

1 **Variability of the South Pacific western Subtropical Mode Water and**
2 **its relationship with ENSO during the Argo period**

3 **Jifeng Qi^{1,2,3}, Tangdong Qu^{2*}, Baoshu Yin^{1,3,4*}, Jianwei Chi⁵**

4

5 ¹CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of
6 Sciences, and Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China

7 ²Joint Institute for Regional Earth System Science and Engineering, University of California, Los
8 Angeles, Los Angeles, California

9 ³Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China

10 ⁴University of Chinese Academy of Sciences, Beijing, China

11 ⁵State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese
12 Academy of Sciences, Guangzhou, China.

13 Corresponding author: T. Qu (tangdong@ucla.edu); B. Yin (bsyin@qdio.ac.cn)

14 **Key Points:**

15 • A gridded Argo dataset is used to study variability of the South Pacific western
16 subtropical mode water (SPWSTMW) over 2004-2019.

17 • The SPWSTMW volume varies on various timescales, and this variability is
18 mainly caused by change in winter mixed layer depth.

19 • Anomalous winds associated with ENSO are largely responsible for the
20 interannual variability of the SPWSTMW volume.

21 **Abstract**

22 This study investigates variability of the South Pacific western Subtropical Mode
23 Water (SPWSTMW), its physical processes and relationship with ENSO, using a
24 gridded Argo data product from January 2004 to September 2019. On seasonal
25 timescale, the SPWSTMW volume shows a significant variability, which involves
26 three periods: the formation period (June-October), the isolation period
27 (November-February), and the dissipation period (March-May). This seasonal
28 variability is related to seasonal fluctuation of the mixed layer depth. During the Argo
29 period from 2004 to 2019, interannual variability of the SPWSTMW volume is tightly
30 linked to the El Niño-Southern Oscillation (ENSO), increasing during El Niño periods
31 and decreasing during La Niña periods. Further analyses indicate that ENSO-related
32 anomalous winds are primarily responsible for interannual variability of the
33 SPWSTMW volume. The anomalous winds first influence the surface heat flux
34 through evaporation and then the mixed layer depth through convection, leaving an
35 imprint of ENSO on the SPWSTMW. This study also shows that the SPWSTMW
36 responds differently to the central Pacific (CP) El Niño and eastern Pacific (EP) El
37 Niño.

38

39 **Keywords:** Subtropical mode water; Southwest Pacific Ocean; ENSO; Mixed layer
40 depth

41

42

43 **Plain Language Summary**

44 Using recently available Argo dataset and atmospheric reanalysis products, this
45 study investigates the impact of ENSO on the volume of the South Pacific western
46 subtropical mode water (SPWSTMW) and its underlying mechanisms. The results
47 show that interannual variability of the SPWSTMW volume has a strong ENSO signal
48 during the Argo period from 2004 to 2019, which is mainly forced by ENSO-induced
49 wind anomalies. During El Niño years, surface winds in the SPWSTMW formation
50 region are stronger than during normal years, resulting in a decrease in sea surface
51 temperature (SST) through the wind-evaporation-SST (WES) feedback. The reduced
52 SST can decrease the stratification and deepens the MLD, which enhances the
53 horizontal MLD gradients and consequently the lateral induction and subduction of
54 the SPWSTMW, directly contributing to the increase of the SPWSTMW volume. This
55 study provides new insights into our understanding of regional oceanography and
56 climate change in the South Pacific.

57

58 **1 Introduction**

59 Subtropical Mode Water (STMW), characterized by low potential vorticity (i.e., a
60 thermostad or pycnostad) occurring between the seasonal and permanent pycnocline, is
61 present in all subtropical gyres of the global ocean (Hanawa & Talley, 2001). It is
62 formed by surface cooling and convective mixing during cool seasons. After its
63 formation, the STMW spreads in a wide region of the subtropical gyre as a result of
64 advection and eddy activity. Since the STMW retains the memory of atmospheric

65 conditions and conveys the surface signals into the subsurface ocean, its variability
66 has been shown to have notable impacts on climate variability and upper-ocean
67 dynamics on multiple time scales, providing a direct link between the atmosphere and
68 the ocean (Huang & Qiu, 1998; Ladd & Thompson, 2000; Xie et al., 2011; Oka et al.,
69 2015; Yu et al., 2015).

70 The STMW has been extensively studied throughout the global ocean over the past
71 few decades (Roemmich & Cornuelle, 1992; Hanawa & Talley, 2001; Holbrook &
72 Maharaj, 2008; Oka & Qiu, 2012; Speer & Forget, 2013; Fernandez et al., 2017).
73 However, compared with its northern hemisphere counterpart, fewer studies have
74 focused on the STMW in the southern hemisphere oceans. The main reason is that
75 southern subtropical gyres are less sampled than the northern ones, and thus STMW
76 has been, so far, detected in small amount. Recently, as more observational data
77 products, such as the Digital Atlas of Southwest Pacific upper Ocean Temperatures
78 (DASPORT) (Holbrook & Bindoff, 2000 a, b) and the Argo gridded dataset
79 (Roemmich & Gilson, 2009), became available, the STMW in the south Pacific
80 Ocean has received increasing attention (Holbrook & Maharaj, 2008; Sato & Suga,
81 2009; Fernandez et al., 2017). A good example of this is the STMW in the
82 southwestern Pacific (SPWSTMW) lying to the north of the Tasman Front. Zonally,
83 the SPWSTMW extends from the east coast of Australia to about 170°W, with a
84 temperature range of 14-20 °C and a density range of 25.25-26.5 kg/m³ (Roemmich &
85 Cornuelle, 1992; Holbrook & Maharaj, 2008). Studies of the SPWSTMW have
86 recently focused on its role as a heat reservoir in memorizing the wintertime

87 atmospheric conditions in its formation region (Holbrook & Maharaj, 2008; Wang et
88 al., 2015; Fernandez et al., 2017).

89 The SPWSTMW was first identified by Roemmich and Cornuelle (1992) on the
90 basis of hydrographic data collected between New Zealand and Fiji. They revealed
91 that the SPWSTMW is formed by convective mixing during the austral winter in the
92 eastward-flowing waters of the East Australia Current (EAC) with a potential
93 temperature range of 15-19 °C and vertical temperature gradient no more than
94 2 °C/100m. Roemmich and Cornuelle (1992) attributed the SPWSTMW variability to
95 two probable factors: 1) anomalous sea surface heat fluxes; and 2) anomalous heat
96 transport by ocean currents. A similar conclusion was reached by Roemmich et al.
97 (2005). However, Sprintall et al. (1995) pointed out that the SPWSTMW variability is
98 mainly due to anomalous oceanic heat transport, not due to anomalous surface heat
99 flux. Based on World Ocean Atlas (WOA) 2001 climatology and high-resolution
100 expendable bathythermograph (HRX) line data, Tsubouchi et al. (2007) divided the
101 SPWSTMW into three types: the West type, located in the EAC recirculation region,
102 the North type, located to the north of the Tasman Front extension, and the South type,
103 located to the south of the Tasman Front extension. By using the DASPOD dataset for
104 the period 1973-1988, a systematic study on the SPWSTMW has been conducted by
105 Holbrook and Maharaj (2008). They found that the SPWSTMW extends across the
106 entire width of the southwestern Pacific, with a remarkable seasonal and interannual
107 variability. They demonstrated that El Niño-Southern Oscillation (ENSO) plays an
108 important role in the interannual variability of the SPWSTMW. Their results also

109 suggested that the STMW in the western South Pacific exhibits different behaviors
110 over different parts of the region. Most recently, Fernandez et al. (2017) found that
111 larger volume of the SPWSTMW is associated with cooler conditions in the formation
112 region. In most cases, the SPWSTMW inventory tends to increase (decrease) with
113 strengthening (weakening) western boundary current north of New Zealand.

114 Using the Bluelink ReANalysis 2.1 dataset, Wang et al. (2015) claimed that, on
115 seasonal timescale, surface heat flux is dominant in governing the SPWSTMW
116 variability. But, on interannual timescales, surface heat flux and ocean dynamics are
117 of equal importance. According to Wang et al. (2015), the total SPWSTMW volume
118 west of 180° varies seasonally between a maximum of $7.8 (\pm 0.5) \times 10^{14} \text{ m}^3$ in
119 September and a minimum of $1.6 (\pm 0.4) \times 10^{14} \text{ m}^3$ in March. This amplitude of
120 seasonal variability is slightly larger than that between $6.6 (\pm 0.5) \times 10^{14} \text{ m}^3$ in October
121 and $1.9 (\pm 0.4) \times 10^{14} \text{ m}^3$ in May reported by Holbrook and Maharaj (2008) based on
122 the DASPORT dataset.

123 The El Niño-Southern Oscillation (ENSO) is one of the most prominent modes of
124 large-scale variability in the global ocean (Alexander et al., 2002; McPhaden et al.,
125 2006; Taschetto & England, 2009; Taschetto et al., 2014; Yu et al., 2017; Freund et al.,
126 2019). The ENSO-induced changes in ocean circulation and air-sea fluxes over the
127 South Pacific are believed to directly contribute to the SPWSTMW variability
128 (Roemmich & Cornuelle, 1992; Holbrook & Maharaj, 2008; Wang et al., 2015;
129 Fernandez et al., 2017). For example, Holbrook and Maharaj (2008) claimed that the
130 anomalous cooling of the Southwest Pacific Ocean during El Niño periods can

131 enhance winter time convection, which leads to more SPWSTMW formed in the
132 region. A similar conclusion was reached by Fernandez et al. (2017). However, Wang
133 et al. (2015) claimed that the SPWSTMW formation can be further enhanced by La
134 Niña, which drives positive anomalies in sea surface salinity in the southwest Pacific
135 Ocean and creates a favorable preconditioning for surface cooling in the austral
136 winter.

