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1. Introduction

The classical stochastic differential equation (SDE)
du = f(u(t))dt + b(u(t))dW (1)

may be used to describe stochastic processes in many disciplined
and applications [12,16,26,41]. For instance, in the modeling of the
random movement of a Brownian particle in a surrounding vis-
cous liquid, u = u(t) denotes the velocity of the Brownian particle,
f(u) represents the mean resistance of the surrounding medium
per unit mass of the Brownian particle, and b(u(t))dW represents
the random force that accounts for the effect of the noise that is
modeled by a Brownian motion or Wiener process [12,18,26].
However, for the random movement of a Brownian particle in
a viscoelastic medium, the resistance has memory effect that leads
to fractional SDEs [4,6-11,14,15,17,20,22,24,25,28,39]. Moreover, in
many scenarios the structure of the materials may evolve with
time. For instance, in the random movement of a Brownian par-
ticle in a viscoelastic medium, the collisions of the particle with
the molecules of the medium may change the structure of the
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medium. In nonconventional hydrocarbon or shale gas recovery hy-
drofracturing technique is used to increase the pore size of the
medium to enhance the recovery of oil and shale gas. As the frac-
tional order is determined by the fractal dimension of the media
via the Hurst index [23], the structure change of porous materials
leads to the change of the fractional order, yielding variable-order
models [1,5,13,15,19,27,31,33,37,40].

Finally, classical fractional differential equations yield solutions
with nonphysical initial weak singularity [32,36], which would af-
fect the accuracy of their numerical approximations. The funda-
mental reason is that the classical fractional differential equations
cannot accurately model the multiple time scales in the underly-
ing physical processes. Recall that the classical time-fractional dif-
fusion equation was derived as a stochastic limit when the number
of particle jumps tends to infinity and hence holds only for large
time [23,24]. A two time-scale variable-order time-fractional dif-
fusion equation was analyzed and discretized in Wang and Zheng
[38], Zheng and Wang [40], which catch both the Fickian diffusive
transport behavior near the initial time and the power-law decay-
ing behavior of the anomalously diffusive transport for large time.
Similar phenomena happens in, e.g., the creep process of viscoelas-
tic materials when an external loading is applied at the initial time
instant, the strain of the material has a certain jump due to the
elastic component in the material and then gradually increases
due to the viscous component. Again, the conventional fractional
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differential equation model does not catch the elastic behavior at
the initial time zone [2,15,17,21,30]. A two-time scale variable-order
fractional SDE (fSDE) was proposed in Zheng et al. [42]

du = (—A§DFOu+ f(u))dt + b(u)dW. t e (0.T]; u(0) = uo. (2)

which can describe the elastic behavior near the initial time zone
while modeling the viscoelastic behavior for large time and holds
on the entire time interval. Here A > 0 and the variable-order frac-
tional integral operator 01[1“"“) and Riemann-Liouville fractional

differential operator {;’Df‘“) are defined by Shi and Wang [35],
Zheng et al. [42]

80O = [z On]. oz On()
1 Y h(s)ds

TTA—a@) b (-5 0

Compared to conventional SDEs, the variable-order fSDE
(2) possesses non-Lipschitz weakly singular kernel with variable
order, and also loses the convolution structure. Extra work needs
to be carried out in the discretization and the corresponding anal-
ysis of the model. In this paper we develop a generalized Euler-
Maruyama scheme for the nonlinear variable-order fSDE (2) and
prove its strong convergence. The rest of the paper is structured as
follows: In Section 2 we prove the well-posedness of the variable-
order fSDE (2). In Section 3 we develop a generalized Euler-
Maruyama scheme for problem (2) and prove its strong conver-
gence. In Section 4 we carry out numerical experiments to investi-
gate the performance of the numerical scheme and to support the
theoretical analysis. In Section 5 we draw concluding remarks. In
Appendix A we present auxiliary results that are used in the anal-
ysis in the previous sections.

2. Wellposedness and estimates of the variable-order fSDE (2)

In this section we prove the well-posedness and moment es-
timates of the variable-order fSDE (2). We begin by reformulat-
ing the variable-order fSDE (2) as follows [12,26]: Let (2, F,P)
be a probability space, W(-) be a Brownian motion and uy be
a second-order random variable that is independent of W(.). Let
F(t) :=L{(W(s) (0<s<t), uo) denote the o-algebra generated
by ug and the history of the Brownian motion up to time t. Fur-
ther, the data of Eq. (2) satisfy the following assumptions

(a) @ € C'[0, T], the space of continuously differentiable func-
tions on [0, T], with 0 < @ (t) < «a* for some 0 < a* < 1.
(b) There exists a positive constant L such that

[fnl <LA+1v]), b =<LA+]v]), YveR,
[f() = f(w2)| < Llvi — 2],
|b(v1) —b(2)| <Ly — 1|, Vui, 15 €R. (3)

