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Abstract—Utilities continuously observe cable failures on aged
cables that have an unknown degraded basic insulation level
(BIL). One of the root causes is the transient overvoltage (TOV)
associated with circuit breaker reclosing. To solve this problem,
researchers propose a series of controlled switching methods,
most of which belong to deterministic control. However, in
power systems, especially in distribution networks, the switching
transient is buffeted by stochasticity. Since it is hard to model
transient overvoltage due to its complexity, we propose a model-
free stochastic control method for reclosers under the existence
of uncertainty and noise. Concretely, to capture high-dimensional
dynamics patterns, we formulate the recloser control problem by
incorporating the temporal sequence reward mechanism into a
deep Q-network (DQN). Meanwhile, we embed our physical un-
derstanding of the problem into the action probability allocation
and develop an infeasible-action-space-elimination algorithm.
Through PSCAD simulation, we first reveal the impact of load
types on cables’ TOVs. Then, to reduce the training burden
for the proposed reinforcement learning (RL) control method
in different applications, we establish a post-learning knowledge
transfer method. After the validation with our industrial partner,
we exhibit several learning curves to show the enhanced perfor-
mance. The learning efficiency is proved to be outstanding due
to the proposed time sequence reward mechanism and infeasible
action elimination method. Moreover, the results on knowledge
transfer demonstrate the capability of method generalization.
Finally, a comparison with conventional methods is conducted.
It illustrates the proposed method is most effective in mitigating
the TOV phenomenon among three methods.

Index Terms—Transient overvoltage, cable failure, controlled
switching, reinforcement learning, post-learning knowledge.

I. INTRODUCTION

WITCHING voltage surge or transient is the result of
energization or de-energization of the transmission or dis-
tribution lines and large electrical apparatuses such as reactors
and capacitor banks. These actions can occur in the system
due to system configuration changes or faults. During these
conditions, the inductive or capacitive loads release or absorb
the energy suddenly and generate voltage or current transient.
Consequently, voltage surges may occur and, therefore, jeop-
ardize the equipment and personal safety. Specifically, the
switching surges usually occur upon the energization of lines,
cables, transformers, reactors, or capacitor banks [1].
For long high-voltage lines, they store a large amount of
energy, which generates sufficient voltage transients in the
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systems [2]. For conductors in distribution systems, there are
two cases. Underground line capacitance for power cables is
far higher as compared to their overhead counterparts due to
closeness of cables and proximity to earth. As a result, under-
ground lines have 20-75 times [3] the line charging current.
Thus, cables can trap a high amount of charge. The trapped
charge is a residual charge in the line or cable subsequent to
de-energization. If the trapped charge is with the same polarity
as the system voltage, switching overvoltage may be observed.
Although most papers focus on the transient overvoltage in
transmission lines, cable failures due to TOV are continuously
reported by utility (see Fig. 1). In fact, a slow TOV whose
duration is less than a cycle should not be a problem for the
insulation as the cable BIL is much higher. However, most
aged cables have unknown and degraded BIL, causing frequent
cable failures in modern smart grids. Besides, most utilities
probably do not reclose into faults on underground systems, as
faults in underground systems are considered permanent. The
purpose of reclosing is to allow temporary faults to be cleared,
which is typical for an overhead system. Practically, the
primary purpose of this paper is to investigate what damaging
effects reclosing into underground faults may produce and
provide arguments to change this practice. Therefore, we are
motivated to investigate the effects of reclosing, primarily the
resulting overvoltage phenomenon in distribution systems, for
the practical consideration of eliminating the occurrence of
cable failure.

Figure 1. Photos of the failed cables after 5-recloses: the faulted cable (left)
and the adjacent unfaulted cable (right) that has similar damage. Cause of
reclosing: switch hit by a vehicle. Source of photos: Salt River Project.

To achieve the above target, tests on a real feeder is an
unviable solution since the customers downstream will go
through a power outage. Therefore, computer simulation of the
field tests is developed to study the transient electromagnetic
phenomena. Real-time system parameters and measurements
are required to prepare system models and perform an ex-

I Capacitance causes current to flow even when no load is connected to the
cable. This is called line charging current.



act transient study [4], [S]. This is very useful to identify
available voltage surge, determine the equipment insulation
coordination, and select protective equipment operating char-
acteristic [1], [6]. However, it is essential to consider the
peak over-voltage discrepancy between the frequency-based
simulation model results and real-time field measurements.
[7] presents some cases with a good agreement between
simulation results obtained with an Electromagnetic Transients
Program (EMTP)-type program and either field measurements
or transient network analyzer results. In [8], researchers solve
the above issue by modeling corona, prestrike voltage, and
frequency-based line parameters appropriately.

