

Changes in the Subantarctic Mode Water Properties and Spiciness in the Southern Indian Ocean based on Argo Observations

Ying ZHANG^{a,b}, Yan DU^{a,b,c*}, Tangdong QU^d, Yu HONG^{a,b}, Catia M. DOMINGUES^{e,f,g},
Ming FENG^{h,i}

^a State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.

^b Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.

^c College of Marine Science, University of Chinese Academy of Sciences, Beijing, China.

^d *Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, CA, USA.*

^e National Oceanography Centre, Southampton, UK.

^f Centre of Excellence for Climate Extremes (CLEX), Australian Research Council, Tasmania, Australia.

^g Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Tasmania, Australia.

^h CSIRO Oceans and Atmosphere, Crawley, Western Australia, Australia.

ⁱ Centre for Southern Hemisphere Oceans Research, Hobart, Australia.

Corresponding author: Yan DU (duyan@scsio.ac.cn)

(Submitted to JPO, 2020/10/13, Revised, 2021/03/05)

20

ABSTRACT

21 The Subantarctic Mode Water (SAMW) plays an essential role in the global heat,
22 freshwater, carbon, and nutrient budgets. In this study, decadal changes in the SAMW
23 properties in the Southern Indian Ocean (SIO) and associated thermodynamic and dynamic
24 processes are investigated during the Argo era. Both temperature and salinity of the SAMW in
25 the SIO show increasing trends during 2004-2018. A two-layer structure of the SAMW trend,
26 with more warm and salty light SAMW but less cool and fresh dense SAMW, is identified.
27 The heaving and spiciness processes are important but have opposite contributions to the
28 temperature and salinity trends of the SAMW. A significant deepening of isopycnals (heaving),
29 peaking at $\sigma_0=26.7-26.8 \text{ kg} \cdot \text{m}^{-3}$ in the middle layer of the SAMW, expands the warm and
30 salty light SAMW and compresses the cool and fresh dense SAMW corresponding to the
31 change in subduction rate during 2004-2018. The change in the SAMW subduction rate is
32 dominated by the change in the mixed layer depth, controlled by the changes in wind stress
33 curl and surface buoyancy loss. An increase in the mixed-layer temperature due to weakening
34 northward Ekman transport of cool water leads to a lighter surface density in the SAMW
35 formation region. Consequently, density outcropping lines in the SAMW formation region shift
36 southward and favor the intrusion and entrainment of the cooler and fresher Antarctic surface
37 water from the south, contributing to the cooling/freshening trend of isopycnals (spiciness).
38 Subsequently, the cooler and fresher SAMW spiciness anomalies spread in the SIO via the
39 subtropical gyre.

40

SIGNIFICANCE STATEMENT

41 Subantarctic Mode Water is a distinct water mass with vertically uniform properties in the
42 Southern Hemisphere's subtropical gyres. Climate change is imprinted in the SAMW through
43 the ventilation at the base of the winter mixed layer. The ocean modulation associated with
44 wind-forced large-scale waves and circulation also plays an essential role in heat, salinity, and

45 water mass redistribution. A net increase in volume-weighted potential temperature and salinity
46 of the SAMW is found during the Argo era since 2004, resulting from a combination of climate
47 change and ocean modulation through opposite heaving and spiciness processes. This study
48 improves our understanding of the dynamics and thermodynamics involved in the SAMW
49 formation during rapid climate change.

50

51 **1 Introduction**

52 The Subantarctic Mode Water (SAMW) is characterized by layers of relatively uniform water
53 mass properties (thermostads, halostads, and pycnostads) over a large ocean volume (Hanawa
54 and Talley, 2001; McCartney, 1979). The SAMW is formed by convective overturn, arising
55 from buoyancy loss and wind forcing during winter in the deep mixed layers of the Subantarctic
56 Zone, between the Subtropical and Subantarctic Fronts (Downes et al., 2010; Holte et al., 2012;
57 Speer and Forget, 2013). The deep winter mixed layers appear as “pools” with uneven coverage
58 around the southern hemisphere oceans (Sallée et al., 2010a; Sallée et al., 2010b), with depths
59 ranging from 200 to 300 m in the southern Atlantic and southwestern Indian Oceans, and to
60 more than 500 m in the southeastern Indian and southern Pacific Oceans (Dong et al., 2008; Li
61 and Lee, 2017; McCartney, 1982). Processes involved in the deep winter mixed layers include
62 air-sea buoyancy fluxes, lateral circulation, Ekman and eddy-induced transport, diapycnal
63 mixing, and upwelling (Holte et al., 2012; Sallée et al., 2008a; Sallée et al., 2010a; Sallée et
64 al., 2006; Sloyan et al., 2010). The SAMW enters the interior ocean through subduction,
65 allowing fluid to pass irreversibly from the winter mixed layers into the permanent thermocline.
66 The subduction of the SAMW is driven by lateral induction and Ekman pumping (Downes et
67 al., 2017; Karstensen and Tomczak, 1997; Karstensen and Quadfasel, 2002a; Qu et al., 2020;
68 Sallée and Rintoul, 2011; Sallée et al., 2010a; Sallée et al., 2012). The subducted SAMW is
69 transported eastward with the Antarctic Circumpolar Current (ACC) and northward into the
70 adjacent subtropical gyres, contributing to the thermocline ventilation (Sloyan and Rintoul,
71 2001a, b; Speer and Forget, 2013; Talley, 2013). As part of the upper limb of the global
72 overturning circulation, the SAMW plays an essential role in the global heat, freshwater,
73 carbon, and nutrient budgets (DeVries et al., 2017; Gao et al., 2018; Jones et al., 2016;
74 McCartney, 1982; Sabine et al., 2004; Sallée et al., 2012; Sarmiento et al., 2004; Sloyan and
75 Rintoul, 2001b).

76 In the past decade, most of the ocean warming measured by the near-global array of Argo floats
77 occurred in the Southern Hemisphere, largely associated with changes in SAMW in the
78 southern Pacific and Indian Oceans (Desbruyères et al., 2017; Gao et al., 2018; Häkkinen et
79 al., 2016; Kolodziejczyk et al., 2019; Llovel and Terray, 2016; Portela et al., 2020; Roemmich
80 et al., 2015). The SAMW formation is vigorous in the South Indian Ocean (SIO), attracting
81 much attention recently. Speer et al. (1997) suggests that the SAMW formation rate in the SIO
82 in the density range of 26.5-27.2 kg m⁻³ is 25 Sv, with a peak at 26.9 kg m⁻³. An estimate of
83 19.8 Sv in the density range of 26.52-26.80 kg m⁻³ is reported by Marsh et al. (2000a) using
84 an isopycnal ocean circulation model. Sloyan and Rintoul (2001a, 2001b) provide an estimate
85 of 24 Sv in the density range of 26-26.8 kg m⁻³ through surface fluxes and diapycnal mixing
86 using an inverse model. A similar assessment of 20-26 Sv between 25.7 and 26.8 kg m⁻³ is
87 also given by Karstensen and Quadfasel (2002b). Cerovečki and Mazloff (2016) indicate a
88 SAMW formation rate in the SIO of 7.6 Sv by heat flux, including surface heat flux and heat
89 flux due to diapycnal mixing, and 9.6 Sv by freshwater flux, including surface freshwater flux
90 and freshwater flux due to diapycnal mixing, in the density range of 26.7-27.2 kg m⁻³, with a
91 peak at 26.8 kg m⁻³, based on a framework in which water mass transformation from one
92 isopycnal layer to an adjacent one by air-sea buoyancy fluxes or diapycnal mixing is estimated.
93 The deep winter mixed layers in the SIO extend from 50°E to south of Australia and are
94 confined to the Subantarctic Zone (Koch-Larrouy et al., 2010; Sallée et al., 2006), where three
95 classes of SAMW are found in different ventilation zones: (a) the light SAMW ($\sigma_\theta < 26.7 \text{ kg} \cdot \text{m}^{-3}$, L-SAMW) subducted west of the Kerguelen Plateau, (b) the medium SAMW ($\sigma_\theta = 26.7 - 26.8 \text{ kg} \cdot \text{m}^{-3}$, M-SAMW) southwest of Australia, and (c) the dense SAMW ($\sigma_\theta > 26.8 \text{ kg} \cdot \text{m}^{-3}$, D-SAMW), also the deepest, south of the Australian coast (Cerovečki et al., 2013; Fine,
99 1993; Hanawa and Talley, 2001; Herraiz-Borreguero and Rintoul, 2011; Koch-Larrouy et al.,
100 2010; McCartney, 1982; Rintoul and Sokolov, 2001; Talley, 1999; Thompson and Edwards,

101 1981; Wong, 2005). Waters in the SAMW formation regions in the SIO originates from the
102 Atlantic, the Agulhas Retroflection region, the Leeuwin Current, the Tasman Sea, and the
103 Antarctic Surface Waters (Koch-Larrouy et al., 2010). After subduction, two SAMW pathways
104 have been identified in the SIO based on the observations: a westward path along the South
105 Australian coast and a westward path across the South Australian Basin (Bye, 1972, 1983; Fine
106 et al., 2008; Koch-Larrouy et al., 2010; Middleton and Bye, 2007).

107 Argo observations show a two-layer density structure in the trend of the SAMW volume in the
108 SIO, with an upper-layer volume gain and a lower-layer volume loss over the past decade
109 (Hong et al., 2020; Kolodziejczyk et al., 2019; Portela et al., 2020). However, variability and
110 change in temperature and salinity of the SAMW in the SIO are still poorly documented. These
111 variability and change in the SAMW provide crucial memory for the climate system globally
112 and regionally (Banks et al., 2002).

113 Variability and change of temperature and salinity can be decomposed into variability and
114 change associated with vertical migration of isopycnal surfaces (heaving) and variability and
115 change along isopycnal surfaces (spiciness) (Bindoff and McDougall, 1994; McDougall and
116 Krzysik, 2015). Heaving can arise from adiabatic vertical movement of waters, anomalous
117 wind forcing, and water mass renewal (Clément et al., 2020; Häkkinen et al., 2016). Spiciness
118 can be generated by variability and change in the mixed layer, such as air-sea interface fluxes,
119 convective mixing, and anomalous subduction (Li and Wang, 2015; Luo, 2005; Nagura and
120 Kouketsu, 2018; Nonaka and Sasaki, 2007; Yeager and Large, 2004, 2007). Spiciness can also
121 result from variability and change in the interior ocean, for example, anomalous advection
122 across the mean isopycnal temperature-salinity front (Schneider, 2000). Observed variations in
123 properties of a water mass on isopycnal surfaces (spiciness) have commonly been attributed to
124 variations of surface temperature and salinity in the water's formation regions (Arbic and
125 Brechner Owens, 2001; Bindoff and Church, 1992; Bryden et al., 2003; Bryden et al., 1996;

126 Johnson and Orsi, 1997; Wong et al., 1999). Subsurface spiciness variations are advected by
127 geostrophic currents in the ocean interior, conveying mid-latitude signals to low latitudes, thus
128 playing an essential role in global and regional climate variability. Therefore, SAMW is
129 regarded as a good indicator of climate change (Banks et al., 2002).

