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Abstract: Variable-order space-fractional diffusion equations provide very competitive modeling capabili-
ties of challenging phenomena, including anomalously superdiffusive transport of solutes in heterogeneous
porous media, long-range spatial interactions and other applications, as well as eliminating the nonphysical
boundary layers of the solutions to their constant-order analogues. In this paper, we prove the uniqueness of
determining the variable fractional order of the homogeneous Dirichlet boundary-value problem of the one-
sided linear variable-order space-fractional diffusion equation with some observed values of the unknown
solutions near the boundary of the spatial domain. We base on the analysis to develop a spectral-Galerkin
Levenberg–Marquardtmethod and a finite difference Levenberg–Marquardtmethod to numerically invert the
variable order. We carry out numerical experiments to investigate the numerical performance of these meth-
ods.

Keywords: Inverse problem, variable-order space-fractional diffusion equation, uniqueness
of the determination of the variable order, spectral-Galerkin method, finite difference method,
Levenberg–Marquardt algorithm

MSC 2010: 35A20, 35R11, 35R30

1 Introduction
Fractional diffusion equations were derived under the assumptions that the probability density functions of
the underlying particle movements exhibit highly skewed power-law decaying tails, so they can accurately
describe the same behavior of the solute transport in heterogeneous media as observed in field experiments
[3, 17, 21]. This explainswhy fractional diffusion equationsmodel anomalously diffusive transport of solutes
in heterogeneous aquifers more accurately than integer-order diffusion equations do [17–19]. However, the
solutions to space-fractional diffusion equations exhibit singularities near the boundary, which is not com-
mon in the context of their integer-order counterparts [8].

Variable-order space-fractional diffusion equations, in which the fractional order varies in space, have
shown to eliminate the nonphysical boundary layers that are present in the solutions to constant-order space-
fractional diffusion equations and provide a physically relevant modeling [30]. Moreover, variable-order

*Corresponding author: Hong Wang, Department of Mathematics, University of South Carolina, 1523 Greene Street, Columbia,
South Carolina 29208, USA, e-mail: hwang@math.sc.edu
Xiangcheng Zheng, Yiqun Li, Department of Mathematics, University of South Carolina, 1523 Greene Street, Columbia, South
Carolina 29208, USA, e-mail: xz3@math.sc.edu, yiqunl@email.sc.edu
Jin Cheng, School of Mathematical Sciences, Fudan University, 200433 Shanghai, P. R. China, e-mail: jcheng@fudan.edu.cn



220 | X. Zheng et al., An inverse problem for a variable-order sFDE

space-fractional diffusion equations occur in many applications [16, 23, 24], as the order of space-fractional
diffusion equations is closely related to the fractal dimension of the porous media determined by the Hurst
index [7, 17] that change as the geometrical structure or property of the media changes.

In applications the parameters in the governing space-fractional diffusion equations, such as the variable
fractional order, often are not given a priori. Rather, these parameters have to be inferred from the mea-
surements as an inverse problem. In recent years, the inverse problems of determining the parameters in
constant-order fractional diffusion equations, in particular the fractional order that was not encountered
in the context of integer-order diffusion equations, have attracted extensive research activities [5, 9, 11–
15, 29]. To our best knowledge, up to now, there is no mathematically proved result on the determination of
the variable fractional order in variable-order space-fractional diffusion equations.

In this paper,weprove theuniqueness of thedeterminationof the variable fractional order in thehomoge-
neous Dirichlet boundary-value problem of one-sided linear variable-order space-fractional diffusion equa-
tions in one space dimension with measurements of the unknown solutions near the boundary of the spatial
domain. Based on the analysis, we develop a spectral Galerkin Levenberg–Marquardt method and a finite
difference Levenberg–Marquardtmethod to numerically invert the variable order. Numerical experiments are
carried out to investigate the numerical performance of these methods.

The rest of the paper are organized as follows. In Section 2, we discuss the modeling issues and go over
the wellposedness and regularity results of the problem. In Section 3, we prove that the variable fractional
order of one-sided linear variable-order space-fractional diffusion equations can be uniquely determined,
given the observations of the solutions near the boundary of the spatial domain. In Section 4, we develop
a spectral Galerkin Levenberg–Marquardt method and a finite difference Levenberg–Marquardt method to
numerically invert the variable fractional order. In Section 5, we carry out numerical experiments to investi-
gate the performance of these methods. In Section 6, we draw concluding remarks.