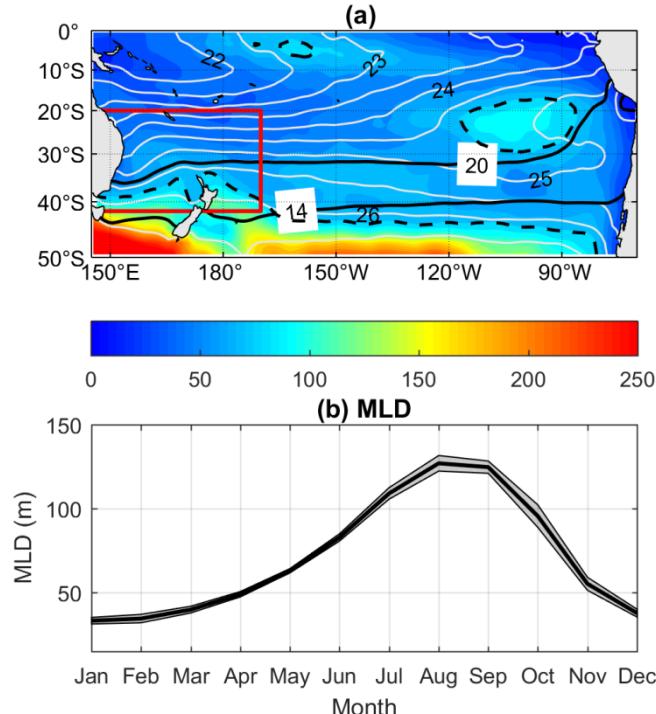
137 Despite the fact that much effort has been made in investigating variability of the
138 SPWSTMW, some processes governing evolution of the SPWSTMW are still debated
139 and need to be investigated further. For example, previous studies suggested that the
140 anomalous cooling in the Southwest Pacific associated with ENSO can lead to more
141 SPWSTMW formed (Holbrook & Maharaj, 2008; Fernandez et al., 2017). However,
142 the exact mechanisms responsible for this ENSO-SPWSTMW teleconnection have
143 not been fully studied. Recently, a new type of El Niño, referred to as El
144 Niño-Modoki (Ashok et al., 2007; Freund et al. 2019), or central Pacific (CP) El Niño
145 (Yu & Kim, 2010) has been identified, in which maximum sea surface temperature
146 (SST) anomalies are confined mostly in the central Pacific, different from the
147 conventional Eastern Pacific (EP) El Niño with maximum SST anomalies occurred in
148 the east Pacific. Whether the SPWSTMW responds differently to the CP El Niño and
149 EP El Niño is also an interesting question worthy of further study.

150 The present study uses a recently available Argo dataset and reanalysis datasets to
151 examine the variability of the SPWSTMW. An important contribution of this paper is
152 to demonstrate the dominant role of the ENSO-induced wind anomalies in

153 SPWSTMW variability on interannual timescales. The rest of this paper is organized
154 as follows. The data and methods of analysis are presented in Section 2. Basic
155 characteristics of the SPWSTMW and its seasonal variability are discussed in Section
156 3. Interannual variability of the SPWSTMW volume and its relationship to ENSO are
157 discussed in Section 4. Finally, a discussion of the finding is presented in Section 5.

158 **2 Data and Methods**

159 **2.1 Data**

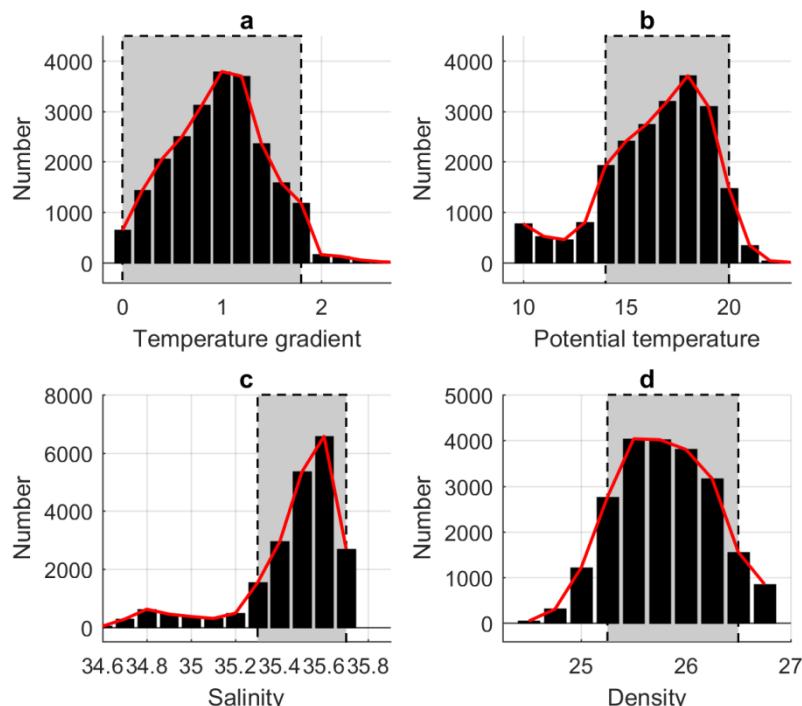

160 The gridded Argo data product from January 2004 to September 2019 created by
161 Roemmich and Gilson (2009) (hereinafter referred to as RG09) is used to investigate
162 the SPWSTMW variability, especially with regard to its relationship with ENSO. The
163 RG09 data product provides 1-degree gridded monthly temperature and salinity fields
164 with 58 vertical levels from the sea surface to 2000 dbar. This dataset has been used by
165 many previous studies (e.g., Drushka et al., 2014; Fernandez et al., 2017). For more
166 details, the reader is referred to Roemmich and Gilson (2009) and the link provided in
167 the Acknowledgements.

168 Monthly surface heat flux product with a horizontal resolution of $2.5^\circ \times 2.5^\circ$ was
169 obtained from the National Centers for Environmental Prediction (NCEP) re-analyses
170 (Kalnay et al., 1996). This reanalysis product was interpolated into a $1^\circ \times 1^\circ$ grid, with
171 the same horizontal grid as the Argo data product. Positive values of surface heat flux
172 indicate the ocean gaining heat from atmosphere, while negative values represent the
173 opposite. Also used for the present study is a monthly surface wind product on a $1^\circ \times 1^\circ$
174 grid from ERA-Interim produced by the European Centre for Medium-Range Weather

175 Forecasts (ECMWF) (Dee et al., 2011). The monthly Southern Oscillation Index (SOI)
176 was obtained from the Australian Government Bureau of Meteorology and is used to
177 characterize the ENSO signal.

178 2.2 Definition of the SPWSTMW

179 As a key factor influencing the SPWSTMW, we first define the mixed layer depth
180 (MLD) as the depth where water is denser than the surface water by 0.125 kg/m^3 ,
181 which has been used in previous studies (e.g., Huang & Qiu, 1998). The all-time
182 (2004-2019) mean MLD in the subtropical South Pacific derived from the RG09 data
183 product is shown in Figure 1a. Its spatial pattern is dominated by a significant MLD
184 front (indicated by the 80 m contour) in the western South Pacific, and a local MLD
185 maximum ($> 80 \text{ m}$) in the eastern South Pacific, corresponding to the formation
186 region of the western and eastern STMW, respectively (Wong & Johnson, 2003; Li,
187 2012; Fernandez et al., 2017). Averaged over the region (0° - 50°S , 145°E - 70°W), the
188 MLD reaches its seasonal maximum (130 m) in August and minimum (33 m) in
189 January (Figure 1b).

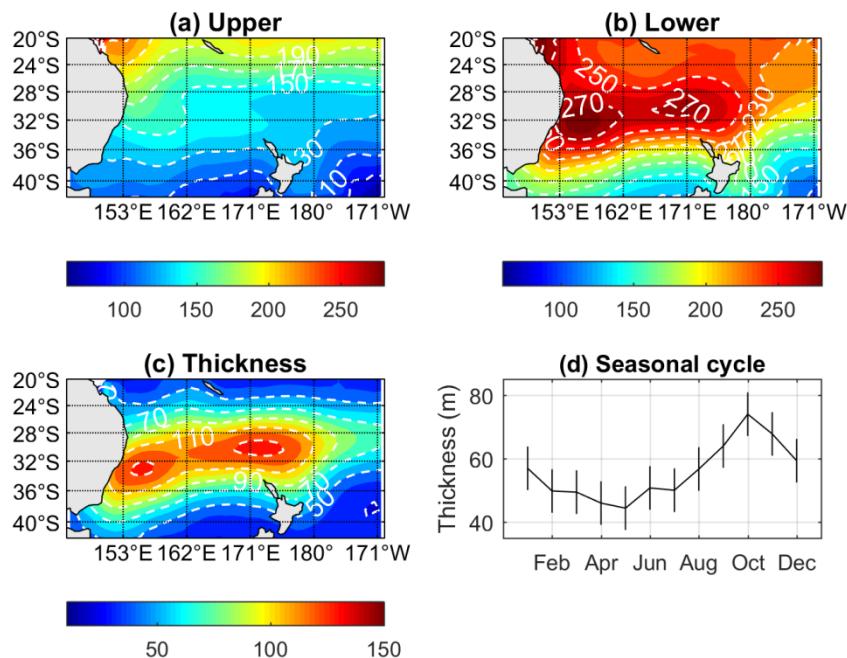


190

191 Figure 1. (a) All-time mean depth (color in m) and potential density (kg/m^3) of mixed
 192 layer from RG09 data product. The black dashed line (80 m contour) represents the location of the
 193 MLD front, the black solid lines show the 14 °C and 20 °C isotherms, and the red thick box indicates
 194 the study region. (b) Seasonal variation of the MLD averaged over the region (0°–50°S, 145°E–70°W).
 195 The gray shading indicates the standard deviation of the MLD.