The above works on modeling have underpinned the de-
velopment of the device-based and control-based overvoltage
mitigation methods. The power industry has witnessed the
evolution of surge arresters from the air gap and silicon
carbide types to the metal oxide varistors (MOV). In extra-
high voltage applications, MOV and breaker with closing
resistors are two basic methods to restrict switching surges [9],
[10]. In high voltage transmission systems, switching surges
are destructive to electrical equipment, so surge arresters are
typically installed near large transformers and on line terminals
to suppress surges [11]. Whereas in medium and low voltage
levels, as the penetration of distributed energy resources gets
deeper, it is still not clear whether the arresters are a viable
solution. One thing is clear: it is not economical to place surge
arresters all over the distribution networks due to their vast
reaches. Besides surge arresters, other devices used to limit
switching overvoltage include pre-insertion resistors [12], [13],
and magnetic voltage transformers [14].

In addition to the device-based method, controlled switching
belongs to the second category of overvoltage mitigation meth-
ods. The core of controlled switching is statistical switching,
where the worst-case scenarios are determined through several
dimensions of overvoltage scenarios. Statistical switching is
adopted for decades [15]-[21]. Investigated scenarios include
switching speed [22], actual operating capacity [21], load and
line length [23], etc. For example, the impacts of the switching
speed of the disconnector are studied by statistical methods in
[22]. [24] mitigates the transient overvoltage by controlling
the voltage conditions preceding voltage breakdowns in the
disconnector contact system. A developed version of the
transmission line zero-crossing controlled switching relay is
proposed in [25], considering the polarity of trapped charge.
[26] proposes a method to determine the optimum closing
point for CB contacts without imposing any limitation on line
side fluctuations.

Unlike the conventional controlled switching methods that
rely on deterministic control, this paper views controlled
switching as a stochastic control. In a deterministic model, the
future state is theoretically predictable. Thus, most researchers
look into the statistical switching overvoltage distributions for
different switching operations, and then design the control
according to the observation. However, in power systems,
especially in distribution networks, the switching transient
is buffeted by stochasticity. We need a stochastic model to
possess inherent randomness and uncertainty. Unfortunately,
relatively little has been done to develop a stochastic control

mechanism that views the complexity of the control task as a
Markov decision process (MDP). Since it is hard to assume
knowledge or cost function of the overvoltage dynamics, we
want to combine the advantages of off-policy control and
value function approximation. Meanwhile, given the high-
dimensional dynamic complexity of power systems, a deep
RL method is re-designed to improve the control performance.
Therefore, after the validation with our industrial partner, we
propose a recloser control method using deep Q-networks
(DQNs). The main contribution of this article is summarized
below.

« Conventional controlled switching methods do not in-
volve observation uncertainty and noise that drives the
evolution of the system; therefore, we formulate the
recloser control problem by incorporating the temporal
sequence reward mechanism into a DQN to mitigate
reclosing TOV. Meanwhile, we invent an infeasible-
action-space-elimination algorithm through time-variant
probability allocation in DQNs.

o To overcome the training burden for the proposed RL
control method in different applications, we develop
a post-learning knowledge transfer method for recloser
control to handle complex system operating conditions,
save training time, improve the recloser performance, and
reduce the required data volume.

The rest of this article is framed as follows: Section II
provides the background of the reclosing impact on under-
ground cables. The proposed recloser control method using RL
is elaborated in Section III. Section IV shows the numerical
results, followed by the discussions in Section VI and the
conclusions in Section VII.

II. RECLOSING IMPACT ON CABLES VIA PSCAD

As mentioned earlier, one of the reasons for the failure
of cable is TOVs. TOV can arise from the supply or from
switching inductive loads, harmonic currents, DC feedback,
mutual inductance, high-frequency oscillations, large starting
currents, and large fluctuating loads [27]. TOV or surges are
temporary high magnitude voltage peaks for a short duration of
time, e.x., lightning. Switching transients in electrical networks
often occurs. Although the voltage magnitude is lower than
the lightning surge, the frequency at which it occurs causes
aging of cable insulation and eventually breaks down resulting
in flashover. To observe the TOVs in computer programs,
we utilize the 750 MCM-AL [28] cable, which is widely
implemented in the State of Arizona and many others. In this
section, we focus on the modeling of switching and power
systems.

A. Switching Modeling

For the switching modeling, we use the statistical breakers
in PSCAD to account for the physical metal contact and the
issue of pole span. Pole span is the time span between the
closing instant of the first and the last pole. The single-pole
operation of three-phase breaker is applied to incorporate the
angle difference in the operation of different poles because of
the mechanical inconsistencies. The resulting TOVs upon 100



simulations of different sets of circuit breaker closing times
with a standard deviation of 4 in the half interval are shown
in Table I. This table brings some flavors on how the pole span
contributes to the maximum TOVs. One can refer to Section
IV-A for the system parameters.

Table T
COMPARISON UNDER THREE TYPES OF POLE SPANS.

Pole span (ms) Highest TOV (pu) Avg. TOV (pu)
0 1.55 1.55
0.24 [1] 1.58 1.52
3.7 [1] 1.58 1.51

When the switching occurs at other angles, different TOVs
are obtained. Although we did not demonstrate all the cases
with higher TOVs, it shows that the optimal controlled switch-
ing time is crucial to TOV mitigation under the current
switching modeling. It is noteworthy that the limitation of
the adopted switch modeling is imperfect, the details of
which can be found in Section VI. Meanwhile, it is evident
that overvoltages frequently occur on cables; therefore, it is
imperative to provide a solution that lowers the probability of
cable failure.

