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ABSTRACT: We examine the role of graphene nanoplates (GNPs) in the Hole trap Hole'barrier - Flectron trap - lectron barricr

an

GB

critical properties of thermoelectric GNP nanocomposites. After a detailed
analysis of the thermoelectric, microstructural, and mechanical characteristics
of such nanocomposites, we present a case study based on CoVSn-GNP
heterostructures. It is shown that GNPs can improve the mechanical
properties without deteriorating the thermoelectric properties of the material. -

CoVSn-GNP bulk composites are fabricated using powder metallurgy and ety contact Gran parte boundaris ety contat
spark plasma sintering with a GNP weight percentage range of 0—1. All ’
samples with the addition of GNPs showed improved mechanical properties
compared with pristine CoVSn. The sample with 0.5 wt % GNPs showed the
highest value of Vickers Hardness (737 HV) among all of the studied
compositions. Moreover, the fracture toughness was higher for the samples
with a lower average crystal size. The concentration and dispersion of GNPs
did not significantly change the CoVSn multiphase microstructure; however, it influenced the thermoelectric factors by reducing the
thermal conductivity and increasing the Seebeck coeflicient, leading to the enhancement of the thermoelectric figure of merit.

Graphene n-fype
semiconductor

Graphene
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1. INTRODUCTION 1.1. Graphene Impact on the Thermoelectric Proper-
ties. 1.1.1. Seebeck Coefficient. The Seebeck coefficient of a
degenerate semiconductor and the carrier mobility can be
expressed by’ ">’

To date, graphene-based nanomaterials have demonstrated

remarkable characteristics in diverse applications such as the
12 1. . 134 .56 . .78

electronic, *~ biomedical,” coating,” and food industries.

Encouraged by such interesting findings, graphene com- o kéT o(In(c(E))
pounds, such as few-layer graphene (FLG) and reduced S=——[——F7—l-s,
graphene oxide (RGO), were also tested to modify the 3.4 oF

efficiencies of thermoelectric (TE) compounds through kT 1 on(E) 1 ou(E)
microstructural manipulation of TE materials.”” "' However, = 3q w OE + ; OF

the outcome is more complicated because multilayer E=E; (1)

graphene (ie., stacked single graphene layers) may not

possess the same effect as the two-dimensional (2D) defect- u(E) = qr(E)/ m;k (2)
free single-layer graphene.”””'* The impact of graphene
inclusion on TE factors is summarized in Figure 1 through
the critical analysis of several studies. In this figure, we have
presented the Seebeck coefficient (S), electrical conductivity
(6), and thermal conductivity (x = x5 (lattice) +
k.(electronic)) and their contribution to the unit-less
parameter of the figure of merit (zT = S’¢/k T) for both
pristine TE compounds and their graphene-reinforced
compositions.

As shown in Figure 1, graphene compounds have been Received:  January 3, 2021
shown to have various impacts on thermoelectric products. In Accepted:  March 11, 2021
the following sections, the scientific and engineering aspects Published: April 6, 2021
of graphene’s effects on electrical and thermal transport and
the mechanical properties of thermoelectric compounds are
discussed.

where E is the energy, n(E) stands for the energy-dependent
carrier density, and m} is the effective mass of the charge
carrier, while n, u, q, Kz E; and 7 are the carrier
concentration, carrier mobility, carrier charge, Boltzmann
constant, Fermi energy, and charge carrier relaxation time,
respectively. Assuming a parabolic energy band and the
dependency of the relaxation time (7) on the energy and the
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Figure 1. TE characteristics of pristine and graphene-reinforced nanocomposites, (a) Seebeck coefficients, (b) electrical conductivities, (c)
lattice thermal conductivity (E and H show the total thermal conductivity), and (d) dimensionless figure of merit (2T): (A) BiggsSbg5-0.5 wt
%G (T = 280 K),"* (B) Nb-doped SrTiO;-RGO (T = 800 K),'® (C) ZnygeAly,0-1.5 wt RGO (T = 900 °C),"” (D) p-phenediamino-
modified graphene (PDG) (RT),"® (E) CoSbs/G (T = 800 K)," (F) LaC005-0.01 wt % G (T = 300 K),”® (G) MnTe-GNPs (T = 823 K),*'
(H) CulnTe,/G (80:1) mass ratio (T = 700 K),** (I) SnSe-3.2 wt % MoS,/G (T = 810 K).**