196 We then define the SPWSTMW as a minimum of vertical temperature gradient, as
 197 has been done by several earlier studies (Roemmich & Cornuelle, 1992; Holbrook &
 198 Maharaj, 2008; Wang et al., 2015; Fernandez et al., 2017). To evaluate the minimum
 199 of the vertical temperature gradient of the SPWSTMW, we examine all gridded
 200 temperature/salinity profiles in the region (20°S–42°S, 150°E–170°W) during
 201 September–December from 2004 to 2018. The result shows that the majority of
 202 temperature/salinity profiles have a minimum of vertical temperature gradient less
 203 than 1.8 °C/100m (Figure 2a). This threshold of vertical temperature gradient is

204 therefore selected as the criterion to define the SPWSTMW. We also examined the
 205 potential temperature, salinity, and potential density of the SPWSTMW in the region
 206 studied. In most cases, the SPWSTMW lies between 14°C and 20°C in potential
 207 temperature, between 35.3 and 35.7 psu in salinity and between 25.25 and 26.5 kg /m³
 208 in potential density. These properties of the SPWSTMW are consistent with earlier
 209 studies (Roemmich & Cornuelle, 1992; Tsubouchi et al., 2007). Similar to Holbrook
 210 and Maharaj (2008), errors of the SPWSTMW shown in the present study are
 211 calculated as the upper and lower bounds estimates on the SPWSTMW thickness and
 212 total volume.

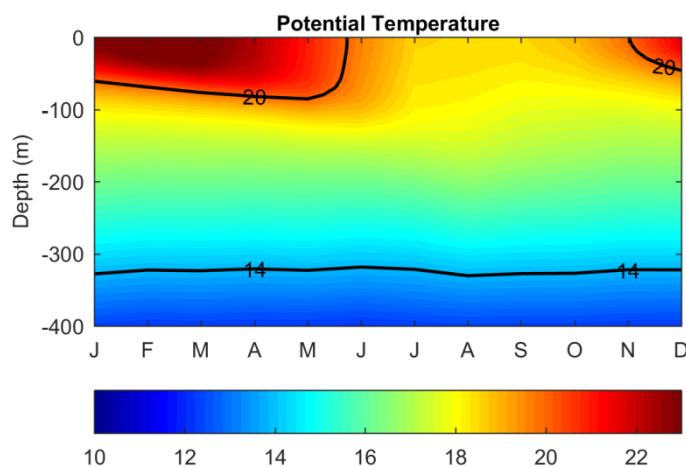


213

214 Figure 2. Histogram of number of gridded temperature/salinity profiles with respect to (a) core layer
 215 temperature gradient (°C/100m), (b) potential temperature (°C), (c) salinity (psu), and (d) potential
 216 density (kg/m³) of the SPWSTMW in the region (20°S-42°S, 150°E-170°W) during
 217 September-December from 2004 to 2018.

218 **3 Results**

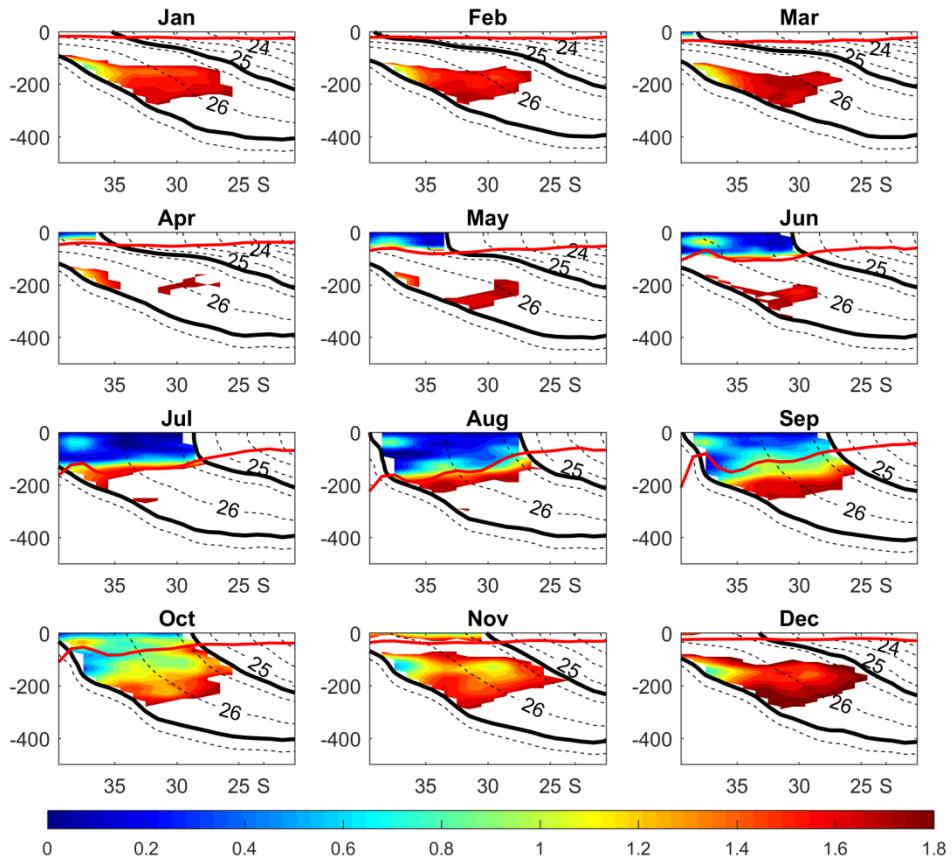
219 The climatological temperature and salinity data are used to identify the presence of
 220 the SPWSTMW. If identified, depths of the upper and lower limits of the SPWSTMW
 221 can be determined. Figure 3 shows the spatial distribution of these depths. In general,
 222 depth of the upper limit of the SPWSTMW is shallower in the south (Figure 3a). It
 223 gradually increases to the north from about 110 m at 40°S to about 190 m at 20°S.
 224 Depth of the lower limit shows two maxima at latitudes between 28°S and 35°S, both
 225 exceeding 270 m in magnitude (Figure 3b). The thickness of the SPWSTMW is then
 226 obtained as the depth difference between the lower and upper limits, where the
 227 SPWSTMW is identified (Figure 3c).
 228



229 Figure 3. Depth of the (a) upper and (b) lower limits of the SPWSTMW and (c) its layer thickness
 230 identified by the RG09 data product. Included in (d) is the mean seasonal cycle of the SPWSTMW
 231 thickness, calculated by averaging over all grid points where the SPWSTMW is identified. The vertical
 232 bars represent thickness errors (units: m).

233 In general, the climatological thickness of the SPWSTMW is greater than 50 m
234 (Figure 3c). Averaged over the region studied, it reaches $62 \pm (10)$ m. A thick layer of
235 the SPWSTMW (exceeding 80 m) is seen extending eastward from the east Australian
236 coast along the southern rim of the subtropical gyre at latitudes between 38°S and
237 25°S, reaching its easternmost position around 172°W. Similar findings were also
238 reported by Holbrook and Maharaj (2008). It is interesting to note that the spatial
239 pattern of the SPWSTMW thickness is similar to the depth of its lower limit, with its
240 maxima exceeding 130 m around 156°E, 33°S and 172°E, 30°S, and decreases
241 dramatically to both southward and northward, forming a front at latitudes between
242 about 36°S and 40°S. Tsubouchi et al (2007) also found that there are two separate
243 thickness maxima located around 160° and 175°E in the 25-30°S latitudinal band,
244 which are located further equatorward than those from the present study. As shown in
245 Figure 3d, the SPWSTMW thickness reaches its seasonal maximum in October, and
246 then drops toward its seasonal minimum in May. This seasonal pattern is consistent
247 with the result of Holbrook and Maharaj (2008) in terms of the SPWSTMW volume.