B. Power System Modeling

Firstly, two different line models, namely, distributed line
model and frequency-dependent m© model, are employed to
capture different aspects of cable characteristics. Fig. 2 and
Fig. 3 demonstrate the reclosing waveform plotted using
PSCAD. At the end of the cable, a capacitor bank and
transformers are connected to represent the reality, which
explains the occurrence of the resonance effect during recloser
dead time [25]. In the case of a distributed line model, a TOV
of 1.51 pu is observed when switching at zero degree of the
source voltage. However, a TOV of 1.55 pu is observed when
a frequency-dependent & model is used. In the majority of the
cases, TOVs are higher with a # model because resistance,
inductance and capacitance of the line are considered together.
Secondly, a detailed three-phase voltage source model is
selected from the PSCAD library. The associated parameters,
in particular the source impedance, are adopted from our
industry partner’s realistic distribution feeders.

III. REINFORCEMENT LEARNING BASED RECLOSER
CONTROL METHOD

It is important to select an RL method that is suitable for
the particular problem under study. In general, RL is classified
into model-based (MB) and model-free (MF). In MB RL,
we choose the classical World model as an example. Since
it is MB, an environmental model is needed during learning.
However, given the complexity of the TOV problem under
study, it is hard to construct an internal model of the transitions
and immediate outcomes for recloser control. That is why we
did not move forward with MB RL. In MF RL algorithms, the
agent relies on trial-and-error experience to reach the optimal
policy. The typical methods include policy optimization and
Q-learning. Under the policy optimization approach, we select
the popular one — policy gradient (PG) as a comparison.
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Figure 2. An example of the TOV waveform when the reclosing angles are
set at 0°, 45°, 90° and 180°, respectively. The recloser opens at r = 0.12 sec,
and closes at # = 0.17 sec. Tests are under lagging load condition, at a 12kV
feeder connecting with a 2.5 miles long cable using a distributed line model.
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Figure 3. An example of the TOV waveform when the reclosing angles are
set at 0°, 45°, 90° and 180°, respectively. The recloser opens at ¢t = 0.12 sec,
and closes at t = 0.17 sec. Tests are under lagging load condition, at a 12kV
feeder connecting with a 2.5 miles long cable using a frequency-dependent 7
model.

In contrast, for Q-learning methods, we choose the basic
version and the advanced version DQN. Please note that this
paper utilizes DQN method for RL control. The main advan-
tage of DQN over PG in our case is that it involves discrete
action space, while PG is for continuous action spaces. Our
whole contention is to reduce the action space. However, PG
method will consider 0, 1 and anything in between. Whereas, a
breaker can have precisely two discrete actions (Off and On).
Therefore, owing to the discrete nature of the action space
involved in Q-learning-based RL, it is perhaps the best choice
to reduce the computational burden. For the selection between
Q-learning and DQN, we decide to go with DQN due to its
powerful value function approximation capability in multiple
power system scenarios. The above comparison of selecting
the RL methods is summarized in Table II, where the circle
highlights the main reason for this method not been selected.

In the remaining part of this section, we start with the



Table II
COMPARISON OF FOUR REINFORCEMENT LEARNING APPROACHES.

World Policy Q-

ftem model [29]  gradient learning DON
Model-based (MB)
or model-free (MF)? MB MF MF MF
Need environmental
model? No No No
Based on value No No Yes Yes
function?
Value function
approximation? No No Yes
. Continuous/ screte Discrete
Action Space . w
Discrete

impetus of choosing the DQN algorithm, which is capable
of dealing with the continuous status space of the recloser
observation. To control the reclosers, we, next, elaborate on
our design of temporal sequence reward mechanism, infeasi-
ble action space elimination algorithm, and the post-learning
knowledge transfer method.

A. The Deep Q-network for Better Value Approximation

The task of TOV mitigation requires a model-free control
algorithm that finds an optimal strategy for solving a dynam-
ical control problem. Obviously, RL is a suitable solution.
Among various types of RL algorithms, we believe the off-
policy control where the agent usually uses a greedy policy
to select actions can be incorporated with the action value
estimation design. Therefore, we choose Q-learning to satisfy
this requirement. Based on the complexity of the electric grids,
we find that the value-based DQN method needs to involve
intensive use of simulation for the parametric approximation.
To enable self-learning of the recloser control, we adopt an
actor-critic system to estimate the rewards. The critic in this
system evaluates the value function, and the actor is the
algorithm that improves the obtained value. DQN agents use
the following training algorithm, in which they update their
critic model at each time step. First, we need to initialize the
critic Q(s,a) with random parameter values 8y, and initialize
the target critic with the target update smoothing method.
Then, according to [30], at each time step:

1) With probability €, select a random action A. Otherwise,

select the action that maximizes the critic value function:
A = arg max Q(S,A|6p). (1)

It makes sure the 0ff—pé4licy method always follows the

greedy policy — the best action value estimations.

