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1. Introduction

Space-fractional diffusion equations (sSFDEs) could describe the superdiffusive transport of solutes char-
acterized by highly skewed power-law decays [1-6]. As the order of sFDEs is determined by the fractal
dimension of the surrounding porous medium via the Hurst index, a constant-order sFDE has difficulties
to model the superdiffusive transport of solutes in highly heterogeneous porous media [7-13], the strong
heterogeneity of the porous media may lead to spatially-dependent distributed-order fractional differential
operators. A hidden memory variably distributed-order space-fractional derivative is defined by

Cmw o * " ! w(’YvS)dV o Tw,
o D¥u(x) .—/O u (s)/o F(l—fy)(x—s)VdS = olYu”, (1)

whlere xz € [0,1], I'() is the Gamma function, w(y,z) is the probability density function (pdf) satisfies
/ w(y,x)dy =1 on [0,1].
0
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In this paper we consider the following hidden memory variably distributed-order space-fractional

diffusion equation
—u"(x) — d(x)§D%u = f(x), 0<z<], @)
u(0) = u(1) = 0,

where d(z) > 0 with d(z)/(1 + d(x)) be the proportion of the superdiffusive phase versus the total solute
mass at z, f(z) is the source or sink term.

If the pdf w is a delta function with w(y,z) = 0 for v # v (0 < v < 1) and f01 w(y,z)dy = 1 for
x € [0,1], (1) reduces to the standard Caputo fractional derivative. Wellposedness and smoothness of Caputo
fractional differential equations have been extensively investigated in [14-17]. It is worth to mention that w
in (2) contains history memory itself, which stems from w(~, s) and its support [0,%(s)] in (1), results in the
integration by parts formula which is a key to prove the high order regularity in [18-20] inapplicable here. To
analyze the wellposedness and smoothness properties of solutions to (2), we make the following assumptions
on w:

Assumptions on w:

(a) supp w(-,z) € [0,7(z)] for 0 < F(x) < ~* with 0 < 4* < 1,z € [0, 1].

(b) ¥ € C0,7*] and w,w, € C([0,7*];[0,1]).

Throughout this paper we use Q1 to denote a fixed positive constant and @ to denote a generic positive
constant that may assume different values at different occurrences.

2. Wellposedness of (2)

We let v = v”(x) and move the fractional derivative to the right hand side to get the following Volterra
integral equation

v(z) = —d(x)oLv(z) — f(x). (3)

The solution u to (2) can be recovered from v by
T 1
u(zx) = / v(s)(x — s)ds — :v/ v(s)(1 — s)ds.
0 0

Theorem 2.1. Suppose that Assumption (a) holds, d, f € C[0,1], then (2) has a unique solution u € C?[0,1]
with
lulle2ioa) < Qlfller,y, @ = QUldllcro,1:7")- (4)
Proof. We define a functional sequence {v,()}52, on [0, 1] by
vo(z) = —f(x), wvpy1(x) =vo(x) —d(z)olEv, (), n>0.

We subtract vy, (z) from v,41(z) for n =1,2,... to get

Vpg1 (@) — vp(2) = —=d(2)oI% (v, — Vn—1), (5)
and use the fact that ||vo|lcio,1) = [|.fllcfo,1] to obtain
lv = vollepo,y = [|d(@)olyvo ()| o 1,

v TS (s
- Hd(””)/o “O(S>/O ra (Yy)()xd’y S)'YdSHC[O,l]

ol 7 w(y, s)dy
<ldlewnlwlenn]| | oo [ FEE ],

c ds Qllfllco1 1o
< d / = gt
< [ fllcoylidico.y e T2
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We assume that -
QT fllego, ™"

m= ..,n. 7
(1 +m(1 —v*)) ’ L2, @

lvm — vm—1llcjo,) <
Substitute (7) into (5) to get

lvny1 — 'Un”C[O,l] < Hd”C[O,l}HOH:(Un - 'Un—l)Hc[o’l]

dllcioll fllop,n@F /l Sn(l_v*)/V(s) w(, s)dy dsH
0 o I'(I=7)(@—s)" lcoa

I(1+n(l—97))

1 llepn@i ™ /9” (1 o
< : sz — 8) 7 ds
=TT NIT =) Jo (@ =)

1 fllcp,n@F T B(L+n(l —4*),1 —4*)z(+Hi=7")
F(1+n(l—y*)I (1 —~%)
N flley nHl (1) (1=77)
rl+mn+1)1—~*%) ~’

IA

where B(p, q) is the Beta function. Thus, assumption (7) holds for n € NT by mathematical induction.
As the accumulation of the right hand side terms of (7) converges as

*

Hf||C[01 Qﬁ? -
Z I(1+n(l—-7v%)

= ||f||C[071]E1—7*,1(leﬂ*) < oo, xe€][0,1],

where E, g(z) is the Mittag-Leffler function, we conclude that {v, (x)}22, converges uniformly on [0, 1]. We
use

v(x) = nh_)rr;o vp(t) = Z(vn — Up_1) + vo(x),

to conclude estimate (4).
The uniqueness can be proved follows from the stability estimate and we skip it here.