7,E) (1, is an energy-
eq 1 can be written as™

scattering factor () via (z
independent constant),”**®

. 7*kyT [ N(E) LA
3q Ef

n E=FE;

3)
where N(E) is the electronic density of states. According to
eq 3, the Seebeck coefficient depends directly on the
scattering factor (4) and is inversely affected by the charge
carriers’ concentration if the other parameters remain
unchanged. It is well established that graphene reinforcement
and its segregation at the grain boundaries (GBs) can lead to
a grain size reduction in nanocomposites, when compared
with a pristine matrix, by preventing welding or grain growth
during milling and sintering, respectively.g’2 22 The electrical
characteristics of the sample with a single crystal and a
polycrystalline structure may differ due to the effect of the
grain/crystal boundaries.”® However, the impact of the grain
boundaries on the scattering of carriers is significant in case
the mean free length (I) of carriers is larger than or
comparable with the crystal/grain size (d).”® The intrinsic
tendency for carrier localization is created due to the
presence of energetic disorder, caused by structural
inhomogeneity and chemical impurities at the grain
boundaries.””*” At the grain/crystal boundaries, this atomic
disorder may provide electrical charge potential barriers
(scattering regions) or traps.27’28 The reason for this
phenomenon is that the atoms near GBs are usually
distributed irregularly, so the electronic couplings between
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atoms in different grains may change and thus prevent/
disrupt the charge carriers’ transport from one grain to the
other.”® This process can create traps, which may be classified
as valleys (i.e., lower energy states) or barriers (i.e., higher
energy states) by considering their energetic position with
respect to the transport level.”””’

As shown in Figure 2, four scenarios may occur at the
grain boundaries by considering the disturbed carrier
concentration in these areas. If the structural inhomogeneity
of the lattice at the grain boundaries creates electron donors
near the valence-band maximum (VBM), hole traps are made
(Figure 2a). Conversely, electron acceptors near the VBM act
as dopants, making a barrier for holes’*® (Figure 2b).
Similar behaviors apply to the cognitive bias modification
(CBM).*>** The electron acceptors make a trap for electrons
(Figure 2c), while the electron donors create a barrier for
electrons (Figure 2d).*>**

There are further effects from the inclusion of graphene
due to the formation of various lattice defects such as
vacancies, antisites, etc.,, some of which can introduce extra
charge carriers or compensate some of the donors or
acceptors in the lattice.”®*” However, in the case of graphene
segregation, there are some other questions that need to be
clarified, such as how the newly created graphene-matrix
interfaces can affect electrical transport. The effect of
graphene segregation at the grain interfaces can be evaluated,
based on the possible band alignment, depending on the
work functions of graphene and the main matrix. As
illustrated in Figure 3, the type of contact (Schottky or

https://dx.doi.org/10.1021/acsaem.1c00015
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Figure 2. Schematic diagrams of (a) hole trap, (b) hole barrier, (c)
electron trap, and (d) electron barrier. Adapted from ref 35—37.

ohmic) at the graphene-matrix interfaces depends on the type
of the majority carriers in the matrix: electrons or holes. As
shown in Figure 3, Schottky barriers occur at the graphene-
matrix interfaces for both n- and p-type semiconductors when
the graphene work function (®) is larger and smaller than
the semiconductor work function (@), respectively (Figure
3a,b). In this case, there is an interface potential barrier (E,),
which scatters the low energy carriers preferentially more
than the others, resulting in carrier energy filtering. In
contrast, for the ohmic contact, there is no potential barrier,
and all of the carriers can pass the interface (Figure 3c,d),
although they can still experience scatterings due to potential
energy variations at the interface.

Therefore, these extra boundaries due to smaller grain
sizes—caused by graphene segregation and grain growth
blocking—and graphene-matrix interfaces may provide an
energy filtering effect for the charge carriers (electrons or
holes). The consequence of energy filtering is the strong
scattering of the low energy carriers, leading to reduced
electrical conductivity and simultaneously increasing the
Seebeck coefficient.***!

