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Abstract—With the increasing prominence of smart mobile devices, an innovative distributed computing paradigm, namely Mobile
Crowdsourcing (MCS), has emerged. By directly recruiting skilled workers, MCS exploits the power of the crowd to complete
location-dependent tasks. Currently, based on online social networks, a new and complementary worker recruitment mode, i.e.,
socially aware MCS, has been proposed to effectively enlarge worker pool and enhance task execution quality, by harnessing
underlying social relationships. In this paper, we propose and develop a novel worker recruitment game in socially aware MCS, i.e.,
Acceptance-aware Worker Recruitment (AWR). To accommodate MCS task invitation diffusion over social networks, we design a
Random Diffusion model, where workers randomly propagate task invitations to social neighbors, and receivers independently make a
decision whether to accept or not. Based on the diffusion model, we formulate the AWR game as a combinatorial optimization problem,
which strives to search a subset of seed workers to maximize overall task acceptance under a pre-given incentive budget. We prove its
NP hardness, and devise a meta-heuristic-based evolutionary approach named MA-RAWR to balance exploration and exploitation
during the search process. Comprehensive experiments using two real-world data sets clearly validate the effectiveness and efficiency
of our proposed approach.

Index Terms—Mobile Crowdsourcing, Worker Recruitment, Social Networks, Memetic Algorithm.
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1 INTRODUCTION

W ITH the dramatic proliferation of sensor-rich mobile
devices and wireless communication technologies, a

novel distributed problem-solving paradigm, namely Mobile
Crowdsourcing (MCS) [1], has become a promising way
leveraging the power of the crowd to accomplish location-
dependent tasks in the real world. MCS applications usually
contain three stakeholders: task owner, participant worker
and the MCS platform. Generally, the MCS platform first
outsources location-dependent tasks posted by the task
owner to potential workers via an open call. The recruited
workers then jointly accomplish tasks and obtain some
payment as incentive for participation.

Worker recruitment is fundamental to a successful MCS
campaign. Typically, MCS applications use a straightfor-
ward direct method, i.e., the platform directly selects and
recruits appropriate individuals to carry out tasks [2], [3].
Until recently, a novel mode, namely Socially Aware M-
CS (a.k.a Word-of-Mouth (WoM)-based MCS) [4], [5] has
emerged as an extension of the previous method. First of all,
socially aware MCS elaborately recruits a limited number of
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users as seed workers by harnessing some public informa-
tion about potential workers, e.g., check-in history. The seed
workers then freely recruit more individuals through their
mobile social networks to contribute their efforts. In other
words, beside executing the MCS tasks themselves, seed
workers are granted the rights to privately enlist their social
contacts over a larger scale, by exploiting their respective
social relationship, such as kinship and friendship.

Compared with the direct mode, socially aware MCS
has several advantages. First, strong social ties can motivate
users to actively participate in MCS campaign and boost
their participation level [6]. For instance, it has been shown
in [7] that the higher the sociality, the better the completion
ratio of MCS tasks. Second, by utilizing social relationships,
users might impose certain pressure on their social contacts
to better conduct MCS tasks, and thus enhance its quality
[8]. Last, within the acquaintance network, the privacy con-
cerns may be alleviated to some extent. In a nutshell, socially
aware MCS can effectively enlarge crowd user pool [9] and
facilitate high-quality task execution while preserving users
privacy [10].

However, as an integration of MCS paradigm and social
networking, socially aware MCS presents many open tech-
nical challenges, which must be be systematically tackled.
First, from a global perspective, how to model the process
of MCS task invitation diffusion throughout mobile social
networks? Different from common information propagation
models in social networks, it is impossible for socially aware
MCS to flood task invitations to everybody, due to the need
for low intrusiveness, limited incentive budget, and task
result quality requirements. Therefore, existing information
propagation models cannot be directly adopted for socially
aware MCS. Second, from a local perspective, interactions
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only happen between the platform and participant workers
in typical MCS applications. While in socially aware MCS,
users interaction behavior may be an important factor [6]
and should be incorporated. Therefore, the role of partic-
ipant workers becomes more complicated as both inviters
and invitees at the same time, and the relevant incentive
mechanisms must to be tailored accordingly. Finally, from
the perspective of participant workers (including task in-
viters and invitees), various questions must be answered,
such as, which social neighbors should be recruited as
workers for each inviter, and which task invitations would
be accepted by invitees?

Unfortunately, few systematic studies have examined the
aforementioned issues. In this paper, we propose and devel-
op a novel worker recruitment game in socially aware MCS,
namely Acceptance-aware Worker Recruitment (AWR), to
guide the selection process of seed workers. To accom-
modate the MCS task diffusion process, we design a dif-
fusion model, namely Random Diffusion, in which inviters
randomly propagate task invitation to social neighbors, and
invitation receivers make a decision whether to accept a
task or not. By comprehensively investigating key factors:
spatial proximity, social ties strength, inviter solicitation, we
establish task acceptance estimation and the corresponding
incentive mechanism. Afterwards, we formulate a combina-
torial optimization problem named RAWR, which strives to
search a subset of seed workers to maximize overall task
acceptance under an incentive budget. Through theoreti-
cal analysis, we shown that our RAWR problem is NP-
hard, and it is difficult to solve it using exact algorithms.
Therefore, we propose an effective algorithm MA-RAWR
to solve this problem; it is built on top of a population-
based evolutionary method Memetic Algorithm (MA), by
further balancing exploration by global search and exploita-
tion by local refinement. Furthermore, we devise several
enhancement strategies to improve its performance, based
on problem-specific heuristics knowledge.

Specifically, we make the following contributions.

• We integrate social networks into mobile crowdsens-
ing paradigm to build an acceptance-aware worker
recruitment game for the first time.

• We devise a random diffusion model for MCS tasks
in social networks, and formalize the acceptance-
aware worker recruitment game for users, namely
RAWR problem.

• Based on a meta-heuristic Memetic algorithm, we
devise an effective MA-RAWR algorithm to tackle
our RAWR problem. Moreover, several heuristics
knowledge-based enhancement strategies are also
proposed to further improve the performance of our
MA-RAWR algorithm.

• We conduct extensive experiments using real social
network data sets, and show the efficiency and effec-
tiveness of our proposed approach.

The rest of this paper is organized as follows. Prelimi-
nary concepts are present in Section 2. Our problem defini-
tion is provided in Section 3, based on the devised diffusion
mode. In Section 4, we propose a unified framework to solve
our RAWR problem, by utilizing a meta-heuristic memetic
algorithm. The extensive experimental results based on real

TABLE 1
Definitions of Notations

Symbol Explanation
U = {ui} Mobile Users
T = {< Ti >, Cmax} MCS Tasks
G = {U , E ,W} Social Relationship Network
Au

T User u’s Acceptance for Task T
SGu u’s Diffusion Tree
AT (SGu) Total Acceptance of SGu

ℓmax Maximum Diffusion Distance
Hui,uj Diffusion Path from ui to uj

D = [di,j ]16i,j6|U| Diffusion Probability Matrix
Nx(·) Neighborhood structures

social network data sets are provided in Section 5. Related
work is summarized in Section 6. Finally, we briefly con-
clude this paper.