We integral the Eq. (2) from O to t and use the fact that

t
/ —ARDIOu(s)ds
0

_ [ 1 *_u@)dy

‘/o Ads[m—oz(s)) 0 (s—y)"‘(s)i|ds

[ 1 S u(y)dy

_[o Ad[r(l—a(s)) 0 (s—y)“(s):l

=—)\. ] s u(y)dy s=t
FTA-a@) Jo (s—y)*® |
—A ©u(y)dy

T TA-a®) Jo ¢ —y)*®
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t _)\‘ t
=f0 T —a(t))(t—s)“(”u(s)ds =:/0 k(t, s)u(s)ds (4)

to find a stochastic process u(-) on [0, T] that is progressively mea-
surable with respect to F(-) such that for all times 0 <t <T

u(t) = u0+/0t k(t,s)u(s)ds + /Ot f(u(s))ds + /0[ b(u(s))dW a.s.
(5)
where

. —A
k(t,s) = A —a®) (=50 (6)

Throughout this paper we use Q,Q;, and Q; to denote generic
positive constants, in which Q; refer to the constant that occur
from the lemmas cited in the appendix and Q may assume dif-
ferent values at different occurrences.

Theorem 2.1. If Assumptions (a)-(b) hold, the variable-order fSDE
(2) has a unique solution u such that

O<s<t

E[sup |u(s)|2i| < QoE1_a (T (1 —a")t'™") < 00, t €[0,T]. (7)

Here Qg and Qq are defined below, Ej(z) is the Mittag-Leffler func-
tion [29]

Q = 4E[uf] +8L*T(T + Q).
4)\2’1‘14—0{* _
Q = (1_a*+SLZ(T+Q1)),
. - Zk
Ep(2) .:gm,ze]& peR" (8)

with Q; denoting the constant in Burkhélder-Davis-Gundy inequality
(65) in Lemma A.1 which can be found in the Appendix.

Proof. We employ the technique of Picard iteration to prove our
existence and uniqueness theorem. We define a sequence {z;}%°
by zy(t) :=ugp and for n > 1

Zn(t) = ug + /Ot k(t,s)zy_1(s)ds + fot f(zp_1)ds

+ /0 b(z_1)dAW(s). (9)

As I'(t) is decreasing on (0,1] and 0 <1 —a* <1 —«a(t) <1 for
t [0, T, (1 —a(t)) > ' (1) =1. We bound k(t,s) in (6) by

)»(t _ S)a*—a(t)
(1 — o))t —s5)*

@t
< in)\'*’
T (-9

|k(t,s)| =

Q, = max {1, T}. (10)
For every n > 1 and x € [0, T], observe that
2019 =200 = [ K(X.5)(20(5) =201 9))ds
+ [ £ - S s
+ [ b@n(s) - bz 16)aWs). (1)

Use Jensen’s inequality (66) in Lemma A.2 which can be found
in the Appendix with m = 3 to bound (11) by
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IE|: SUp |zni1 (%) — zn (%) |2]
O<x<t

2
<3E[sup| k(x.s)(zn(s) — zn-1(s))ds|

0<x<i

+05<L>l<l<)t| f (zn(8)) — f(zn- 1(5))d5|
X 2 3
+sup | | b(zn(s) = b(za-1(s)AW(s)| }=:ZH1-- (12)
<x<t i=1

Use Cauchy inequality, estimate (10) and (70) in Lemma A.5 in
the Appendix to bound H; by

Hi < m[osupt(/g ke, 5)1ds f3 K(X, ) 120(5) — 2y <s>|2ds)]

saE[sup (Mjo (X =) |Zn(S) — 21 (5)| ds)i| (13)

O<x<t

3}\2Q2a* tl-a*
=T 1o

fy E =)™ [sup |Zn () — Zn1 (r)|2}ds

Apply Cauchy inequality along with assumption (3) to bound H,
by

H, < 3]E|:sup | o 12ds [y L?|2n(S) — Zn_1 (s)|2ds|]

O<x<t

(14)
<3t1? ng[sup |zn (1) — 21 (f)lz}ds-

O<r=<s

Use Burkhélder-Davis-Gundy inequality (65) in Lemma A.1 in
the Appendix and Itd isometry to bound H3 by

_ 3E|:05<lil<7t| S b(zn($) — b(ze 1(5))dW(s) |2}

< 3QE[| 5@ () - bzr1()aWs)[ |

=3QE[ [y [bza(5)) = b(za_1(s))|"ds] (15)
< 3Q,L2E[ f3 2n(5) — zn_1(5)[*ds]

<r=s

<3QL% [, E[Osup |Zn () — Zn 1 (r)Iz}ds

We substitute estimates (13), (14) and (15) into (12) to obtain

<X=<

|:Osup |Zng1 (%) — zn(%)] ]

, (16)
]E[sup |22 (1) — Zn_1 (1) ]
< Qp i Lo ds

I(1—a)(t—s)%"

where the positive constant Qg is given by

)\'Zont* 1 o*
(e

Qr =3I'(1 —a*) +TL2+Q1L2) (17)

For n > 1 we reformulate estimate (16) as follows
gn(t) 1= E[Osup 12041 (x) —Zn(x)|2i|
<x<t

N IS C N (18)
o TA—a®)(t—5)* "~

based on which we bound g, by induction.