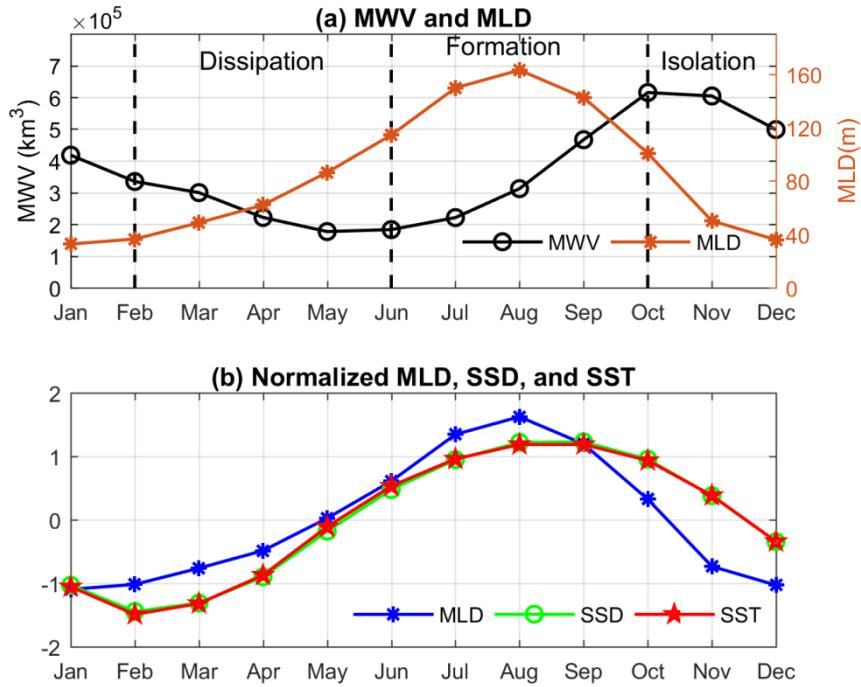
248 Seasonal variation of potential temperature averaged over the region where the
249 SPWSTMW is identified and thermostad is thicker than 40 m is shown in Figure 4.
250 From December to May, isotherms (14-20°C) of the SPWSTMW lie between 60 m
251 and 330 m below the mixed layer. The most pronounced feature of this seasonal
252 variation is related to the buoyancy loss in winter, which erodes the summer mixed
253 layer, causing the 20 °C isotherm to outcrop. The outcropping of the 20 °C isotherm
254 marks the opening of a ventilation window, where some portion of the SPWSTMW is


255 exposed to the atmosphere. However, this outcropping process is not shown by
 256 Fernandez et al's (2017) results (e.g., their Figure 4b). A possible cause for this
 257 discrepancy lies in the fact that their analysis was based on a single transect along
 258 176.5°E, not on the data over the entire region of the SPWSTMW. By the end of
 259 November, the surface layer begins to restratify, which isolates the SPWSTMW from
 260 the surface layer.

261
 262 Figure 4. Seasonal cycle of potential temperature averaged over the region where the SPWSTMW is
 263 present. The isotherms (14 °C and 20 °C) used to define the potential temperature range of the
 264 SPWSTMW are shown.

265 Previous studies have shown that stratification is an important factor influencing
 266 the formation of the mode water (Ladd & Thompson, 2000; Luo et al., 2009). Hence,
 267 it is worthwhile to examine the impact of stratification on the SPWSTMW. Figure 5
 268 shows the monthly mean vertical temperature gradient along the 173°E section,
 269 crossing the maximum thickness of the SPWSTMW. Surface stratification starts to
 270 vanish in June as a result of surface cooling, and this is consistent with a decreasing
 271 vertical temperature gradient near the surface (Figure 5). The newly formed

SPWSTMW is clearly evident south of 35°S in July. In the subsequent months, the newly formed SPWSTMW continues to subduct between the 14 °C and 20 °C isotherms and extends northward to about 24°S in the depth range between 100 m and 260 m until November, indicating an equatorward spreading of the SPWSTMW. Using the DASPO dataset, Holbrook and Maharaj (2008) have also shown that the SPWSTMW can extends equatorward to near 24°S along a similar meridional section around 177°E (e.g., their Figure 3a). Starting from November, strong sea surface heating and weak surface wind restratify the surface mixed layer. With the development of surface stratification, the SPWSTMW is gradually detached from the surface mixed layer. During the period from December to the following March, when surface stratification is most developed, the vertical extent of the SPWSTMW steadily shrinks. During the dissipation period from April to June, the SPWSTMW continues to shrink and almost disappears in June. In general, this seasonal evolution of the SPWSTMW is in line with the result of Holbrook and Maharaj (2008) based on DASPO dataset.



288 Figure 5. Monthly climatology (shading) of vertical temperature gradient ($\leq 1.8 \text{ } ^\circ\text{C}/100\text{m}$) along the
289 173°E section during 2004-2018 from RG09 data product. The black thick solid lines indicate the 14
290 $^\circ\text{C}$ and $20 \text{ } ^\circ\text{C}$ isotherms, the light dashed lines indicate potential density with a contour interval of 0.5
291 kg/m^3 , and the red thick line indicates the MLD.

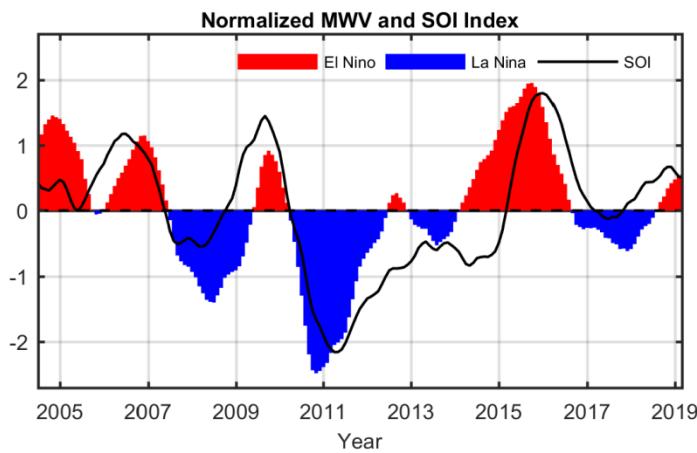
Considering that volume of a water mass is an important physical parameter
describing the intensity of ocean ventilation, our discussion below focuses on the
variability of the SPWSTMW volume. The annual cycle of the SPWSTMW volume
can be divided into three distinct periods: the formation period, the isolation period,
and the dissipation period. The formation of new SPWSTMW occurs primarily in late
austral winter and early spring (from June to October). During the isolation period
(from November to the following February), the SPWSTMW is gradually detached

300 from the surface mixed layer (Figure 5). The dissipation of SPWSTMW usually
301 occurs from March to May, during this period, the SPWSTMW remains submerged
302 beneath the surface and continues to dissipate until a new formation season (Figure
303 6a). As a key factor influencing the formation of the SPWSTMW, we first show the
304 MLD averaged over the SPWSTMW formation regions (Figure 6a). Here, we define
305 the SPWSTMW formation region as the surface region where surface water lie
306 between the 14 and 20 °C isotherms and where vertical potential temperature gradient
307 is less than 1.8 °C/100m. The MLD starts to deepen in April, and reaches its seasonal
308 maximum in August. In accordance with the deepening MLD, the SPWSTMW is
309 formed in austral winter (June-September). During this formation season, the
310 SPWSTMW volume gradually increases, reaching its seasonal maximum of 6.15
311 (± 0.72) $\times 10^5$ km³ in October. The MLD starts to shoal in November, and the shoaling
312 of the MLD continues throughout the austral summer (January-March). As a
313 consequence, the SPWSTMW volume decreases from December to June, approaching
314 its seasonal minimum of 1.82 (± 0.51) $\times 10^5$ km³ in June, which is consistent with the
315 earlier work by Holbrook and Maharaj (2008). Approximately, 71% of the
316 SPWSTMW formed in October dissipates in the following 8 months, suggesting that
317 a large portion of the SPWSTMW barely persists until the next winter, as previously
318 suggested by Holbrook and Maharaj (2008) and Fernandez et al. (2017). The
319 relatively short lifetime of the SPWSTMW explain why the SPWSTMW volume
320 reaches its seasonal minimum in the dissipation period. The eroded SPWSTMW

321 cannot be conveyed into the South Pacific subtropical gyre too far due to its short
 322 lifetime.

323
 324 Figure 6. (a) Seasonal variation of the total SPWSTMW volume (km³) and MLD (m) and, (b) the
 325 normalized MLD, SSD, and SST (sign-reversed) in the SPWSTMW formation region.

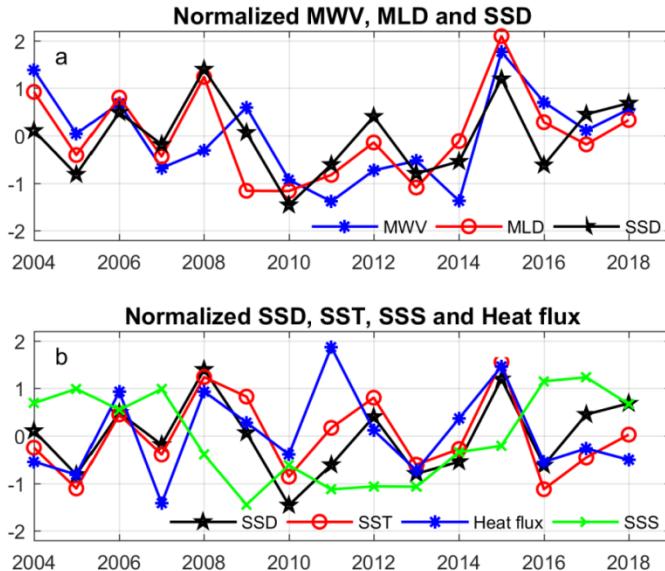
326 As discussed above, seasonal variation of the MLD plays an important role in
 327 modulating the SPWSTMW volume (Qu et al., 2002; Luo et al., 2011). Some earlier
 328 studies have shown that variability in the MLD is largely due to variability in sea
 329 surface density (SSD), which in turn is primarily caused by changes in surface heat
 330 flux and wind forcing (Luo et al., 2009, 2011; Qu et al., 2016). Here, we show that
 331 seasonal variations of the normalized SSD and MLD averaged over the SPWSTMW
 332 formation region are nearly identical (Figure 6b), giving additional support for the
 333 earlier speculation. In addition, the seasonal variation of SST (sign-reversed) is in
 334 exactly the same phase as that of SSD, implying that the seasonal variation of SSD in


335 the SPWSTMW formation region is, to a great extent, thermal-driven. In other words,
336 changes in SST dominate the seasonal variation of SSD and consequently the seasonal
337 variation of the MLD. Furthermore, changes in SST in turn are primarily forced by
338 changes in surface heat flux. Thus, we conclude that on seasonal timescale, local
339 surface heat flux is the dominant process governing the MLD variability in the
340 SPWSTMW formation region.