2 PRELIMINARY CONCEPTS

In this section, we introduce several key concepts related to
our problem. Table 1 summarizes the main symbols used
throughout the paper.

Definition 1 (Mobile Users). A group of mobile users U =
{u1, ..., un} in social network applications can be recruited
as workers in MCS campaign, where each recruited worker
can disseminates task invitations to their social acquain-
tances and contributes effort to complete tasks. For an
individual user ui, some check-in records are available and
represented as {(tmi1 , loci1 , φi1), ..., (tmim , locim , φim)}, (1)
locij ∈ L, 1 6 j 6 m, denotes the spatial landmark user
ui has visited at time tmij ; (2) φij ∈ Γ denotes Point of
Interests (POI) category tags associated with landmark locij ,
such as gym, museum, etc., with Γ representing a full set of
POI category tags. �

In addition to individual’s check-in history, each user has
strong or weak social ties with others. Formally, we define
a social network G = {U , E ,W}, where ei,j ∈ E denotes
an undirected edge, i.e., a social tie, connecting node ui and
uj ; wi,j ∈ W denotes a normalized weight of edge ei,j and
W : E → R. Hereafter, we use the terms “mobile user” and
“node” interchangeably. For the sake of illustration, wi,j > 0
implies that there exists social tie ei,j ; otherwise, ei,j dose
not exist. Formally, social tie strength wi,j is represented
using Jaccard similarity coefficient as below:

wi,j =
N(ui)

∩
N(uj)

N(ui)
∪
N(uj)

, (1)

where N(uj) denotes the node uj and its neighboring
nodes. Intuitively, if user ui and uj share more neighboring
nodes, the relative social tie would be strong.

Definition 2 (Mobile Crowdsourcing Task). Suppose
there is a set of released mobile crowdsourcing tasks T =
{< T1,T2, ...,Tl >, Cmax}, where Ti = (loci, P⃗i), loci ∈ L
is a specific spatial location as longitude and latitude; task
topic P⃗i is characterized by a distribution of POI category
tags, and will be explained later; Cmax is the total incentive
budget for all the involved tasks in T , which is pre-specified
by task owners. �
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Here, task topic P⃗ is built in the following way. We
regard POI categories Γ = {π1, π2, π3, ..., πq} as topics in
this study, where each element πi ∈ Γ denotes one POI cate-
gory tag, such as outdoors, entertainment, and so on. Given
the set of POI category tags Γ, task topics is represented
as a distribution over the POI category tags [11], [12], e.g.,
P⃗ = {⟨0.3, outdoors⟩ , ⟨0.7, entertainment⟩}.

Task Acceptance Estimation. To balance the workload
and ensure a timely response, we stipulate that each user
can only undertake one task in T . Hence, when receiving
T ’s invitation, every user needs to evaluate the tasks con-
tained in T , makes a decision on whether or not to accept
one of them to conduct. Actually, many previous works
have investigated the factors which might impact users’
task acceptance in MCS campaign [13], [14]. Following the
insights in them, we assume that each user is rational to
make his/her acceptance decision to take one task, say Ti,
according to the matching between the task requirements
and their own context, e.g., spatial proximity and interest
level. If a mobile user decides to undertake one task, they
will try their best to accomplish it due to the implicit “social
contract” from their referrers [15]. However, constrained
by the customized specifications of the MCS tasks, their
acceptance would vary from one user to another. It is most
natural that mobile users who are close to Ti’s location loci
and interested in its topic P⃗i have a greater probability to
accept the task [9]. In the following, considering the specific
requirements of task Ti, task acceptance estimation for
mobile user uj , i.e., Auj

Ti
, is quantified jointly from two

dimensions: spatial proximity and interest level.
1) Spatial proximity: Following the practice in existing

research [12], [16], we adopt a widely used decay formula-
tion as below to calculate the likelihood that user uj would
like to visit Ti’s specified location loci,

Sp(uj ,Ti) = α ∗ exp(−β ∗ dist(uj , loci)), (2)

where the distance measurement dist(·) employs Euclidean
distance, the amplification factor α and decay ratio β are set
to positive real numbers to normalize the spatial proximity
Sp. In this work, by comparing different combinations of
parameter α and β, we set them as 1 and 4, respectively.
Note that, the choices of these two parameters are orthogo-
nal to our method proposed later, and can be adjusted to
accommodate different application requirements. What is
more, here we select user uj ’s historical location which is
the closest to loci, due to the skew distribution of users’
check-in records.

2) Interest preference: As done in other works, we learn
mobile users’ interest level directly from their check-ins.
Similar to the task topic representation, here the inter-
est level of each user, say uj , is represented as O⃗uj =

{oj1 , oj2 , ..., ojq}, where ojx ∈ O⃗uj is the weighted value
with respect to x-th element in Γ. By calculating the sim-
ilarity between O⃗uj and task Ti’s topic P⃗i, we obtain the
matching degree as below:

Ip(uj ,Ti) =
O⃗uj ∗ P⃗i∥∥∥O⃗uj

∥∥∥ ∗
∥∥∥P⃗i

∥∥∥ , (3)

where the similarity is measured using Cosine similarity.

Therefore, by integrating the aforementioned factors, we
calculate the task acceptance estimation as follows:

Auj

Ti
= Sp(uj ,Ti) ∗ Ip(uj ,Ti). (4)

So, with respect to the invitation of MCS task set T , the
task acceptance estimation of user uj can be represented as
below:

Auj

T = max
Ti∈T

Auj

Ti

= max
Ti∈T

{Sp(uj ,Ti) ∗ Ip(uj ,Ti)} .
(5)

In other words, it chooses one task in T which has the max-
imum task acceptance estimation as uj ’s task acceptance
estimation for T .

Incentive Cost. In MCS campaign, an incentive mech-
anism is indispensable to compensate users’ consumed re-
sources, such as battery depletion, data storage, and net-
work bandwidth. The total incentive cost provided to the
recruited workers should not exceed the pre-specified in-
centive budget Cmax. Moreover, considering different roles
taken by the recruited participants, it is far from practice
to employ a simple uniform payment in socially aware
MCS, e.g., identical incentive for all the involved workers
[17]. Thus, it is necessary to devise incentive mechanism to
provide discriminated rewards for different worker roles,
i.e., seed worker, invitee worker, which we will discuss in
detail later.

3 PROBLEM DEFINITION

With respect to task invitation diffusion process, we formal-
ize the worker recruitment game under a random diffusion
model, in which seed workers randomly diffuse task invita-
tions to neighbor nodes. Using the diffusion model, we then
define our acceptance-aware worker recruitment problem.