130 In this study, we investigate the relative roles of the heaving and spiciness processes in the
131 variability and change of the SAMW properties in response to atmospheric/oceanic dynamics
132 and thermodynamics, providing a new insight for exploring variability and change of the
133 SAMW and its impact on the subtropical thermocline waters in the SIO.

134 The remainder of this paper is arranged as follows. Section 2 describes the datasets and methods
135 for calculating changes in the SAMW properties. The observed changes in the SIO and the
136 SAMW properties and associated thermodynamic and dynamic processes are described in
137 Section 3. Section 4 examines the subsurface spiciness in the SIO. Section 5 discusses the
138 possible dynamic processes affecting the SAMW properties. Conclusions are found in Section
139 6.

140 **2 Data and Method**

141 *a. Data*

142 To decompose ocean temperature and salinity changes into the heaving and spiciness
143 contributions from 2004 to 2018, we use the monthly gridded fields from the Roemmich-Gilson
144 Argo Climatology (RG Argo; (Roemmich and Gilson, 2009)) in this study. These monthly
145 fields have a regular 1° horizontal resolution and 58 vertical levels in the upper 2,000 m. The
146 Argo profiling floats are distributed throughout the SIO, and the cumulative number of floats
147 has increased from less than 500 in the early period of the program to more than 1,000 per
148 month after 2006 (Figure 1), providing a unique opportunity to detect the SAMW low-
149 frequency variability in the SIO.

150 Both the Global Precipitation Climatology Project (GPCP; (Adler et al., 2016)) version 2.3
151 combined monthly precipitation dataset and the Objectively Analyzed Air-sea Fluxes
152 (OAFlux; (Yu et al., 2008)) monthly evaporation dataset are used to assess surface freshwater
153 flux. Monthly surface heat flux and surface wind datasets are provided by the fifth generation
154 ECMWF atmospheric reanalysis (ERA5) of the global climate. The data for the period 2004-
155 2018 is used in this study.

156 *b Method*

157 1) POTENTIAL VORTICITY

158 Mode water refers to a thick layer of water with homogeneous physical properties covering a
159 large area of the ocean. Thus, mode water is featured with low potential vorticity (PV), which
160 stands out from the surrounding water masses as a PV minimum. PV provides an excellent
161 tracer for mode waters due to its conservative nature (McCartney, 1982). PV is given by:

$$162 \quad PV = \frac{(f+\xi)}{\rho} \frac{\partial \sigma_0}{\partial z} \quad (1)$$

163 Where f is the Coriolis parameter, ξ the relative vorticity, and $\rho =$
164 $\sigma_0 + 1000 \text{ kg} \cdot \text{m}^{-3}$ the potential density. The relative vorticity is usually negligible
165 compared to the planetary vorticity. The PV values that define the boundaries of specific mode
166 waters in the literature are generally obtained empirically from observations. Here, the SAMW
167 is defined as the layer of low PV ($<0.5 \times 10^{-10} \text{ m}^{-1} \cdot \text{s}^{-1}$) formed deeper than 200 dbar but
168 lighter than $\sigma_0 = 27.1 \text{ kg} \cdot \text{m}^{-3}$ (Banks et al., 2002; Wong, 2005).

169 2) GEOSTROPHIC STREAMFUNCTION (ACCELERATION POTENTIAL)

170 Geostrophic circulation transporting the SAMW from its formation regions is analyzed along
171 isopycnal surfaces using a Montgomery geostrophic streamfunction (McDougall, 1989;
172 Montgomery, 1937). The geostrophic streamfunction in isopycnal surfaces is expressed as

173
$$A = \phi_a + p\delta = p_0\delta_0 + \int_{\delta_0}^{\delta} pd\delta, \phi_a = \int_p^{p_0} \delta dp \quad (2)$$

174 Where p is pressure, δ specific volume anomaly, p_0 reference pressure, and δ_0 specific
175 volume anomaly at the reference pressure.

176 3) BUOYANCY CONTRIBUTION TO SUBDUCTION

177 Air-sea buoyancy forcing is an essential driver of the winter deep mixed layer via convection
178 (Downes et al., 2010). The net surface buoyancy input is given by

179
$$B_{\text{net}} = \frac{g\alpha}{C_p} Q_{\text{net}} - g\beta\rho_0 S_m (E - P) - \frac{g}{\rho_0 f} \vec{k} \times \vec{\tau} \cdot \nabla \rho_m \quad (3)$$

180 where a positive (negative) B_{net} indicates buoyancy gain (loss) that makes the surface density
181 lighter (denser). The first term of the right-hand side represents the air-sea heat fluxes (Q_{net}) is
182 the sum of shortwave and longwave radiative and latent and sensible heat fluxes). The second
183 term is the surface freshwater fluxes (evaporation minus precipitation, $E - P$). The third term
184 is the Ekman transport acting on the mixed layer density gradient, denoting Ekman-transport
185 heat and freshwater fluxes. The variable g is the gravitational force, C_p the heat capacity of
186 water, ρ_0 the reference surface density, S_m the mixed-layer salinity, f the Coriolis parameter,
187 α the thermal expansion coefficient and β the haline contraction coefficient. The relative
188 contribution of the surface heat and freshwater fluxes and the Ekman transport of heat and
189 freshwater can be obtained based on the equation, as the kinematic definition of subduction is
190 linked with the thermodynamics of the mixed layer (Downes et al., 2010; Marshall and
191 Marshall, 1995; Nurser and Marshall, 1991). Here, the mixed layer depth (MLD) is defined as
192 the depth where potential density differs from the 10 m value by $0.03 \text{ kg} \cdot \text{m}^{-3}$, which is
193 considered as the optimal measure of the MLD in the Southern Ocean (de Boyer Montégut et
194 al., 2004; Sallée et al., 2006).

195 4) NET ANNUAL MEAN SUBDUCTION RATE

196 A kinematic approach for diagnosing subduction rate proposed by Marshall et al. (1993) is
 197 used in this study to quantify the formation rate of the SAMW. The net annual subduction rate
 198 (S_{ann}) is defined as follow:

$$199 \quad S_{ann} = -\overrightarrow{u_H} \cdot \nabla H - w_e \quad (4)$$

200 Where $\overrightarrow{u_H}$ is the horizontal geostrophic velocity at the base of the mixed layer, H is the
 201 depth of wintertime mixed layer base, $w_e = curl(\frac{\tau}{\rho_0 f})$ is the vertical velocity controlled by the
 202 Ekman pumping. The first term $\overrightarrow{u_H} \cdot \nabla H$ is referred to as the lateral induction. The second is
 203 the vertical pumping. The positive subduction represents water irretrievably entering the
 204 thermocline layer from the mixed layer in late winter.

205 5) HEAVING AND SPICINESS IN THE SUBSURFACE LAYERS

206 The method proposed by Bindoff and McDougall (1994) is used to evaluate temperature and
 207 salinity changes of the SAMW in terms of heaving and spiciness contributions. The
 208 decomposition is formulated as

$$209 \quad \frac{d\theta}{dt} \Big|_p = \frac{d\theta}{dt} \Big|_n - \frac{dp}{dt} \Big|_n \frac{\partial\theta}{\partial p} + \text{Residual} \quad (5)$$

$$210 \quad \frac{ds}{dt} \Big|_p = \frac{ds}{dt} \Big|_n - \frac{dp}{dt} \Big|_n \frac{\partial s}{\partial p} + \text{Residual} \quad (6)$$

211 Where θ is potential temperature, S salinity, p pressure, t time. The subscript p and n denote
 212 that the derivative is along the constant pressure and the isopycnal surface, respectively. $\frac{\partial\theta}{\partial p}$ and
 213 $\frac{\partial s}{\partial p}$ are the vertical gradient of climatological mean potential temperature and salinity during
 214 2004-2018, respectively. The term on the left sides of Eqs. (5) and (6) represent the potential
 215 temperature and salinity change at pressure surface p . The first term on the right-hand sides of
 216 Eqs. (5) and (6) is referred to as the “spiciness” term, a change in temperature or salinity on a

217 fixed isopycnal surface, and the second term is the “heaving” term, an Eulerian measure of the
218 temperature or salinity change at a fixed depth.

219 **3 Results**

220 *a. Changes in SAMW Properties*

221 Over the past 15 years, the SIO has experienced a nearly uniform warming trend in the upper
222 200 m, with the warming pattern extending to 800 m south of 30°S and north of 12°S (Figure
223 2a). However, the zonally-averaged trend of the upper ocean salinity shows a less uniform
224 structure, with freshening around 10°S-30°S and salinification on its equatorward and poleward
225 sides (Figure 2b). The salinity trend south of 12°S extends down to 800 m. These changes in
226 temperature and salinity in the SIO might be tightly linked to the SAMW that occupies a large
227 portion of the subsurface layer from the subtropics to mid-latitudes, indicated by the
228 climatological PV minimum (Figures 2a and 2b).

229 The SAMW volume has undergone a significant reduction by up to $5.3 \times 10^{14} \text{ m}^3$ (11%) during
230 2004-2013, with only a slight increase after 2013 (Figure 2c). Changes in the SAMW volume
231 are closely related to changes in the SAMW thickness in the subtropical gyre (Figures 2c and
232 2d), which might respond to changes in the subduction rate of the SAMW and thickness of the
233 winter mixed layers in the Subantarctic Zone (Figure 6; (Downes et al., 2009; Hong et al.,
234 2020)).

235 As the impact of the SAMW volume variations on the volume-weighted mean potential
236 temperature/salinity is not significant (not shown), results are discussed in terms of volume-
237 weighted mean potential temperature/salinity anomalies with a climatological mean PV
238 $<0.5 \times 10^{-10} \text{ m}^{-1} \cdot \text{s}^{-1}$ in the SIO. The volume-weighted mean potential temperature (salinity)
239 shows significant variations during 2004-2018, with negative (detrended) anomalies during
240 2006-2010 (2007-2011), positive (detrended) anomalies during 2011-2015 (2012-2016), and

241 increasing linear trends of $1.1 \times 10^{-1} \text{ }^{\circ}\text{C} \cdot \text{decade}^{-1}$ ($0.5 \times 10^{-2} \text{ psu} \cdot \text{decade}^{-1}$) during the entire
242 period (Figures 2e and 2f). The linear trend of the SAMW potential temperature over 2004-
243 2018 is significant, exceeding the 95% confidence level; however, the linear trend of salinity
244 is non-significant. The difference between potential temperature and salinity variations might
245 be related to the vertical distribution of the two parameters (Figure S4). The potential
246 temperature within the SAMW layers decreases monotonically with pressure throughout the
247 SIO, while the salinity within the SAMW layers decreases with pressure in the subtropical zone
248 around 12°S-40°S but increases with pressure on its equatorward and poleward sides. The
249 convergence of upper-ocean low-salinity water above high-salinity water on the north and
250 south sides of the subtropical zone is unfavorable for the salinification of the SAMW. The
251 enhanced warm and fresh water transport into the tropical southeastern Indian Ocean by the
252 Indonesian Throughflow (ITF) over the past decades hinders the salinification of the SAMW
253 (Hu et al., 2019; Zhang et al., 2018). The changes in the SAMW properties are well captured
254 by the EN4.2 reanalysis (Figure S1 in the Supplemental Material). The climatological mean
255 potential temperature and salinity of the SAMW is 10.1 °C and 34.8 psu, respectively, close to
256 earlier estimates from Banks et al. (2002) of 10.5 °C and 34.9 psu for the PV minimum waters
257 of $<0.6 \times 10^{-10} \text{ m}^{-1} \cdot \text{s}^{-1}$. The interannual-to-decadal variation in potential temperature of the
258 SAMW is less remarkable than the 15-year linear trend, with its standard deviation only
259 accounting for ~35% of the total variance (Figure 2e and Table 1). On the other hand, the
260 interannual-to-decadal variation of the SAMW salinity is more remarkable than the linear
261 trend, with a much larger standard deviation that accounts for ~92% of the total variance
262 (Figure 2f and Table 1).