2) Execute action A, then calculate the reward R and the
next state S’. If there are associated TOVs, they will be
measured in this step, and the reward is calculated.

3) Store the experience (S,A,R,S’) in the experience buffer.
This technique smooths the training distribution over
many past behaviors.

4) Randomly sample M experiences (S;,A;,R;,S;’) from the
experience buffer. We call the M sampled dataset the
random mini-batch. If S;’ is a terminal state, set the value
function target y; to R;. Otherwise set it to:

yi = Ri+ymaxQ'(S/,A'|6y), (2)
where 7 is the discount factor, and Q' is the value for
the next state. In such a way, the current state that the

recloser measures is represented in a form that the RL
agent can interpret.

5) Update the critic parameters by one-step minimization
of the loss L across all sampled experiences:

1 M
L=--Y (i—0(5,Ail6p))". 3)
Thereby, the paramé?elr 0o for value approximation is

calculated.
6) Update the target critic using the target smoothing
update methods (7 is the smoothing factor):

GQ/:TQQ+(1—T)9Q/. (4)

B. Temporal Sequence Reward to Guarantee Learning Quality

To develop a DQN to mitigate TOVs, we first consider its
state design. For each phase p € {A,B,C}, there are voltage
and current measurements from the bus located downstream
of the breaker under study. Similar to conventional recloser,
the magnitudes of voltage |V, | and current |/,| along with the
voltage phase angle 6y, and current phase angle 6;, of the
measurements are selected for defining a 4-dimensional state
space s of the system: .

s= [V, 00,11, 6, ] 5)

After defining the state, we define the action space of
the controlling system that suits the system and can deliver
the best results. Practically, the opening of the recloser is
usually triggered by faults and subsequent to the series of
pre-defined sequence®. Controlling of the recloser open is not
the focus of this paper since our goal is to mitigate the TOV
using proper recloser control. Therefore, we assume that the
opening of reclosers is taken care of by the conventional fault
detection method and the pre-defined sequence. Thus, due to
the simplicity of the control task, we select a binary action
space a € {0, 1}. Here, 0 indicates that no reclosing is required,
whereas 1 indicates there is a reclosing action. It is necessary
to remind the reader that there is an essential dimension of
the action — time, which is the key to a successful reclosing.

Since the RL control agent learns through its special “feed-
back” — reward to improve its performance, it is important
to design the reward mechanism that captures the key task
sequence and maximizes its accumulative reward from the
initial state to the terminal state (one episode). Therefore, we
attempt to design a reward function that makes the agent learn
the optimal time to reclose in the continuous state space. To
achieve that, the reward function should evaluate the voltage
deviation upon reclosing and consider the reclosing dead time.
Consequently, for each time step ¢ and the jth agent, we have:

Rtjovi,t =0 — ﬁ 'BRisingEdge : [|Vp,t| - Vref,t]-‘r

(6)

— & - [tsp=0 —tra]+,
where @, 3, and { are adjustable scaling factors. Their values
are adjustable in a specific case. The value of o determines

the highest attainable reward. BrisingEdge 1S the signal bit that
becomes high only when it captures the rising edge of the

2Electronically controlled reclosers are usually set to trip two to three times,
using a combination of fast and slow time-current curves [31].



recloser j’s status (changes from open (0) to close (1)). While
tsy—o is the time duration that recloser remains open, and f7g
is the allowable recloser opening time threshold that is usually
the recloser dead time. The mathematical operator || keeps
the value inside the bracket unchanged when it is non-negative,
and output zero when it is negative. 3 and { denote the extent
of punishment on TOV and reclosing delay. Mathematically,
R/ .. is proportional to the voltage deviation at time ¢ from
the customer-defined reference voltage, V,.r. Whereas, the task
sequencing can be achieved by enabling the model to learn on
the number of distinct action sequences.

Furthermore, it is beneficial to have a reward that evaluates
the overall performance at the end of the episode. Thereby,
we design the end of the episode reward RY,:

R{,;e =-0- [NReclose - pre—deﬁned]+7 (7)

where 6 is a scaling factor, Nreclose and Npre-defined are the
number of reclosing over one episode and the pre-defined
number of tripping programmed in the recloser. Thus, the
reward function in one episode becomes:

T . .
R = Z Rtjovi,t + Rée' (8)
t=1

Given the temporal characteristics of the reclosing task, we
provide a time horizon for the task sequence in the left of
the recloser controller diagram in Fig. 4 (the blue box that
takes the input of the voltage and current and output of the
reclosing knowledge and action). Following the time series
t1,t,- - 1, the reward comprises two parts, the instantaneous

temporal sequence reward (R{ovi’t) and the reward at the end

of the episode (RJ.). In fact, the second term in (6) pushes
the model to learn the best time to reclose; whereas the third
term in (6) helps the agent avoids not closing at all. To help
the reader better understand the outcome of the time sequence
mechanism, we assume the agent has learned “well” enough
and made sure (a) the resulting voltage after reclosing is equal
to Vy.r, (b) no delayed tripping is observed, and (c) the number
of reclosing matches the pre-defined value. Then, we plot Fig.
5 to show the reward with and without the time sequence
design. Over the five recloser operations, the time sequence
design reward captures all five reward increasing opportunities,
while the one without this design can hardly do it. Since (6)
indicates that optimal reward will be o which may last for
At time, the discounted reward for each reclosure operation
(reclose, wait for Ar and open again) will be bounded at
a At when time sequences are not considered. Whereas a time
sequence based reward can capture the incremental reward
with increasing reclosure operations, as shown in Fig. Sc.