1.1.2. Electrical Conductivity. The addition of graphene to
the TE materials can result in either an increase or a decrease
in the electrical conductivity (Figure 1b). This is due to
graphene manipulating either the carrier concentration (n) or
the mobility (), according to the Mott equation ¢ =
enyt.”**® The higher or lower carrier concentration depends
on how graphene affects the crystal imperfections and
interacts with the charge-donating centers in the material.*>**
The graphene-embedded compounds may introduce a larger
carrier concentration, but the resultant nanostructuring (i.e.,
grain growth prevention) provides more grain boundary
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barriers and thus further charge carrier scattering, leading to a

decrease in the carrier mobility.'”** Therefore, one must

consider both the carrier mobility of the matrix (u,,) and the

associated one to the interface (u;,) to estimate the total

mobility of the nanocomposites (eq 4),”%**

1 1 1
=—+

Hr

Hn

'uin (4)

There are various models and approximations for interface

mobility. One approximation is given by ***

) 0. E
= | exp| -2
Hin q[27zm*kBT] xp( kBT]

©)
where L, is the mean path between two adjacent potential
barriers, Ey, shows the height of the potentials (energy) at the
interfaces (Figure 3a,b), kg is the Boltzmann constant, m* is
the effective mass of the charge carriers, and T is the absolute
temperature.

1.1.3. Lattice Thermal Conductivity. Figure 1c shows that
the addition of graphene in all of the listed materials reduces
the lattice thermal conductivity. The primary mechanism is
expected to be the phonon scattering against the grain
boundaries,”* which happens effectively at the low to medium
temperature range.’’ Based on Matthiessen’s rule,*** the
total relaxation time of phonons, 7. (eq 6) is related to
various relaxation times, including 7y (Umklapp), 7y
(normal), Te-ph (electron phonon), Tpd (point defect), 7,
(impurity phonon), 7g. (regular reflection and refraction),
i (diffusive scattering due to the corrugation of the GB),
and 7g,, (Rayleigh scattering), as follows

1 1 1 1 1 1 1 1
—= =+ =+ +— + - —
% Ty ™ Te— ph Tpd = ph TRef Tpiff
1
+ —
TRay (6)

in which 7. 7pip and 7r,, depend on the grain boundary
scattering, as described in Table 1.

It is noteworthy that graphene compounds can contribute
to the electronic thermal conductivity (k = k. + &), based on
the Wiedemann—Franz law (k,: LoT, L: Lorentz number),
the relationship that maps the electrical conductivity to the
electronic thermal conductivity (k,)."” In the cases where the
electrical conductivity increases significantly, there may be a
tradeoff between the increase of the electronic and reduction
of the lattice thermal conductivities to determine the effect of
graphene on the total thermal conductivity.*®

Li et al.* obtained a significant reduction in thermal
conductivity (from ~0.8 to ~0.4 W m™' K" at a temperature
of 873 K) by adding 0.15S wt % graphene in the Cu,Se
matrix. The reduction of the lattice thermal conductivity was
associated with a frequency mismatch in the phonon density
of states between carbon honeycomb phases and cubic
Cu,Se. Another study’® reported a thermal conductivity of
25 W m™! K! for a 025 vol % graphene/Cu,SnSe;
compound at room temperature, which was 12% lower
than that of pristine Cu,SnSe;. In this study, the extra
barriers created by the addition of graphene were mentioned
as the reason for the phonon scattering and the reduction of
the thermal conductivity of the nanocomposites.

1.2. Graphene’s Mechanical Reinforcing Criteria.
1.2.1. Grain Refining. Grain refinement, through graphene

https://dx.doi.org/10.1021/acsaem.1c00015
ACS Appl. Energy Mater. 2021, 4, 3573-3583
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Figure 3. Schematic diagram of various contacts and band alignments at the graphene-matrix interface, (a) Schottky contact for graphene/n-
type semiconductor, (b) Schottky contact for graphene/p-type semiconductor, (c) Ohmic contact for graphene/n-type semiconductor, and (d)
ohmic contact for graphene/p-type semiconductor.