2 A variable-order space-fractional diffusion equation model
and its wellposedness

We address the modeling issues of space-fractional diffusion equations, and present a variable-order space-
fractional diffusion equation model and go over its wellposedness and smoothing properties, which will be
used subsequently.

2.1 Modeling issues by space-fractional diffusion equations

We begin with the homogeneous Dirichlet boundary-value problem of the one-sided space-fractional diffu-
sion equation of order 1 < α < 2, which models the (one-sided) anomalously superdiffusive transport of the
solutes in heterogeneous porous media [4, 10, 17, 25–28]

−C0D
α
xu(x) = f(x), x ∈ [0, 1],

u(0) = u(1) = 0.
(2.1)

Here the fractional integral operator 0I
β
x of order 0 < β < 1 and the Caputo fractional differential operator C0Dαx

of order 1 < α < 2 are defined by [20]

0I
β
xg(x) :=

1
Γ(β)

x

∫
0

g(s)
(x − s)1−β

ds,

C
0D

α
xg(x) := 0I2−αx g(x) = 1

Γ(2 − α)

x

∫
0

g(s)
(x − s)α−1

ds.
(2.2)

We note that space-fractional diffusion equation (2.1) was derived via a continuous time randomwalk frame-
work as the number of particle jumps tends to infinity (while the mean jump length shrinks) [17–19], and
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hence holds for any fixed location x inside the domain that is away from the boundary and has nonlocal
power law decaying tails, rather than all the way up to the boundary as often assumed in the literature [17–
19]. This gap explains partiallywhy the solutions to the boundary-value problemof space-fractional diffusion
equation (2.1) exhibit nonphysical singularity near the left end point x = 0.

A time-dependent space-fractional diffusion equation model, which consists of a second-order spatial
derivative term modeling the Fickian diffusive transport and a space-fractional derivative term modeling the
superdiffusive transport, was proposed in [6, equation (29)] aiming at improving the modeling of superdif-
fusive transport. The steady-state counterpart of this model is presented as follows:

−u(x) − k C0D
α
xu(x) = f(x), x ∈ [0, 1],

u(0) = u(1) = 0,
(2.3)

where u refers to the second-order derivative of u and C
0Dαxu was introduced in (2.1). Equation (2.3) can

be well explained in the context of solute transport in heterogeneous porous media. During the transport
process, a large amount of solute particles may transport through high permeability zones in a superdiffusive
manner [3, 17] andmay deviate from the transport of the solute particles in the bulk fluid phase that undergo
a Fickian diffusive transport [2]. The partition parameter k ≥ 0 quantifies the portion of the solute particles
that move through the high permeability zones in a superdiffusive manner. That is, the 1

1+k portion of the
total solute mass undergoes the Fickian diffusive transport, which is modeled by the −u term, while the
remaining k

1+k portion of the total solute mass undergoes the superdiffusive transport in high permeability
zones and is modeled by −k C0Dαxu. Note that the governing space-fractional diffusion equation (2.3) holds on
the entire spatial interval including the end point x = 0.

A possible remedy to eliminate the nonphysical singularity of the solutions to the boundary-value prob-
lem of space-fractional diffusion equation (2.1) (and (2.3)) as proved in [8] is to let the index of the power law
decaying tails to very smoothly near the boundary of the domain to Gaussian types of tails to better reflect the
impact of theboundary condition, or account for the impact of locality of theboundary conditionat x = 0 from
a mathematical point of view. This naturally leads to a (one-sided) variable-order space-fractional diffusion
equation. Variable-order space-fractional diffusion equations occur in many applications, e.g., in model-
ing heterogeneous reservoirs that may consist of different types of heterogeneous porous media in different
subdomains that naturally lead to different fractional orders in different subdomains.

Motivated by these observations, in this paper, we consider the homogeneous Dirichlet boundary-value
problem of the (one-sided) variable-order linear space-fractional diffusion equation

−u(x) − k(x) C0D
α(x)
x u(x) = f(x), x ∈ (0, 1),

u(0) = u(1) = 0.
(2.4)

Here 0I
β(x)
x with 0 < β(x) ≤ 1 and C

0D
α(x)
x with 1 ≤ α(x) < 2 denote the variable-order fractional integral and

Caputo fractional differential operators, respectively [16, 23, 24]

0I
β(x)
x g(x) := 1

Γ(β(x))

x

∫
0

g(s)
(x − s)1−β(x)

ds,

C
0D

α(x)
x g(x) := 0I2−α(x)x g(x) = 1

Γ(2 − α(x))

x

∫
0

g(s)
(x − s)α(x)−1

ds,

which are variable-order extensions of the constant-order fractional integral and differential operators
defined in (2.2).