263 Changes in the SAMW properties are not uniform across different density layers. A two-layer
264 structure with an upper-layer volume gain and a lower-layer volume loss is found in the SAMW
265 during 2004-2018, consistent with changes in the SAMW thickness (Figures 3a and 3b). This

266 implies that more L-SAMW ($\sigma_0 < 26.7 \text{ kg} \cdot \text{m}^{-3}$) but less D-SAMW ($\sigma_0 > 26.8 \text{ kg} \cdot \text{m}^{-3}$) are
267 formed during this period (Hong et al., 2020; Portela et al., 2020). As a consequence, opposite
268 trends in heat and freshwater storage are exhibited in the two-layer structure, with an increasing
269 trend in the warm and salty L-SAMW and a decreasing trend in the cool and fresh D-SAMW
270 (Figures 3c and 3d), resulting in a net increase of the volume-weighted mean potential
271 temperature and salinity and therefore a net decrease in the potential density of the SAMW
272 (Figures 2e and 2f). The RG Argo results are consistent with that from the EN4.2 reanalysis
273 data (Figure S2).

274 Decomposition of the SAMW changes shows that both the heaving and spiciness processes are
275 at work, with changes due to the 15-year linear trend much larger than the interannual-to-
276 decadal variability (Figure 4 and Table 1). In terms of interannual-to-decadal variability,
277 heaving contributes to the SAMW warming/salinification during 2008-2014 and
278 cooling/freshening during the remaining period (Figures 4b and 4d). The spiciness contribution
279 is nearly out of phase from heaving (Figure 4b and 4d). For the SAMW potential temperature,
280 the interannual-to-decadal variability of heaving only explains 26% of the total variance, while
281 that of spiciness accounts for 48% of the total variance. Results for the SAMW salinity are
282 similar, with interannual-to-decadal variability of heaving and spiciness processes accounting
283 for 27% and 47% of the total variance, respectively.

284 For the 15-year linear-trend, heaving components for the decomposition of the SAMW
285 potential temperature and salinity show increasing trends of $0.43 \text{ }^{\circ}\text{C} \cdot \text{decade}^{-1}$ and $0.06 \text{ psu} \cdot$
286 decade^{-1} at 95% confidence, respectively, which contribute to the warming and salinification
287 of the SAMW; whereas the spiciness components experience decreasing trends of -0.15
288 $\text{ }^{\circ}\text{C} \cdot \text{decade}^{-1}$ and $-0.04 \text{ psu} \cdot \text{decade}^{-1}$, respectively, which contribute to the cooling and
289 freshening of the SAMW (Figures 4a and 4c). Furthermore, the warming/salinification of the
290 SAMW due to heaving is stronger than the cooling/freshening due to the spiciness process,

291 resulting in a net warming/salinification trend in potential temperature/salinity (Figures 4a and
292 4c). Similar results are found for the EN4.2 reanalysis data (Figure S3).

293 Since the interannual-to-decadal variation in heaving and spiciness is comparatively smaller,
294 in the following sections, we focus on the 15-year linear trend of the SAMW potential
295 temperature and salinity emerging from changes in heaving and spiciness.

296 *b. Vertical Migration of Isopycnals-Heaving*

297 The heaving contribution to warming/salinification of the SAMW (Figures 4a and 4c)
298 manifests as a deepening of isopycnal surfaces in the subtropical SIO during 2004-2018,
299 especially at $\sigma_0=26.5-26.9 \text{ kg} \cdot \text{m}^{-3}$ (Figure 5). Significant strengthening of wind stress and its
300 curl takes place over the Subantarctic Zone during 2004-2018, which contributes to the
301 deepening of isopycnals not only by the enhanced Ekman pumping, but also by strengthened
302 subtropical gyres and meridional overturning circulation (Liu et al., 2018; Qu et al., 2019). The
303 strengthening of wind stress over the SAMW formation region is closely related to the
304 poleward shift of the zero line of wind stress curl (Figure S5), associated with an increasing
305 Southern Annular Mode (Lee et al., 2019; Lovenduski, 2005). Moreover, the surface buoyancy
306 fluxes over the SAMW subduction region show a decreasing linear trend during 2004-2018,
307 which indicates a buoyancy loss of the ocean that favors a deepening MLD (Figures 5e and 5f).
308 Surface buoyancy fluxes are predominantly driven by air-sea heat flux (Figure S6).

309 The depth of $\sigma_0=26.5-26.9 \text{ kg} \cdot \text{m}^{-3}$ isopycnal surfaces in the subtropical SIO show a spatially
310 uneven deepening trend, with a maximum rate of up to $50 \text{ m} \cdot \text{decade}^{-1}$. The largest deepening
311 of the light isopycnal surfaces ($\sigma_0 \leq 26.7 \text{ kg} \cdot \text{m}^{-3}$) is located in the central SIO, while that of
312 the dense isopycnal surfaces ($\sigma_0 \geq 26.8 \text{ kg} \cdot \text{m}^{-3}$) in the eastern SIO, showing good
313 correspondence to the formation regions of those different SAMW classes. The deepening
314 weakens gradually as the subducted water spreads northwest-ward in the interior ocean.

315 Furthermore, the deepening of the $\sigma_0=26.5-26.9 \text{ kg} \cdot \text{m}^{-3}$ isopycnal surfaces is not uniform,
316 with its maximum occurring within the M-SAMW ($\sigma_0=26.7-26.8 \text{ kg} \cdot \text{m}^{-3}$, Figure 5). This
317 result implies that more warm and salty SAMW, but less cool and fresh SAMW, enters the
318 ocean interior via subduction and spreading laterally from its formation regions (Figures 3c, 3d
319 and 5), consistent with previous studies (Gao et al., 2018; Häkkinen et al., 2016; Qu et al.,
320 2020). This, in turn, explain the observed two-layer structure of the SAMW, with volume gain
321 in the upper layers and volume loss in the lower layers.

322 The subduction rate of the SAMW shows a large spatial variability with multipolar structures
323 of hot spots within the winter deep mixed layers (Figure 6a). These subduction rates ($400 \text{ m} \cdot$
324 yr^{-1}) are dominated by lateral induction, while contribution from vertical pumping is
325 relatively weak (Figures 6c and 6e). Similar multipolar structures are found in the trend of
326 subduction rate during 2004-2018 (Figure 6b), in which lateral induction seems to play a
327 dominant role (Figures 6b, 6d and 6e). The climatological mean of the SAMW subduction rate
328 is estimated to be 21 Sv , in agreement with previous studies (Marsh et al., 2000b). A decreasing
329 trend in the SAMW subduction rate is identified during 2004-2018, especially before 2013.
330 This decreasing trend is primarily responsible for the observed decrease in the SAMW volume.
331 Most of the decreasing trend in the SAMW subduction rate is due to lateral induction (Figure
332 6g), which in turn is dominated by changes in the MLD (Figures 6h and S7). An increasing
333 trend of the L-SAMW subduction rate and a decreasing trend of the D-SAMW subduction rate
334 are found, which support the two-layer structure of the SAMW volume gain in the upper layers
335 and volume loss in the lower layers (Figure S7).

336 Changes in the MLD are largely controlled by changes in wind stress and surface buoyancy
337 fluxes (Karstensen and Quadfasel, 2002b; Sallée et al., 2010a). A convergence (divergence) of
338 Ekman transport or a downward (upward) Ekman pumping (suction) over the SAMW
339 subduction region would drive a deeper (shallower) MLD and consequently a larger (small)

340 subduction. A buoyancy loss (gain) would deepen (shallow) the MLD by stronger (weaker)
341 convection. Here, we examine changes in the MLD, wind stress, and surface buoyancy fluxes
342 over the SAMW subduction regions where the winter MLD is deeper than 150 m. Variability
343 of the MLD in the subduction regions of different SAMW classes has its own characteristics
344 (Figure 7). In the L-SAMW subduction region, the MLD shows a quasi-biennial variation (Qu
345 et al., 2020), highly related to buoyancy forcing rather than wind forcing. The MLD also shows
346 a deepening trend during 2004-2018, corresponding to a weakened surface buoyancy flux. In
347 the M-SAMW and D-SAMW subduction regions, both buoyancy and wind forcing contribute
348 to the MLD variability. In the D-SAMW subduction region, long-lasting negative MLD
349 anomalies occur during 2007-2014 (Figure 7f), responsible for the reduction in the D-SAMW
350 subduction rate and volume (Hong et al., 2020). In addition, the diapycnal transformation from
351 the D-SAMW to the Antarctic Intermediate Waters might also contribute to the D-SAMW
352 volume loss (Portela et al., 2020).

353 *c. Temperature/Salinity Changes at Isopycnals-Spiciness*

354 The spiciness contribution to the cooling/freshening of the SAMW is mainly driven by density-
355 compensated changes in the winter mixed-layer properties in the SAMW formation region, as
356 explained below. The irreversible transfer of water mass from the mixed layer into the ocean
357 interior occurs within a short time scale of only 1-2 months. On the other hand, it takes more
358 than 3 years for the spiciness signals to spread into the interior of the subtropical ocean (Fine
359 et al., 2008; Karstensen and Tomczak, 1998; Koch-Larrouy et al., 2010). In addition to
360 isopycnal advection, diapycnal mixing and diffusion can also cause spiciness changes, which
361 tend to increase temperature and salinity by downward velocity in the thermocline of the SIO
362 (You, 1996). However, a decrease rather than an increase in temperature and salinity occurs in
363 the isopycnal surfaces. Therefore, diapycnal mixing and diffusion are not considered here as
364 major driving factors. Considering the 3-year delay, we compare the winter mixed layer

365 properties during 2010-2015 with those during 2004-2009 to explain changes in the interior
366 ocean during 2004-2018.

367 An increase in the mixed-layer temperature and salinity averaged between July to September
368 (JAS) is found in the SAMW formation region (Figures 8a and 8b); however, the spiciness in
369 the interior ocean shows cooling/freshening trends during 2004-2018 at 95% confidence
370 (Figures 4a, 4c and 12). Indeed, changes in the mixed layer alter the potential density as well
371 as the temperature and salinity of the subducted water along isopycnals.