3.1 Random Diffusion Model

In our devised Random Diffusion Model, mobile users ran-
domly and independently invite their social neighbors to
participate into MCS campaign, according to a specific
diffusion probability. Here, the strength of social tie, i.e.,
edge weight in G, is employed as the diffusion probability.
As stated in [18], in real world, people tend to cooperate
initially with their immediate neighbors, and then with
other ones. Following this intuition, for a potential seed
node u, a tree structure SGu is utilized to model the task
diffusion process. Specifically, rooted from seed node u,
the diffusion tree SGu iteratively expands in a Breadth-
First-Search manner level by level, where the level of each
“influenced node” uj equals to ℓ-hop distance ℓ(u, uj). That
is, seed node u and potential influenced nodes are hierar-
chically organized in SGu. The task diffusion process does
not terminate until it reaches a maximum ℓ-hop distance
ℓmax [19]. To explain this, considering diffusion latency and
limited budget, the task diffusion process should be restrict-
ed into a limited number of steps, i.e., ℓmax. As a result,
the potential influenced nodes in SGu can be represents
as: Udf (u) = {uj |ℓ(uj , u) 6 ℓmax}. In practice, the choice of
ℓmax is orthogonal to our proposed approach, and can be
tuned according to different application requirements.
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Similar to the influence maximization problem in social
networks, to achieve the desired seed nodes among all the
available mobile users, it is necessary to implement task
diffusion simulation process, based on our built random
diffusion model. And then, according to the evaluation of
simulation results, it is possible to optimally determine the
seed nodes. However, during propagation simulation, one
issue needs also to be seriously considered, that there might
be more than one connecting path from seed node u to the
influenced node uj , due to the stochastic nature. In other
words, the task invitation might be delivered via different
diffusion paths originated from u and terminated at uj . For
simplicity, the MCS platform fixes the path with the largest
diffusion probability as the task diffusion path to the invitee.
Formally, ∀uj ∈ Udf (u), the task diffusion path H∗

u,uj
can be

identified as below:

arg max
Hu,uj

p(Hu,uj ) = arg max
Hu,uj

∏
wx,y∈Hu,uj

wx,y

∝ arg max
Hu,uj

log
∏

wx,y∈Hu,uj

wx,y

= arg max
Hu,uj

∑
wx,y∈Hu,uj

log wx,y.

(6)

where Hu,uj represents a connecting path from node u to
uj , p(Hu,uj ) is its diffusion probability, and wx,y denotes
the weight of edge ex,y located on Hu,uj .

To illustrate it, a toy example is demonstrated in Fig. 1,
where a social network including 13 nodes and 13 edges is
present in the left part. To simplify, only partial edge weights
are indicated. Suppose u1 has been selected as a seed
user, its diffusion tree SGu1 is illustrated in the right part,
where ℓmax is set to 3. Starting from seed node u1, SGu1

first examines u1’s immediate neighbor nodes: {u2, u3, u4},
where the relevant ℓ-hop distance is 1. With the increasing
of ℓ-hop distance, it continues growing along the edges
associated with discovered nodes step by step. There exist
two connected paths from u1 to u7: H1

u1,u7
= ⟨e1,2, e2,7⟩

and H2
u1,u7

= ⟨e1,4, e4,7⟩, with diffusion probability 0.06
and 0.3, respectively. H2

u1,u7
is finally determined by the

MCS platform as the actual diffusion path, due to its larger
diffusion probability.

Fig. 1. A Toy Example of Diffusion Tree.

Based on the established diffusion tree, now we are
ready to derive the results of worker recruitment in a
stochastic manner. More specifically, starting from root n-
ode, for each involved edge ei,j , if its associated diffusion
probability, i.e., edge weight wi,j , is not less than a generated

random range from 0 to 1, it means that user ui might dif-
fuse task invitation to uj ; otherwise, it will not. For instance,
two different worker recruitment results are present in Fig.
2 for seed node u1. For example, the recruited workers Uwk

in the left part of Fig. 2 are {u1, u2, u3, u5, u8, u13}.

Fig. 2. Different Worker Recruitment Results.

Expected Task Acceptance: Due to the stochastic pro-
cess, the generated worker recruitment results may vary
every trial. In other words, we can not directly fix the
performance of random results, in terms of task acceptance
AT (SGu) and worker recruitment cost C(SGu). Therefore,
we employ expected value to evaluate its performance,
as the expected value is a measure of the center of the
distribution of the stochastic processes that are the returns.
Given MCS task set T , for each node uj , we define two state
variables Θj

x and Θj
y as follows:

Θj
x =

{
1, uj has received task invitation;
0, otherwise,

(7)

Θj
y =

{
1, uj accepts task after receiving invitaion;
0, uj rejects task after receiving invitation.

(8)
Thus, we define the conditional probability of one user
uj accepts the MCS task, given uj has already received
task invitation. Formally, the conditional probability can be
represented as: p(Θj

y = 1|Θj
x = 1) = Auj

T . Suppose ui is
determined as the seed node, the expected task acceptance
of uj can be derived as below:

E(Θj
y) = EΘx

[
EΘy (Θ

j
y|Θj

x)
]

= EΘx

[
p(Θj

y = 1|Θj
x = 1)

]
= EΘx

[
Auj

T
]

= Auj

T ∗ p(Θj
x = 1)

= Auj

T ∗ p(Hui,uj
).

(9)

Therefore, for seed node ui, the overall expected task ac-
ceptance estimation of its diffusion tree can be directly
calculated as follows:

E [AT (SGui)] =
∑

uj∈SGui

p(Hui,uj ) ∗ A
uj

T . (10)

Note that, as a source node, ui has already been invited
by the MCS platform to undertake one task. So, in order
to provide a unified representation, we suppose that there
exists one “cyclic diffusion path” originated and terminated
at source node ui, and its diffusion probability is 1, i.e.,
p(Hui,ui) ≡ 1.

However, there might be more than one seed node
to be enlisted, such that S = {u1, u2, ..., um}. Intuitively,
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we need to merge these seed nodes’ diffusion trees, i.e.,
SGS = SGu1∪u2∪...∪um . In SGS , each invitee node, i.e.,
uj ∈ SGS\S , might be invited by more than one seed
node in S , i.e., there might exist more than one diffusion
path terminated at uj . Due to the potential propagation
path overlapping, we should synthetically considered all
the coupled diffusion paths, and derive the corresponding
diffusion probability. However, it is too ad hoc and com-
putationally expensive, considering the involved different
seed nodes, graph topology, etc.. As a result, here we make
an assumption that, for each task invitee, say uj , all the
relevant diffusion paths are independent with each other.
Accordingly, uj ’s diffusion probability can be calculated as:
1−

∏
ux∈S

[
1− p(Hux,uj )

]
, where 1−p(Hux,uj ) denotes the

probability that seed node ux has not invited uj . Hence, the
above task acceptance estimation should be reformulated as
below:

E [AT (SGS)] =
∑

uj∈SGS

1−
∏

ux∈S

[
1− p(Hux,uj )

]︸ ︷︷ ︸
Diffusion Probability

∗Auj

T .