C. Infeasible Action Space Elimination for Fast Learning

With the time dimension considered, the action space is
immense. To have a working algorithm, we need to remove
most of the infeasible action space to make sure of the
performance and efficiency. A generalized DQN algorithm
usually solves problems or games that do not contain the time
dimension. However, in this particular issue, after investigating
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Figure 4. The schematic diagram of the proposed method’s reward design.
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Figure 5. An example of the achieved optimal reward. (a) and (b) show
the action reward pairs without and with time sequence based reward
design for five breaker operations, respectively. (c) depicts the time sequence
based cumulative reward goes on increasing with an increasing number of
operations.

the DQN algorithm in Section III-A, we introduce the time
dimension to embed the physical law into the algorithm —
eliminating the physically infeasible region and enhancing the
exploitation in the physically feasible region. It makes sure
that we can push up the probability of action, according to
the time sequence, from a state if this action is better than the
value of what we should get from that state. We now redefine
the probability € in Section III-A as follows:

80<l), t= (tr,-7tr,-+n/f),
& = ) ©))

0, otherwise,
where &(¢) denotes the base exploration rate, which is a
function of time. tr; denotes the pre-defined opening time
of sequences. f is the grid frequency and n/f confines the
exploration within n cycles. The agent’s timer is on as long
as a fault is detected.



Traditionally, the agent explores the action space from the
first time step to the last one. Whereas it is not necessary most
of the time if the agent wants to achieve a reduced resulting
TOV. For instance the actions taken before the fault or in
between two pre-defined trips are dispensable. Therefore, we
conceive the notion of restricting the exploration to the time
sequences where the action is required. Such a prior domain
knowledge can help to gain higher rewards even in the initial
few episodes. Hence, we align the temporal reward design
with the temporal action likelihood. Assuming P(a;) as the
prior distribution for the possible actions

P(at)v
0, otherwise,

N t € applicable time sequences,
P(a) =

(10)
where P*(a;) is the probability distribution of taking possible
actions for the appropriate time sequences that exploration is
needed. Such a formulation incorporates physically feasible
interpretation into the model’s MDP probability change. For
a breaker control problem, the probabilities of having spe-
cific control actions may impact the performance mainly by
restricting the exploration to a suitable temporal region and
selecting appropriate probabilities of on or off actions for the
breaker. So, we can perform an extensive analysis to show
what probability distributions are reasonable. Therefore, we
start by selecting off and on status completely randomly, i.e.,
both with 0.5 probability. Then we will keep on increasing
the probability of occurrence of status on since the breaker
is expected to remain on for more number of steps once it is
reclosed. The pseudo-code is shown in Algorithm 1.

D. Post-learning Knowledge Transfer

The transferability of RL and other machine learning control
methods is sometimes questioned by researchers, since, unlike
deterministic control, machine learning control needs to tune
its parameters based on case-specific training. This is not
efficient. To overcome this issue, we adopt an approach of
fitting a polynomial line Ry € R", where n is the degree of
the polynomial, with reward parameters using an evaluation
reward R(S;,A;). The degree of the polynomial is a hyper-
parameter which affects the speed of training:

Rf =6y+ 9|R(S] ,A])+92R2(52,A2) + -

\ (1n
+ 6,R"(Sy,A,),

where 0; is the coefficient of the ith polynomial term. Such a
polynomial function can be fitted through least square-based
regression. The schematic diagram of this idea is presented in
Fig. 6. We save the parameters of the reward function for
the transfer learning process whenever there is a need for
a new task sequence to be learn. Such a process enhances
the adaptability of the model and is not restricted to only a
particular environmental setting.

IV. NUMERICAL RESULTS
A. Benchmark System

The proposed method is extensively tested in various sys-
tems. In this section, we present the results for a generalized
benchmark system, as shown in Fig. 7 (refer to Appendix

Algorithm 1: Deep Q-learning for Recloser Control
Agent

1 Initialize experience buffer & to capacity N;

2 Initialize action-value function Q with random weights;
3 Initialize P(a,) with prior knowledge;

4 for episode=1,E do

5 Initialize sequence s; = {x;} and pre-processed
sequenced ¢ = @ (s1);

6 for r=1,T do

7 With probability &, set P*(a;) =
P(a;), t € applicable time sequences
0, Otherwise
8 select a, with probability P*(a,); otherwise
select g, = max, Q" (¢(s;),a; 0);
9 Execute action a; in emulator and observe
reward r; and image x;11;
10 Set s;+1 = $¢,4a;,X:4+1 and observe reward r, and
image x;11;
11 Store transition (@, a;,r,¢+1) in Z;
12 Sample random minibatch (with size M) of
transitions (@;,a;,r;,¢;j11) from Z;
13 Set y; =
T, for terminal ¢
rj-+ymax 0(9j4+1,d’;0), for non-terminal ;.
14 Perform a gradient descent step on
(vj— Q(¢;,a;;0))? based on (3)
15 end
16 end
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Figure 6. Scheme of learning reward function along with the agent by fitting
the reward to a polynomial function.