< Qr
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We bound gg similarly to (12) (except that using the growth
condition in place of the Lipschitz condition in (3)) to get

O<x<t

go(t) = E[sup |21 (x) —zdx)ﬁ}

< IE[u2 sup (fo [k(x, s)lds) + sup (fo |f(uo)|d5)

O<x<t

+Osupt(f5‘ |b(u0)|dW(s)) }
< 3E[u%([c§ [k(x, s)|ds)2 +(fo If(uo)lcls)2
Qi (f3 Ibuo) W (s))]

- 3}L2Q22w*T2(1—u*)]E[u%]
= — (—a)?

=:Q;.
We combine (18) and (19) to conclude that
t Q/
T
&i(t) =< QT/O T —a) 5@

QQrt-"
F(A—-a)+1)°

Suppose that for any 1 <n <m, Then an induction argument
using (18) shows that, for every n > 1

Q]/_Qgtn(l—a*)

+6L2(T2 + Qi T) (1 + E[u3])

ds = t [0, T].

gn(t) < o —a 1) L€ [0, T]. (20)
We combine (18) and (20) and use s =t0 to get
8m(S)
t t _
Zm1(t) <Qr fy T —a)(t—5)°
QT m+1 t gm(1-a*)

< ~ds
I'(m(1 —Ol*) +1) Jo T(1 —a*)(t—s)*
_ Qe UOB(m(1 — ) +1.1 — %)
= C(m(1—a*) +HI(1—a*)
Q;_Q_}nﬂt(mﬁ—l)(l—a*)

< .
“I'(m+1)A—-a*)+1)

By mathematical induction, (20) holds for any n € N.

Consequently, the series defined by the right-hand side of
(20) converges to the Mittag-Leffler function in (8)

%) Q Qntn(1—at*) , 1o

Z m = QTEl—Ot* (QTt ) <oo, te [0, T],
which implies

ZE[ Sup |zn1 () —zn(t)|2] <oo, as. (21)
n—0 0<t<T

We apply Chebyshev’s inequality and use (20) and (21) to con-
clude that

( SUP |Zn+1 () —zn(t)| = 27

tel0,

> < 4"JE[ SUp |zny1(t) — Zn(t)|2:|
te[0,T]

_ g ()
= To(l—an)+1) -
By the Borel-Cantelli lemma, the sequence
n
za(t) =) (zm(t) — zm_1(t)) + o (22)
m=1
converges uniformly on [0, T] to a limit u that solves (5) a.s.. To-

gether with the continuity of {z;}% ;.we conclude the continuity
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of u. That is, the variable-order fSDE (2) has a continuous solution
u.

Suppose that there exists another solution i@ to the variable-
order fSDE (2), a similar derivation to (16) yields for all times
te[0,T]

. IEI[ sup |u(r) — ft(r)|2]
O<r<s
sup |u(x) —1d(x < == ds.
s sup Jutw a0 | < &r || s

We apply Gronwall inequality (67) in Lemma A.3 in the Ap-
pendix to conclude that u(t) =1{i(t) a.s., i.e., u and i are indistin-
guishable. Therefore, the variable-order fSDE (2) has a unique so-
lution.

We similarly bound the second moment of z, forn>1and t €
[0,T] by

E[sup |zn(x)|2}
O<x<t

< 4E[u] +4E|:sup (Jo k(x.5)z0_1(5)ds) }

O<x<t

O<x<t

+4E|:sup (Jo f(zn_1(s))ds) ]

+4E|:sup (Jo b(zn1(s))dW(s)) }

O<x<t

2
N E[Osup |21 (1) }
QT ot <r<s

12—01* fO (t=5)%" ds

<4E[ud] +

+812(T+Qy) o1 +E[sup |Zp—1(1)] ]
[sup |zn_1 ()
S Qo+ Qi fy s,

(t-5)""

Here Qp and Q; are defined in (8). Pass to the limit as n — oo
and use Gronwall inequality (67) in Lemma A.3 which can be
found in the Appendix with 8 =1 — «* to obtain (7). O

Remark 2.1. The above proof can be extended to estimate
E[ sup |u(s)|?] for 2 < p < oo provided E[|ug|?] < oo.

O<s<t
3. A Euler-Maruyama and its strong convergence

We derive a Euler-Maruyama scheme for the variable-order
fSDE (2) and prove its strong convergence.