341

342 **4 Interannual variability and its relationship with ENSO**

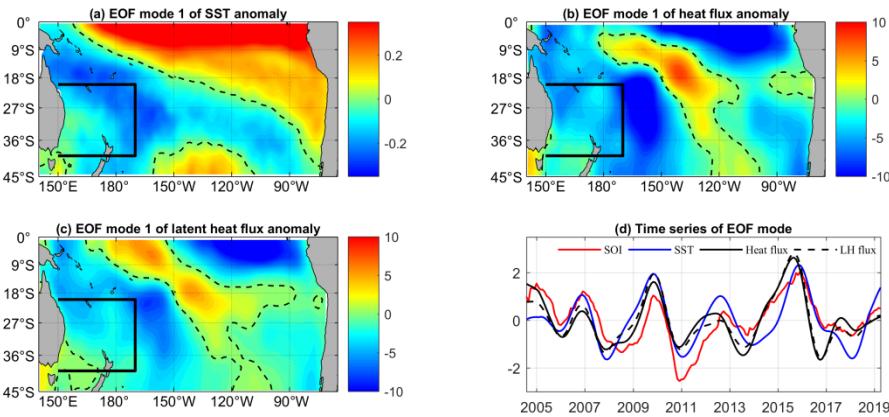
343 Besides the seasonal cycle discussed above, a remarkable interannual variability in
344 the SPWSTMW volume is also identified (Figure 7). To extract the dominant signal
345 of this interannual variability, time series of the SPWSTMW volume is filtered by a
346 13-month moving average. The long-term trend of the SPWSTMW volume is also
347 removed before the analysis. As shown in Figure 7, the SPWSTMW volume was
348 higher during the periods of 2004/2005, 2006/2007, 2009/2010, and 2015/2016 and
349 lower during the periods of 2007/2008, 2010/2011, and 2011/2012. This interannual
350 variability shows the same phase as the SOI, with their correlation coefficient
351 reaching -0.56 for the period of observation (2004-2019), satisfying the 95%
352 confidence level. The SPWSTMW volume is observed to increase during El Niño
353 periods but decrease during La Niña periods. The results show that the largest
354 anomalies of the SPWSTMW volume occurred in 2010-2011 and 2015-2016,
355 coinciding with the 2010/2011 La Niña event and 2015/2016 El Niño event,
356 respectively, which is consistent with the earlier work by Fernandez et al. (2017) in


357 terms of the SPWSTMW inventory north of New Zealand. These results corroborate
 358 earlier studies and suggest that both the oceanic and atmospheric processes associated
 359 with ENSO play an important role in governing the SPWSTMW variability on
 360 interannual timescales (Holbrook & Maharaj, 2008; Wang et al., 2015; Fernandez et
 361 al., 2017). The possible mechanisms responsible for the SPWSTMW variability,
 362 particularly its relationship with ENSO are examined below.

363
 364 Figure 7. Comparison of the monthly mean SPWSTMW volume and SOI (sign-reversed). Both time
 365 series are normalized by the respective standard deviations. A 13-month moving average has been
 366 applied to remove the seasonal cycle, and the long-term trends are also removed.

367 As discussed above, MLD has a notable impact on the variability of the
 368 SPWSTMW volume on seasonal timescale. With this in mind, we first examine the
 369 relationship between the SPWSTMW volume and the MLD in the SPWSTMW
 370 formation region on interannual timescales. Since the maximum MLD occurs in late
 371 winter (Figure 6), we compare the MLD of August with the SPWSTMW volume
 372 averaged between September and October. The result shows a significant interannual
 373 variability in both time series, with their correlation coefficient reaching 0.6,
 374 satisfying the 95% confidence level (Figure 8). Previous studies suggested that

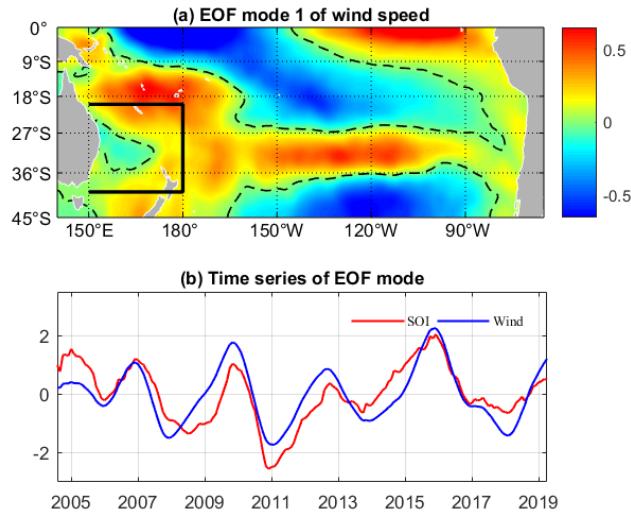
375 formation of the STMW consists of two components: vertical pumping at the base of
376 the winter mixed layer and lateral induction induced by the late winter MLD
377 variability (Huang & Qiu, 1998). In general, the latter is thought to play a more
378 important role than the former in governing the STMW variability (Qu et al., 2008).
379 The close correlation between the SPWSTMW volume and MLD indicates that
380 interannual variability of the SPWSTMW volume is primarily caused by changes in
381 winter MLD through lateral induction (Figure 8a). In addition, time series of the
382 normalized winter (August) SSD averaged over the SPWSTMW formation region is
383 also presented in Figure 8b. From 2004 to 2019, the normalized winter SSD shows
384 exactly the same phase as the normalized MLD, indicating that the SSD is a key
385 factor controlling the MLD variability in the SPWSTMW formation region. In most
386 cases, an increase in SSD leads to a deepening of MLD, and a decrease in SSD leads
387 to a shoaling of MLD. Moreover, normalized winter SST (sign-reversed) exhibits
388 exactly the same interannual variability as normalized winter SSD, indicating that, on
389 interannual timescales, changes in SSD are primarily thermal-driven (Figure 8b). In
390 contrast, changes in SSS contribute little to changes in SSD. In other words, it is the
391 SST variability that dominates the MLD variability in the SPWSTMW formation
392 region, which in turn is primarily caused by surface heat flux. Anomalous surface heat
393 fluxes during the cool seasons (April to August) may first alter the SST, then the SSD,
394 and eventually the MLD (Figure 8b).


395

396 Figure 8. (a) Normalized year to year variability of the SPWSTMW volume in September-October and
 397 the MLD, SSD in August, and (b) the SSD, SST (sign-reversed), and SSS in August, and surface heat
 398 flux (sign-reversed) in April-August averaged in the SPWSTMW formation region. A positive surface
 399 heat flux value indicates heat gain by the ocean, and vice versa.

400 Previous studies showed that variability in SST around New Zealand is closely
 401 related to ENSO (Sprintall et al., 1995; Mullan, 1998; Sutton & Roemmich, 2001),
 402 which tends to be cooler and leads to more SPWSTMW formed in the southwestern
 403 subtropical Pacific during El Niño years. To further investigate this relationship, we
 404 perform empirical orthogonal function (EOF) analyses of SST, net surface heat flux,
 405 and latent heat flux anomalies in the South Pacific. Only the first three EOF modes
 406 are considered here. The first EOF of SST explains about 48.5% of the total variance
 407 while the second and third EOF explains 22.0% and 10.7% respectively. As shown in
 408 Figure 9a, the first EOF mode of SST exhibits a notable interannual variability during
 409 the period 2004-2019, with negative values over the whole SPWSTMW formation
 410 region. Its time series corresponds well with the SOI, with their correlation coefficient

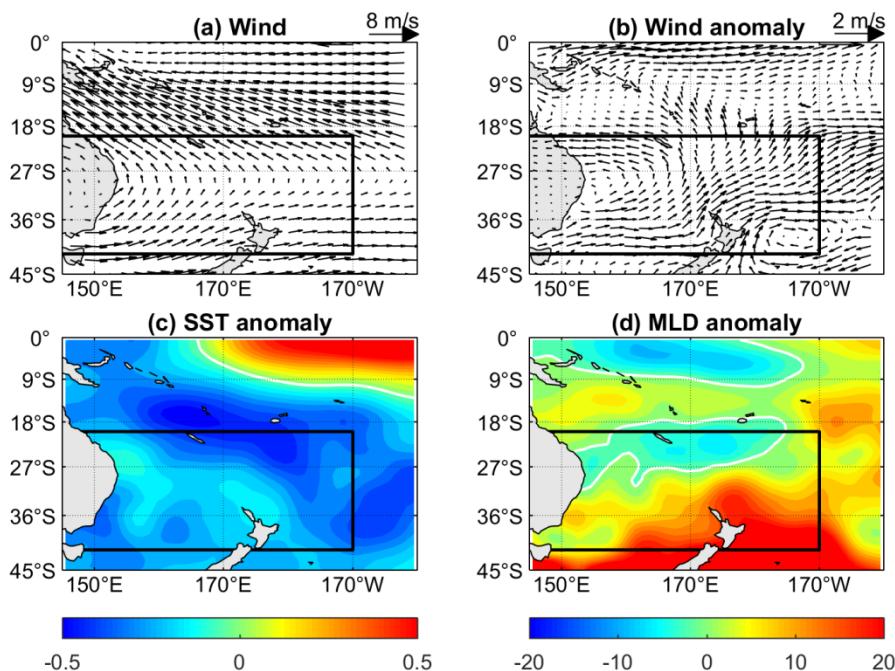
411 reaching -0.68, satisfying the 95% confidence level. This suggests that SST in the
 412 SPWSTMW formation region gets cooler during El Niño years and warmer during La
 413 Niña years. The first EOF mode of net surface heat flux is also closely related to the
 414 SOI, with their correlation coefficient reaching -0.70, which is significant at the 95%
 415 confidence level.