decoration of the grains, has been suggested as an effective alloys, due to graphene segregation at the grain/particle
method to improve the mechanical characteristics of boundaries, inhibits the grain growth during the sintering
nanocomposites.” > Graphene addition to many granular process. In this regard, the Hall-Petch criteria explain the
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Table 1. Phonon Scattering Strategies against the Grain Boundaries”

scattering strategies parameters and relations parameters
GB regular reflection and -1 —2
~ (A
refraction T ~ lonty (AL) lon
GB diffusive scatteri HEAE
iffusive scattering oie ~ levg \ 7w ) Vg
CAVAAY
GB Rayleigh scatterin ~(=) ) E Av
yielg g TR“Y Igs Tw
kg
o)
n
n
w
T

S

definitions

mean distance of the GBs

group velocity for the corresponding phonon modes

difference in the refraction indices of the elastic waves in different grains

Boltzmann constant

Debye temperature

a parameter that characterizes the degree of the corrugation of the GB (typically 1
< 10)

(h = h/2x), h is Plank’s constant

phonon frequency

a constant, dependent on the details of the grain boundary characteristics

absolute temperature

Matrix

=

—_———

~
~

Ve g o
/ Agglomerated (.raphene(

Figure 4. Graphene nanoplate (GNP) agglomeration at CoVSn- 1 wt % GNPs: (a) backscattered electron image and (b) carbon X-ray map.

manipulation of mechanical factors, specifically yield strength
and hardness by grain size (d) reduction as follows***

K,

(2

KRN )
Ky
H = H —
LN (®)

where 6, and H are the yield strength and hardness when
grain growth is prevented by the reinforced GNPs,
respectively; also, K, Ky (slope of the straight line when
o, or H is plotted against 1/ \/ d), Hy, and o, are materials
constants (friction stress opposing the motion of dislocation).

Furthermore, geometry mismatch may result from the
presence of nonreacting graphene/matrix interfaces. The
existence of an inharmonious geometry among the graphene
segregates at the grain boundaries and within the grains can
pin down the dislocations and thus strengthen the nano-
composites.55

In the graphene-reinforced alloys, several regions are the
potential stress concentration/accumulations in the proximity
of graphene nanoplates (GNPs) due to their high specific
interface areas with the matrix. Accordingly, this factor can
obstruct the dislocation movement and lead to mechanical
stabilities in the nanocomposite.’® It is noteworthy that the
abovementioned phenomenon can be observed in the
optimum reinforcing percentage and distribution of
GNPs.” In this regard, Figure 4 illustrates how the
agglomerated graphene nanoplates at the alloy matrix (a
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CoVSn compound in this figure) may not be able to prevent
the crack growth or even create a crack. This issue
emphasizes the importance of optimization of the graphene-
mixing ratio to achieve a uniform distribution.

Equation 9 calculates the strengthening efficiency of
reinforcement (R),”" based on the strengths of the composite
(6.), matrix (6,,), and reinforcement volume fraction (V).

)

Based on this equation, increasing the reinforcement volume
above the optimum value may not enhance the reinforced
strength, as illustrated in Figure 4.

1.2.2. Load Transferring. Three main factors control the
load transfer mechanism in the nanocomposites, namely, the
reinforcement geometry, volume fraction, and bonding
strength among the matrices and nanofillers.”’ By reinforcing
a matrix with GNPs, the tight bonding (interlocking) due to
the large interface areas of the GNPs/matrix enhances the
load transfer between graphene and the matrices.”’ The
formation of strong bonding was reported by Bhadauria et
al.>® through the transmission electron microscopy (TEM)
analysis of the interface (Figure Sa). The results revealed a
clean interface with good metallurgical bonding between
GNP reinforcement and the Al matrix, which can improve
the load transfer between graphene and the matrix. The high-
resolution TEM image of the interface region, illustrated in
Figure Sb, reveals the nature of the bonding between
graphene and the Al matrix.

https://dx.doi.org/10.1021/acsaem.1c00015
ACS Appl. Energy Mater. 2021, 4, 3573-3583
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Figure S. (a) TEM micrographs showing the AI-GNP interface and
(b) high-resolution TEM image showing graphene layers in the
GNP, along with its interface structure with an Al matrix.*®

In this case, eq 10 can estimate the nanocomposite
strength via the volume fraction and interfacial areas™®