3.1. Derivation of the scheme

Define a uniform partition of [0, T] by t, :=nt for 0 <n <N
with 7 :=T/N. At time step t, for 1 <n < N,we use the Euler
quadrature to discretize the integrals on the right-hand side of (5).
We begin with the discretization of the second term by

o fu(s))ds = Y1) [ f(u(s))ds
~ [ f(u(tz))ds =T Y5 fu®)).

We similarly discretize the last term on the right-hand side of
(5) by

o b(u(s))dwW(s) = z

(23)

1 b(u(s))dW(s)
Yo ft,'“ b(u(t;))dW(s) (24)

= Y15 b(u()) AW,

where AW, :=W(t;,1) —W(;) ~N(0,7) is a Gaussian random

variable.
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Note that the kernel in the first term on the right-hand side
of (5) is nonlocal and has no convolution structure, which is not
common in conventional SDEs or constant-order fSDEs. We extend
the L — 1 discretization to the current context

o k(tn, S)u(s)ds

— A n £ u(s)
= T Td-a@) 20 qm (G —s)" @ S

(25)

~ A n—1 rti _u(t)
= T Td-a(t) 20 t (tn,s)a(rmds

Jut 1-a(t, 1-a(ty
= — ) S [t — ) — (t — b)),

We incorporate the discretizations (23)-(25) into Eq. (5) to
obtain a Euler-Maruyama scheme to the variable-order fSDE (2):
Given the initial data ug in the variable-order fSDE (2), find v, for
1 < n < N such that

n-1 n-1 n-1
Un=Uo+ Y by +17) f)+) b)AW, (26)
1=0 1=0 1=0

where the coefficients b, ; for 0 <[ <n—1 are given by
(tn — )" — (b — 1) "4
T(2-a(t)

Theorem 3.1. For 1 < n < N,the solution v, to the Euler-Maruyama
scheme (26) satisfies the moment estimate

E[v2] < Qs[1 +E1_o- (QuuT (1 — )] =2 My;. (28)
Here the constants Q3 and Qq , are given by
Qs =4E[u}]+8L2T(T +1),

ot ga* p2(1-a*) 29
Qi = BLPT(T+ 1)+ 22800 (29)

by =-A (27)

Proof. Use Jensen’s inequality (66) in the Appendix with m = 4and
Cauchy inequality to bound v, in (26) by

2
n-1
]E[U%] < 4]E[u(2)] +4E (Z bn,lvl>
1=0
n—1 2
+471°E <Z f(v,))
1=0

2
n—1
(Z b(v:)AW1> : (30)

=0

We now bound the last three terms on the right-hand side. We
use Cauchy inequality and assumption (3) to bound the third term
on the right-hand side by

e[ (S )] =207 S B[ (1417)
<2122 +212TT Y1) E[1?].

(31)

We use Ito’s isometry and assumption (3) to bound the last
term on the right-hand side of (30) by

B (o1 banaw)’| =7 £ E[bw ]
<202t Y E[1+17] (32)
< 22T + 2127 ) B[12].

We now turn to the estimate of the second term on the right-
hand side of (30), which is not common in the analysis of numer-
ical approximations to conventional SDEs. For 0 <[ <n — 2 we use
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the mean-value theorem to conclude

(ta—t)"7 = (ta =) = (A=) T(tn — 1)

_ (1=a")T <[n7(1+1)]r)_°‘
=7 N

(1-a)T'-*"  (A—aH)T! (-)*
N'-o* (n—(14+1))* ~— Ni-* (n—l)“* (n-l-1)°’*

= Qe (14 )™ < Com ()

We incorporate the estimate into (27) to bound |b,, | for 0 < <
n-—2 by

ta—ty)! =) (g, gy, 1)
|bn,l| = )‘l Gt r(z,é(tn)l)“) |

1-o* 1-a* (33)
297 ) T)'~ 290 (T\'~
= P e ™ (N) = " (N) '
For [ =n —1, we have
PSS — 1
(2 a(tn)) (l—a(tn))l‘(l—a(tn)) N (34)
A e
= T2 (N)1 >
We combine (33) and (34) to bound |b, | by
29\ T .
il < 2 (D) octenot s
| n’ll_(‘lfa*)(nfl)m N =t = (35)
We use (10), (25) and (27) to bound
-1 X 1 gt d
o Ibuil = moemy Zito i e
=Ta- a(t,,))f @ s)"‘fn) (36)
tn AQLTds QLA
— 0 (tnfs)d* - l*a* .
Use (35) and (36) to bound the second term on the right side
of (30) by

n-1 n-1 n-1
E[ (bt )?] = X 1wl BT Y. Ibul
=0 =0 =0

A 4, 101 2
2y TZZ“*I“ 22 Z Elv] _
= T(1-a")2NT« (n — l)a*

(37)