2.2 Wellposedness and smoothing properties of variable-order space-fractional
diffusion equation (2.4)

Let C[0, 1] be the Banach space of continuous functions defined on [0, 1], and let Cm[0, 1] be the Banach
spaces of continuous functions with continuous derivatives up to order m on [0, 1], equipped with standard
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norms [1]. We make the following assumptions on the variable order α(x), the partition coefficient k(x) and
the source term f(x).

Assumption A. α, k, f ∈ C[0, 1], k ≥ 0, and α satisfies

1 ≤ α(x) ≤ α∗ := max
x∈[0,1]

α(x) < 2, x ∈ [0, 1],

lim
x→0+(α(x) − α(0)) ln x = 0.

(2.5)

The following theorem was proved in [30].

Theorem 2.1. Suppose that Assumption A holds. Then the homogeneous boundary-value problem (2.4) admits
a unique solution u ∈ C2[0, 1]. Moreover, the following stability error estimate holds:

‖u‖C2[0,1] ≤ Q‖f‖C[0,1],

where Q = Q(‖k‖C[0,1], ‖α‖C[0,1]).

3 The unique determination of the variable order in problem (2.4)
In this section, we prove that the variable order α(x) in variable-order space-fractional diffusion equa-
tion (2.4) can be uniquely determined from the observations of the solution u(x) on an arbitrarily small
interval near the left end point of the interval. Let the admissible setA be defined by

A := {α : α is analytic on [0, 1] and satisfies (2.5)}.

We prove the main theoretical result of this paper in the following theorem.

Theorem 3.1. Suppose that Assumption A holds and f(0), k(0) ̸= 0. Then the variable order α ∈ A in boundary-
value problem (2.4) can be uniquely determined from the observations of the solution u(x) on an arbitrarily
small interval near the left end point of the interval. More precisely, let ̂α ∈ A and ̂u(x) be the solution to the
problem

− ̂u(x) − k(x) C0D
̂α(x)
x ̂u(x) = f(x), x ∈ (0, 1),
̂u(0) = ̂u(1) = 0.

(3.1)

If there exists an ε0 with 0 < ε0 ≪ 1 such that

u(x) = ̂u(x) for all x ∈ [0, ε0], (3.2)

then the following equation holds:
α(x) = ̂α(x) for all x ∈ [0, 1].

Proof. By Theorem 2.1, the solutions u to problem (2.4) and ̂u to problem (3.1) satisfy u, ̂u ∈ C2[0, 1]. Thus,
v := u and ̂v := ̂u satisfy the integral equations

v(x) + k(x)
Γ(2 − α(x))

x

∫
0

v(s)
(x − s)α(x)−1

ds = −f(x) for all x ∈ [0, 1],

̂v(x) + k(x)
Γ(2 − ̂α(x))

x

∫
0

̂v(s)
(x − s) ̂α(x)−1

ds = −f(x) for all x ∈ [0, 1].

(3.3)

By (3.2), u(x) = ̂u(x) for all x ∈ [0, ε0]. Thus, v(x) = ̂v(x) for all x ∈ [0, ε0]. Then we subtract the first
equation in (3.3) from the second to deduce that

k(x)
x

∫
0

v(s)( (x − s)
1− ̂α(x)

Γ(2 − ̂α(x))
−
(x − s)1−α(x)

Γ(2 − α(x)) ) ds = 0 for all x ∈ [0, ε0].
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As k(0) ̸= 0, there exists a constant 0 < ε1 ≤ ε0 such that k(x) ̸= 0 for all x ∈ [0, ε1], which implies
x

∫
0

v(s)( (x − s)
1− ̂α(x)

Γ(2 − ̂α(x))
−
(x − s)1−α(x)

Γ(2 − α(x)) ) ds = 0, x ∈ [0, ε1]. (3.4)

For any fixed x ∈ (0, ε1], 0 < s < x and 1 ≤ β < 2, let

G(β) := (x − s)
1−β

Γ(2 − β) .