416 Further inspection of the NCEP re-analysis products indicate that, among the four
 417 components of surface heat flux (i.e., latent heat flux, sensible heat flux, solar
 418 radiation, and long wave radiation), contribution from latent heat flux is dominant. In
 419 contrast, the spatial pattern of the first EOF mode of latent heat flux is similar to that
 420 of net surface heat flux, indicating that latent heat flux anomalies are primarily
 421 responsible for anomalous SST on interannual timescales.

422
 423 Figure 9. Spatial distribution and time series of the first EOF mode of (a) SST (°C), (b) net surface heat
 424 flux (W/m²), and (c) latent heat flux (W/m²) anomalies. (d) The first EOF time series of the SST (blue
 425 solid line), net surface heat flux (black solid line), latent heat flux (black dashed line), and the SOI (red
 426 solid line, sign-reversed). The black box represents the study region; the black dashed line denotes the
 427 zero line of each variable. All data are filtered by a 13 months moving average.

428

429 The question that arises immediately is how ENSO remotely influences SST in the
430 southwestern subtropical Pacific. Luo et al. (2011) suggested that SST in the
431 southeastern subtropical Pacific can be modulated by surface winds. Enhanced
432 surface winds can lead to more heat loss from the ocean to the atmosphere through the
433 wind-evaporation-SST (WES) feedback mechanism (Xie et al., 2010). Based on these
434 earlier studies, we hypothesize that, ENSO-related wind anomalies maybe a major
435 driver of SST anomalies in the southwestern subtropical Pacific on interannual
436 timescales. Latent heat flux is of particular importance to the WES feedback
437 mechanism. To test this hypothesis, we perform an empirical orthogonal function
438 (EOF) analysis of wind speed. The first EOF mode of wind speed exhibits interannual
439 variations during the period 2004-2019 (Figure 10a), with positive anomalies
440 covering most parts of the SPWSTMW formation region. Moreover, the time series of
441 the first EOF mode of wind speed shows a good correlation with the SOI, with a
442 correlation coefficient of -0.75 (exceeding 95% confidence level) (Figure 10b). This
443 result suggests that wind in the SPWSTMW formation region gets stronger than
444 normal during the El Niño period (negative phases of SOI) and vice versa. Moreover,
445 the first EOF mode of wind speed shows a similar spatial pattern to that of the
446 reverse-sign SST anomaly (Figure 9a). This indicates that, in the SPWSTMW
447 formation region, variability of SST is mainly caused by anomalous local wind
448 through the WES feedback mechanism. Beside the local wind, ocean dynamic
449 processes, such as Ekman transport due to anomalous wind, may also play a role in
450 moderating SST variability (Wang et al., 2015).


451

452 Figure 10. Same as for Figure 9 but for wind speed anomalies (m s^{-1})

453 To further illustrate the impact of ENSO on SPWSTMW variability, we conducted
 454 a composite analysis of wind anomalies for El Niño years. Considering that the MLD
 455 in the South Pacific reaches its maximum in August and the oceanic response to
 456 surface wind anomalies lags by 2-3 months, we use wind speeds averaged between
 457 May and June to represent the late austral autumn and early winter winds. Based on
 458 the NOAA's definition, there are four El Niño events (2004/2005, 2006/2007,
 459 2009/2010, and 2015/2016) during the period 2004-2019. As shown in Figure 11a, the
 460 climatological surface winds in late austral autumn and early winter (May-June) east
 461 of Australia show an anticyclonic rotation of the annual mean winds from
 462 southwestward to southeastward. When an El Niño develops in May-June, positive
 463 SST anomalies in the central-eastern equatorial Pacific induce a Gill-Matsuno-type
 464 wind response (Gill, 1980), with cyclonic wind anomalies north of New Zealand.
 465 These cyclonic wind anomalies cause anticyclonic wind anomalies east of Australia
 466 (Figure 11b). These anomalous winds enhance the local winds in the southwestern
 467 subtropical Pacific, resulting directly in an increase in latent heat flux, more heat loss

468 from the ocean to the atmosphere, and finally a decrease in SST (Figure 11c). The
 469 SST cooling further induces deeper MLD in the SPWSTMW formation region
 470 (Figure 11d). Furthermore, during an El Niño event, upper ocean stratification gets
 471 weaker due to stronger than normal wind stirring and heat loss to the atmosphere.
 472 This also provides a favorable condition for the development of a deeper mixed layer
 473 and hence a stronger SPWSTMW formation.

474

475
 476 Figure 11. (a) Climatological mean (May-June) surface wind speed (m/s), (b) composite of surface
 477 wind speed (m/s) anomalies during El Niño years in late austral autumn and early winter (May-June),
 478 (c) SST anomalies (August), and (d) MLD anomalies (August). The white solid lines denote the zero
 479 line of each variable.

480 As discussed above, during El Niño years, surface winds in the SPWSTMW
 481 formation region are stronger than during normal years. This enhances evaporation
 482 and leads to more heat loss to the atmosphere, causing a decrease in SST through the

483 WES feedback mechanism (Xie et al., 2010). The reduced SST further decreases
484 stratification and deepens the MLD. The deepening of the MLD in the SPWSTMW
485 formation region then enhances the horizontal MLD gradients and consequently the
486 lateral induction and subduction of the SPWSTMW, directly contributing to the
487 increase of the SPWSTMW volume. The situation is reversed during La Niña years.

488 Recently, a new type of El Niño has emerged from the conventional eastern Pacific
489 (EP) El Niño, referred to as El Niño-Modoki (Ashok et al., 2007; Freund et al. 2019),
490 or central Pacific El Niño (Yu & Kim, 2010). Because of different SST anomaly
491 patterns and intensities, remarkable differences exist in atmospheric circulation
492 anomalies between the two types of El Niño. Then, an interesting question arises
493 whether the SPWSTMW responds to CP El Niño and EP El Niño differently? During
494 the period 2004-2019, two strong El Niño events occurred. One was in 2009/2010,
495 and the other in 2015/2016, representing the CP and EP El Niño, respectively. As
496 shown in Figure 7, although both CP and EP El Niño events can lead to an increase in
497 SPWSTMW volume, there are still some differences in timing phase between the two
498 types of El Niño events. For example, during the 2009/2010 event, the anomalies of
499 the SPWSTMW volume peaked earlier than the mature phase of El Niño by 1-2
500 months. However, for the 2015/2016 event, the anomalies of the SPWSTMW volume
501 peaked after the mature phase of El Niño by 2-3 months. This question deserves
502 further investigation in future studies.

503 **5 Summary and Discussion**

504 This study utilizes a gridded Argo data product from January 2004 to September
505 2019 to explore the variability of the SPWSTMW volume and its relationship with
506 ENSO. Our results show that the mean thickness of the SPWSTMW is about 62 (± 10)
507 m, with its upper and lower boundary lying at about 60 m and 330 m, respectively.
508 Two local maxima (both exceeding 130 m) are identified. One lies around 156°E and
509 33°S, and the other near 172°E and 30°S.

510 The SPWSTMW volume exhibits significant variations on seasonal and interannual
511 timescales. On the seasonal timescale, the SPWSTMW volume shows three distinct
512 periods: the formation period (June-October), the isolation period
513 (November-February), and the dissipation period (March-May). The SPWSTMW
514 volume reaches its seasonal maximum of $6.15 (\pm 0.72) \times 10^5$ km³ in October and
515 minimum of $1.82 (\pm 0.51) \times 10^5$ km³ in June. This agrees well with the findings of
516 Holbrook and Maharaj (2008), who found that the SPWSTMW volume (west of 180°)
517 varies from a maximum of $6.6 (\pm 0.5) \times 10^5$ km³ in October to a minimum of $1.9 (\pm 0.4)$
518 $\times 10^5$ km³ in May based a different observation data (DASPO). Approximately, 71%
519 of the SPWSTMW formed in austral winter dissipates in the following seasons,
520 suggesting that the SPWSTMW hardly persists toward the next winter. The short
521 lifetime of SPWSTMW indicates that this water mass is mostly confined to
522 southwestern subtropical Pacific and not advected to locations very remote from the
523 formation region.

524 A remarkable interannual variability is identified in the SPWSTMW volume. This
525 variability is closely related to changes in the wintertime MLD. Surface heat flux
526 plays a dominate role in controlling the SPWSTMW volume variability through its
527 modulation of the MLD. More importantly, the interannual variability of the
528 SPWSTMW volume exhibits a significant ENSO signal, with positive anomalies
529 during El Niño periods and negative anomalies during La Niña periods. Such a link
530 between the SPWSTMW volume and ENSO has also been observed by previous
531 studies, such as Holbrook and Maharaj (2008) and Fernandez et al. (2017), based on
532 different observations during different periods of time.

533 Further analyses of surface wind, SST, surface heat flux, and latent heat flux
534 anomalies indicate that during El Niño periods, positive SST anomalies in the
535 equatorial central-eastern Pacific induce a Gill-Matsuno-type wind feedback (Gill,
536 1980), with anomalous winds enhancing the local winds, resulting in a decrease in
537 SST through the WES feedback in the SPWSTMW formation region (Xie et al.,
538 2010). It should be noted that the WES feedback is a two-way interaction between
539 wind and SST. For example, Marshall et al. (2015) argued that the local SST
540 anomalies induced rainfall and sea level pressure adjustment in the western Australian
541 coast can further affect the regional wind anomalies through a positive WES feedback
542 mechanism. Similarly, the negative SST anomaly to the north of the SPWSTMW
543 formation region can induces a Gill-Matsuno-type atmospheric response with an
544 anti-cyclonic circulation at the southwest side of the negative SST anomalies center
545 (Figure 11), thereby acting to further enhance the anti-cyclonic wind anomalies and

546 surface cooling (Gill, 1980). Enhanced surface cooling and wind stirring deepen the
547 MLD and eventually leave an imprint of ENSO on the SPWSTMW through lateral
548 induction.