A). This system is a 12kV, 100 MVA feeder. Meanwhile, the
feeder circuit has 2-types of cable: (1) 750 Copper, XLPE,
15kV 100% insulated, 26 — #22 wire shield, jacketed, and
(2) 750 Aluminum, XLPE, 15kV 100% insulated, 12 — #12
concentric neutral, jacketed. The feeder duct bank uses 3
inches PVC conduits arranged horizontally, concrete encased,
burial depth 48 inches. Tests include different load conditions,
source parameter change, and frequency oscillation, etc. The
loads can be capacitive (C), inductive (L), resistive (R), or
any of their combination. The cable is represented as a (1) a
distributed line model and (2) a frequency-dependent = model
using realistic underground cable parameters, the data of which
is supplied and validated by our industrial partner and is shown



in Appendix A.

B2 L Capacitor bank
B-1 Inductive
e | / device
B3k | &
Substation ~ Recloser 7 ., | Resistive load

Figure 7. Benchmark system. 12kV, 2.5 miles long underground cable, with
a capacitor bank and a 8 MW load and capacitor bank at the feeder end.

With the benchmark model, we first evaluate the impact
of different load types on TOVs. As shown in Table III, the
load types of C and LC are two significant causes of cable
TOVs. They are, in reality, the capacitor bank and the inductive
loads, including transformer connected to the cable. With a
decreased L or increased C, the maximum TOVs tend to
increase, since the load becomes more and more capacitive
in nature. Furthermore, for only load type C we observe the
highest maximum TOVs, because upon reclosure the voltages
are held at high values by the charged capacitor and there is
no alternate route to discharge. The results also indicate that
resistive load serves as the drain of the trapped charge in the
cable; therefore, the TOVs are hardly observed.

Table IIT
IMPACT OF DIFFERENT LOAD TYPES ON TOVS.

Load Type TOV Underground Line
Resistive Inductive Capacitive Max. Value of TOV (pu)
On On On X -
On Off On X -
Off On On v 1.5
Off Off On v 22
Off On Off X -
On On Off X -
On Off Off X -

Additionally, the TOVs have large deviations when switch-
ing off the loads due to possible restrikes. Therefore, this can
also be one of the reasons for causing detrimental TOVs. To
study such a phenomenon of load switching due to restrikes
and develop a deeper insight into the matter, we expanded the
switching scenarios with rigorous experimentation to identify
the highest TOV values upon multiple restrikes. Results are
presented in Table IV. Our analysis shows that there is a high
TOV when the load is shed without losing capacitor banks.
The controller can also be designed to mitigate such TOVs.

Table IV
IMPACT OF LOAD SWITCHING ON TOVS.
Before Switching After Switching TOV
R L C R L C (pu)
On On On Off Off On 1.54
On On On Off On On 1.23
On On On Off On Off | 1.49
On On On Off Off On 1.20
On On On On Off Off | 1.05

B. Overall Learning Curve by Using the Temporal Sequence
Reward Mechanism and Hyper-parameter Selection

With the proposed temporal sequence reward mechanism
and Deep Q-learning algorithm in Section III-B and III-C, we

achieve the learning curve, as shown in Fig. 8. By looking at
the average reward, it shows that the agent has many attempts
to explore the optimal control action that accumulates the
rewards. Some of the episode rewards are high, and some are
low. A breakthrough is not realized until the episode number
turns 200. After that, the agent keeps on refining its policy
to improve its learning. Although the average reward gets a
bit low at episode 550 — 750, the agent manages to get rid
of some low-performance policies and fulfill a higher reward
after episode 750. Next, we will explain the way of hyper-
parameter selection that helps achieve what we get.

Convergence of average reward
- control policy well learnt

Exploration

—©— Episode Reward
—#— Average Reward
Episode Q0

Q value at ;he beginning‘of episode

0 200 400 600 800
Episode

1000

Figure 8. A learning curve that shows the individual episode reward, average
reward, and Q value at the beginning of each episode named Episode QO.

1) Discounting Factor (y): Fig. 9a illustrates the effect
of discounting factor on the reward. Intuitively, a value that
gives the highest bounded reward, will be a fair discounting
factor. But, there is a need for enough exploration as well;
therefore, a discounting factor with an intensive exploration of
the space while achieving a high reward would be preferable.
We apply a discounting factor of 0.95 in this study so that a
fair compromise is achieved between the mean value of reward
and the exploration that can be shown as the standard deviation
of the discounted reward values for all episodes.