Then

G(β) = ( Γ
(2 − β)

Γ2(2 − β)
(x − s)1−β − (x − s)

1−β ln(x − s)
Γ(2 − β) )

=
(x − s)1−β

Γ(2 − β) (
Γ(2 − β)
Γ(2 − β) − ln(x − s)) for all 0 < s < x and all x ∈ (0, ε1]. (3.5)

Thus, (3.4) leads to

0 =
x

∫
0

v(s)( (x − s)
1− ̂α(x)

Γ(2 − ̂α(x))
−
(x − s)1−α(x)

Γ(2 − α(x)) ) ds

=
x

∫
0

v(s)[G( ̂α(x)) − G(α(x))] ds =
x

∫
0

v(s)G( ̄α(x)) ds ( ̂α(x) − α(x)), (3.6)

where ᾱ(x) lies in between α(x) and ̂α(x) for any x ∈ (0, ε1].
We note that v ∈ C[0, 1] and the kernel in the fractional integral of v in the first equation in (3.3) is weakly

integrable. Hence, the fractional integral term in the equation vanishes as x → 0+. Moreover, by the assump-
tions of the theorem, f ∈ C[0, 1] with f(0) ̸= 0 which we assume to be positive without loss of generality.
Hence, there exists a positive constant 0 < ε2 ≤ ε1 such that f(x) > 1

2 f(0) > 0 on [0, ε2]. Then we conclude
from the first equation in (3.3) that there exists a positive constant 0 < ε3 ≤ ε2 such that

v(x) ≤ − f(0)4 < 0 for all x ∈ [0, ε3]. (3.7)

By Assumption A,
2 − α(x) ≥ 2 − α∗ > 0, 2 − ̂α(x) ≥ 2 − α∗ > 0.

Hence, 2 − ᾱ(x) ≥ 2 − α∗ > 0. There exist positive constants Q1 and Q2 such that

0 < Q1 ≤ Γ(x) ≤ Q2 <∞, 0 < Q1 ≤ |Γ(x)| ≤ Q2 <∞ for all x ∈ [2 − α∗, 1].

Thus, there is a positive constant Q0 > 0 such that

Γ(2 − ᾱ(x))
Γ(2 − ᾱ(x))


≤ Q0, x ∈ (0, ε3].

Therefore, there exists a positive constant 0 < ε4 ≤ ε3 such that ln x < −2Q0 on x ∈ (0, ε4], which implies that

Γ(2 − ᾱ(x))
Γ(2 − α(x)) − ln(x − s) > Q0 > 0 for all 0 < s < x, x ∈ (0, ε4]. (3.8)

We combine (3.5), (3.7) and (3.8) to conclude that
x

∫
0

v(s)G( ̄α(x)) ds =
x

∫
0

v(s) (x − s)
1−ᾱ(x)

Γ(2 − ᾱ(x)) (
Γ(2 − ᾱ(x))
Γ(2 − ᾱ(x)) − ln(x − s)) ds

< −
Q0f(0)
4

x

∫
0

(x − s)1−ᾱ(x)

Γ(2 − ᾱ(x)) ds = −
Q0f(0)x2−ᾱ(x)
4Γ(3 − ̄α(x)) < 0 for all x ∈ (0, ε4]. (3.9)

We combine equations (3.6) and (3.9) to conclude that α(x) − ̂α(x) = 0 for x ∈ (0, ε4]. As α(x) and ̂α(x)
are analytical on [0,1], we deduce that α(x) ≡ ̂α(x) for all x ∈ [0, 1].
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4 Numerical inversion of the variable fractional order
We develop a spectral Galerkin Levenberg–Marquardt method and a finite difference Levenberg–Marquardt
method to numerically invert the variable order α(x) in problem (2.4) from the observations of the solutions
in a small interval near the left-end point.

4.1 A spectral Galerkin method to variable-order space-fractional diffusion
equation (2.4)

Let PN[0, 1] be the space of polynomials of order less than or equal to N. For an integer n ≥ 0, let Ln(x) be the
n-th Legendre polynomial on [−1, 1] defined by the recurrence relation

L0(x) = 1, L1(x) = x,

Ln+1(x) =
2n + 1
n + 1 xLn(x) −

n
n + 1Ln−1(x), n ≥ 1

(4.1)

Let L̃n(x) be the shifted Legendre polynomial on the interval [0, 1] by an affine mapping, and let

ϕn(x) = L̃n(x) − L̃n+2(x), n ≥ 0.