=& (10)

CS

where V, shows the reinforcement’s volume fraction, A and
CS are interfacial surfaces and cross sections of reinforce-
ments, respectively, 7 stands for shear stress; o,, is the matrix
strength, and V,, is the matrix volume fraction. According to
this equation, for the optimum dispersed GNPs in the matrix,
the interfacial surface area (A) increases and the reinforce-
ment’s cross section (CS) decreases, which leads to an
enhancement of the nanocomposite strength. In other words,
the matrix reinforced by GNPs provides more effective
interfaces and facilitates the load transfer from the matrices
into GNPs via shear stress.”> This mechanism causes load
distribution and enables the strong reinforcing agent (GNPs)
to take most of the applied load and prevent any local stress
concentrations in the matrix and any subsequent premature
nanocomposite failure.

1.2.3. Thermal Expansion Coefficient Mismatch. Dis-
location can be generated due to the differences in the
thermal expansion coefficients (TECs) contributed to
matrices and GNPs.

Equation 11 describes the effective parameters in strength
improvement, based on the TEC differences between the
matrix and GNPs*’

12ATAC

bd (11)
where a is a constant, G shows the shear modulus, b
represents the magnitude of the Burgers vector, AT is the

temperature gradient between the process and the ambient,
AC states the TEC difference, and d is the particle size.

z
2

O,

nanocomposite

) + 0,V

Orpc = aGb

As shown in this equation, the residual stress creation due
to the TEC difference is directly related to AC. Moreover,
the mismatch in the TECs is caused by residual stress.”

Equation 12 estimates the change in strength based on the
density of the dislocations. In this equation, a is the
geometric constant, y,, shows the matrix shear modulus, b
represents the Bur§ers vector magnitude, and p is the
dislocation density.’

Ao = ay bp (12)

As represented in this equation, well-dispersed GNPs with a
high level of interface areas with the matrix generate a higher
density of dislocations and residual stress.

1.2.4. Orowan and Griffith Criteria. Orowan reinforce-
ment is another mechanism that has been evaluated for
reinforcing the matrix using GNPs. In this process, graphene
may cause the pile-up of the dislocations and prevent them
from moving freely throughout the matrix. Consequently, the
dislocations need to pass around the graphene nanoplates due
to their high mechanical stability. This extension in the
dislocation paths (loops) results in higher ductility for the
nanocomposites. Furthermore, these loops can create back
stresses and prevent dislocation motions.”> Equation 13°’
describes the strength regarding this mechanism, based on
the effective parameters, such as

Gb d
%= o 1.27b
(4 1 .

where G states the shear modulus, b is the Burgers vector
magnitude, € is Poisson’s ratio, V, is the reinforcement
volume fraction, and d is the particle size.

Candidate thermoelectric materials for waste heat recovery
applications such as heavily doped semiconductors and
ceramic oxides are predominately brittle materials.’’ By
considering this critical feature, the performance of the GNPs
in strengthening the thermoelectric compounds against brittle
fracture can be estimated via Griffith’s fracture criterion (eq
14). In this equation, the critical stress intensity factor
(K. = a./ma, ) depends on Young’s modulus (E) and surface

energy (y) (ie, the edge energy for 2D materials like
graphene).

K. =a/ma; = 2/E (14)

where g, stands for the half crack length and o, shows the
critical stress at the fracture onset.””

Nevertheless, there is a crack length restriction (up to 10
nm) when using the Griffith criterion,”> but as per an

Crack propagation

b

s,

“Crack surface-

\\—--T_%—-r-hv
L

Figure 6. Schematic of crack growth inhibition by (a) crack deflection and (b) crack bifurcation/pinning, adapted from ref 65 with permission.
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Figure 8. Temperature-dependent thermoelectric characteristics of CoVSn-GNP heterostructure compounds, (a) thermal conductivity, (b)

electrical conductivity, (c) Seebeck coefficients, and (d) zT.

adequate dispersion of GNPs, these reinforcements with a
high Young’s modulus can improve the nanocomposite
strength®® and its resistance to crack propagation by
improving the modulus (eq 14) as follows

(1)

. = O-G[XGr + Ume

Ec = EGrXGr + Eme (16)
where E_ shows Young’s modulus of the nanocomposites and
Egy En Xgo and X, are Young’s moduli and volume
fractions of the graphene nanoplates and the matrix,
respectively.