We incorporate estimates (31), (32) and (37) into (30) to ob-
tain

E[v2] < 4E[u}] + 8L2T(T + 1) + 8L2(T + 1)t Y[ Ely|*

22+MQ€,*T2(1—D{*)A2 n-1 ]E‘Vllz
(1—a*)2N1*L'* Yio (n-1*" (38)
n-1 E|y|?
f Q3 + Nl —a¥ 1=0 (nil)a*

with Q3 and Qg being given in (29).
We apply the generalized discrete Gronwall’s inequality
(69) with B =1 — «* to arrive at (28). O

3.2. An auxiliary equation and its error estimates

To analyze the strong convergence of the Euler-Maruyama
scheme, we define an auxiliary continuous time stochastic process
v(t) on [0, T| using the step function § = $§(s) such that §:=t, for
se[tn,thp1)and 0<n<N-1

v(t) :uo+/0tk(t,s)v(§)ds+fotf(v(s“))ds—i-/O[b(v(s“))dw
(39)
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Lemma 3.2. Let {un}’,LO be the solution of the Euler-Maruyama
scheme and v be the continuous time stochastic process defined by
(39). Then v(ty) = vy for 0 <n <N.

Proof. It is clear that v(0) = ug = vy. Suppose that v(ty) = vy, for
0<m<n-—1<N-1. We evaluate the integrals on the right-hand
side of (39)similarly to (23)-(25) to obtain

tn tn ty
ve) = o+ [ kit v(E)ds+ [ 7(v(5))ds+ [ b((s))aw
n-1 b1 n-1 tmg1
=1 +m2:0/tm k(tn,s)v(s)ds-i-mzzg)/;m f(v(s

" mzl [ bo@)aw

A n-1 /tm+1 U(tm) ds
'—-a()) — (tn —5)* @

n-1 tmi1 n-1 1
+ thm fw(tm))ds + thm b(v(tm))dW

=u0_

—up+ Z bnmt(tm) + T Z f(tm)) + Z b(v(tn)) AWn

m=0 m=0
= U+ Z bumvm+7 Z fom) + Z b(m) AWn = vy
m=0 m=0 m=0

By mathematical induction, we prove the lemma. O

Theorem 3.3. The following estimate holds for the continuous time
stochastic process v defined by (39) for any t € [ty, t, 1) With0 <n <
N-1

E[(v(t) - v(tn))z] <M,

where M, , and Mjs ; are given by

20700 My,T, (40)

MZA — 6)\.21\/11 )\(4Q2a T] —a* 9+2Q5Q22>

(1-a%)?

2
(Il llrgo.1ymaXeeqn o 11 T/ (E)])
(41)

o ||g1[0,71 +

M, = 121%(1+ My;), Qs =

In particular, if > = 0 (i.e. for conventional SDEs) estimate (40) re-
duces to

E[(v(t) = v(t))?] < 12L{[1+ Ey o (B2T(T + DI (1 — a")) ]
x [4E[ug] +8L°T(T+ D]+ 1}z (42)
Proof. For t € [ty, ;1) with 0 <n <N —1,we subtract Eq. (39) at

time t, from Eq. (26) and apply Jensen’s inequality with m =3 to
obtain

E[(v(t) = v(ta))?]

< 3E|:</o[ k(t. s)v(S)ds — /Ofn k(ta, 5)v(5) as>2]

[([)tf(v(sj)ds_/o“ f(v(sA))ds)z}

+3E{</Otb( - / dW(s)ﬂ
(

th 2
6E|: (k(t, s) — k(ta, 5))v(5)d ) }
0
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+61E|:( t: k(t, s)v(§)ds>2j|
+3]E|:< [ f(v(§))ds)2:| n 311«:[( [ b(u(§))dW(s))2:|. (43)

We use assumption (3) and Theorem 3.1 to bound the third
term by

IE|:< [ f(v(§))ds)2:|
sr/t:E[f( 9)]es

<2I’t /t (1+ E[|v,,|]2)ds <21%(1+ My ;)72 (44)

n

We use Itd isometry and assumption (3) to bound the last term
on the right-hand side of (43) by

R 2 i A2
E[( JEb(u(3))dwis)) ] - IE[ G) ds]
<22 (1+E[12])r (45)
= 2L2(1 +M1‘)L)'L"
We are now in the position to the estimate of the first two
terms on the right-hand side of (43), which are not common in
the context of conventional SDEs and constant-order fSDEs. We use

Cauchy inequality to bound the second term on the right side of
(43) by

u{( e s)v(§)ds)2:|

f Ik(t, )| E[v

2
<M, </t [k(t, s)|ds>

Ml A)\'ZrZ(l—a*)
S 3
(1 —ar)

We now turn to the estimate of the first term on the right-hand
side of (43)

th 2
IE|:(/O (k(t,s) — k(ta, s))v(s)ds) }

tn 2 tn
5/0 lk(t,s) — k(tn, $)| E[v(3) ] ds/o [k(t, s) — k(ta, s)|ds

dsf |k(t,s)|ds

(46)