Following [22, 28], we have ϕn(0) = ϕn(1) = 0 and

SN[0, 1] := {v ∈ PN[0, 1] : v(0) = v(1) = 0} = span{ϕn}N−2n=0 .

Then the spectral Galerkin method for (2.4) reads: find uN ∈ SN[0, 1] such that

(uN , ϕ

i ) − (k

C
0D

α
xuN , ϕi) = (f, ϕi), 0 ≤ i ≤ N − 2. (4.2)

4.2 A finite difference method to variable-order space-fractional diffusion
equation (2.4)

Let 0 = x0 < ⋅ ⋅ ⋅ < xK = 1 be a uniform partition on [0, 1] with the mesh size h = 1
K . Then the two left-hand

side terms of (2.4) can be discretized at x = xi (for 1 ≤ i ≤ K) by

−u(xi) ≈ −
u(xi+1) − 2u(xi) + u(xi+1)

h2
=: −δ2xu(xi)

and

−k(xi) C0D
α(x)
x u(xi) =

−k(xi)
Γ(2 − α(xi))

xi

∫
0

u(s)
(x − s)α(xi)−1

ds

≈
−k(xi)

Γ(2 − α(xi))

i
∑
k=1

u(xk)
xk

∫
xk−1

1
(x − s)α(xi)−1

ds

≈
−k(xi)

Γ(3 − α(xi))

i
∑
k=1

δ2xu(xk)((xi − xk−1)2−α(xi) − (xi − xk)2−α(xi))

=: −k(xi)δαxu(xi).

Let ui be an approximation to u(xi) for 1 ≤ i ≤ K − 1. We incorporate the preceding discretizations into space-
fractional diffusion equation (2.4) to derive a finite difference method

− δ2xui − k(xi)δαxui = f(xi), 1 ≤ i ≤ K − 1. (4.3)
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4.3 An inversion algorithm to evaluate the variable order α(x)
With the spectral Galerkin method (4.2) and the finite difference method (4.3), we are now in the position to
present an inversion algorithm to approximate the variable order α(x) that is formulated as follows.

Given the observation data {θj}Jj=1measured at { ̂xj}Jj=1 in the interval [0, ε0]with ε0 < 1, we aim at finding
a numerical approximation αM(x) to α(x), which is expressed in the form

αM(x) := α⊤ψ (4.4)

where
α := [α1, . . . , αM]⊤, ψ(x) := [ψ1(x), . . . , ψM(x)]⊤

with {ψi}Mi=1 being a set of basis functions. The goal is to minimize the discrete l∞ error between the numer-
ical solution of the spectral Galerkin method (4.2) or the finite difference method (4.3) to problem (2.4),
with the variable-order α(x) being replaced by αM(x) defined in (4.4), and the measurements {θj}Jj=1 at the
measurement locations { ̂xj}Jj=1.

Let u(x; α) be the numerical solution of the spectral Galerkinmethod (4.2) or the finite differencemethod
(4.3) to problem (2.4) with α(x) replaced by αM(x) and α introduced in (4.4), and let

u(α) := [u( ̂x1; α), u( ̂x2; α), . . . , u( ̂xJ; α)]⊤.

The numerical approximation αM is computed such that the corresponding coefficient α minimizes the cost
functional

F(α) = 12

J
∑
j=1
(u( ̂xj; α) − θj)2. (4.5)

We use the Levenberg–Marquardt algorithm to iteratively minimize (4.5),

αk+1 := αk − (J⊤k Jk + ρkI)
−1J⊤k rk .

Here ρk > 0 is the regularization parameter, rk := [u( ̂x1; αk) − θ1, . . . , u( ̂xJ; αk) − θJ]⊤, and Jk is the Jacobian
matrix of order J ×M,

Jk := [jα1k , jα2k , . . . , jαMk ],

which is evaluated via a numerical differentiation at αk,

jαjk =
u(αk + δej) − u(αk)

δ
, j = 1, 2, . . . ,M, (4.6)

where δ > 0 is the numerical differentiation step size and ej ∈ ℝJ is the unit vector in the j-th coordinate
direction for j = 1, 2, . . . , J. The proposed parameter identification method is presented in Algorithm 1.