Moreover, Figure 6 demonstrates schematically the crack
growth blocking or halting by GNPs.

This process can also be interpreted based on eq 14, in
which increasing the nanocomposite Young’s modulus (E)
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and increasing K.—fracture toughness—result in a lower
crack propagation tendency.

In the following section, we report a case study on CoVSn
and study the effect of graphene on the thermoelectric,
microstructure, and mechanical properties of the nano-
composite structure. The CoVSn composition was studied
in its pristine phase and presented in a prior publication.®®
Here, the heterogeneous composition is evaluated through

reinforcement with graphene nanoplates.

2. MATERIALS AND METHODS

The synthesis of the CoVSn compound has been reported, and its
multiphase composition and microstructure were discussed in an
earlier work by the authors®® (Figures S1 and $2). Here, the impacts
of graphene nanoplate (GNP) reinforcement on the CoVSn
microstructure and its properties are studied.
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The CoVSn-xGNP (x: 025 wt % [0.047 atom %], 0.5 wt %
[0.095 atom %], 0.75 wt % [0.142 atom %], and 1 wt % [0.19 atom
%]) compounds were prepared using micromilling (reciprocating
type, 1 h, a ball/powder volume ratio of 1:1, the stainless steel ball
size of 1 mm) of the synthesized CoVSn powder with the GNPs
(average particle: size 3 nm, surface area: S00 m> g~', Alfa Aesar)
under an argon atmosphere. The bulk samples were fabricated with
an average density (%98 to 99% theoretical density measured by the
Archimedes method, with isopropyl alcohol as a displacement
medium) via spark plasma sintering (SPS) at a temperature of 850
°C and an applied pressure of 42 MPa, with a sintering time of 20
min under an argon atmosphere. The phase identification was
implemented via X-ray diffraction (XRD) analysis (MiniFlex 300/
600, 40 kV, 1S mA, Cu X-ray tube generation). Field emission
scanning electron microscopy (FESEM) Quanta 450 SEM was
employed for microstructural analysis. The Seebeck coefficient (S)
and electrical conductivity (6) were measured under a He
environment at a temperature range of 300—820 K on a commercial
Linseis LSR-3 system, using a differential voltage/temperature
technique and a DC four-probe method, respectively. The thermal
conductivity (k) was calculated using k = DpCp where p(g cm™) is
the sample density. The thermal diffusivity D (m? s™') and specific
heat capacity Cp (J Kg™' K™') were measured with laser flash and
differential scanning calorimetry methods, respectively, on Linseis
LFA and DSC instruments, at a temperature range of 300—820 K.
Moreover, the Vickers hardness values were measured using a
microhardness device (LECO, LM-700AT-load: 1000 g, dwell time:
10 s) at room temperature.

3. RESULTS AND DISCUSSION

The segregation of GNPs at GBs in Figure 7 presents the
range of the average crystal size of CoVSn-GNP hetero-
structure compounds estimated from the XRD analysis. The
addition of GNPs has resulted in smaller crystallites, which
are saturated at approximately 15—18 nm. The segregation of
GNPs at the grain boundaries, creating new microstructural
interfaces and providing extra boundaries, influenced the
thermoelectric properties (Figure 8). The reduction in
thermal conductivity is clearly illustrated in Figure 8a.
Phonon scattering against the microstructural boundaries
(grain/ crystal boundaries and GNP distribution as a second
phase) can be regarded as a reason for reducing the thermal
conductivities. Based on the results, the primary reduction
occurred at a lower temperature due to the main impact of
phonon scattering with a longer wavelength (low frequencies)
against the grain boundaries.™

Figure 8b shows the electrical conductivities of the samples
after reinforcing with GNPs, which are in the range of
conductive compounds. Moreover, Figure 8c illustrates the
negative Seebeck coeflicients for the samples to confirm the
presence of electrons as the majority carriers. However, for
the compounds with more than 0.5 wt % GNPs, there is a
disruption in the improvement of the TE characteristics. This
can be attributed to a lack of uniform GNP dispersion in the
matrix and formation of the agglomerated GNP regions, as
shown in Figure 9, which are also reported for other
nanocomposites.so’67