372 The increase in temperature overwhelms the salinity effect and therefore reduces local density,
373 causing a southward displacement of the outcropping lines for the density surfaces between
374 26.5 and $26.8 \text{ kg} \cdot \text{m}^{-3}$ (Figure 8). The outcropping lines averaged over the SAMW formation
375 region move southward by more than 1-degree latitude, with temperature and salinity
376 decreasing by up to $0.6 \text{ }^{\circ}\text{C}$ and 0.1 psu, respectively (Figures 8e-8g). This overwhelms the
377 local increase of $0.4 \text{ }^{\circ}\text{C}$ in temperature and 0.5×10^{-1} psu in salinity averaged over the SAMW
378 formation region (Figures 9c and 9f). The strong meridional gradients of mixed-layer
379 temperature and salinity are responsible for the decrease in mixed-layer temperature and
380 salinity, respectively (Figures 8c and 8d). This poleward displacement of outcropping lines
381 thus induces cooler and fresher water, rather than warmer and saltier water, to subduct into the
382 permanent thermocline within the density range 26.5-26.8 $\text{kg} \cdot \text{m}^{-3}$ (Figures 8e and 8g). This
383 density-compensated change is responsible for the cooling and freshening contribution of
384 spiciness to the SAMW. Furthermore, the poleward displacement of outcropping lines causes
385 the expansion of the L-SAMW formation region and the shrinking of the D-SAMW formation
386 region, leading to a two-layer structure of the SAMW.

387 Although the subducted water becomes cooler and fresher, the volume of warm and salty L-
388 SAMW increases and the volume of cool and fresh D-SAMW decreases, resulting in a net gain
389 of the volume-weighted potential temperature and salinity of the SAMW.

390 *d. Changes in the Mixed Layer*

391 In the SAMW formation region, air-sea fluxes and equatorward Ekman transport are the main
392 drivers of property changes in the winter mixed layer (Dong et al., 2007; Rintoul and England,
393 2002; Sallée et al., 2006). Thus, the contribution of air-sea fluxes and Ekman transport to
394 changes in winter mixed-layer temperature and salinity in the SAMW formation region where
395 the winter MLD is deeper than 150 m needs to be assessed (Figure 9). A negative (positive)
396 value in budget results indicates heat or salt loss (gain) from the SAMW formation region.

397 In the climate mean state, the annual average net air-sea heat flux of $-87.3 \text{ W} \cdot \text{m}^{-2}$ represents
398 a release of heat from the ocean to the atmosphere over the SAMW formation region (Figure
399 9). The heat loss by air-sea heat flux is dominated by the longwave radiation ($-58.8 \text{ W} \cdot \text{m}^{-2}$)
400 and latent heat flux ($-105.3 \text{ W} \cdot \text{m}^{-2}$). The Ekman advection transports cooler water ($-25.9 \text{ W} \cdot$
401 m^{-2}) from the south thus cools the mixed layer in the SAMW formation region. Both of these
402 processes contribute to destabilizing the winter mixed layer via strong convective overturn.
403 Compared with 2004-2009, the increase in mixed-layer temperature during 2010-2015 is
404 dominated by the weakened Ekman advection. The Ekman advection of heat decreases by
405 around 13% from -28.0 to $-24.5 \text{ W} \cdot \text{m}^{-2}$ during 2010-2015 compared with 2004-2009, which
406 is attributed to subdued northward transport of cool water to the SAMW formation region. The
407 decrease in equatorward Ekman transport is driven by anomalous easterly winds south of 45°S
408 during 2010-2015 compared with 2004-2009 (Figures 9 and 10). The net air-sea heat flux is
409 positive (heat gain) in some areas southwest of Australia while a negative (heat loss) in most
410 central SIO areas. The net air-sea heat flux anomaly averaged over the mixed layer of the
411 SAMW formation region during 2004-2009 compared with that during 2010-2015 is negative,
412 which means more heat loss over the region of the deep mixed layer (Figures 9 and 10). The
413 strengthened latent heat flux is responsible for changing net air-sea heat flux (Figure 9c).

414 For mixed-layer salinity, the climatological mean Ekman advection transports fresher water (-
415 $87.9 \text{ psu} \cdot \text{mm} \cdot \text{day}^{-1}$) from the south and contributes to the freshening of the mixed-layer in
416 the SAMW formation region. However, the precipitation ($-86.7 \text{ psu} \cdot \text{mm} \cdot \text{day}^{-1}$) over the
417 SAMW formation region is almost equivalent to the evaporation ($105.3 \text{ psu} \cdot \text{mm} \cdot \text{day}^{-1}$).
418 Thus, the freshwater flux (evaporation minus precipitation, E-P) marginally increases the
419 mixed-layer salinity in the SAMW formation region. Compared with 2004-2009, similar to the
420 heat, the Ekman advection of freshwater decreases by around 14% from $-95.7 \text{ psu} \cdot \text{mm} \cdot$
421 day^{-1} to $-82.5 \text{ psu} \cdot \text{mm} \cdot \text{day}^{-1}$ during 2010-2015, contributing to the mixed-layer salinity
422 increase in the SAMW formation region (Figures 9 and 10). In addition, changes in freshwater
423 flux also contribute to the mixed layer's salinification during 2010-2015, with reduced
424 precipitation overwhelming weakened evaporation (Figures 9 and 10). Thus, air-sea freshwater
425 fluxes and Ekman freshwater advection dominate the increase in the mixed-layer salinity. In
426 contrast, the increase in the mixed-layer temperature is driven by Ekman heat advection rather
427 than air-sea heat fluxes.

428 *e. Relationship with the Southern Annular Mode*

429 The Southern Annular Mode (SAM), as a major driver of Southern Hemisphere variability, is
430 featured by a seesaw pattern for atmospheric mass between the mid- and high-latitudes of the
431 Southern Hemisphere (Hartmann and Lo, 1998; Thompson and Wallace, 2000). The SAM is
432 characterized by multiple timescales, with more frequent positive events in recent decades
433 (Figure S8). On the decadal to multi-decadal timescale, the SAM is in positive phase during
434 2004-2018 (Figure 11a). North of 50°S , the zonal wind stress weakens during the positive
435 phase of SAM, as their correlation is negative. In contrast, the zonal wind stress south of 50°S
436 strengthens during positive SAM, as their correlation turns positive (Figure 11b). Thus, positive
437 wind stress curl anomalies occur over $40^{\circ}\text{-}55^{\circ}\text{S}$ (Figure 11c), consistent with previous studies

438 (Hall and Visbeck, 2002; Lovenduski, 2005; Marshall, 2003; Yang et al., 2016). Furthermore,
439 the meridional Ekman advection can be influenced by changes in SAM. The mixed-layer
440 temperature and salinity show a weak positive correlation with the SAM index at 95%
441 confidence (Figures 11d and 11e), which can explain, to a certain extent, the observed changes
442 in the mixed-layers. Positive correlations between the net air-sea and latent heat fluxes and the
443 SAM index are found in the central SIO. In contrast, no significant correlation exists in most
444 SAMW formation regions (Figures 11f and 11g). The correlation between
445 evaporation/precipitation and the SAM index is negative, which means reduced evaporation
446 and precipitation (Figures 11h and 11i). This result is consistent with the changes in
447 evaporation and precipitation during 2004-2015.

448 ENSO might be another important driver of the SAMW variability in the SIO by affecting the
449 air-sea interactions over the SAMW formation region (Sallée et al., 2008b). The impact of
450 ENSO on the SAMW properties is not analyzed in this study, and we leave it for a future
451 investigation.

452 **4 Spiciness Variations in the Permanent Thermocline**

453 The SAMW subducts into the permanent thermocline and continues to spread through the gyre
454 circulation. It retains the winter conditions of its formation region and efficiently transports
455 temperature and salinity anomalies caused by air-sea interactions. The anomalous temperature
456 and salinity are mainly advected by the mean geostrophic current along the isopycnal surfaces
457 (Luyten et al., 1983), which are temperature-salinity compensated and referred to as spiciness
458 anomalies. A significant cooling and freshening (spiciness) trend is found on the $\sigma_{\theta}=26.5-26.8$
459 $\text{kg} \cdot \text{m}^{-3}$ isopycnal surfaces during 2004-2018, covering much of the SIO south of 10°S. The
460 most robust cooling and freshening trends reach up to $-0.4 \text{ }^{\circ}\text{C} \cdot \text{decade}^{-1}$ and -0.1
461 $\text{psu} \cdot \text{decade}^{-1}$ at 95% confidence on the $\sigma_{\theta}=26.5-26.8 \text{ kg} \cdot \text{m}^{-3}$ isopycnal surfaces,

462 respectively (Figures 12a and 12b). This results in the subduction of cooler and fresher water
463 due to poleward displacement of outcropping lines.

464 The pathways of spiciness anomalies are largely set by the subtropical gyre circulation in the
465 SIO (Figure 12). There are two distinct pathways for the spread of spiciness anomalies from
466 the SAMW formation region. Firstly, the spiciness anomalies of the SAMW generated off the
467 southwest coast of Australia spread slowly northward to the tropics via the anticyclonic
468 subtropical gyre and then rapidly westward by the South Equatorial Current (Figure 12c),
469 suggesting that the spiciness anomalies propagate at speed close to the mean current velocities
470 (Kolodziejczyk et al., 2019). Secondly, the spiciness anomalies west of 100°E extend
471 northwestward, towards the subtropical southwestern Indian Ocean, through the subtropical
472 gyre (not shown). A positive spiciness signal occurs in the SAMW outcropping areas during
473 2004-2009, while a negative spiciness signal takes place during 2010-2015 (Figure 12d). It
474 takes around 3 years for these spiciness signals to spread into the interior of the subtropical
475 ocean. Thus, a significant freshening/cooling trend on the $\sigma_0=26.5-26.8 \text{ kg} \cdot \text{m}^{-3}$ isopycnal
476 surfaces appear over much of the SIO during 2004-2018 (Figures 12). Moreover, the
477 strengthening Indonesian Throughflow over the past decades might contribute to the
478 cooling/freshening trend between 15°S and 20°S in the SIO (Hu et al., 2019; Li and Wang,
479 2015; Zhang et al., 2018). The enhanced circulation in the SIO (not shown) might also
480 contribute to the spiciness anomalies when this anomalous current crosses the salinity front (Li
481 et al., 2012; Schneider, 2000), which likely explains the uneven spatial distribution of the
482 spiciness anomalies.

483 **5 Discussion**

484 The SAMW subduction rate is closely related to the deep winter mixed layers in the SAMW
485 formation region. Air-sea buoyancy forcing and wind forcing are considered the two most

486 important processes responsible for the formation of deep winter mixed layers in the
487 Subantarctic Zone (Holte et al., 2012). Gao et al. (2018) point out that wind forcing rather than
488 buoyancy forcing is responsible for increases in the depth and thickness of the SAMW over
489 the southern hemisphere oceans during 2005-2015 through stronger convective overturn. Qu
490 et al. (2020) suggest that the deepening mixed layers and consequently the increasing SAMW
491 subduction rate contribute to increasing the SAMW volume during 2005-2019, as a result of
492 strengthening westerly winds. However, Kolodziejczyk et al. (2019) imply that the Ekman
493 pumping anomalies can not explain the deepening of isopycnal surfaces and that the air-sea
494 buoyancy flux anomalies may be the possible driving force during 2006-2015. Hong et al.
495 (2020) suggest that changes in both sea surface buoyancy flux and Ekman pumping contribute
496 to the MLD changes over the SAMW formation region in the SIO during 2004-2015. Thus, the
497 relative importance of air-sea buoyancy flux and wind forcing varies with different periods and
498 formation regions.