Algorithm 1. A Levenberg–Marquardt Algorithm
(i) Given the measurements θ and the data for problem (2.4), choose the parameters ρ ∈ (0, 1), σ ∈ (0, 1),

β0 > 0, 0 < δ ≪ 1, and an initial guess α0. Set the iteration number k := 0.
(ii) Solve model (2.4) by (4.2) or (4.3) with α being replaced by αM.
(iii) Use formula (4.6) to numerically compute Jacobian Jk and J⊤k rk.
(iv) Compute the search direction dk := −(J⊤k Jk)

−1J⊤k rk.
(v) Determine the search step ρm by the Armijo rule: find the smallest possible m such that

F(αk + ρmdk) ≤ F(αk) + σρmdkJ⊤k rk .

(vi) If ‖ρmdk‖ < tol, then stop, and let α = αk. Otherwise, update αk+1 := αk + ρmdk, βk+1 := βk2 , k := k + 1,
and turn to (ii).
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5 Numerical experiments
We carry out numerical experiments to investigate the performance of the spectral Galerkin Levenberg–
Marquardt method and the finite difference Levenberg–Marquardt method to invert the variable order α(x)
in model (2.4), given the measurements on a sufficiently small interval [0, ε0] for some ε0 < 1.

Example 1. Let k(x) = 1, f(x) = 10, α(x) = 1.5 + 0.1 sin(πx) in problem (2.4). In the Levenberg–Marquardt
algorithm, we set ρ = 0.75, σ = 0.25, δ = 10−4 and tol = 10−10. We choose {ψi(x)}Mj=1 as the shifted Legen-
dre polynomials (4.1) of orders up to M − 1, ε0 = 1

8 ,
2
8 ,

3
8 and 4

8 in (3.2), M = 3, 4, 5 and 6 in (4.4), and
equally spaced observation points { ̂xj}Jj=1 with step size d = 1

576 . That is, J =
ε0
d , ̂x1 = d and ̂xJ = ε0 on the

interval [0, ε0]. We choose N = 10 in the spectral Galerkin method (4.2) and K = 576 in the finite difference
method (4.3) (so that the observation locations coincide with the mesh grids of the finite difference method
on the interval [0, ε0]). We choose the initial guess α ≡ 1.6 in the Levenberg–Marquardt algorithm.

We present the error α − αM of the spectral Galerkin Levenberg–Marquardt algorithm, which is measured
in the L1, L2 and L∞ norms on [0, 1], in Table 1 and the error α − αM of the finite difference Levenberg–
Marquardt algorithm in Table 2, respectively. We present the plots of α(x) and αM(x) as well as the values
of the corresponding cost functionals, which are computed by the spectral Galerkin Levenberg–Marquardt
algorithm and finite difference Levenberg–Marquardt algorithm with M = 6, in Figure 1.

We observe from Table 1 that the spectral Galerkin Levenberg–Marquardt method always generates
a convergent numerical approximation αM to α as M in (4.4) (and so the number of iterations) increases,
which is independent of the size of the interval [0, ε0]. As anticipated, if the size of the interval [0, ε0] of the
measurements increases, the error α − αM is further improved. The finite difference Levenberg–Marquardt
method is computationally more efficient than the spectral Galerkin Levenberg–Marquardt method. How-
ever, the numerical approximation αM generated by the finite difference Levenberg–Marquardt method does
not always converge monotonically as M increases.

These observations are consistent with the global nature of the spectral Galerkin method, which is com-
putationally more expensive but tends to generate numerical approximations with better accuracy. On the
other hand, the finite difference Levenberg–Marquardt method is computationally more efficient but may
generate less accurate numerical approximations when the size of the observation interval is small, which is
consistent with the local nature of the finite difference method.