< 2 s5)~“® (tn =)™ ’
<M ;A (fo |r(1 —a(t)) QA —Ot(fn))lds

I L (e B G R PAY
_ZMI.A)" (/(; F(l—O{(f)) ds

(1 1 B 1 2
2MA (/o 6 5@ T —a@) T a) "“)
=2M;; A%); + 2M; ; A% (47)

We bound the second term on the right-hand side of (47) by
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1 IF(A—a@®)-T'(1-a(t))]
b= (fo Eos)®@ T T—a )T (1—a () ds)
QSQZTZ
SQST (./0 (tn S)MM)) = (1- a*)

with Qsbeing introduced in (41).
We use (10) and the facts that for t > t,,t1-¢ —t1=% < (t —
t)1=% and (t — ty)|In(t — s)| is bounded to obtain

J=2(f8 1t —5) @) — (¢ —5)"*©|ds)’

1
+2[ 0 (([n_s)“”n) - (t— s)a(fn)>ds}

a(t)—a(ty 2

(t— s)u(t)

(48)

2
2<tr1l—a(rn)+(t7t")1—u(rn>,t17au,,))

(1-a(tn))®

tn (t—tn)|In (t=s5)| 4(t—t,)2(1 - )
o Tl( o ) e

< 2Q2a*

2
ta (t— s) [In (t—s)] 472(1-a*)
Ol”c‘[OT] (0 ( (t-s )<1+u*)(/2 )ds> + (Tlfoz*)2
< <2Q22a*T]7a* ||a||(271[0T] + 4(174‘1**)2)‘[2(1701*).

We incorporate (48) and (49) into (47) to bound the first term
on the right-hand side of (43) by

IE[( o (k(t,s) - k(tn,s))v(§)d5)2]

< 2M1 )\)\2 (2Q2a T1-o

o ”CI [0, T]
2M, ,A2Q5Q2 72

(1-a+)?

We combine (43), (44), (45), (46) and (50) to finish the proof of
estimate (40). If A =0,M, , in (40) vanishes. My ; in (28) reduces
to

M0 = Qs[1+Era BLT(T + DI (1 - ")) | (51)

with Q3 given in (29). Incorporate (51) into (40) to finish the proof
of estimate (42). O

+

3.3. Error estimate of the Euler-Maruyama scheme (26)

We now prove the main result of this paper, the strong conver-
gence of Euler-Maruyama scheme (26). Now, we turn to estimate
the error of u(t) — v(t).

Theorem 3.4. Let u and v be the solutions to the variable-order fSDE
(2) and the auxiliarty Eq. (39), respectively. Then the following esti-
mate holds

max E[u(t) — v(t)|*] < My, 720 + Ms ;7. (52)
te[0,T] ’ !

Here My, and Ms , are given by
My s = QsE1a (QT (1 — )T )My,

Ms ;. = QsE1_a- (QT (1 — )T~ )My ;,

SAZQZ‘X*T2(1—u*) 5 (53)
Q= S 4 BAT(T + 1),
Q= FEI 46T (T + 1),

The following error estimate holds for the Euler-Maruyama scheme
(26)

max E[[u(tn) — val?] < My, 7207 4+ M5, 7. (54)
0<n=<N :
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In particular, if A =0 (when fSDE (2) reduces to a conventional

SDE), the estimate (55) reduces to the following standard estimate for
the Euler-Maruyama scheme

OT%E['”“") —va|?] = MsT. (55)

Proof. For any t € [0,T),let t € [ty, t;,1)for some 0 <n <N -—1. We
subtract Eq. (39)from Eq. (5) to obtain

E[u(t) —v(6)?] = 3E[(f(§ ke, s)(u(s) - v(§))ds)2]
+38[ (f5 ) - £(v(9))ds)’]
+38] (J§ bu() - b(v($))aw)’]

= Z?:l Ij.

We use Cauchy inequality, assumption (3) and Theorem 3.3 to
bound I,by

L < 3TL2/ E[|u(s) — v(3)[*]ds

t
< 6TL2/0 (E[us) - v(s)I] + E[Iv(s) - v($)2])ds

(56)

t

< 6TL2/ E[|u(s) — v(s)|*]ds + 6T2L?* (My 5 7>~ + M3, 7).
0

(57)

We use It6 isometry, assumption (3), Theorem 3.3 and split
u(s) —v(3) = (u(s) — v(s)) + (v(s) — v($)) to bound I3 by

t A2
L= 3/0 E[(b(u(s)) - b(v(3))) ]dW
< 3L2/ E[lu(s) — v(5)[*]ds
t
< 6L2/0 (E[lu(s) — v(s)*] + E[v(s) — v(3)*])ds
< 612 /tE[lu(s) —v(s)|*]ds + 6TL* (M, T2~ + M3, 7).
0

(58)
We similarly bound I; by

I < GIEI[( JEk(E. s)(u(s) - v(s))ds)z]
+68] (Jy k(t.5)(v()  v(§))ds)” | =t b+ o
We use Cauchy inequality and (10) to bound I; ; by

(59)

¢ ¢
L= 6/ E[lu(s) —v(s)|?] |k(t,s)|ds/ [k(t, s)|ds
0 0
6Q2 T1-" 2 / E[lu(s) —v(s)I?]
<
- 1-—o* 0 (t —s)>
We use Cauchy inequality and Theorem 3.3 to bound I; ; by

I <6 [y E[|v(s) — v(S) 2] [k(t.s)|ds [y |k(t.s)|ds

< 6}\,2Q22a* T2(1-*)
= (1—a*)?

ds. (60)

(61)
(My 7207 4+ M35 7).