499 In this study, we investigate the role of air-sea buoyancy flux and Ekman pumping to
500 understand the thermodynamic and dynamic processes involved in the MLD variability
501 observed during 2004-2018. The air-sea heat exchange and surface winds from both ERA5 and
502 NCEP2 are used to calculate the sea surface buoyancy flux and Ekman pumping to test the
503 uncertainties due to datasets. The results from ERA5 are consistent with those from NCEP2
504 (not shown). A decreasing trend of the buoyancy flux occurs in the SAMW formation region
505 during 2004-2018. Meanwhile, wind stress curl shows a positive trend in the SAMW formation
506 region during 2004-2018. Our results indicate that the increasing trend of the L-SAMW
507 subduction rate can be explained by strengthening downward Ekman pumping and buoyancy
508 loss via more robust mixing during 2004-2018.

509 A subduction-heaving-transformation sequence is proposed to explain the volume balance of
510 the water masses in the interior ocean, and this is regarded as the primary mechanism driving

511 the volume variability of the SAMW (Portela et al., 2020). It suggests that the transformation
512 rates not only result from ocean surface buoyancy fluxes, but also from diapycnal mixing in
513 the ocean interior. Diapycnal mixing is well known to be important near the ocean's surface
514 and bottom (Cerovečki et al., 2013; Rintoul, 2018; Rintoul and Naveira Garabato, 2013;
515 Abernathey et al., 2016). In addition, the importance of diapycnal mixing for water transport
516 has been reported at intermediate depths of 500-1000 m in certain conditions (Garabato et al.,
517 2004; Portela et al., 2020). Cerovečki and Mazloff (2016) assess the role of air-sea buoyancy
518 fluxes and diapycnal mixing in the SAMW formation in the density range of 26.7-27.2
519 $\text{kg} \cdot \text{m}^{-3}$ using the SOSE model results during 2008-2010. The formation rate is 7.9 Sv due to
520 surface buoyancy flux and 8.8 Sv due to ocean diapycnal mixing, balanced by advective export
521 into the interior ocean. A net transformation between Upper Circumpolar Deep Water and the
522 lighter Antarctic Intermediate Water/SAMW layers is found by estimating water mass
523 conversion at the surface and within the interior ocean (Downes et al., 2011; Lumpkin and
524 Speer, 2007; Sloyan and Rintoul, 2001b). More recently, Portela et al. (2020) suggest that the
525 diapycnal transformation from the lower to the upper layers plays an essential role in the
526 SAMW upper-layer volume gain.

527 **6 Summary**

528 A gridded Argo dataset is used to investigate the formation and property variations of the
529 SAMW and their impacts on spiciness in the subtropical SIO during 2004-2018. A
530 warming/salinification trend of the SAMW is observed, within a two-layer structure,
531 consisting of relatively thicker layer of more warm, salty and light SAMW and a thinner layer
532 of cool, fresh and dense SAMW, during the period of observation. The decomposition of
533 temperature and salinity anomalies shows that both heaving and spiciness are essential for the
534 observed changes in the SAMW properties. The warming/salinification contribution from

535 heaving is more substantial than the cooling/freshening contribution from spiciness. Thus, an
536 overall warming/salinification trend of the SAMW is detected in the SIO.

537 The intensifying wind stress curl over the Subantarctic Zone leads to the deepening of the
538 isopycnal surfaces of the SAMW during 2004-2018. This deepening of isopycnal surfaces is
539 also supported by the surface buoyancy flux loss during 2004-2018. The maximum deepening
540 of the isopycnal surfaces is found in the M-SAMW, favoring not only an increase in the volume
541 of the warm and salty L-SAMW but also a decrease in the volume of the cool and fresh D-
542 SAMW (Figure 13).

543 The cooling/freshening contribution from the spiciness process is mainly due to a southward
544 displacement of density outcropping lines, which induces the subduction of colder and fresher
545 water from the south. The southward displacement of density outcropping lines in the SAMW
546 formation region during 2010-2015 is due to the increased mixed-layer temperature during
547 winter.

548 The subducted colder and fresher water spreads along isopycnal surfaces via the subtropical
549 gyre, which results in a cooling/freshening spiciness trend over much of the subtropical SIO
550 during 2004-2018.

551 Our results suggest that the 15-year-long trends of the SAMW properties involve both dynamic
552 and thermodynamic processes. The decomposition of changes in the SAMW properties into
553 heaving and spiciness processes relates closely to climate variability, ocean ventilation, and
554 air-sea interaction induced thermohaline shifts. The SAMW transmits surface signals at high
555 latitudes into the ocean interior towards lower latitudes, providing important memory for
556 climate variability and anthropogenic change. The changes of ocean temperature and salinity
557 caused by ocean ventilation and air-sea forced thermohaline shifts are quite significant but with
558 opposite signs under current climate change; however, this cannot be displayed in Cartesian
559 coordinates. Further investigations using particle tracking (Lange and van Sebille, 2017) in

560 conjunction with climate model simulations (Eyring et al., 2016), and more attention to the
561 dynamics and thermodynamics drivers, will help to increase understanding of present-day and
562 future SAMW changes, and therefore of our changing climate system.

563

564 *Acknowledgments.*

565 This study is supported by the National Natural Science Foundation of China (42006026,
566 41906180, and 41830538), the Natural Science Foundation of Guangdong Province, China
567 (2020A1515010361), the Chinese Academy of Sciences (XDB42010304, XDA15020901,
568 133244KYSB20190031, and LTOZZ2005), and the Southern Marine Science and Engineering
569 Guangdong Laboratory (Guangzhou) (GML2019ZD0303, and 2019BT02H594). T. Qu was
570 supported by NSF through grant 1829809. CMD was partially supported by an ARC Future
571 Fellowship FT130101532, an ARC Discovery Project (DP160103130), and the Transient
572 tracer-based Investigation of circulation and Thermal Ocean Change (TICTOC – NERC grant
573 NE/P019293/2).

574

575 *Data Availability Statement.*

576 Argo data were collected and made freely available by the International Argo Program and the
577 national programs that contribute to it (<http://www.argo.ucsd.edu>, <http://argo.jcommops.org>).
578 The ERA5 dataset is provided by CMEMS at
579 [https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-](https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form)
580 [means?tab=form.](#) The GPCP precipitation is obtained from NASA/GSFC
581 (<http://precip.gsfc.nasa.gov>). The OAFlux evaporation is available at <http://oaflux.whoi.edu>.

582

584 Adler, R., M. Sapiano, G. Huffman, D. Bolvin, G. Gu, J. Wang, E. Nelkin, P. Xie, L. Chiu, and
585 R. Ferraro (2016), The new version 2.3 of the Global Precipitation Climatology Project
586 (GPCP) monthly analysis product, *University of Maryland, April*, 1072-1084.

587 Arbic, B. K., and W. Brechner Owens (2001), Climatic warming of Atlantic intermediate
588 waters, *Journal of Climate*, 14(20), 4091-4108.

589 Banks, H., R. Wood, and J. Gregory (2002), Changes to Indian Ocean subantarctic mode water
590 in a coupled climate model as CO₂ forcing increases, *Journal of Physical Oceanography*,
591 32(10), 2816-2827.

592 Bindoff, N. L., and J. A. Church (1992), Warming of the water column in the southwest Pacific
593 Ocean, *Nature*, 357(6373), 59-62.

594 Bindoff, N. L., and T. J. McDougall (1994), Diagnosing climate change and ocean ventilation
595 using hydrographic data, *Journal of Physical Oceanography*, 24(6), 1137-1152.

596 Bryden, H. L., E. L. McDonagh, and B. A. King (2003), Changes in ocean water mass
597 properties: Oscillations or trends?, *Science*, 300(5628), 2086-2088.

598 Bryden, H. L., M. J. Griffiths, A. M. Lavin, R. C. Millard, G. Parrilla, and W. M. Smethie
599 (1996), Decadal changes in water mass characteristics at 24 N in the subtropical North
600 Atlantic Ocean, *Journal of Climate*, 9(12), 3162-3186.

601 Bye, J. A. T. (1972), Oceanic circulation south of Australia.

602 Bye, J. A. T. (1983), The General-Circulation in a Dissipative Ocean-Basin with Longshore
603 Wind Stresses, *Journal of Physical Oceanography*, 13(9), 1553-1563.

604 Cerovečki, I., and M. R. Mazloff (2016), The Spatiotemporal Structure of Diabatic Processes
605 Governing the Evolution of Subantarctic Mode Water in the Southern Ocean, *Journal of
606 Physical Oceanography*, 46(2), 683-710.

607 Cerovečki, I., L. D. Talley, M. R. Mazloff, and G. Maze (2013), Subantarctic Mode Water
608 Formation, Destruction, and Export in the Eddy-Permitting Southern Ocean State
609 Estimate, *Journal of Physical Oceanography*, 43(7), 1485-1511.

610 Clément, L., E. L. McDonagh, A. Marzocchi, and A. J. G. Nurser (2020), Signature of Ocean
611 Warming at the Mixed Layer Base, *Geophysical Research Letters*, 47(1).

612 de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone (2004), Mixed
613 layer depth over the global ocean: An examination of profile data and a profile - based
614 climatology, *Journal of Geophysical Research: Oceans*, 109(C12).

615 Desbruyères, D., E. L. McDonagh, B. A. King, and V. Thierry (2017), Global and Full-Depth
616 Ocean Temperature Trends during the Early Twenty-First Century from Argo and Repeat
617 Hydrography, *Journal of Climate*, 30(6), 1985-1997.

618 DeVries, T., M. Holzer, and F. Primeau (2017), Recent increase in oceanic carbon uptake
619 driven by weaker upper-ocean overturning, *Nature*, 542(7640), 215-218.

620 Dong, S., S. T. Gille, and J. Sprintall (2007), An assessment of the Southern Ocean mixed layer
621 heat budget, *Journal of Climate*, 20(17), 4425-4442.

622 Dong, S., J. Sprintall, S. T. Gille, and L. Talley (2008), Southern Ocean mixed - layer depth
623 from Argo float profiles, *Journal of Geophysical Research: Oceans*, 113(C6).

624 Downes, S. M., N. L. Bindoff, and S. R. Rintoul (2009), Impacts of Climate Change on the
625 Subduction of Mode and Intermediate Water Masses in the Southern Ocean, *Journal of*
626 *Climate*, 22(12), 3289-3302.

627 Downes, S. M., N. L. Bindoff, and S. R. Rintoul (2010), Changes in the Subduction of Southern
628 Ocean Water Masses at the End of the Twenty-First Century in Eight IPCC Models,
629 *Journal of Climate*, 23(24), 6526-6541.

630 Downes, S. M., A. S. Budnick, J. L. Sarmiento, and R. Farneti (2011), Impacts of wind stress
631 on the Antarctic Circumpolar Current fronts and associated subduction, *Geophysical*
632 *Research Letters*, 38(11), n/a-n/a.

633 Downes, S. M., C. Langlais, J. P. Brook, and P. Spence (2017), Regional Impacts of the
634 Westerly Winds on Southern Ocean Mode and Intermediate Water Subduction, *Journal*
635 *of Physical Oceanography*, 47(10), 2521-2530.

636 Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor
637 (2016), Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6)
638 experimental design and organization, *Geoscientific Model Development*, 9(5), 1937-
639 1958.

640 Fine, R. A. (1993), Circulation of Antarctic intermediate water in the South Indian Ocean, *Deep*
641 *Sea Research Part I: Oceanographic Research Papers*, 40(10), 2021-2042.