2) Epsilon (g): The exploration and exploitation are con-
trolled by the & value in the epsilon-greedy algorithm. By
progressively increasing the epsilon from 0.85 to 0.99, we
choose 0.90 as its optimal value with Fig. 9b since it shows
the maximum reward achieved. It is noteworthy that increasing
the epsilon further increases the likelihood of reaching a local
minimum. That is why we did not adopt a higher € that has
a higher maximum reward.

3) Decay Rate: The decay rate in the epsilon-greedy al-
gorithm is analyzed in Fig. 9c which indicates the behavior
of reward by increasing decay rate value from 0.004 to
0.01. We conclude that the optimal decay rate value would
be 0.005, because the mean reward is highest at that point
without compromising much on the exploration. However,
most exploration is shown as the standard deviation at 0.0045,
but it never achieves the maximum possible reward, so its
mean is very low as compared to that of the mean at the
prescribed decay rate of 0.005.

4) Smoothing Factor (7): Such a factor varies with respect
to the reward value. The value of mean reward is high when a



smoothing factor of 0.01 is selected, and the standard deviation
is maintained relatively high too. Both considerations are key
to selecting a parameter, since we aim to maximize the reward
expectation, meanwhile provide enough exploration space.

5) Experience Buffer (2) with capacity N: Since we use
experience replay to predict the value function, the size of
the experience buffer needs to be decided to converge the
learning model to achieve high rewards. Fig. 9e shows the
relationship of reward with experience buffer. We propose
to use 100,000 as the optimal value of experience buffer,
since it has a significant standard deviation to allow random
exploration and achieve high reward simultaneously.

6) Minimum Batch Size (M): The minimum batch size
determines the dataset to be fed to the neural networks for their
learning. Fig. 9f indicates that the maximum exploration has
been achieved when the size is 256 bytes. However, 512 bytes
deliver a high mean reward, but the exploration is insufficient.
Additionally, 1,024 bytes result in fairly reasonable explo-
ration with high mean but will consume too much memory,
which increases the computational time and is undesirable.

The proposed learning agent is trained for different X /R
ratios of the source, which impacts the cumulative reward
obtained by the learning agent. The X /R ratio is varied from
8 to 20 with a step size of 4, keeping into consideration the
realistic X /R ratios in a distribution network. We notice that
the maximum peak TOV can reach up to 2.2 pu when the
X /R ratio equals to 12. The results of mean, maximum, and
standard deviation (Std.) of the reward vectors upon complete
training for each sample are tabulated in Table V. The results
indicate a high mean and maximum reward in all cases.
Interestingly, an X /R ratio of around 12 for the system under
discourse gives the highest mean and maximum reward values
with the least standard deviation.
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Table V
EFFECT OF CHANGE OF X /R RATIO OF THE SOURCE ON REWARD OF THE
AGENT.
Source X/R Ratio | Mean Reward ~Maximum Reward  Std. Reward
8 1745 3156 1164
12 2548 3311 669
16 1790 3244 1254
20 2456 3201 770

Note: the highlighted row indicates the case where a highest TOV of 2.2
pu is reached under this case study.

C. Fast Learning Curve with Infeasible Region Eliminated

We propose to eliminate the region where a particular
action is infeasible from the exploration by implementing a
carefully designed varying probability approach. We provide
the validation of that concept in Fig. 10, which shows that we
ensure a faster convergence by embedding domain knowledge
in the exploration process. When the infeasible actions are not
eliminated, it takes about 200 more episodes for the agent to
realize a significant reward increase. Interestingly, the stable
region in the middle of the learning curve without eliminated
infeasible actions is even lower than the one with eliminated
infeasible actions. The former takes 900 episodes to achieve
the latter’s reward that takes less than 200 episodes. At around

Figure 9. Effects of different hyper-parameters on the breaker controlling
reward to gain insight into the problem from four different perspectives.

the 700" episode, the average award is boosted again with the
proposed infeasible region elimination method.
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Figure 10. Learning curve comparison with and without the infeasible action
eliminated. It indicates the effectiveness of eliminating the unnecessary actions
by choosing a suitable probability distribution for actions while exploration.

D. Efficient Knowledge Transfer for Method Generalization

We aim to boost the learning process further to make the
proposed method adaptive and general. In our application,
there are multiple time sequences need to be learned by the
model. Table VI illustrates that a flat start model without
knowledge transfer requires many numbers of episodes to
gain an average reward higher than 0.7. To ameliorate such a
situation, our knowledge transfer method helps to reduce the
number of episodes, since it has the capability of retaining the
reward information from the past time sequences. We observe



that, with transfer learning, 261 episodes are required to gain
a reward above the normalized reward of 0.7, as compared to
394 episodes with the approach of flat start, when the model
is learning on the first two time sequences. For the first three
time sequences, we require 289 episodes in comparison to
682 episodes. Hence, such a method of transferring reward
knowledge supports the training time reduction significantly.
Moreover, the generalization of reward parameters also helps
in systems with other configurations to enable the reward
knowledge transfer.