(11)
User Incentive Mechanism: To be fair, when a recruited

worker conducts one task, the MCS platform will provide
him with the same amount of reward R0, e.g., R0 = 15
dollars. Besides, following the design commonly used in in-
fluence maximum problem [12], [20], we provide each seed
user an extra reward R1, e.g., R1 = 10 dollars, to incentivize
them to start diffusion trees. In other words, even if seed
users have not conducted the task by themselves, they will
also obtain extra reward for organizing the diffusion trees.
It should however be noted that, for simplicity, here we
just incentivize seed nodes for their task invitation diffusion
during the stochastic recruitment process. Subsequently, the
expected incentive cost is calculated as follows:

E [C(SGS)] = |S| ∗ R1+∑
uj∈SGS

1−
∏

ux∈S

[
1− p(Hux,uj

)
] ∗ Auj

T ∗ R0,

(12)

where |S| denotes the number of seed users.

3.2 Problem Definition and Analysis

Given a MCS task set T , we aim to choose a subset of seed
workers S among the available mobile users U , such that the
expected task acceptance of recruited workers is maximized
subject to the constraint that the expected incentive cost
is not exceeding the pre-specified budget Cmax. Formally,
our acceptance-aware worker recruitment problem in the
random diffusion model (RAWR) can be formulated as a
constrained combinatorial optimization problem as follows:{

arg max
S⊆U

E{AT (SGS)}
s.t. : E{C(SGS)} 6 Cmax.

(13)

Lemma 1. The RAWR problem is NP-hard.

Proof : We prove it by reducing the Weighted Set Cover
problem to the RAWR problem. In the Weighted Set Cover

problem, given a collection of subsets
{
S#
1 , ..., S#

m

}
over

a universe U#, where each subset S#
i is specified with a

weight w(S#
i ), 1 6 i 6 m, it wishes to decide k subsets of

maximum total weight
∑k

i=1 w(S
#
i ). We map the universe

U# in the weighted set cover problem to the node set U , and
also map each subset S#

i to the diffusion tree SGui . And the
expected task acceptance is regarded as the weight in the
Weighted Set Cover problem. Subsequently, the cost of each
diffusion tree is set to 1 and the incentive budget Cmax in
RAWR is set to k. Thus, the Weighted Set Cover problem
is equivalent to deciding if there is a k diffusion tree set
with the maximum expected task acceptance in the RAWR
problem. As the Weighted Set Cover problem is NP-hard,
our RAWR problem is also NP-hrad. �

Due to its NP hardness, there exists no exact algorithms
that can achieve optimal solution in polynomial time. In
the following, we would like to further analyze our RAWR
problem.

Lemma 2. The task acceptance estimation function
E[AT (SGS)] is monotonic nondecreasing.

Proof : Without loss of generality, let us consider two seed
worker sets S2 and S1, where S2 = S1

∪
u and u /∈ S1, i.e.,

S1 ⊂ S2. Their respective diffusion trees are represented as
SGS2 , SGS1 and SGu, respectively. Obviously, the following
relationship holds: SGS2 = SGS1

∪
u = SGS1

∪
SGu. For the

sake of illustration, we define the incremental expectation
function as below:

∆E(S, u) = E[AT (SGS
∪

SGu)]− E[AT (SGS)]. (14)

Thus, the incremental value with variables S2 and S1 can be
formulated as follows:

E[AT (SGS2)]− E[AT (SGS1)] = ∆E(S1, u). (15)

As shown in Fig. 3, there are three different cases for SGS1

and SGu: (a) SGu is completely contained in SGS1 ; (b) SGu

and SGS1 are partially overlapped; (c) SGu and SGS1 are
independent. The increment ∆E could achieve a minimum
value in case (a), and a maximum value in case (c). Thus,
in the following, we will mainly analyze the situation (a), to
obtain its minimum value.

Fig. 3. The Diagram of Lemma 2.

For the sake of illustration, we use the symbols S# to
represent the node set SGS1\(S1

∪
u), i.e., all the recruited

nodes except for seed nodes S1 and node u. Thus, in
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situation (a), E[AT (SGS1)] can be calculated as below:

E[AT (SGS1)] =

1−
∏

ux∈S1

[1− p(Hux,u)]

 ∗ Au
T +

∑
uj∈S1

Auj

T +
∑

uj∈S#

1−
∏

ux∈S1

[
1− p(Hux,uj )

] ∗ Auj

T .

(16)

And E[AT (SGS2)] can be calculated as below:

E[AT (SGS2)] = Au
T +

∑
uj∈S1

Auj

T +

∑
uj∈S#

1−
∏

ux∈S1

[
1− p(Hux,uj )

]
∗
[
1− p(Hu,uj )

] ∗ Auj

T .

(17)

Thus, the increment ∆E can be calculated as follows:

∆Emin =
∏

ux∈S1

[1− p(Hux,u)] ∗ Au
T +

∑
uj∈S#

 ∏
ux∈S1

[
1− p(Hux,uj )

]
∗ p(Hu,uj )

 ∗ Auj

T > 0.

(18)

As the minimum increment ∆Emin is nonnegative, the
monotonic nondecreasing property is proved. �
Lemma 3. The task acceptance estimation function

E[AT (SGS)] is non-submodular.

Proof : Let S1 and S2 are two seed worker sets, S1 ⊂ U ,S2 ⊂
U , S1 ⊂ S2, and u ∈ U\S2. To prove its submodular, the
following relationship must hold:

∆E(S1, u) > ∆E(S2, u). (19)

As demonstrated in Lemma 2, the increment will achieve a
minimum value like in Eq. 18. The maximum incremental
value can be calculated as below, according to case (c) in
Lemma 2.

∆Emax =
∑

uj∈SGu\u

p(Hu,uj ) ∗ A
uj

T +Au
T . (20)

The following comparison expression can not achieved,

∆Emin(S1, u) > ∆Emax(S2, u), (21)

thus its non-submodular property is proved. �
Based on Lemma 2, it is possible to sequentially con-

struct the desired solution, such as greedy-based techniques.
However, due to its non-submodular property, there are few
performance guarantees to achieve near optimal solution.

4 PROPOSED APPROACHES

Based on the previous discussions, it is difficult to solve our
problem using exact algorithms, especially for larger-scale
problem settings involving a large number of users. Thus,
we turn to population-based stochastic evolutionary opti-
mizers. Evolutionary optimizers utilize the meta-heuristic
search to find a near optimal solution within a reasonable

running time, and avoid exhaustively searching all pos-
sibilities. In particular, Memetic Algorithm (MA) is more
favored for combinatorial optimization, as it integrates both
local and global searches. The promising search capability
of MA and its variants have been widely validated in many
complex problems [21], [22]. In this section, using MA as
the basis, we propose an effective MA-RAWR algorithm
to tackle our problem, also design several enhancement
strategies to further improve the algorithm performance.

4.1 Problem-Specific Heuristic Knowledge

The problem-specific knowledge can be exploited to facil-
itate problem solving, i.e., Diffusion Overlapping Effect and
Diffusion Utility. Next, we discuss them in detail.

