Table 3 

Convergence of scheme (26) for the nonlinear fSDE (2) in Example 2 . (
α(0) , α(1) 

) (
0 . 1 , 0 . 2 

) (
0 . 6 , 0 . 3 

) (
0 . 8 , 0 . 5 

)
N e τ κ e τ κ e τ κ

8 3.82E −2 5.01E −2 5.68E −2 

16 2.56E −2 0.57 3.90E −2 0.36 4.99E −2 0.19 

32 1.74E −2 0.55 3.02E −2 0.37 4.47E −2 0.16 

64 1.17E −2 0.57 2.26E −2 0.41 3.96E −2 0.18 

min { 1 − α∗, 0 . 5 } 0.50 0.40 0.20 

4

c

v  

[  

g

m

n  

(  

fi

t

In this example, we also test the case λ = 0 when the variable- 

rder fSDE (2) naturally reduces to the conventional SDE. We 

resent the numerical results in Table 2 , which shows that the 

uler-Maruyama scheme (26) naturally reduces to its analogue to 

onventional SDEs and has a standard convergence rate of first or- 

er. This is in consistent with the theoretical analysis in Theorem 

3.4) . 

xample 2. A nonlinear variable-order fSDE We consider the nu- 

erical simulation to a nonlinear variable-order fSDE (2) with 

f (u ) = b(u ) = − sin (u ) . Other data are chosen to be the same as in

xample 1 . We present the numerical results in Table 3 and have 
he same observations as in Example 1 . f

8 
.2. Performance of the variable-order fSDE (2) 

We study the performance of the variable-order fSDE (2) in 

omparison with the conventional SDE, which corresponds to the 

ariable-order fSDE (2) with λ = 0 . In the study we choose [0 , T ] =
0 , 1] , f (u ) = b(u ) = −u and u 0 = 1 . The variable order α is still

iven by (64) . We use the Euler-Maruyama scheme (26) with a 

esh size of N = 2 10 to compute the solutions for different combi- 

ations of (α(0) , α(1)) . We present the results for (α(0) , α(1) =
0 , 2 , 0 . 1) , (0.8,0,5) and in Figs. 1 and 2 , respectively. Within each

gure, we present four plots ranging from λ = 0 . 1 and 1, respec- 

ively. We observe that for λ < 1 (0.1 in this case), the solution of 

SDE (2) is close to the solution to conventional SDE. In contrast, 
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[

or λ = 1 , the solution of fSDE (2) exhibits considerable difference 

rom the solution to SDE. 

. Concluding remarks 

In this paper, we study a variable-order fractional stochastic 

ifferential equation driven by a multiplicative noise, which con- 

ains a non-Lipschitz weakly singular kernel with a variable or- 

er, and loses the convolution structure due to the introduction of 

he variable-order fractional differential operator. We proved the 

ellposedness and moment estimates of the problem. We also de- 

eloped a generalized Euler-Maruyama scheme for the problem 

nd we proved the strong convergence of the scheme. The proved 

trong convergence results naturally reduce to the corresponding 

esults for the classical SDE when the variable-order fSDE reduces 

o the classical one. We carried out numerical experiments to sub- 

tantiate the theoretical results. In particular, the convergence be- 

avior reduces to the well known convergence rates of the Euler- 

aruyama scheme for conventional SDEs when the variable-order 

SDE reduces to the conventional one. 
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ppendix A 

We list auxiliary results that were used earlier. 

emma A.1. (The Burkhölder-Davis-Gundy inequality [18 , 41] ) If Y 

s a continuous martingale on [0 , T ] , there exists a positive constant
¯
 1 = Q̄ 1 (p) for 1 < p < ∞ such that 

 

[ 
sup 

x ∈ [0 ,t] 

| Y (x ) | p 
] 

≤ Q̄ 1 E 

[| Y (t) | p ], 0 ≤ t ≤ T . (65)

emma A.2. (Jensen’s inequality [18] ) If a i , p ∈ R with p ≥ 1 and m ∈
 

+ , then 

 

m ∑ 

i =1 

a i | p ≤ m 

p−1 
m ∑ 

i =1 

| a i | p . (66) 

emma A.3. (Generalized Gronwall inequality [34] ) Let Q̄ 2 (t) be a 

on-negative and non-decreasing locally integrable function on (a, b] 
9 
nd Q̄ 3 be a non-negative constant. Suppose g(t) is a non-negative 

ocally integrable function on (a, b] with 

(t) ≤ Q̄ 2 (t) + Q̄ 3 

∫ t 

a 

g(s ) 

(t − s ) 1 −β
ds, ∀ t ∈ (a, b] , 0 < β < 1 , 

then 

(t) ≤ Q̄ 2 (t) E β
(
Q̄ 3 �(β)(t − a ) β

)
, ∀ t ∈ (a, b] . (67)

emma A.4. (A generalized discrete Gronwall’s inequality [3] ) Sup- 

ose that a non-negative sequence { z n } N n =1 and a non-negative and 

on-decreasing sequence { y n } N n =1 
satisfy the following relation 

 n ≤ Q̄ 4 

N 

β

n −1 ∑ 

i =1 

z i 

(n − i ) 1 −β
+ y n , 1 ≤ n ≤ N, 0 < β < 1 , Q̄ 4 > 0 . 

(68) 

Then the sequence { z n } N n =1 
can be bounded from above by 

 n ≤ y n (1 + E β ( Q̄ 4 �(β))) , 1 ≤ n ≤ N. (69) 

emma A.5. Let α ∈ R 

+ with 0 < α < 1 . The following estimate holds

sup 

 ≤x ≤t 

∫ x 

0 

(x − s ) −α| ξ (s ) | ds ≤
∫ t 

0 

(t − s ) −α sup 

0 ≤r≤s 

| ξ (r) | ds. (70)

roof. Let ˆ ξ (s ) := sup 0 ≤r≤s | ξ (r) | . Use θ = s/x to bound the left

ide by 

up 0 ≤x ≤t 

∫ x 

0 
( x − s ) 

−α| ξ ( s ) | ds = sup 0 ≤x ≤t 

∫ 1 

0 
( x − θx ) 

−α| ξ ( θx ) | xd θ

= sup 0 ≤x ≤t x 
1 −α

∫ 1 

0 
( 1 − θ ) 

−α| ξ ( θx ) | dθ

≤ t 1 −α

∫ 1 

0 
( 1 − θ ) 

−α ˆ ξ ( θt ) dθ . (71) 

The substitution s = θt to the right side to rewrite this term as 

 

1 −α

∫ 1 

0 

(1 − θ ) −α ˆ ξ (θt ) dθ = t 1 −α

∫ t 

0 

(
1 − s 

t 

)
−α ˆ ξ (s ) 

ds 

t 

= 

∫ t 

0 

(t − s ) −α ˆ ξ (s ) ds = 

∫ t 

0 

(t − s ) −α sup 

0 ≤r≤s 

| ξ (r) | ds. 
(72) 

We combine (71) and (72) to finish the proof of (70) . �
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