Moreover, the microstructural analysis revealed multiphase
microconstituents for the CoVSn-GNPs (e.g., CoVSn-1 wt %
GNPs—Figure 10), similar to the pristine CoVSn sample, as
discussed in ref 66 Figure 10 shows the elemental dispersion
via X-ray mapping. It can be seen that the distributions of the
main three elements, Co, V, and Sn, are not uniform, which
confirms the presence of a multiphase microstructure. The
comparison with the multiphase microstructure of the pristine
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Agglomerated GNPs

Figure 9. Backscattered electron micrographs with respective X-ray
maps illustrating the GNP agglomerations in the matrix of the
CoVSn-1 wt % GNPs nanocomposite.

CoVSn shows that the incorporation of GNPs does not
influence the formation of the constituent phases in the
microstructure (Figure S3).

Table 2 illustrates the hardness measurement results of the
studied heterostructure compositions after reinforcement with
the GNPs. The average hardness of the samples containing
GNPs is higher than the pristine sample. This result can be
explained by considering the presence of the GNPs as a
second phase in the matrix and the smaller average crystal
size—extra microstructural barriers (Hall-Petch effect™®). In
this regard, the dispersion of GNPs in the matrix is expected
to hinder dislocation movements®® and, consequently,
strengthen the GNP-reinforced CoVSn heterostructure
composition. It appears that the optimum concentration of
GNPs to achieve the highest hardness is about 0.5%, and the
further addition of GNPs reduces the hardness. Such an
outcome may be attributed to the distribution of GNPs. A
higher GNP concentration results in their agglomeration
(Figure 9) and thus reduces the hardness.

Fracture toughness (Kic, MPa\/ m) values were calculated

based on the Shetty equation Kj; = 0.0899 %.21 Here H,

P, and I are the hardness, applied load of indentation, and
indentation crack length, respectively. The average of the
radial crack length was calculated from five indentations
measured for each specimen (Figure 11). The calculations
exhibit a higher fracture toughness for the sample containing
0.5 wt % GNPs (Table 2). This observation is attributable to
halting the crack propagation against the extra microstructural
interfaces/barriers, caused by the grain/crystal growth
prevention (i.e., creating smaller grain/crystal sizes) in the
graphene-reinforced CoVSn samples.

4. CONCLUSIONS

The scientific and engineering aspects of the graphene effects
on mechanical, thermal, and electrical properties of thermo-
electric materials were presented. The mechanisms under
which GNPs affect the charge carrier concentration, carrier
mobility, thermal conductivity, and thermopower were
discussed. Special attention was paid to the incorporation
of multilayer graphene as the reinforcing agent. As a case
study, the impact of graphene nanoplates (GNPs) on the
CoVSn heterostructure composition properties was analyzed.
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Figure 10. Backscattered electron micrograph along with X-ray maps showing the formation of multiphase microstructures in CoVSn-1 wt %

GNPs.

Table 2. Mechanical Characteristics of the MnTe-GNP Samples

sample CoVSn CoVSn-0.25 wt % GNPs
hardness (HV) 592 636
SD: standard deviation (SD: 15.3) (SD: 17.2)
Kic(MPay/m) 1.954 1.980

CoVSn-0.5 wt % GNPs CoVSn-0.75 wt % GNPs CoVSn-1 wt % GNPs

737 695 682
(SD: 12.4) (SD: 16.7) (SD: 12.6)
2277 1.982 1.957

Figure 11. Crack length measurement to calculate the fracture
toughness.

The mechanical assessment showed higher hardness (737
HV) in the sample reinforced with 0.5 wt % GNPs. This can
be explained by the dispersion of the GNPs in the matrix and
the excess microstructural barriers, due to small crystal sizes,
hindering the dislocation movements and, consequently,
strengthening the nanocomposite. The dispersion of GNPs
did not significantly impact the CoVSn multiphase micro-
structure but enhanced the thermopower and reduced both
the electrical and thermal conductivities. For some concen-
trations of the GNPs (0.25 and 0.5 wt %), zT was improved.
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