1) Diffusion Overlapping Effect. The core issue in RAWR is
that there exists an “overlapping effect” between different
diffusion trees. In the following, we would like to quantify
the effect on the basis of distance measurement. One matrix
representation D = [di,j ]16i,j6|U| is employed to model all
the involved nodes’ diffusion trees. More specifically, one
entry di,j ∈ D represents the diffusion probability from
node ui to uj , within diffusion tree SGui . Mathematically,
it can be represented as follows:

di,j = p(Hui,uj ), (22)

where Hui,uj denotes a diffusion path in SGui . The main
diagonal elements di,i, 1 6 i 6 |U|, of D are all equal to 1.
By this way, the ℓ-hop proximity is transformed into first-
order proximity, and each row in D, say D(i, ·), can be
regarded as user ui’s “task diffusion distribution” over U .
Here, we use their respective distributions to measure the
diffusion overlapping among users. Formally, we employ
the Euclidean distance to measure the overlapping between
SGui and SGuj as below:

DO(D(i, ·),D(j, ·)) =

√√√√ |U|∑
k=1

(di,k − dj,k)2. (23)

The pairwise distances which denote the difference between
diffusion overlapping are calculated one by one, and or-
ganized as an adjacency matrix O = [oi,j ]16i,j6|U|, where
oi,j = DO(SGui ,SGuj ). Obviously, the higher value of
DO(SGui ,SGuj ), the less diffusion overlapping between ui

and uj . Note that, as diffusion tree is independent of task T ,
it can be computed in advance.

2) Diffusion Utility. Given a MCS task set T , user u’s
utility can be evaluated according to its diffusion tree SGu.
We first need to calculate each user’s task acceptance esti-
mation Aui

T , ui ∈ U . Subsequently, their respective utility on
diffusion trees can be computed as follows:AT (SGu1)

...
AT (SGun)

 =

d1,1 · · · d1,n
...

. . .
...

dn,1 · · · dn,n

 ∗

A
u1

T
...

Aun

T

 . (24)

Therefore, the optimization objective E{AT (SGS)} can be e-
valuated directly using the diffusion tree’s utility AT (SGui),
ui ∈ U , rather than each user’s acceptance estimation. To
make better use of it in our population-based algorithm, we
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normalize the diffusion utility in the range from 0 to 1 as
below:

ÃT (SGui) =
AT (SGui)− min

ux∈U
AT (SGux)

max
ux∈U

AT (SGux)− min
ux∈U

AT (SGux)
(25)

4.2 MA-RAWR Algorithm

By incorporating the above heuristic knowledge, we devise
the MA-RAWR algorithm to effectively solve our RAWR
problem under the architecture of MA.

Framework: Based on the distribution of ÃT (SGui
), we

adopt a dual-chromosome scheme see below to encode
potential solutions. We first construct a diverse popula-
tion of initial solutions, i.e., binary chromosomes, using a
decomposition-based heuristic initialization mechanism. We
then implement a variable neighborhood search method to
achieve local optimum based on our elaborated neighbor-
hood structures Nx(S). Afterwards, in accordance with the
basic workflow of Differential Evolution (DE), we heuris-
tically perform the operations of reproduction, including
crossover and mutation, with probability cr and mr, re-
spectively, to produce offspring individuals. To guarantee
the incentive budget constraint, i.e., incentive budget Cmax,
a solution feasibility checking and repair operation is nec-
essary for the offspring solutions. For an infeasible solution,
users having least diffusion utility will be removed first, un-
til the constraint has been satisfied. Based on the evaluation
of newly produced solutions, variable neighborhood search
is adaptively triggered to avoid premature convergence at
a local minimum. Finally, a selective replacement operation,
e.g., tournament selection, is adopted to determine the next
generation. This process does not terminate until a stopping
condition is satisfied. The workflow of MA-RAWR algorithm
is illustrated as below:

Fig. 4. The Workflow of MA-RAWR Algorithm.

The pseudo code of MA-RAWR is shown in Algorithm
1. In the following, we describe the subcomponents of MA-
RAWR algorithm in detail.

Dual-Encoding Solution Representation: With respect
to the solution representation, we adopt a dual-encoding
scheme, i.e., reference and binary chromosomes, to encode
potential solutions. The reference chromosome Srf is a full

permutation of all the users, in a descending order of their
respective diffusion utilities ÃT (SGu). While the binary
chromosome, i.e., real solution S , is organized with the same
order of the reference chromosome, in which each entry
indicates whether its corresponding node is chosen by S or
not. Suppose one solution S , if i-th user in Srf is selected as
seed node, its corresponding entry in solution chromosome,
i.e., i-th element, is set to 1; otherwise, it is 0. Intuitively,
nodes with a larger diffusion utility, will be placed at the
top of reference chromosome. In this way, the reference
chromosome which is regarded as the index of real solutions
implicitly embeds the diffusion utility distribution. During
the evolutionary process, the binary chromosome evolves to
achieve better solutions via modifying its binary variables.

Decomposition-based Heuristic Initialization: Due to
the large search space, an evolutionary process starting from
initial solutions constructed by a fully random initialization
might fail to evolve to satisfactory solutions or even fail to
reach feasible solutions. In other words, it is impossible to
generate competitive initial individuals that are too far away
from the promising solution region. Consequently, it is more
admirable to explore the problem-specific heuristic knowl-
edge, and devise a heuristic driven initialization mechanis-
m. Inspired by the cooperative coevolution techniques [23],
we design a decomposition-based heuristic initialization
method in the following.

Fig. 5. The Toy Example of Solution Representation.

The basic idea is that, according to the overall dis-

ALGORITHM 1: MA-RAWR Algorithm
Input: Task set: T , Mobile users: U , Diffusion

probability matrix: D, Diffusion utility:
AT (SG), Population size: PS;

Output: Optimal solution: S∗;
1 Initialize (PS) → {Si}, 1 6 i 6 PS;
2 Variable Neighborhood Search (Si, Nx(·)) → {Si}
/ ∗ Algorithm 2 ∗ /;

3 while termination criterion not satisfied do
4 Random/Cluster-based Crossover (Si, cr) →

OffSpring / ∗ Algorithm 3 ∗ /;
5 Mutation (Si, mr) → OffSpring;
6 Survivor Selection (Si, OffSpring) → {S ′

i};
7 if no improvement achieved then
8 Variable Neighborhood Search (S ′

i , Nx(·))
→ {S ′

i}, 1 6 i 6
⌊
1
4PS

⌋
/ ∗ Algorithm 2 ∗ / ;

9 end
10 {S ′

i} → {Si}, 1 6 i 6 PS;
11 end
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tribution of diffusion utility over all the nodes, different
nodes represent different levels of optimality, and require
different attention from our designed optimizer. Here, we
decompose reference chromosome into different segments
labeled as High Segment, Medium Segment and Low Segment,
respectively, according to their diffusion utilities. To make
it more clear, a toy example with 10 possible users and two
binary chromosomes is present in Fig. 5. For instance, one
node whose normalized value of diffusion utility is more
than 0.7 would be classified into High Segment. Based on
the decomposition, we conduct a bias sampling on these
partitioned segments according to a predefined proportion.
For instance, we may select 5, 3, and 1 nodes from High
Segment, Medium Segment and Low Segment, respectively.
Note that, the sample proportion can be adjusted according
to different problem specifications. Within each segment, we
repeatedly sample nodes with probability corresponds to
their diffusion utility distribution ÃT (SGu). In other words,
nodes with a higher diffusion utility will be selected with a
higher probability. Note that, the sampled nodes can not
form a complete and feasible solution, instead, they are just
a fragment with limited size.