[J, ε0] M Itr CPU time ‖α − αM‖L∞ ‖α − αM‖L2 ‖α − αM‖L1
J = 72, ε0 = 1

8 3 34 2m 55s 2.76E=01 1.17E=01 8.07E=02
4 47 4m 50s 1.51E=01 4.45E=02 2.34E=02
5 57 6m 50s 4.95E=02 1.44E=02 7.53E=03
6 66 9m 8s 3.16E=02 8.39E=03 4.31E=03

J = 144, ε0 = 2
8 3 29 2m 30s 2.41E=01 1.01E=01 6.82E=02

4 40 4m 7s 1.27E=01 3.67E=02 1.89E=02
5 49 5m 55s 5.25E=02 1.53E=02 8.01E=03
6 58 8m 0s 2.17E=02 6.85E=03 3.72E=03

J = 216, ε0 = 3
8 3 28 2m 26s 1.90E=01 7.80E=02 5.17E=02

4 38 3m 55s 1.44E=01 5.61E=02 3.57E=02
5 46 5m 34s 3.64E=02 1.15E=02 6.43E=03
6 47 6m 33s 6.74E=03 2.61E=03 1.49E=03

J = 288, ε0 = 4
8 3 37 3m 12s 3.90E=02 1.72E=02 1.10E=02

4 35 3m 38s 7.50E=02 3.00E=02 1.88E=02
5 41 4m 56s 7.45E=03 2.36E=03 1.34E=03
6 47 6m 34s 1.63E=03 7.14E=04 4.24E=04

Table 1: The error α − αM of the spectral Galerkin Levenberg–Marquardt algorithm with different values of ε0 in Example 1
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[J, ε0] M Itr CPU time ‖α − αM‖L∞ ‖α − αM‖L2 ‖α − αM‖L1
J = 72, ε0 = 1

8 3 40 22s 9.59E=02 3.90E=02 2.49E=02
4 46 36s 1.33E=01 3.84E=02 1.98E=02
5 58 1m 9s 6.30E=02 1.80E=02 9.17E=03
6 54 1m 30s 1.14E=01 3.22E=02 1.68E=02

J = 144, ε0 = 2
8 3 35 16s 5.95E=02 2.47E=02 1.56E=02

4 36 28s 1.17E=01 3.31E=02 1.67E=02
5 48 57s 4.38E=02 1.24E=02 6.25E=03
6 109 3m 2s 7.72E=02 2.11E=02 1.07E=02

J = 216, ε0 = 3
8 3 33 17s 3.36E=02 1.48E=02 9.42E=03

4 35 30s 1.02E=01 2.84E=02 1.41E=02
5 60 1m 18s 3.31E=02 9.33E=03 4.68E=03
6 152 4m 24s 5.69E=03 2.00E=03 1.08E=03

J = 288, ε0 = 4
8 3 29 13s 3.83E=01 1.51E=01 9.93E=02

4 32 26s 9.20E=02 2.54E=02 1.25E=02
5 52 1m 3s 3.66E=02 1.03E=02 5.17E=03
6 51 1m 26s 7.82E=03 2.52E=03 1.32E=03

Table 2: The error α − αM of the finite difference Levenberg–Marquardt algorithm with different values of ε0 in Example 1
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Figure 1: The plots of α(x) and αM(x) (first row) and the values of the cost functional (second row), which are computed by the
spectral Galerkin Levenberg–Marquardt algorithm (left) and the finite difference Levenberg–Marquardt algorithm (right) with
different values of ε0 in Example 1
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[J, ε0] M Itr CPU time ‖α − αM‖L∞ ‖α − αM‖L2 ‖α − αM‖L1
J = 72, ε0 = 1

8 3 36 5m 9s 5.42E=02 1.59E=02 8.57E=03
4 48 8m 15s 2.11E=02 5.80E=03 2.94E=03
5 57 11m 41s 6.95E=03 1.80E=03 8.58E=04
6 64 15m 3s 4.14E=03 9.73E=04 4.25E=04

J = 144, ε0 = 2
8 3 30 4m 18s 4.74E=02 1.35E=02 7.09E=03

4 38 6m 32s 1.45E=02 3.80E=03 1.85E=03
5 49 9m 50s 2.71E=03 6.62E=04 2.99E=04
6 57 13m 18s 2.11E=03 4.78E=04 2.01E=04

J = 216, ε0 = 3
8 3 27 3m 58s 4.05E=02 1.12E=02 5.76E=03

4 35 6m 12s 1.04E=02 2.62E=03 1.23E=03
5 43 8m 52s 1.40E=03 3.25E=04 1.40E=04
6 50 11m 34s 8.26E=04 1.78E=04 7.13E=05