642 Fine, R. A., W. M. Smethie, J. L. Bullister, M. Rhein, D.-H. Min, M. J. Warner, A. Poisson,
643 and R. F. Weiss (2008), Decadal ventilation and mixing of Indian Ocean waters, *Deep*
644 *Sea Research Part I: Oceanographic Research Papers*, 55(1), 20-37.

645 Gao, L. B., S. R. Rintoul, and W. D. Yu (2018), Recent wind-driven change in Subantarctic
646 Mode Water and its impact on ocean heat storage, *Nature Climate Change*, 8(1), 58-+.

647 Garabato, A. C., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck (2004), Widespread
648 intense turbulent mixing in the Southern Ocean, *Science*, 303(5655), 210-213.

649 Häkkinen, S., P. B. Rhines, and D. L. Worthen (2016), Warming of the Global Ocean: Spatial
650 Structure and Water-Mass Trends, *Journal of Climate*, 29(13), 4949-4963.

651 Hall, A., and M. Visbeck (2002), Synchronous variability in the southern hemisphere
652 atmosphere, sea ice, and ocean resulting from the annular mode, *Journal of Climate*,
653 15(21), 3043-3057.

654 Hanawa, K., and L. D. Talley (2001), Mode waters, *International Geophysics Series*, 77, 373-
655 386.

656 Hartmann, D. L., and F. Lo (1998), Wave-driven zonal flow vacillation in the Southern
657 Hemisphere, *Journal of the Atmospheric Sciences*, 55(8), 1303-1315.

658 Herraiz-Borreguero, L., and S. R. Rintoul (2011), Subantarctic mode water: distribution and
659 circulation, *Ocean Dynamics*, 61(1), 103-126.

660 Holte, J. W., L. D. Talley, T. K. Chereskin, and B. M. Sloyan (2012), The role of air-sea fluxes
661 in Subantarctic Mode Water formation, *Journal of Geophysical Research: Oceans*,
662 117(C3), 1005-1030.

663 Hong, Y., Y. Du, T. Qu, Y. Zhang, and W. Cai (2020), Variability of the Subantarctic Mode
664 Water volume in the South Indian Ocean during 2004 - 2018, *Geophysical Research
Letters*, e2020GL087830.

665 Hu, S., Y. Zhang, M. Feng, Y. Du, J. Sprintall, F. Wang, D. Hu, Q. Xie, and F. Chai (2019),
666 Interannual to Decadal Variability of Upper-Ocean Salinity in the Southern Indian Ocean
667 and the Role of the Indonesian Throughflow, *Journal of Climate*, 32(19), 6403-6421.

668 Johnson, G. C., and A. H. Orsi (1997), Southwest Pacific Ocean water-mass changes between
669 1968/69 and 1990/91, *Journal of Climate*, 10(2), 306-316.

670 Jones, D. C., A. J. S. Meijers, E. Shuckburgh, J.-B. Sallée, P. Haynes, E. K. McAufield, and
671 M. R. Mazloff (2016), How does Subantarctic Mode Water ventilate the Southern
672 Hemisphere subtropics?, *Journal of Geophysical Research: Oceans*, 121(9), 6558-6582.

673 Karstensen, J., and M. Tomczak (1997), Ventilation processes and water mass ages in the
674 thermocline of the southeast Indian Ocean, *Geophysical Research Letters*, 24(22), 2777-
675 2780.

676 Karstensen, J., and M. Tomczak (1998), Age determination of mixed water masses using CFC
677 and oxygen data, *Journal of Geophysical Research: Oceans*, 103(C9), 18599-18609.

679 Karstensen, J., and D. Quadfasel (2002a), Water subducted into the Indian Ocean
680 subtropical gyre, *Deep-Sea Research II*, 49, 1441–1457.

681 Karstensen, J., and D. Quadfasel (2002b), Formation of Southern Hemisphere thermocline
682 waters: Water mass conversion and subduction, *Journal of Physical Oceanography*,
683 32(11), 3020-3038.

684 Koch-Larrouy, A., R. Morrow, T. Penduff, and M. Juza (2010), Origin and mechanism of
685 Subantarctic Mode Water formation and transformation in the Southern Indian Ocean,
686 *Ocean Dynamics*, 60(3), 563-583.

687 Kolodziejczyk, N., W. Llovel, and E. Portela (2019), Interannual Variability of Upper Ocean
688 Water Masses as Inferred From Argo Array, *Journal of Geophysical Research: Oceans*,
689 124(8), 6067-6085.

690 Lange, M., and E. van Sebille (2017), Parcels v0.9: prototyping a Lagrangian ocean analysis
691 framework for the petascale age, *Geoscientific Model Development*, 10(11), 4175-4186.

692 Lee, D. Y., M. R. Petersen, and W. Lin (2019), The Southern Annular Mode and Southern
693 Ocean Surface Westerly Winds in E3SM., *Earth and Space Science*, 6, 2624-2643.

694 Li, Q., and S. Lee (2017), A Mechanism of Mixed Layer Formation in the Indo–Western Pacific
695 Southern Ocean: Preconditioning by an Eddy-Driven Jet-Scale Overturning Circulation,
696 *Journal of Physical Oceanography*, 47(11), 2755-2772.

697 Li, Y., and F. Wang (2015), Thermocline spiciness variations in the tropical Indian Ocean
698 observed during 2003–2014, *Deep Sea Research Part I: Oceanographic Research Papers*,
699 97, 52-66.

700 Li, Y., F. Wang, and F. Zhai (2012), Interannual Variations of Subsurface Spiciness in the
701 Philippine Sea: Observations and Mechanism, *Journal of Physical Oceanography*, 42(6),
702 1022-1038.

703 Liu, W., J. Lu, S.-P. Xie, and A. Fedorov (2018), Southern Ocean Heat Uptake, Redistribution,
704 and Storage in a Warming Climate: The Role of Meridional Overturning Circulation,
705 *Journal of Climate*, 31(12), 4727-4743.

706 Llovel, W., and L. Terray (2016), Observed southern upper-ocean warming over 2005–2014
707 and associated mechanisms, *Environ. Res. Lett.*, 11, 124023.

708 Lovenduski, N. S. (2005), Impact of the Southern Annular Mode on Southern Ocean circulation
709 and biology, *Geophysical Research Letters*, 32(11).

710 Lumpkin, R., and K. Speer (2007), Global Ocean Meridional Overturning, *Journal of Physical*
711 *Oceanography*, 37(10), 2550-2562.

712 Luo, Y. (2005), On the connection between South Pacific subtropical spiciness anomalies and
713 decadal equatorial variability in an ocean general circulation model, *Journal of*
714 *Geophysical Research*, 110(C10).

715 Luyten, J. R., J. Pedlosky, and H. Stommel (1983), The Ventilated Thermocline, *Journal of*
716 *Physical Oceanography*, 13(2), 292-309.

717 Marsh, R., A. G. Nurser, A. P. Megann, and A. L. New (2000a), Water mass transformation in
718 the Southern Ocean of a global isopycnal coordinate GCM, *Journal of Physical*
719 *Oceanography*, 30(5), 1013-1045.

720 Marsh, R., A. J. G. Nurser, A. P. Megann, and A. L. New (2000b), Water Mass Transformation
721 in the Southern Ocean of a Global Isopycnal Coordinate GCM, *Journal of Physical*
722 *Oceanography*, 30(5), 1013-1045.

723 Marshall, D., and J. Marshall (1995), On the Thermodynamics of Subduction, *Journal of*
724 *Physical Oceanography*, 25(1), 138-151.

725 Marshall, G. J. (2003), Trends in the southern annular mode from observations and reanalyses,
726 *Journal of Climate*, 16(24), 4134-4143.

727 Marshall, J. C., R. G. Williams, and A. J. G. Nurser (1993), Inferring the Subduction Rate and
728 Period over the North Atlantic, *Journal of Physical Oceanography*, 23(7), 1315-1329.

729 McCartney, M. (1979), Subantarctic mode water, *Woods Hole Oceanographic Institution*
730 *Contribution*, 3773, 103-119.

731 McCartney, M. S. (1982), The subtropical recirculation of Mode Waters, *J Mar Res*, 40(436),
732 427-464.

733 McDougall, T. J. (1989), Streamfunctions for the lateral velocity vector in a compressible
734 ocean, *J Mar Res*, 47(2), 267-284.

735 McDougall, T. J., and O. A. Krzysik (2015), Spiciness, *J Mar Res*, 73(5), 141-152.

736 Middleton, J. F., and J. A. T. Bye (2007), A review of the shelf-slope circulation along
737 Australia's southern shelves: Cape Leeuwin to Portland, *Progress in Oceanography*,
738 75(1), 1-41.

739 Montgomery, R. B. (1937), A suggested method for representing gradient flow in isentropic
740 surfaces, *Bulletin of the American Meteorological Society*, 18(6-7), 210-212.

741 Nagura, M., and S. Kouketsu (2018), Spiciness Anomalies in the Upper South Indian Ocean,
742 *Journal of Physical Oceanography*, 48(9), 2081-2101.

743 Nonaka, M., and H. Sasaki (2007), Formation Mechanism for Isopycnal Temperature–Salinity
744 Anomalies Propagating from the Eastern South Pacific to the Equatorial Region, *Journal*
745 *of Climate*, 20(7), 1305-1315.

746 Nurser, A. J. G., and J. C. Marshall (1991), On the Relationship between Subduction Rates and
747 Diabatic Forcing of the Mixed Layer, *Journal of Physical Oceanography*, 21(12), 1793-
748 1802.

749 Portela, E., N. Kolodziejczyk, C. Maes, and V. Thierry (2020), Interior water-mass variability
750 in the Southern-Hemisphere oceans during the last decade, *Journal of Physical*
751 *Oceanography*.

752 Qu, T., I. Fukumori, and R. A. Fine (2019), Spin - Up of the Southern Hemisphere Super Gyre,
753 *Journal of Geophysical Research: Oceans*, 124(1), 154-170.

754 Qu, T., S. Gao, and R. A. Fine (2020), Variability of the Sub - Antarctic Mode Water
755 Subduction Rate During the Argo Period, *Geophysical Research Letters*, 47(13).

756 Rintoul, S. R., and S. Sokolov (2001), Baroclinic transport variability of the Antarctic
757 Circumpolar Current south of Australia (WOCE repeat section SR3), *Journal of*
758 *Geophysical Research: Oceans*, 106(C2), 2815-2832.

759 Rintoul, S. R., and M. H. England (2002), Ekman transport dominates local air-sea fluxes in
760 driving variability of Subantarctic Mode Water, *Journal of Physical Oceanography*,
761 32(5), 1308-1321.

762 Roemmich, D., and J. Gilson (2009), The 2004–2008 mean and annual cycle of temperature,
763 salinity, and steric height in the global ocean from the Argo Program, *Progress in*
764 *Oceanography*, 82(2), 81-100.

765 Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels (2015),
766 Unabated planetary warming and its ocean structure since 2006, *Nature climate change*,
767 5(3), 240-245.

768 Sabine, C. L., R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C.
769 Wong, D. W. Wallace, and B. Tilbrook (2004), The oceanic sink for anthropogenic CO₂,
770 *science*, 305(5682), 367-371.