Afterwards, starting from these sampled nodes, we par-
allelly perform a random walk procedure on the adjacency
matrix O to extend the initial solution. For example, suppose
u6 is a sampled node, one of its linked nodes {u1, u3, u5}
would be selected as the next incumbent one, according to
the probability distribution {o1,6, o3,6, o5,6}. To be specific,
the probability that node u1 will be chosen is calculated as:
1−o1,6/(o1,6+o3,6+o5,6). This process will terminate until
the expected incentive budget becomes exhausted. Finally,
the extended fragments with each segment will be jointed
to form a complete feasible solution Si, 1 6 i 6 PS, where
PS denotes the scale of the population.

Adaptive Variable Neighborhood Search: Originating
from a specific solution and exploiting multiple neighbor-
hood structures, Variable Neighborhood Search (VNS) [24]
repeatedly applies a local search strategy to search for a
better solution than the current one. In view of the high
dimensional solution representation, it is expensive and also
redundant to examine all the potential neighborhoods of
incumbent solution. Thus, by harnessing the decomposed
segments in solution chromosomes, we define different
neighborhood structures as following.

1) 1-Flip N1(S): For a candidate solution S , it randomly
selects a bit in High Segment (or Medium Segment), and flips
its value, i.e., if the selected bit equals to 1, then set it to 0;
otherwise, set to 1.

2) 2-Swap N2(S): It selects a 0-valued and a 1-valued bit
in High Segment (or Medium Segment), and exchange their
values. That is, a determined seed node will be replaced by
a non-determined node in High/Medium Segment.

3) 2-Swap N3(S): Different from N2(·), the 1-valued and
0-valued bits are chosen from High Segment and Medium
Segment, respectively.

4) Hybrid 2-swap N4(S): It conduct N2(·) operations on
High Segment and Medium Segment simultaneously.

By switching between different neighborhood structures
above, local search is used to enhance the exploitation, i.e.,
to search the better one of the incumbent solution. The steps
of VSN algorithm are shown in Algorithm 2. First, a pertur-

bation operation named shaking is conducted to randomly
generate a solution from incumbent solution’s xth neighbor-
hood Nx(S). Then, the function FindBestNeighbor is used
to find the best neighbor within the limited region of Nx(S).
The process will iteratively exploit the neighborhood struc-
tures until all these neighborhoods have been examined.
VSN is conducted on every individual in each evolutionary
iteration. To improve our algorithm’s efficiency, the adaptive
VNS procedure is implemented. More specifically, if no
improvement has been achieved in current generation, VSN
procedure will be triggered to be implemented on partial
solutions, e.g., the top 25% solutions

⌊
1
4PS

⌋
.

ALGORITHM 2: VSN Algorithm

Input: Neighborhood Structures: Nx(·), 1 6 x 6 xmax,
Solution: Si;

Output: Best Found Solution Si;
1 1 → x;
2 Generate random solution (Si,Nx(·)) → S ′

i ,
S ′

i ∈ Nx(Si) / ∗ Shaking Stage ∗ /;
3 while x 6 xmax do
4 FindBestNeighbor(S ′

i ,Nx(·)) → S ′′

i

/ ∗ Local Search Stage ∗ /;
5 if E{AT (SGS′′

i
)} < E{AT (SGSi)} then

6 S ′′

i → Si and 1 → x;
7 else
8 x+ 1 → x;
9 end

10 end

Reproduction and Survivor Selection: Here, we take
the routine of Differential Evolution (DE) to reproduce new
offsprings. The reproduction process comprises two steps:
crossover and mutation operations. With a certain crossover
rate cr, it firstly selects two breakpoints, namely start point
and end point, upon the reference chromosome. And then,
a pair of solutions selected as “parent chromosomes” will
conduct a two-point crossover operation, resulting in new
offspring individuals. Inspired by niching method, we de-
vise a cluster-based crossover strategy by utilizing solu-
tion similarity clustering, except for the classical random
crossover. First, all the solutions are clustered based on
similarity calculated upon individual’s chromosome frag-
ment of High Segment and Medium Segment, using hamming
distance. In this way, the promising fragment with high pos-
sibility of optimality, i.e., High Segment and Medium Segment,
could be inherited by offspring individuals. Subsequently,
the two-point crossover is implemented on those “parent
chromosomes” selected from intra-cluster and inter-cluster,
respectively. With respect to the breakpoints, start and end
point, cluster-based crossover only exchanges the fragment
of High Segment or Medium Segment, instead of completely
randomly selected points. The crossover operation is illus-
trated in Fig. 6. All these steps in the ClusCross algorithm
are shown in Algorithm 3.

The role of mutation operator is to perturb individuals
in the current generation, resulting in an enhanced diver-
sity. With a given mutation rate mr, two solutions are
randomly selected as parents, e.g., Si and Sj . A difference
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Fig. 6. The Diagram of Crossover Operation.

vector is calculated by subtracting these two solutions, i.e.,
∆S = Si − Sj . The best solution in current generation Sbest

is then integrated with the difference vector to produce a
newly offspring solution: Snew = Sbest + ∆S . Meanwhile,
a repair operation might be applied to modify Snew into a
feasible one if necessary. In the stage of Survivor Selection, the
fittest individuals are selected from the current generation
solutions and newly generated offsprings to survive into
the next generation. The tournament selection scheme is
adopted to repeatedly choose those individuals. After the
competition, the fittest solutions survives and enters the
next generation.

Complexity Analysis: In the MA-RAWR algorithm, we
need to continually evaluate each solution in terms of ac-
ceptance and incentive cost estimation. The computational
complexity of the solution evaluation is O(|SGS |), where
|SGS | denotes the number of nodes contained in diffu-
sion tree SGS . In the following, we discuss the time com-
plexity of each major component of MA-RAWR algorithm
in each generation. The heuristic initialization component
costs O(PS × Save × |SGS |) to construct PS initial so-
lutions, where Save denotes the average size of selected
nodes in solution, i.e., Save = Cmax

E[C(SGS)] . The computa-
tional overhead of VSN in Algorithm 2 is dominated by
the function FindBestNeighbor. More specifically, it costs
O(LH+LM), O(SHS×SHS+SMS×SMS), O(SHS×SMS),
and O(SHS×SHS×SMS×SMS) within these four neighbor
structures, respectively, where LH and LM denote the size
of High Segment and Medium Segment, respectively, and
SHS and SHS represents the size of selected nodes and no
selected nodes in High Segment, i.e., SHS + SHS = LH .
The reproduction consumes O(PS2 × cr) and O(PS ×mr)
in crossover and mutation operations, and the survivor
selection takes O(PS).