Substitute estimates (57), (58), (59), (60) and (61) into (56) to

obtain

E[(u(t) - v(1))*]

< Qs(Ma,, 7207 + My, 7) + Q [ UL g

Here Qg and Q; are given by (53).
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Table 1

Convergence of scheme (26) for the linear fSDE (2) in Example 1.
(«(0),a(D)) (02,0.1) (0.6,0.3) (0.8,0.5)
N er K er K e; K
8 3.32E-2 4.17E-2 4.73E-2
16 223E-2 057 3.25E-2 036 4.16E-2 0.19
32 1.51E-2 0.55 2.52E-2 0.37 3.73E-2 0.16
64 1.00E-2 0.59 1.88E-2 0.42 3.30E-2 0.18
min{1 — a*, 0.5} 0.50 0.40 0.20

Apply the generalized Gronwall’s inequality (67) in the Ap-
pendix to complete the proof of (52). If we choose t =t, in the
estimate (52), v(tp) = vy by Lemma 3.2. Then estimate (52) reduces
to the estimate (54). In particular, if A = 0,M, ; = 0 by (41). Hence,
My, =0 by (53). Thus, (54) reduces to (55). O

4. Numerical experiments

We carry out numerical experiments to investigate the perfor-
mance of the Euler-Maruyama scheme (26). All the numerical ex-
periments were implemented using MATLAB R2018b on a ThinkPad
E431 Laptop with Inter Core i5 (2.60 GHz) CPU and 8.0G RAM.

4.1. Strong convergence of the Euler-Maruyama scheme (26)

We perform numerical experiments to test the strong conver-
gence of the Euler-Maruyama scheme (26) for the variable-order
fSDE (2). Let u(ty, ;) be the jth independent sample path of the
fSDE (2)evaluated at t, with the numerical approximation vn(w;)

by the Euler-Maruyama scheme (26) for n=0,1,2,...,N and j =
1,2,...,M. Then we compute the sample mean of the error as fol-
lows
1

M ) 2
e := max [ Z |u(tn, ;) — vn(@))] ] < QN (62)
and fit the convergence rate xby
K = log, - (63)

er/Z

In the numerical experiments the time interval [0, T] = [0, 1],
A =1, M=210=1024 and the variable order « is chosen to be
of the form

sin (27 (1 —

a(t)=a(1)+(a(0>a(1>)((1t) a ”)) (64)

Since the true solution is not known a priori, we use a fine
mesh size of Np; = 210 to compute the reference solutions.

Example 1. A linear variable-order fSDE. We choose f(u) = b(u) =
—u and ug = 0.1 in the variable-order fSDE (2). We present the
error e; for different mesh size N and difference choices of «(0)
and (1) in (64) in Table 1. We observe that the Euler-Maruyama
scheme (26) demonstrates the convergence rates that are in agree-
ment with the theoretical analysis in Theorem (3.4).
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Fig. 1. Plots of SDE solutions with a same sample: integer-order SDE solutions (‘blue color’), the variable-order fSDE solutions (‘red color’) with (oz(O), oz(l)) = (042, 0.1) for
cases (i) left A = 0.1 and (ii) right A = 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

1.5 T T T T T T T

fSDE A = 0.1

0 . . . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.5 T T T T T T

0.5

0 . . . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2. Plots of SDE solutions with a same sample: integer-order SDE solutions (‘blue color’), the variable-order fSDE solutions (‘red color’) with (a(O), a(l)) = (048, OAS) for
cases (i) left A = 0.1 and (ii) right A = 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Simulation of the linear fSDE
(2) with A =0 in Example 1.

N er K

8 2.75E-2

16 1.96E-2 0.49
32 1.38E-2 0.51
64 9.55E-3 0.53
Predict 0.50

In this example, we also test the case A = 0 when the variable-
order fSDE (2) naturally reduces to the conventional SDE. We
present the numerical results in Table 2, which shows that the
Euler-Maruyama scheme (26) naturally reduces to its analogue to
conventional SDEs and has a standard convergence rate of first or-
der. This is in consistent with the theoretical analysis in Theorem
(3.4).