Table VI
EFFECT OF TRANSFERRING POST LEARNING KNOWLEDGE.

. # of episodes taken to reach average reward of 0.7
Comparison . - .
1 time seq. 2 time seq. 3 time seq.
Flat Start 237 394 682
Transfer Learning 212 261 289

V. PERFORMANCE COMPARISON WITH OTHER METHODS

The temporal sequence-based RL technique provides a
framework to learn optimal breaker reclosure time that helps
ameliorate the TOV. There have been efforts in the past to
accomplish such a task. One traditional method is to reclose
whenever the source side voltage crosses zero value. This
zero-crossing method is easy to implement in a recloser but
not effective. Therefore, we compare our proposed method
with another controlled switching scheme in [25]. We call
this scheme a method of half of the peak voltage, because
its closing operation is performed at the instant of +V,u,,/2
of the source side voltage if the polarity of trapped charge is
positive, and at the instant of —V,,,,/2 if the polarity of trapped
charge is positive negative. Interested readers can refer to the
cited paper to understand the mathematical formulation and the
advantage of this application. Fig. 11 depicts a comparison of
the proposed methodology with both of the previously adopted
methods. That comparison is drawn by varying the line lengths
from 1 mile to 3.5 miles with an increment of 0.5 mile, and
measuring the rms voltage at the beginning of the cable. It
clearly indicates that the proposed method outperforms the
past techniques because the measured TOVs are the least.

Additionally, Fig. 11 illustrates a key observation about the
relationship between line length and TOVs. It can be visualized
that as the line length increases, the TOVs tend to decrease.
Such a phenomenon is due to the progressive addition of
resistance that is responsible for consuming the energy (due
to the trapped charge) at reclosure operation.
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Figure 11. Comparison between proposed methodology and past methods.

VI. DISCUSSIONS

The realistic transient overvoltage should consider the mod-
eling of restrikes/prestrikes, capacitive current, inductive cur-
rent switching, the structure of the network, system parame-
ters, whether or not virtual chopping takes place, chopping
current, the instant of opening, and resonance phenomena,
etc. Indeed, they are very challenging issues in transient
overvoltage modeling.

Although it relates to Transmission, TOV calculations are
used to determine Minimum Approach Distance (MAD) for
the work rules required by the National Electrical Safety Code
(NESC) and OSHA (1910.269(1)(3)(ii)). It is also our under-
standing TOV is dependent on the line design & operation. The
work in [32] provides guidance on TOV factors and methods
for control. OSHA 1926 Table 5 in Appendix A to Subpart
V, provides TOV values based on various causes. Restrikes
can influence TOV, but the Industry generally believes, proper
periodic breaker maintenance limits the likelihood of restrikes.
We assume the periodic maintenance of Distribution system
breakers has a similar effect. Meanwhile, capacitor switching
may have restrikes, but our paper topic concerns feeder break-
ing reclosing, while attempting to clear a fault. During this
time the state of a switched capacitor bank remains unchanged,
as well as any other devices connected to this circuit. We also
assume a circuit under a fault condition, is not really lightly
loaded.

Limitations exist in the transient overvoltage modeling, but
this paper has demonstrated an innovative learning method that
controls the reclosing under a spectral of system complexity.
It relies on reinforcement learning to explore the compli-
cated state space in a model-free way, no matter what the
restrike/prestrike model is, what the structures of the network
are, what the system parameters are, and whether an additional
preventive device is added. Promising results are shown in the
numerical section.

VII. CONCLUSIONS

Motivated by the switching-transient-related cable failures
reported by our industrial partner, we develop a recloser
control method for aged and degraded cables using RL.
Before applying our algorithm, we find that capacitive load
or capacitor banks, as well as the combination of capaci-
tive and inductive load, are the significant causes of cable
TOV phenomena. While applying our proposed algorithm,
we study the impact of hyper-parameter selection on the
overall learning performance and achieve a satisfactory learn-
ing curve, for which we provide our interpretation. Through
our proposed time sequence reward mechanism and infeasi-
ble action elimination strategy, a fast and efficient learning
curve is depicted. Comparing with the method that does not
eliminate infeasible actions, the proposed method takes only
200 episodes to realize what the method without infeasible-
action-elimination achieves with 900 episodes. The proposed
method is also compared with one traditional method and one
recent research paper. The results demonstrate the proposed
RL control method has the lowest resulting TOVs. Since
high-frequency oscillation associated TOVs — occurring within
several nanoseconds rise time — may play an important role,



it is important to investigate the fast transient modeling and
its impact in the future.

APPENDIX A
PARAMETERS OF THE BENCHMARK SYSTEM.
Table VII
SOURCE AND LINE PARAMETERS.
Source Parameters Line Parameters
Voltage (kV) 12 Length (mi) 2.5
Capacity (MVA) 100 Conductor 750 MCM-AL
R (Q) 0.2326 R (Q) 0.3163
L (H) 0.007 L (H) 0.0026
C (pF) 112.4
Table VIII
LOAD PARAMETERS.
C (uF) 0.05
L (H) 0.08
R (Q) 8
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