ALGORITHM 3: ClusCross Algorithm

Input: Population solution: {Si} , 1 6 i 6 PS,
Crossover probability: cr, Cluster size: k;

Output: Offspring individuals;
1 Population Clusteing ({Si} , k) → B : {B1, ...,Bk};
2 Select solution pair ({Si} ,B) → (Si1 ,Si2 );
3 Si1 ,Si2 ∈ Bx, 1 6 x 6 k / ∗ Intra-Cluster ∗ /;
4 Si1 ∈ Bx,Si2 ∈ By, x ̸= y / ∗ Inter-Cluster ∗ /;
5 if cr > rand() then
6 Two-point segment crossover (Si1 ,Si2 ) →

(S ′

i1
,S ′

i2
);

7 end

5 EVALUATION AND DISCUSSION

In this section, we systematically evaluate the performance
of our proposed technique. Our experiments are conducted
on a standard server (Windows 10), with Intel(R) Core(TM)
i7-8550U CPU, and 16 GB main memory.

5.1 Experimental Settings
Data Sets: We use two real-world geo-social networks in
which users share their check-ins. The two networks are
directed graphs based on friend relationship. The first data
set is gathered from Foursquare in New York, in which 5,100
nodes, 11,933 edges and 706,344 check-ins are included.
And a part of check-in records are visualized in Fig. 7.
The second data set is gathered from Gowalla in Boston, in
which 145,381 nodes, 546,335 edges and 8,427,156 check-ins
are included.

Fig. 7. The spatial distribution of check-ins in New York city.

Baseline Algorithms: To the best of our knowledge,
there is little work directly related to our studied problem.
In the most relevant study [9], it utilizes generalized Greedy
algorithm to recruit workers in social-network-assisted M-
CS, where a feasible solution is constructed by iteratively
adding of nodes based on marginal benefit. We employ it
as a baseline algorithm for comparison. Moreover, we also
adopt two state-of-the-art optimization approaches which
are used to tackle monotone non-submodular maximization
problems with a monotone cost constraint, i.e., EAMC algo-
rithm (AAAI 2020) [25] and POMC algorithm (IJCAI 2017)
[26]. For a fair comparison, we also incorporate our heuristic
knowledge in above baselines. Specifically, in each iteration,
one solution in population is selected according to its fit-
ness evalution, i.e., task acceptance estimation, instead of
uniformly at random. With respect to the bit-wise mutation
operation, it flips each bit of the incumbent solution based
on its diffusion utility, rather than independently with an
equal probability.

Parameter Settings: To construct one MCS task, firstly
we randomly choose a landmark contained in our collected
check-in data sets, e.g., Foursquare and Gowalla, to specify
its spatial location. And the task topic is built directly from
the established POI category tag set Γ. The maximum ℓ-hop
distance ℓmax is set to 3. For our incentive mechanism, the
relevant parameters are set as follows: R0 = 15, R1 = 10.
With respect to the termination criterion in MA-RAWA algo-
rithm, we set a maximum evolutional generation MG to 60.
The population size PS is 50. For the solution chromosome
segments, High Segment, Medium Segment and Low Segment
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are partitioned at the top 5% fragment, 6%∼15% fragment
and the remainder fragment of the reference chromosome,
respectively. The size of clusters in the crossover operation
is 8, and the crossover rate cr and mutation rate mr are set
to 0.50 and 0.20, respectively.

5.2 Experimental Results and Analyses

First of all, we conduct experiments to validate our pro-
posed approach’s performance in terms of optimization
effectiveness and search efficiency. Since the baseline algo-
rithms, including POMC and EAMC, and our proposed MA-
RAWR are all randomized approaches, we repeat each of
them 10 times independently, and report the average results.
Specifically, for Foursqure social network, the node pool is
fixed as 5,100, and the budget constraint Cmax varies from
8,000 to 10,000 with an increment of 500. While for Gowalla
data set, considering its large scale of more than 140,000
users, we employ a weighted-Monte Carlo sampling tech-
nique to reduce the dimensionality of the problem space, on
the basis of each node’s diffusion utility. To be specific, we
sample 12,000 nodes, and vary the incentive budget Cmax

from 16,000 to 24,000 with an increment of 2,000.
Fig. 8 (a) and (b) present the experimental results of

optimization effectiveness, using Foursqure and Gowalla
data set, respectively. First, the expected task acceptance
grows with the increase of the incentive budget Cmax.
The reason is that more workers can be recruited under a
larger incentive budget, and the overall expected acceptance
would be improved. Furthermore, our proposed MA-RAWR
approach achieves the best performance, followed by EAM-
C, POMC and generalized Greedy algorithms. By integrating
exploration and exploitation strategies, our proposed MA-
RAWR algorithm can explore promising regions of the so-
lution space, while enabling the local refinement. While for
EAMC and POMC algorithms, even if the problem-specific
heuristics are used, their performance still can not compete
with MA-RAWR algorithm. The underlying reason is that
the bit-wise mutation operation results in a slowly evolving
process, especially for a large search space. Limited by the
greedy nature, generalized Greedy algorithm achieve the
worst performance, which is consistent with the finding in
prior works.

Fig. 8. The optimization effectiveness of different approaches.

In addition, we study the search efficiency of all the
involved approaches, and the running time are presented in
Fig. 9. We observe that our MA-RAWR algorithm yields the
shortest running time, followed by EAMC, POMC and gen-

eralized Greedy. Actually, benefit from the heuristic knowl-
edge and global exploration, the MA-RAWR algorithm offer-
s fast convergence speed. During the MA-RAWR algorithm’s
run, it is found that the most time consuming componen-
t is variable neighborhood search, because it requires to
repeatedly exploit neighborhood space and evaluate the
task acceptance estimation. Furthermore, compared to other
algorithms, our proposed MA-RAWR is less sensitive to the
incentive budget Cmax, as it does not sequentially construct
solutions. Due to the random bit-wise mutation operation,
the solution population in the POMC algorithm expands
rapidly. Thus, its evolution over time is rather slow. By
adopting a bin structure, i.e., solutions contain the same size
of nodes, the search efficiency of the EAMC algorithm has
been improved compared with POMC algorithm. However,
its execution time is still longer than that of our MA-RAWR
algorithm. Generalized Greedy algorithm has the longest
running time, because it requires to traverse all the involved
nodes in each iteration. In conclusion, compared to the
second best approach, i.e., EAMC algorithm, the expected
acceptance of our MA-RAWR algorithm increases about
7.77%, while the average running time decreases by about
28.2%.

Fig. 9. The search efficiency of different approaches.

Second, to validate the scalability of our proposed ap-
proach, we perform experiments on the large-scale Gowalla
social network. To be specific, the number of sampled nodes
varies from 10,000 to 14,000 with an increment of 1,000, un-
der the budget constraint Cmax = 20,000. The corresponding
results, including optimization effectiveness and search effi-
ciency, are reported in Fig. 10. Clearly, with the increase of
the number of involved nodes, the expected task acceptance
of all the approaches grows accordingly, because more high-
profile nodes might be included and selected as seed nodes.
With respect to the search efficiency, the performance of MA-
RAWR algorithm is significantly better than other baseline
algorithms. With the increase of the number of involved
nodes, the scale of the solution population/bins also grows.
It thus requires more running time for EAMC and POMC
algorithms to construct their final solutions.