Example 2. A nonlinear variable-order fSDE We consider the nu-
merical simulation to a nonlinear variable-order fSDE (2) with
f(u) = b(u) = —sin(u). Other data are chosen to be the same as in
Example 1. We present the numerical results in Table 3and have
the same observations as in Example 1.

Table 3

Convergence of scheme (26) for the nonlinear fSDE (2) in Example 2.
(«(0), a (D)) (0.1,0.2) (0.6,0.3) (0.8,0.5)
N er K er K e; K
8 3.82E-2 5.01E-2 5.68E-2
16 2.56E-2 057 3.90E-2 036 499E-2 0.19
32 1.74E-2 0.55 3.02E-2 0.37 447E-2 0.16
64 1.17E-2 0.57 2.26E-2 0.41 3.96E-2 0.18
min{1 — a*, 0.5} 0.50 0.40 0.20

4.2. Performance of the variable-order fSDE (2)

We study the performance of the variable-order fSDE (2) in
comparison with the conventional SDE, which corresponds to the
variable-order fSDE (2) with A = 0. In the study we choose [0, T] =
[0,1],f(u) = b(u) = —u and ug = 1. The variable order « is still
given by (64). We use the Euler-Maruyama scheme (26) with a
mesh size of N = 210 to compute the solutions for different combi-
nations of («(0),«(1)). We present the results for («(0), (1) =
(0,2,0.1), (0.8,0,5) and in Figs. 1 and 2, respectively. Within each
figure, we present four plots ranging from A = 0.1 and 1, respec-
tively. We observe that for A <1 (0.1 in this case), the solution of
fSDE (2) is close to the solution to conventional SDE. In contrast,
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for A =1, the solution of fSDE (2) exhibits considerable difference
from the solution to SDE.

5. Concluding remarks

In this paper, we study a variable-order fractional stochastic
differential equation driven by a multiplicative noise, which con-
tains a non-Lipschitz weakly singular kernel with a variable or-
der, and loses the convolution structure due to the introduction of
the variable-order fractional differential operator. We proved the
wellposedness and moment estimates of the problem. We also de-
veloped a generalized Euler-Maruyama scheme for the problem
and we proved the strong convergence of the scheme. The proved
strong convergence results naturally reduce to the corresponding
results for the classical SDE when the variable-order fSDE reduces
to the classical one. We carried out numerical experiments to sub-
stantiate the theoretical results. In particular, the convergence be-
havior reduces to the well known convergence rates of the Euler-
Maruyama scheme for conventional SDEs when the variable-order
fSDE reduces to the conventional one.
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Appendix A

We list auxiliary results that were used earlier.

Lemma A.l. (The Burkhélder-Davis-Gundy inequality [18, 41]) If Y
is a continuous martingale on [0, T], there exists a positive constant
Q1 =Qq(p) for 1 < p < oo such that

[sup Yeor] <GE[yoP]. o<t<T. (65)

xe[0,t]

Lemma A.2. (Jensen’s inequality [18]) If aj,pe R with p>1 and m ¢
N+, then

m m
1> a|P <mP=t "yl (66)
i=1 i=1

Lemma A.3. (Generalized Gronwall inequality [34]) Let Q,(t) be a
non-negative and non-decreasing locally integrable function on (a, b]
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and Qs be a non-negative constant. Suppose g(t) is a non-negative
locally integrable function on (a, b] with

g)
g(t)<Q2(t)+Q3/ Foopds Vie@bl 0<p<1.
then
g(t) = Q(OEF(GT (Bt —a)f), Vte (abl. (67)

Lemma A.4. (A generalized discrete Gronwall’s inequality [3]) Sup-
pose that a non-negative sequence {zn}ﬁ=1 and a non-negative and
non-decreasing sequence {yn}{;’:l satisfy the following relation

o z; =
anmém'ﬁ‘ym 1<n<N 0<B<1 Q>0
(68)
Then the sequence {zn}’,‘l’zl can be bounded from above by

zn < yn(1+Eg(QuI (B))).

Lemma A.5. Let @ € R* with 0 < « < 1. The following estimate holds

1<n<N. (69)

sup [ (x—5)"*|&(s)]ds < [ -9 sup emlds.  (70)
0 0

O<x<t 0<r<s

Proof. Let é;:(s) 1= Supg,s £ (r)|. Use & =s/x to bound the left
side by

SUPo<x<t /Ox(x —5)"*|&(s)|ds = supo<x<t /Ol(x —0x)"%|& (0x)|xdO
= SUPooyert' @ /0 " 10y (g 0x)ld6
<tl- /01 (1—0)"£(6t)do. (71)
The substitution s = 6t to the right side to rewrite this term as
o fol(l —_0)£(6t)d6 = t1~ /t (1 _ %)‘“5(3)?
=f0t(r—s>-“§<s>ds=/t(r—s> < sup ¢ (r)lds.

0<r<s

(72)

We combine (71) and (72) to finish the proof of (70). O
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