549 Recently, Fernandez et al. (2017) found that the SPWSTMW inventory north of
550 New Zealand prior to 2000 was weakly correlated with ENSO, but their correlation
551 became significantly higher after 2000. Why this change happens has not been
552 explained yet. Some recent studies have indicated that, a decadal change in ENSO
553 cycle recently occurred around 2000, toward weaker-amplitude, higher-frequency,
554 and increased occurrence of CP El Niño events (Ashok et al., 2007; Yeh et al., 2009;
555 Lee & McPhaden, 2011; McPhaden, 2012; Lübbecke & McPhaden, 2014; Freund et
556 al. 2019). Interestingly, this change in ENSO cycle is consistent with that in
557 relationship between the SPWSTMW and ENSO. Then, are there any connections
558 between the increased correlation noted above after 2000 and the change in ENSO
559 cycles (especially the CP El Niño events)? Holbrook and Maharaj (2008) reported that
560 the relationship between the SPWSTMW and ENSO can be modulated by decadal
561 climate variability. Taschetto et al. (2009) also reported that the Australian monsoon
562 is more sensitive to positive SST anomalies in the central Pacific than those in the
563 eastern Pacific. Based on these results from previous studies, we propose a possible
564 explanation for this change in relationship between the SPWSTMW and ENSO
565 around 2000. The increased relationship between the SPWSTMW and ENSO after
566 2000 may be caused by a higher occurrence of anomalous warming events associated
567 with El Niño in the equatorial central Pacific. During the developing phase of an El

568 Niño event, positive SST anomalies in the central-eastern Pacific can induce a
569 Gill-Matsuno type wind feedback, strengthening the surface winds and enhancing the
570 SPWSTMW formation in the southwestern subtropical Pacific. Apparently, this
571 question can't be addressed using the Argo data along, and it requires further
572 investigation in future studies by using long-term reanalysis data and/or model
573 outputs.

574 Finally, we note that the variability of the SPWSTMW volume and SOI are not
575 completely in phase, suggesting that the ENSO is not the sole process governing the
576 variability of the SPWSTMW volume. Other processes, such as instabilities in the
577 East Australian Current and mesocale eddies, may also play a role (Qiu et al., 2007;
578 Oka et al., 2009; Xu et al., 2014; Wang et al., 2015). We will investigate these issues
579 in future studies.

580

581 **Acknowledgments**

582 J. Qi was supported by the Strategic Priority Research Program of Chinese Academy
583 of Sciences (XDB42000000), the National Natural Science Foundation of China
584 (41506020). T. Qu was supported by the National Science Foundation (1829809). B.
585 Yin was supported by the NSFC-Shandong Joint Fund (U1806227), the National Key
586 Research and Development Program of China (2017YFA06041021), the National
587 Basic Science and Technology Program of China (2013FY111300). The authors are
588 grateful to R.H. Xie for useful discussion on the topic and to three anonymous
589 reviewers for their helpful comments which improved the manuscript. The Argo data

590 were collected and made freely available by the International Argo Program and the
591 national programs that contribute to it. (<http://www.argo.ucsd.edu>,
592 <http://argo.jcommops.org>). The Argo Program is part of the Global Ocean Observing
593 System. NCEP Reanalysis Derived data was provided by the NOAA/OAR/ESRL
594 PSD, Boulder, Colorado, USA, from their web site at <https://www.esrl.noaa.gov/psd/>.
595 The ERA-Interim reanalysis data were obtained from the European Centre for
596 Medium-Range Weather Forecasts
597 (<https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim>). The
598 monthly Southern Oscillation Index (SOI) was obtained from the Australian
599 Government Bureau of Meteorology
600 (<http://www.bom.gov.au/climate/current/soi2.shtml>).
601

602 **References**

603 Alexander, M. A., Bladé, I., Newman, M., Lanzante, J. R., Lau, N. C., & Scott, J. D.
604 (2002). The atmospheric bridge: The influence of ENSO teleconnections on air-sea
605 interaction over the global oceans. *Journal of Climate*, 15, 2205-2231.
606 <https://doi.org/10.1029/2001GL014347>.
607 Ashok, K., Behera, S. K., Rao, S. A., Weng, H., & Yamagata, T. (2007). El Niño
608 Modoki and its possible teleconnection. *Journal of Geophysical Research: Oceans*,
609 112(C11). <https://doi.org/10.1029/2006JC003798>
610 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et
611 al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data

612 assimilation system. *Quarterly Journal of the Royal Meteorological Society*,
613 137(656), 553-597. <https://doi.org/10.1002/qj.828>

614 Drushka, K., Sprintall, J., & Gille, S. T. (2014). Subseasonal variations in salinity and
615 barrier-layer thickness in the eastern equatorial Indian Ocean. *Journal of*
616 *Geophysical Research: Oceans*, 119(2), 805-823.
617 <https://doi.org/10.1002/2013JC009422>

618 Fernandez, D., Sutton, P., & Bowen, M. (2017). Variability of the subtropical mode
619 water in the Southwest Pacific. *Journal of Geophysical Research*, 122(9),
620 7163-7180. <https://doi.org/10.1002/2017JC013011>

621 Freund, M., Henley, B. J., Karoly, D. J., McGregor, H., Abram, N. J., & Dommenech,
622 D. (2019). Higher frequency of Central Pacific El Nino events in recent decades
623 relative to past centuries. *Nature Geoscience*, 12(6), 450-455.
624 <https://doi.org/10.1038/s41561-019-0353-3>

625 Gill, A. E. (1980). Some simple solutions for heat-induced tropical circulation.
626 *Quarterly Journal of the Royal Meteorological Society*, 106(449), 447-462.
627 <https://doi.org/10.1002/qj.49710644905>

628 Hanawa, K., & Talley, L. (2001). Mode Waters, in *Ocean Circulation and Climate*, Int.
629 Geophys. Ser., vol. 77, edited by S. Siedler, J. Church, and J. Gould, pp. 373-386,
630 Academic, San Diego, Calif.

631 Holbrook, N. J., & Bindoff, N. L. (2000a). A Statistically Efficient Mapping
632 Technique for Four-Dimensional Ocean Temperature Data. *Journal of Atmosphericic*

633 and *Oceanic Technology*, 17(6), 831-846.

634 [https://doi.org/10.1175/1520-0426\(2000\)017<0831:ASEMTF>2.0.CO;2](https://doi.org/10.1175/1520-0426(2000)017<0831:ASEMTF>2.0.CO;2)

635 Holbrook, N. J., & Bindoff, N. L. (2000b). A digital upper ocean temperature atlas for
636 the southwest Pacific: 1955-1988. *Australian Meteorological and Oceanographic
637 Journal*, 49(1), 37-49.

638 Holbrook, N. J., & Maharaj, A. M. (2008). Southwest Pacific subtropical mode water:
639 A climatology. *Progress in Oceanography*, 77(4), 298-315.
640 <https://doi.org/10.1016/j.pocean.2007.01.015>

641 Huang, R. X., & Qiu, B. (1998). The structure of the wind-driven circulation in the
642 subtropical South Pacific Ocean. *Journal of Physical Oceanography*, 28(6),
643 1173-1186.
644 [https://doi.org/10.1175/1520-0485\(1998\)028<1173:TSOTWD>2.0.CO;2](https://doi.org/10.1175/1520-0485(1998)028<1173:TSOTWD>2.0.CO;2)

645 Kalnay, E., Kanamitsu, M., & Kistler, R. (1996). The NCEP/NCAR 40-Year
646 Reanalysis Project, *Bull. Amer. Meteor. Soc.*, 77, 437-472 (Vol. 2).

647 Ladd, C., & Thompson, L. (2000). Formation mechanisms for North Pacific central
648 and eastern subtropical mode waters. *Journal of Physical Oceanography*, 30(5),
649 868-887. [https://doi.org/10.1175/1520-0485\(2000\)030<0868:FMFNPC>2.0.CO;2](https://doi.org/10.1175/1520-0485(2000)030<0868:FMFNPC>2.0.CO;2)

650 Lee, T., & McPhaden, M. J. (2010). Increasing intensity of El Niño in the
651 central-equatorial Pacific. *Geophysical Research Letters*,
652 37(14).<https://doi.org/10.1029/2010GL>

653 Li, Z. (2012). Interannual and decadal variability of the subtropical mode water
654 formation in the South Pacific Ocean. *Ocean Modelling*, 47, 96-112.
655 <https://doi.org/10.1016/j.ocemod.2012.02.001>

656 Lübbeke, J. F., & Mcphaden, M. J. (2014). Assessing the twenty-first-century shift in
657 enso variability in terms of the bjerknes stability index. *Journal of Climate*, 27(7),
658 2577-2587. <https://doi.org/10.1175/JCLI-D-13-00438.1>

659 Luo, Y., Liu, Q., & Rothstein, L. M. (2009). Simulated response of North Pacific
660 Mode Waters to global warming. *Geophysical Research Letters*, 36(23).
661 <https://doi.org/10.1029/2009GL040906>