We next investigate the impact of the related parameters
including ℓmax, R0 and R1. Using the first Foursquare data
set, we conduct experiments under the conditions of 5,100
nodes and 10,000 incentive budget, by varying parameter
ℓmax from 2 to 4 with an increment of 1. The experimental
results are present in Fig. 11 (a). We observe that, with
the increase of ℓmax, the expected task acceptance grows
accordingly. The possible reason is that, a larger value of

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on September 02,2021 at 16:06:57 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3090764, IEEE
Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 10. The scalability of different approaches.

parameter ℓmax enlarges the depth of the diffusion tree.
Consequently , each seed node’s diffusion utility, i.e., task
acceptance of the diffusion tree, will increase.

We also examine the impact of parameters of R0 and R1

in our incentive mechanism, by studying different combina-
tions of them, including (1) R0 = 15 and R1 = 10; (2) R0 = 15
and R1 = 15; (3) R0 = 10 and R1 = 15. The experimental re-
sults are reported in Fig. 11 (b). We can see that the selection
of incentive parameters, including R0 and R1, affect the
performance of all these studied approaches. Specifically,
a larger value of the incentive parameters results in the
decrease of expected task acceptance, due to the fact that
the recruitment cost per worker becomes higher.

Fig. 11. The impact of different parameters.

Finally, we show the evolution process of our MA-RAWR
algorithm in Fig. 12. We observe that the expected task
acceptance grows with the increase of the number of evo-
lutionary generations. Thanks to the variable neighborhood
search, it enables MA-RAWR to escape from local optima
and thus improve its acceptance estimation.

Fig. 12. The evolution process of MA-RAWR algorithm.

6 RELATED WORK

In this section, we provide a brief review of the related
research on the following topics.

Information Propagation in Social Networks: With the
prevalence of online social networks, information or in-
fluence can spread quickly through the “word-of-mouth”
propagation among social neighbors [27]. Kempe et al. are
the first to formally define influence spread models [28],
and prove the NP hardness of Influence Maximization (IM)
problem, i.e., selecting a subset of high-profile nodes which
can influence the largest number of nodes in the social
network. Due to its NP hardness, an exhaustive search by
verifying all the possible solutions is not practical. As a
result, low-complexity methods are much needed to achieve
near optimal solutions in a reasonable time. For example,
a greedy-based optimization approach is proposed with a
factor approximation ratio in [28]. Leskovec et al. devise a
lazy-forward heuristic approach, namely CELF, by harness-
ing the sub-modularity property [29]. Borgs et al. propose
a concept of random reverse reachable set, and devise a
near-linear time approach RIS [30]. Although the worker
recruitment game studied in this work also requires to
diffuse information, i.e., MCS task invitation, over social
networks, our goal is to identify high-profile nodes based
on MCS task specifications and improve their acceptance,
rather than flooding nodes as much as possible.

Worker Recruitment in MCS: Recent years have seen
an increasing interest in MCS as exemplified by lots of
surveys and tutorials. In MCS, one of the important issues
is worker recruitment, which enlists appropriate workers
to undertake specified tasks. Under desirable time budget,
Chen et al. make stochastic MCS recommendation based
on workers’ historical trajectories [31]. In [13], Zheng et al.
are the first to take workers’ rejection into consideration,
and strive to maximize workers’ acceptance to enhance
the system throughput. In [32], the worker recruitment
problem is investigated in the environment of vehicle-based
MCS. Kang et al. consider a quality-aware online MCS
task assignment problem, with the goal of optimizing the
overall task quality [33]. By considering individual task
quality assurance, worker recruitment issue for multiply
MCS tasks are studied in [34]. Jiang et al. investigate a batch
allocation problem for crowdsourcing tasks with overlap-
ping skill requirements [35]. In [36], an unknown worker
recruitment problem in MCS is studied, where the workers’
sensing qualities are unknown a priori. By transform the
problem into a combinatorial multi-armed bandit problem,
the authors propose an extended UCB based algorithm. The
above-mentioned research works all focus on direct worker
recruitment, where the factors of social network structures,
task invitation propagation, and task acceptance have not
been considered and investigated.

Moreover, there are a few research efforts concentrating
on integrating MCS campaign with social networks. In [37],
[38], the authors study a MCS task assignment problem
in mobile social networks, where the task owner moves
around, and sends the task invitation to another mobile
user when they encounter with each other. The contextual
workers in social networks are utilized to perform complex
MCS tasks by autonomous coordination, and improve the
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reliability of crowd participants [39]. In [40], a strategic
social team problem is studied, where a team of workers
that are socially connected work together in collaboration
to solve complex tasks. A socially aware task selection
problem in MCS is studied, where each user independently
selects tasks to undertake, and shares the incentive reward
with others who execute the same tasks [41]. In [42], user
interaction behavior is modeled as a Stackelberg game to
incentivize workers to make a maximum contribution via
word of mouth. A dynamic incentive mechanism, namely
SocialRecruiter, is proposed to encourage workers to spread
tasks on social networks [43]. However, these works focus
on worker collaboration models [39], [40] or incentive mech-
anisms [41], [42], which are different from our problem.
The most relevant work is [9]. By leveraging an influence
propagation process, the authors formulate a social-network
assisted worker recruitment problem in MCS paradigm.
However, it differs from our work in the following aspects:
1) from the perspective of optimization objective, it strives
to maximize the spatiotemporal coverage, while ours is to
optimize workers’ expected task acceptance; 2) from the per-
spective of propagation model, it directly extends an exist-
ing independent cascade model/linear threshold model to
model influence propagation, i.e., flooding task invitations
to all the nodes during the diffusion process. Instead, we
devise a specialized and more practical MCS task invitation
diffusion model with limited hop distances, where users
who receive a task invitation independently make decision
whether to accept a task or not. Thus, it makes our problem
more practical and substantially different from the previous
work, and hence it calls for new approaches.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose and study a novel worker re-
cruitment game in socially aware MCS, namely acceptance-
aware worker recruitment problem. To better accommodate
MCS task diffusion over social networks, we specifically
devise a random diffusion model by considering users
interaction and autonomous decisions. We then formulate
a combinatorial optimization problem to search a subset
of seed workers, with the goal of maximizing overall task
acceptance under given incentive budget constraints. This
problem is proved to be NP hard, and we propose a meta-
heuristic-based evolutionary approach. Extensive experi-
ments show the effectiveness of our proposed approach on
two real-world social network data sets.

In the future work, we will further investigate how
to enhance the robustness of our system in terms of the
involved factors, i.e., spatial proximity and interest pref-
erence. The reason lies in that the final performance of
our system will be impacted by the low accuracy of task
acceptance estimation, resulting from spatial proximity and
interest preference calculation. Clearly, to cope with this
situation, one possible approach might be to increase the
incentive budget. However, the method from the dimension
of monetary incentives might not be economical for the
task owners. So, we would like to solve it on the technical
side. Additionally, another metric, namely task selection
diversity, might be applied to our system, to avoid the

skewed task selection issue, i.e., a very few tasks have been
selected by most users.
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