J = 288, ε0 = 4
8 3 21 3m 3s 3.39E=02 9.01E=03 4.66E=03

4 34 5m 53s 7.35E=03 1.78E=03 8.09E=04
5 41 8m 16s 8.05E=04 1.78E=04 7.34E=05
6 47 6m 47s 3.36E=04 6.84E=05 2.59E=05

Table 3: The error α − αM of the spectral Galerkin Levenberg–Marquardt algorithm with different values of ε0 in Example 2

[J, ε0] M Itr CPU time ‖α − αM‖L∞ ‖α − αM‖L2 ‖α − αM‖L1
J = 72, ε0 = 1

8 3 36 17s 5.42E=02 1.59E=02 8.57E=03
4 65 50s 2.08E=02 5.70E=03 2.88E=03
5 62 1m 14s 1.12E=02 2.93E=03 1.42E=03
6 58 1m 37s 2.40E=02 6.24E=03 3.01E=03

J = 144, ε0 = 2
8 3 30 14s 4.74E=02 1.35E=02 7.09E=03

4 44 34s 1.46E=02 3.83E=03 1.86E=03
5 55 1m 5s 2.52E=03 6.13E=04 2.76E=04
6 63 1m 46s 9.80E=04 2.10E=04 8.38E=05

J = 216, ε0 = 3
8 3 27 12s 4.05E=02 1.12E=02 5.76E=03

4 35 27s 1.04E=02 2.63E=03 1.23E=03
5 48 57s 1.45E=03 3.36E=04 1.45E=04
6 48 1m 21s 1.18E=03 2.57E=04 1.04E=04

J = 288, ε0 = 4
8 3 21 10s 3.39E=02 9.01E=03 4.66E=03

4 34 28s 7.34E=03 1.77E=03 8.07E=04
5 43 52s 8.09E=04 1.79E=04 7.38E=05
6 47 1m 20s 3.67E=04 7.51E=05 2.86E=05

Table 4: The error α − αM of the finite difference Levenberg–Marquardt algorithm with different values of ε0 in Example 2

Example 2. We choose α(x) = 0.1x11/3 + 1.1 in problem (2.4) and the initial guess α ≡ 1.3 in the Levenberg–
Marquardt algorithm. All the other data are chosen the same as those in Example 1. We present the results in
Tables 3 and 4, respectively, and in Figure 2. We reach the same observations as those in Example 1.

6 Concluding remarks
In this paper, we proved the unique determination of the variable fractional order of the homogeneous
Dirichlet boundary-value problem of the one-sided linear variable-order space-fractional diffusion equa-
tion with some observed values of the unknown solutions near the boundary of the spatial domain. We
accordinglydevelopeda spectralGalerkinLevenberg–Marquardt algorithmandafinite differenceLevenberg–
Marquardt algorithm to numerically invert the variable order. We carried out numerical experiments to
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Figure 2: The plots of α(x) and αM(x) (first row) and the values of the cost functional (second row), which are computed by the
spectral Galerkin Levenberg–Marquardt algorithm (left) and the finite difference Levenberg–Marquardt algorithm (right) with
different values of ε0 in Example 2

investigate the convergence behavior of the numerical approximations to the variable order generated by
both methods, from the observed data only on a small interval near the boundary.

We conclude this paper by commenting on the analytical assumption of the variable order α(x) in prob-
lem (2.4). The analysis technique in this paper was developed to conclude that the positive- (or negative-)
preserving property of the integral on the left-hand side of (3.9) on a sufficiently small interval, which in turn
leads to α(x) = ̂α(x) on this interval. Then the analytic assumption on α was used to show that all the deriva-
tives of α at x = 0 are uniquely determined, which in turn uniquely determines α(x) on the entire interval
[0, 1] since α is analytic.

Conceptually, unless the fractional order is constant, it is intuitively impossible to use the value of the
variable order α(x) on a sufficiently small interval [0, ε0] to uniquely determine the value of α(x) on the entire
interval [0, 1] for a general variable order α(x) that is not analytical. It seems that any reasonable relaxation of
the analytical assumption on the variable order α(x) should require more observations of the unknown solu-
tion u on the interval [0, 1]. While requiring the observation of the solution u(x) on the entire interval [0, 1]
probably does not make much sense, the authors are currently looking for appropriately specified observa-
tions of the solution u(x) to problem (2.4) on the interval [0, 1] such that the unique identification of the
variable order α(x) in problem (2.4) can be proved without the analytical assumption on α(x).
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