Theorem 2.2. Suppose that Assumptions (a) and (b) hold, ifd, f € C*[0,1], thenu € C3[z,1] for0 < z < 1
with
lull sy < QUflero e, (8)

where Q = Q(||d[|c1(0,1): V110,175 1wl o,4+1:10,1)+ lwsll e o,4+7:10,17)) -
Proof. We differentiate (3) to get
V() = —d(z)(oI5v) — d (@)olsv(x) — f'(2). 9)
We apply Theorem 2.1 to estimate the second and third terms on the right hand side of (9) by
[’ (2)oLyv(@) + F'(2) || oo 4y

x 7 (s) w(v, s)dy
<|\d v ! ds+ || f'
< Wlcaons [ Vollewon [ T ds + et
< Qlfllero,1)-

Affected by the history memory of the variably distributed-order fractional derivative, the integration by

parts formula cannot be applied directly. In order to analyze the first term on the right hand side of (9), we

TG wly,s)dy TP w(y,s)dy TG w(y, s)dy
/0 Il —~)(x—s) _/0 Il —9)(z—s) +L(x> Il =)@ —s)

3
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to divide ¢I¥v into two parts,

R 7@ w(y, s)dy v T w(y, 8)dy
OH”*/O ”(5)/0 F(1—7>($—5)7ds+/0 ““’Lm Tz

= I]_ + IQ.

Now we analyze I; and Is, respectively.
We integrate the singular kernal (x — )~ by parts to rewrite I as

(@) 1 T u(s)w(y, s)ds
" /0 *<1;<1 =) /0 (@ —Ws)7 o
=— /07 ﬁ </0 v(s)w(y, s)d(x — 8)177>dv

_ /OM ﬁ /Ox@c = )17 [V (s)w(,8) + v(s)ws (7, 8) | dsdy

+/m) w(y,0)'Vdy
0 Ir'2-7)

(B

We differentiate I; to get

;o ﬁl(x)w(ﬁ(x)vo)ml_ﬁ(x) @) w(y,0)dy
e G oy +/0 =)

ﬂ z— ) T@ 1 (s)w(F(z), s v(s)ws(Y(x),s)|ds
+F(2(_)W($))/O( )76 [of (s (z). ) + v(s)on (7 (z). 5)]d (10)
(@ 1 [V (s)w(7, s) + v(s)ws(v, s)]ds
o (v =) o

We use Assumptions (a)—(b) and the fact that for 0 < v < 7F(z),

277 < g7 7@ = 27070 A=) — =7(0)(F(O) -7 (@) Inz < Qx*W(O)

to bound the second term on the right hand side of (10) by

‘/W(w w(y,0)dy ’_Q|v 0)|z~ 7).

We use Theorem 2.1 to estimate the rest terms on the right hand side of (10) by

anucom@/ —ds

Thus I; can be bounded by

z d
I < Qllollepoy 7 +Q/ u

J)—S

For 0 < s < z, if J(z) > 7(s), then lim (z — 5)7®~7 =0, else if (z) < 7(s), we have

S—T

(2 — )T = (3 — 7@ T (g — )T =7 < (FE T I—9) 1 g 4

4
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So we conclude that lim (z — S)W(x)_“’ is bounded for v between F(s) and F(x). Apply the integration by
ST
parts formula, we rewrite I as

_ 76 w(y, 8)(x = )7 Vdy 1-75(x)
h=- x)/ ()/w(m I =) dam

/W(O ey
7(@) )

— )=
+ / o( w(vy,s)(x —s) d’yd
- ~(x) F(l - ,Y)

/”(S s(7,8)(x —5)'~ "y

I'(l1—7)
Y (@) - ey
1—7@LA ()A@> =@ —sp °

We observe that the first three terms on the right hand side of previous formula have continuous kernels.
By the Assumption (b), the kernel of the last term could be bounded by

76 ((w) — y)w(v,9) QIF(s) — ()| o
/Y(;L') Ir'l—~)(z— S)Wd ‘ = (z — s)max{y(@) 7(s)} < Q(xz —s) .

*

Consequently, we bound I by .
121 < Qlleto +Q [ 15l
0

We then differentiate I to get

I =

7 (%) I v(0)¥ (2)w(F(x),0)a! 7@
1 —7(z) 2 —7(x))
_w(0) /”(0) w(7,0)(1 —7)dy
—7(@) S5 A=)

)

_’y’# zv’sw*x s)(x — s)! 7@ ds
re- O | e e -0

./ /W“> L—)dy
() 5@ 1( 17 )z — s)7

L v(8)ws(F(z), 8)(z — )17 ds
o [ o9 - T

1 ’ 7wy (7, 8)(1 = y)dy
+7/ v(s / ’ ds
T iy TGP
/’ / T ws)dy
1 -5 5@ [(1=7)(x—s)
N / /7(3) —Nw(y,s)ydy
1- V(I) 0 ~(x) 7) L= S)1+’Y
We estimate the fifth term on the right hand side of (12) by
‘ / / w(v,8)(1 —7)dy ds‘
'y(w (1 - 7)(37 - S)W

= Q‘/ (x —s) max{’Y s)} ‘ = Q/ |U )lds.
5




J. Jia and H. Wang Applied Mathematics Letters 124 (2022) 107617

The third and the last terms on the right hand side of (12) could be bounded by

‘ v(0) /“O)w( 7,0)(1 — dv’ Q(0)[[7(0) — (=)
1-7@) Jsw T(1-7) 2max{5(0) 7 (2)}

< Qvo|[Fll g1 (o 1y~ V@AY < Qlvll o,y

‘/ /”(S (Y(x) —Yw(y, s)ydy ’
~(x) ’Y)(Q? )1+’Y
< o] / S | < Qlellco
§

Similarly, the rest terms on the right hand side of

and

2) could be bounded by Q||v||co,1. Finally, we obtain

I1(@)] < Qlvll e + Q/ )|ds.

Incorporate with (11), we conclude that

’3 )|d
(6E20) | < QU@ + 1)+ [~ A
We substitute this result into (9) to get
7(0) * [(s)lds
W (@) < QU flcrpy@ ™ +1)+Q ﬁ’

by applying the generalized Gronwall inequality [21], we obtain

F 17 n x . B
(@)] < QI leaoy (7 >+Z Q ))) [ @y T0)

< Qlflerpo e,

Thus we finish the proof of (8).
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