771 Sallée, J. B., and S. R. Rintoul (2011), Parameterization of eddy-induced subduction in the
772 Southern Ocean surface-layer, *Ocean Modelling*, 39(1-2), 146-153.

773 Sallée, J. B., R. Morrow, and K. Speer (2008a), Eddy heat diffusion and Subantarctic Mode
774 Water formation, *Geophysical Research Letters*, 35(5).

775 Sallée, J. B., K. G. Speer, and R. Morrow (2008b), Response of the Antarctic Circumpolar
776 Current to atmospheric variability, *Journal of Climate*, 21(12), 3020-3039.

777 Sallée, J. B., K. G. Speer, and S. R. Rintoul (2010a), Zonally asymmetric response of the
778 Southern Ocean mixed-layer depth to the Southern Annular Mode, *Nature Geoscience*,
779 3(4), 273-279.

780 Sallée, J. B., N. Wienders, K. Speer, and R. Morrow (2006), Formation of subantarctic mode
781 water in the southeastern Indian Ocean, *Ocean Dynamics*, 56(5-6), 525-542.

782 Sallée, J. B., K. G. Speer, S. R. Rintoul, and S. Wijffels (2010b), Southern Ocean Thermocline
783 Ventilation, *Journal of Physical Oceanography*, 40(3), 509-529.

784 Sallée, J. B., R. J. Matear, S. R. Rintoul, and A. Lenton (2012), Localized subduction of
785 anthropogenic carbon dioxide in the Southern Hemisphere oceans, *Nature Geoscience*,
786 5(8), 579-584.

787 Sarmiento, J. L., N. Gruber, M. Brzezinski, and J. Dunne (2004), High-latitude controls of
788 thermocline nutrients and low latitude biological productivity, *Nature*, 427(6969), 56-60.

789 Schneider, N. (2000), A decadal spiciness mode in the tropics, *Geophysical Research Letters*,
790 27(2), 257-260.

791 Sloyan, B. M., and S. R. Rintoul (2001a), The Southern Ocean limb of the global deep
792 overturning circulation, *Journal of Physical Oceanography*, 31(1), 143-173.

793 Sloyan, B. M., and S. R. Rintoul (2001b), Circulation, renewal, and modification of Antarctic
794 mode and intermediate water, *Journal of Physical Oceanography*, 31(4), 1005-1030.

795 Sloyan, B. M., L. D. Talley, T. K. Chereskin, R. Fine, and J. Holte (2010), Antarctic
796 Intermediate Water and Subantarctic Mode Water Formation in the Southeast Pacific: The
797 Role of Turbulent Mixing, *Journal of Physical Oceanography*, 40(7), 1558-1574.

798 Speer, K., S. Rintoul, and B. Sloyan (1997), Subantarctic mode water formation by air-sea
799 fluxes, *Int. WOCE Newslett*, 29, 29-31.

800 Speer, K. G., and G. Forget (2013), Global distribution and formation of mode waters, in
801 *International Geophysics*, edited, pp. 211-226, Elsevier.

802 Talley, L. D. (1999), Some aspects of ocean heat transport by the shallow, intermediate and
803 deep overturning circulations, *Geophys. Mono. Ser.*, 112, 1-22.

804 Talley, L. D. (2013), Closure of the global overturning circulation through the Indian, Pacific,
805 and Southern Oceans: Schematics and transports, *Oceanography*, 26(1), 80-97.

806 Thompson, D. W. J., and J. M. Wallace (2000), Annular Modes in the Extratropical Circulation.
807 Part I: Month-to-Month Variability*, *Journal of Climate*, 13(5), 1000-1016.

808 Thompson, R. O., and R. Edwards (1981), Mixing and water-mass formation in the Australian
809 Subantarctic, *Journal of Physical Oceanography*, 11(10), 1399-1406.

810 Wong, A. P. S. (2005), Subantarctic Mode Water and Antarctic Intermediate Water in the South
811 Indian Ocean based on profiling float data 2000–2004, *J Mar Res*, 63(4), 789-812.

812 Wong, A. P. S., N. L. Bindoff, and J. A. Church (1999), Large-scale freshening of intermediate
813 waters in the Pacific and Indian oceans, *Nature*, 400(6743), 440-443.

814 Yang, H., G. Lohmann, W. Wei, M. Dima, M. Ionita, and J. Liu (2016), Intensification and
815 poleward shift of subtropical western boundary currents in a warming climate, *Journal of
816 Geophysical Research: Oceans*, 121(7), 4928-4945.

817 Yeager, S. G., and W. G. Large (2004), Late-winter generation of spiciness on subducted
818 isopycnals, *Journal of Physical Oceanography*, 34(7), 1528-1547.

819 Yeager, S. G., and W. G. Large (2007), Observational evidence of winter spice injection,
820 *Journal of Physical Oceanography*, 37(12), 2895-2919.

821 You, Y. (1996), Dianeutral mixing in the thermocline of the Indian Ocean, *Deep Sea Research
822 Part I: Oceanographic Research Papers*, 43(3), 291-320.

823 Yu, L., X. Jin, and R. A. Weller (2008), 2008: Multidecade global flux datasets from the
824 Objectively Analyzed Air-Sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes,
825 ocean evaporation, and related surface meteorological variables. Woods Hole
826 Oceanographic Institution OAFlux Project Tec, paper presented at Rep, Citeseer.

827 Zhang, Y., M. Feng, Y. Du, H. E. Phillips, N. L. Bindoff, and M. J. McPhaden (2018),
828 Strengthened Indonesian Throughflow Drives Decadal Warming in the Southern Indian
829 Ocean, *Geophysical Research Letters*, 45(12), 6167-6175.
830

831 **List of Tables**

832 **Table 1.** The standard deviation of total variations and interannual-to-decadal variations of
833 volume-weighted mean potential temperature and salinity of the SAMW and corresponding
834 heaving and spiciness process.

835

836

837 **Table 1.** The standard deviation of total variations and interannual-to-decadal variations of
 838 volume-weighted mean potential temperature and salinity of the SAMW and corresponding
 839 heaving and spiciness process.

	STD_{θ}	$STD_{\theta-H}$	$STD_{\theta-S}$	STD_S	STD_{S-H}	STD_{S-S}
Variations	0.0522	0.1986	0.0786	0.0051	0.0256	0.0180
Interannual-to-decadal variation	0.0184	0.0522	0.0377	0.0047	0.0068	0.0084
Percentage	35%	26%	48%	92%	27%	47%

840

841

842 **List of Figures**

843 **Figure 1.** (a) Distribution of Argo profiling floats in 2018 December. (b) Monthly number of
844 Argo profiling floats in the domain 20°-140°E and 10°-60°S (gray bars) and in the SAMW
845 formation region [black box in (a), back bars].

846 **Figure 2.** Linear trends of zonally averaged (60°-120°E) (a) potential temperature ($^{\circ}\text{C} \cdot \text{yr}^{-1}$,
847 shaded) and (b) salinity ($\text{psu} \cdot \text{yr}^{-1}$, shaded) for 2004-2018, superimposed with the
848 climatological mean potential density (black contour) and PV ($10^{-10} \text{ m}^{-1}\text{s}^{-1}$, enclosed green
849 contours). Blue contours in (a) and red contours in (b) show potential density averaged during
850 2004-2009 and 2010-2015, respectively. The dotted areas in (a-b) indicate that linear trends are
851 statistically significant at the 95% confidence levels from a modified Mann-Kendall test.
852 Annual mean, the interannual to decadal variability, and linear trend of (c) volume, (d)
853 thickness at 32.5°S, (e) potential temperature, (f) salinity anomalies of the SAMW. The $p < 0.05$
854 means that the linear trends are statistically significant at the 95% confidence levels.

855 **Figure 3.** Annual mean (a) volume, (b) thickness at 32.5°S, (c) ocean heat content, and (d)
856 ocean salinity content between different isopycnal layers of the SAMW. Light, Medium, and
857 Dense means L-SAMW, M-SAMW, and D-SAMW, respectively.

858 **Figure 4.** Contribution of heaving and spiciness processes to changes in the SAMW potential
859 temperature (a-b) and salinity (c-d). Trends are removed in (b) and (d).

860 **Figure 5.** (a-d) Linear trends of pressure ($\text{dbar} \cdot \text{decade}^{-1}$) of the $\sigma_{\theta}=26.5-26.8 \text{ kg} \cdot \text{m}^{-3}$
861 isopycnal surfaces during 2004-2018, superimposing with annual-mean low PV (contours).
862 Black contour represents mean value averaged over 2004-2018, blue (red) contour is mean
863 value averaged during 2004-2009 (2013-2018). The dots indicate the area where the fitted
864 linear trend is above 95% confidence level. Linear trend of (e) surface buoyancy flux ($10^{-7} \text{ kg} \cdot$
865 $\text{m}^{-1} \cdot \text{s}^{-3} \cdot \text{yr}^{-1}$, shaded), and (f) wind stress ($\text{N} \cdot \text{m}^{-2} \cdot \text{yr}^{-1}$, vectors) and wind stress curl
866 ($10^{-9} \text{ N} \cdot \text{m}^{-3} \cdot \text{yr}^{-1}$, shaded) during 2004-2018.

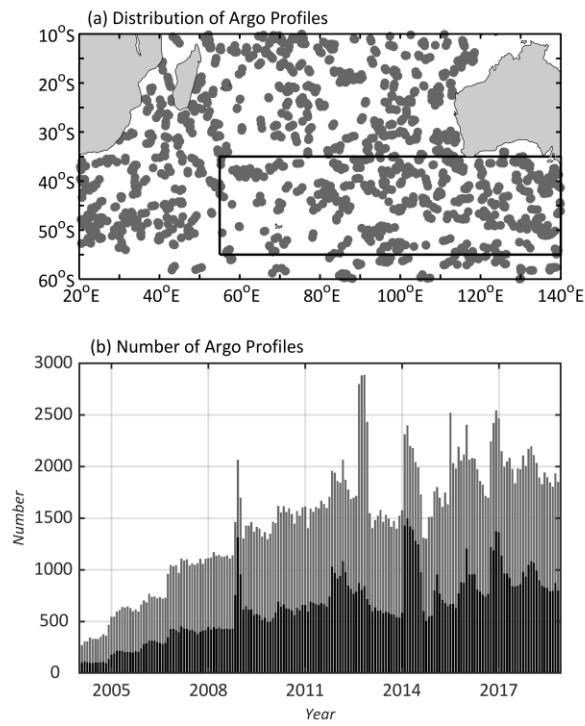
867 **Figure 6.** Climatological mean and linear trend of (a, b) annual subduction rate, (c, d) lateral
868 induction term, and (e, f) vertical pumping term during 2004-2018. Units are $m \cdot yr^{-1}$ and $m \cdot$
869 yr^{-2} , respectively. (g, h) Time series of annual mean subduction rate, lateral induction term,
870 and vertical pumping term averaged within the mixed-layer density range of 26.5-27.1 $kg \cdot$
871 m^{-3} . $u * \nabla H$, $um * \nabla H$, and $u * \nabla Hm$ in (h) represent lateral induction with temporally
872 geostrophic current and mixed layer depth, lateral induction with climatological geostrophic
873 current and temporally varying mixed layer depth, and lateral induction with climatological
874 mixed layer depth and temporally varying geostrophic current, respectively.