662 Luo, Y., Liu, Q., & Rothstein, L. M. (2011). Increase of South Pacific eastern
663 subtropical mode water under global warming. *Geophysical Research Letters*,
664 38(1). <https://doi.org/10.1029/2010GL045878>

665 Marshall, A. G., Hendon, H. H., Feng, M., & Schiller, A. (2015). Initiation and
666 amplification of the Ningaloo Niño. *Climate Dynamics*, 45, 2367-2385.
667 <https://doi.org/10.1007/s00382-015-2477-5>

668 Mcphaden, M. J., Zebiak, S. E., & Glantz, M. H. (2006). ENSO as an Integrating
669 Concept in Earth Science. *Science*, 314(5806), 1740-1745.
670 <https://doi.org/10.1126/science.1132588>

671 McPhaden, M. J. (2012). A 21st century shift in the relationship between ENSO SST
672 and warm water volume anomalies. *Geophysical Research Letters*, 39(9).
673 <https://doi.org/10.1029/2012GL051826>

674 Mullan, A. B. (1998). Southern hemisphere sea-surface temperatures and their
675 contemporary and lag association with New Zealand temperature and precipitation.
676 *International Journal of Climatology: A Journal of the Royal Meteorological*
677 *Society*, 18(8), 817-840.
678 [https://doi.org/10.1002/\(SICI\)1097-0088\(19980630\)18:8<817::AID-JOC261>3.0.C](https://doi.org/10.1002/(SICI)1097-0088(19980630)18:8<817::AID-JOC261>3.0.C)
679 O;2-E

680 Oka, E., Toyama, K., & Suga, T. (2009). Subduction of North Pacific central mode
681 water associated with subsurface mesoscale eddy. *Geophysical Research Letters*,
682 36(8). <https://doi.org/10.1029/2009GL037540>

683 Oka, E., & Qiu, B. (2012). Progress of North Pacific mode water research in the past
684 decade. *Journal of oceanography*, 68(1), 5-20.
685 <https://doi.org/10.1007/s10872-011-0032-5>

686 Oka, E., Qiu, B., Takatani, Y., Enyo, K., Sasano, D., Kosugi, N., et al. (2015).
687 Decadal variability of Subtropical Mode Water subduction and its impact on
688 biogeochemistry. *Journal of Oceanography* , 71(4), 389-400.
689 <https://doi.org/10.1007/s10872-015-0300-x>

690 Qiu, B., Chen, S., & Hacker, P. (2007). Effect of mesoscale eddies on subtropical
691 mode water variability from the Kuroshio Extension System Study (KESS).
692 *Journal of Physical Oceanography*, 37(4), 982-1000.
693 <https://doi.org/10.1175/JPO3097.1>

694 Qu, T., Xie, S. P., Mitsudera, H., & Ishida, A. (2002). Subduction of the North Pacific
695 mode waters in a global high-resolution GCM. *Journal of Physical Oceanography*,

696 32(3), 746-763.

697 [https://doi.org/10.1175/1520-0485\(2002\)032<0746:SOTNPM>2.0.CO;2](https://doi.org/10.1175/1520-0485(2002)032<0746:SOTNPM>2.0.CO;2)

698 Qu, T., Gao, S., Fukumori, I., Fine, R. A., Lindstrom, E. J. (2008). Subduction of
699 south pacific waters. *Geophysical Research Letters*, 35(2).

700 <https://doi.org/10.1029/2007GL032605>

701 Qu, T., Zhang, L., & Schneider, N. (2016). North Atlantic subtropical underwater and
702 its year-to-year variability in annual subduction rate during the Argo period.

703 *Journal of Physical Oceanography*, 46(6), 1901-1916.

704 <https://doi.org/10.1175/JPO-D-15-0246.1>

705 Roemmich, D., & Cornuelle, B. (1992). The subtropical mode waters of the South
706 Pacific Ocean. *Journal of physical oceanography*, 22(10): 1178-1187.

707 [https://doi.org/10.1175/1520-0485\(1992\)022<1178:TSMWOT>2.0.CO;2](https://doi.org/10.1175/1520-0485(1992)022<1178:TSMWOT>2.0.CO;2)

708 Roemmich, D., Gilson, J., Willis, J., Sutton, P., & Ridgway, K. (2005). Closing the
709 time-varying mass and heat budgets for large ocean areas: The Tasman Box.

710 *Journal of Climate*, 18(13): 2330-2343. <https://doi.org/10.1175/JCLI3409.1>

711 Roemmich, D., & Gilson, J. (2009). The 2004-2008 mean and annual cycle of
712 temperature, salinity, and steric height in the global ocean from the Argo Program.

713 *Progress in Oceanography*, 82(2), 81-100.

714 <https://doi.org/10.1016/j.pocean.2009.03.004>

715 Sato, K., & Suga, T. (2009). Structure and modification of the South Pacific Eastern
716 Subtropical Mode Water. *Journal of Physical Oceanography*, 39(7), 1700-1714.

717 <https://doi.org/10.1175/2008JPO3940.1>

718 Speer, K., & Forget, G. (2013). Global distribution and formation of mode waters. *In*
719 *International Geophysics*. <https://doi.org/10.1016/B978-0-12-391851-2.00009-X>

720 Sutton, P. J., & Roemmich, D. (2001). Ocean temperature climate off north-east New
721 Zealand. *New Zealand Journal of Marine and Freshwater Research*, 35(3),
722 553-565. <https://doi.org/10.1080/00288330.2001.9517022>.

723 Sprintall, J., Roemmich, D., Stanton, B., & Bailey, R. (1995). Regional climate
724 variability and ocean heat transport in the southwest Pacific Ocean. *Journal of*
725 *Geophysical Research: Oceans*, 100(C8), 15865-15871.
726 <https://doi.org/10.1029/95JC01664>

727 Taschetto, A. S., & England, M. H. (2009). El Niño Modoki impacts on
728 Australian rainfall. *Journal of Climate*, 22(11):3167-3174.
729 <https://doi.org/10.1175/2008JCLI2589.1>

730 Taschetto, A. S., Ummenhofer, C. C., Gupta, A. Sen, & England, M. H. (2009). Effect
731 of anomalous warming in the central Pacific on the Australian monsoon.
732 *Geophysical Research Letters*, 36(12). <https://doi.org/10.1029/2009GL038416>

733 Taschetto, A. S., Gupta, A. Sen, Jourdain, N. C., Santoso, A., Ummenhofer, C. C., &
734 England, M. H. (2014). Cold tongue and warm pool ENSO Events in CMIP5:
735 Mean state and future projections. *Journal of Climate*, 27(8):2861-2885.
736 <https://doi.org/10.1175/JCLI-D-13-00437.1>

737 Tsubouchi, T., Suga, T., & Hanawa, K. (2007). Three types of South Pacific
738 subtropical mode waters: Their relation to the large-scale circulation of the South

739 Pacific subtropical gyre and their temporal variability. *Journal of Physical*
740 *Oceanography*, 37(10), 2478-2490. <https://doi.org/10.1175/JPO3132.1>

741 Wang, X. H., Bhatt, V., & Sun, Y. J. (2015). Seasonal and inter-annual variability of
742 western subtropical mode water in the South Pacific Ocean. *Ocean Dynamics*,
743 65(1), 143-154. <https://doi.org/10.1007/s10236-014-0792-8>

744 Wong, A. P. S., & Johnson, G. C. (2003). South Pacific Eastern subtropical mode
745 water. *Journal of Physical Oceanography*, 33(7), 1493-1509.
746 [https://doi.org/10.1175/1520-0485\(2003\)033<1493:SPESMW>2.0.CO;2](https://doi.org/10.1175/1520-0485(2003)033<1493:SPESMW>2.0.CO;2)

747 Xie, S. P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., & Wittenberg, A. T. (2010).
748 Global warming pattern formation: Sea surface temperature and rainfall. *Journal of*
749 *Climate*, 23(4), 966-986. <https://doi.org/10.1175/2009JCLI3329.1>

750 Xie, S. P., Xu, L., Liu, Q., & Kobashi, F. (2011). Dynamical role of mode water
751 ventilation in decadal variability in the central subtropical gyre of the North Pacific.
752 *Journal of Climate*, 24(4), 1212-1225. <https://doi.org/10.1175/2010JCLI3896.1>

753 Xu, L., Xie, S.-P., McClean, J. L., Liu, Q., & Sasaki, H. (2014). Mesoscale eddy
754 effects on the subduction of North Pacific mode waters. *Journal of Geophysical*
755 *Research: Oceans*, 119(8), 4867-4886. <https://doi.org/10.1002/2014jc009861>

756 Yeh, S. W., Kug, J. S., Dewitte, B., Kwon, M. H., Kirtman, B. P., & Jin, F. F. (2009).
757 El Niño in a changing climate. *Nature*, 461(7263), 511-514.

758 Yu, J. Y., Kim, S. T., 2010. Three evolution patterns of central-Pacific El Niño.
759 *Geophysical Research Letters*, 37(8). <https://doi.org/10.1029/2010GL042810>

760 Yu, J.Y., Wang, X., Yang, S., Paek, H. & Chen, M. (2017). The changing El Niño–
761 Southern Oscillation and associated climate extremes (pp. 1–38). John Wiley &
762 Sons, Inc., Hoboken, NJ, USA.

763 Yu, K., Qu, T., Dong, C., & Yan, Y. (2015). Effect of subtropical mode water on the
764 decadal variability of the subsurface transport through the Luzon Strait in the
765 western Pacific Ocean. *Journal of Geophysical Research: Oceans*, 120(10),
766 6829–6842. <https://doi.org/10.1002/2015JC011016>

767