875 **Figure 7.** Wintertime (July-September, JAS) mixed-layer depth anomalies (bar), (a-c) sea
876 surface buoyance ($-B_{net}$, positive means buoyancy loss, line), and (d-f) downward Ekman
877 pumping velocity (line) averaged over the SAMW subduction regions (55° - 140° E, 30° - 55° S)
878 between different isopycnal layers. High-frequency signals are removed by applying a 13-
879 month running mean twice.

880 **Figure 8.** Wintertime (JAS) mixed-layer (a) temperature ($^{\circ}$ C, shaded) and (b) salinity (psu,
881 shaded) differences between 2010-2015 and 2004-2009, superimposing with climatological
882 mean potential density (solid black lines) and mixed layer depth of 150 m (dashed green lines)
883 during 2004-2009 and 2010-2015, respectively. Climatological mean mixed-layer (c)
884 temperature ($^{\circ}$ C) and (d) salinity (psu) meridional gradients in JAS during 2004-2018.
885 Wintertime (JAS) mixed-layer (e) potential density latitude and corresponding (f) temperature
886 and (g) salinity along longitude averaged during 2004-2018 and their differences between
887 2010-2015 and 2004-2009.

888 **Figure 9.** Mixed layer variations in the SAMW formation region and contribution of air-sea
889 fluxes and meridional Ekman heat/freshwater advection during winter (JAS). Time series of
890 mixed-layer (a) potential temperature, (b) climatological mean air-sea heat fluxes ($Q_{net} =$
891 $Q_{sw} + Q_{lw} + Q_{lh} + Q_{sh}$: net air-sea heat flux; Q_{sw} : shortwave radiation; Q_{lw} : longwave

892 radiation; Q_{lh} : latent heat flux; Q_{sh} : sensible heat flux) and meridional Ekman heat advection
893 ($Adv_e = -\rho C_p V_e \frac{dMLT}{dy}$) and (c) their changes between 2010-2015 and 2004-2009. Time series
894 of mixed-layer (c) salinity, (d) climatological mean air-sea freshwater fluxes [$S_0(E - P)$; P :
895 precipitation; E : evaporation] and meridional Ekman freshwater advection ($Adv_e = -V_e \frac{dMLS}{dy}$)
896 and (e) their changes between 2010-2015 and 2004-2009. Bars in (a and d) represent changes
897 in winter (JAS), and lines represent yearly mean change.

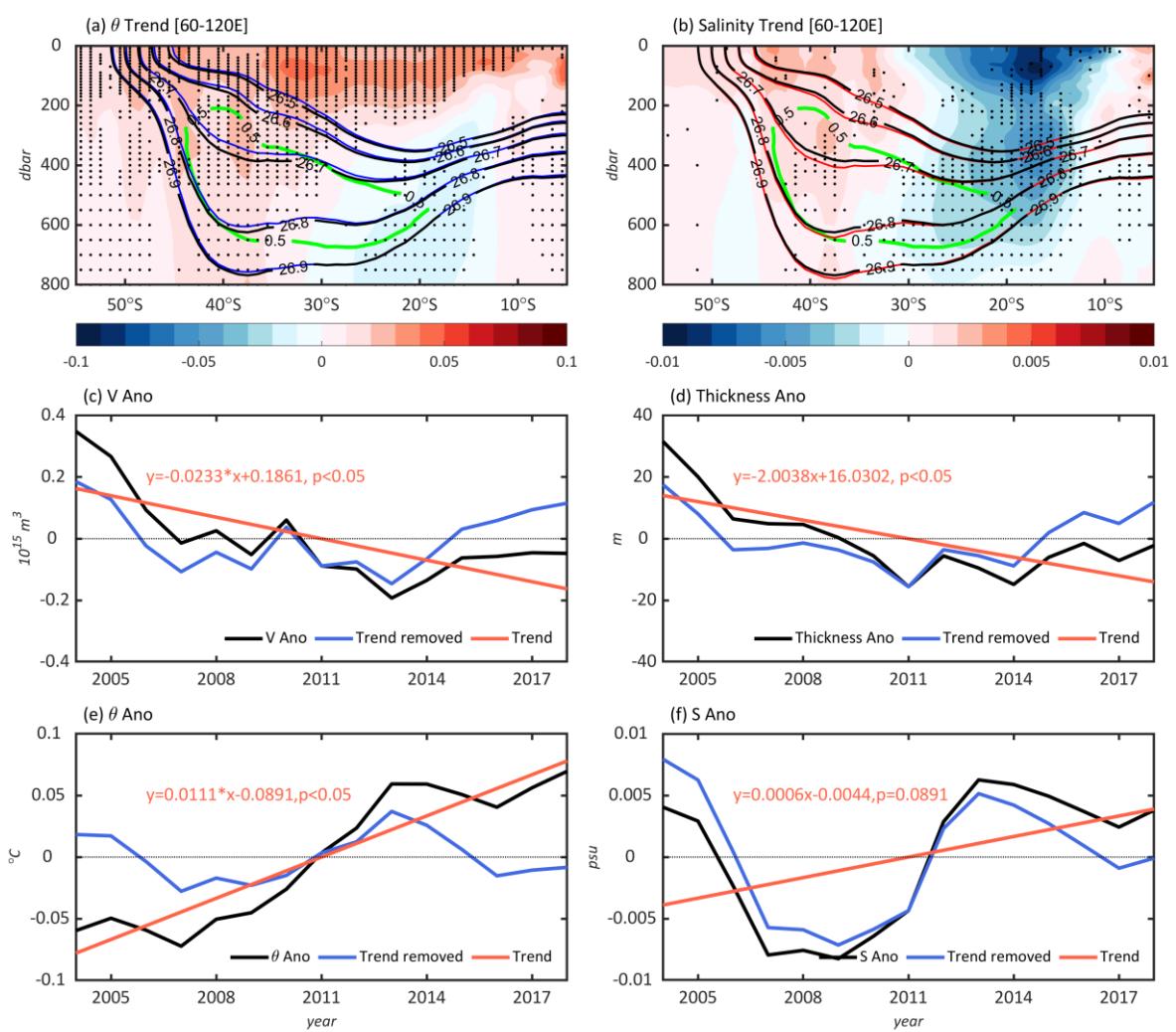

898 **Figure 10.** The change of (a) air-sea heat flux ($W \cdot m^{-2}$), (b) wind stress ($N \cdot m^{-2}$, vector) and
899 Ekman heat advection ($W \cdot m^{-2}$, shaded), (c) freshwater flux ($psu \cdot mm \cdot day^{-1}$), and (d) zonal
900 wind stress ($N \cdot m^{-2}$, contour) and Ekman freshwater advection ($psu \cdot mm \cdot day^{-1}$, shaded)
901 averaged during July-September between 2004-2009 and 2010-2015. The green contour in (a-
902 d) represents a winter deep mixed layer at a depth of 150 m averaged during 2004-2018.

903 **Figure 11.** (a) Time-series of the SAM index. The mapped correlation coefficient of (b) zonal
904 wind stress, (c) wind stress curl, (d) mixed-layer temperature, (e) mixed-layer salinity, (f) net
905 air-sea heat flux, (g) latent heat flux, (h) evaporation and (i) precipitation with the SAM index.
906 The dots in (b-i) indicate the area where fitted correlation is above 95% confidence level.

907 **Figure 12.** The linear trend of Argo annual mean (a) potential temperature ($^{\circ}C \cdot yr^{-1}$, shaded)
908 and (b) salinity ($psu \cdot yr^{-1}$, shaded) averaged on $\sigma_\theta=26.5-26.8 \text{ kg} \cdot m^{-3}$ isopycnal surfaces
909 during 2004-2018, superimposing with annual-mean streamlines (contours) and geostrophic
910 currents (vectors). (c) Annual-mean streamlines (acceleration potential) for mean current
911 averaged on 26.6-26.8 isopycnal surfaces from 2004-2018, superimposing with the pathway
912 for anomalous spiciness signals. (d) Hovmöller diagrams of Argo salinity anomalies along
913 point stations are shown in (c). High-frequency signals are removed by applying a 3-year
914 running mean.

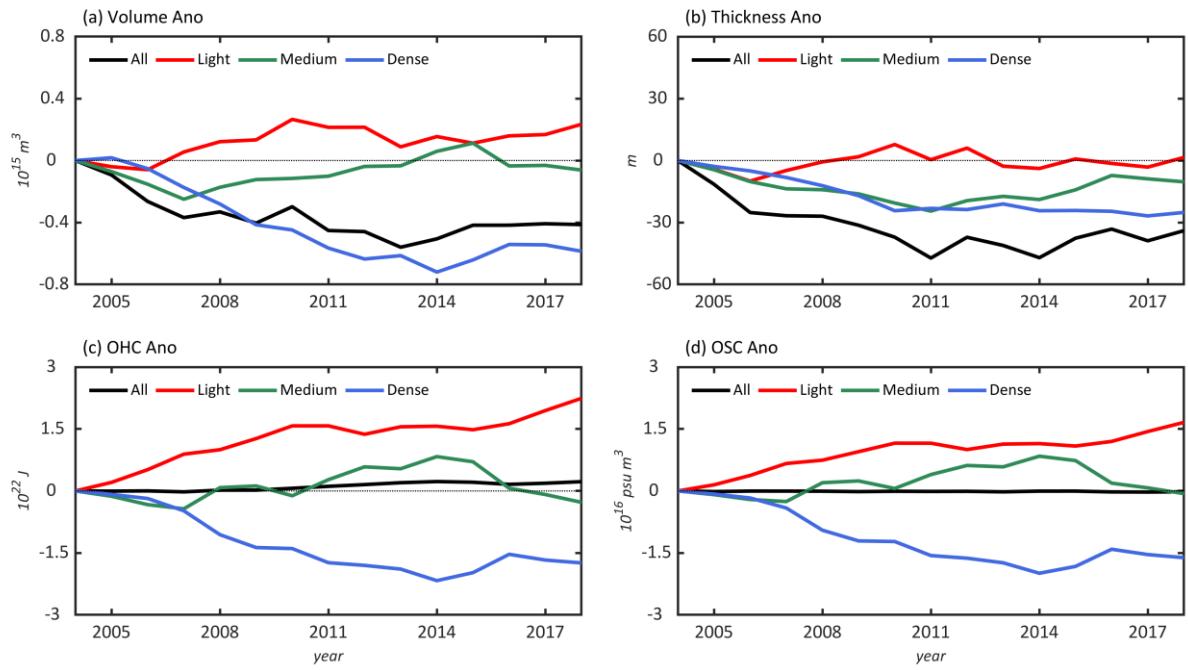
915 **Figure 13.** Schematic diagram of changes in the SAMW properties and formation. (a) Surface:
916 climatological mean winter mixed-layer temperature (shading), deep mixed layer at a depth of

917 150 m (black contour), and potential density (blue lines) during 2004-2009; Subsurface:
918 different classes of the SAMW (shading) and potential density (black lines) during 2004-2009,
919 and climatological mean low-PV (enclosed green contour); (b) Same with (a), but for the
920 (mixed layer) 2010-2015/ (subsurface) 2013-2018. Color and corresponding areas in the
921 subsurface low-PV (enclosed green contour) represent average temperature and volume of
922 different classes of the SAMW, respectively.

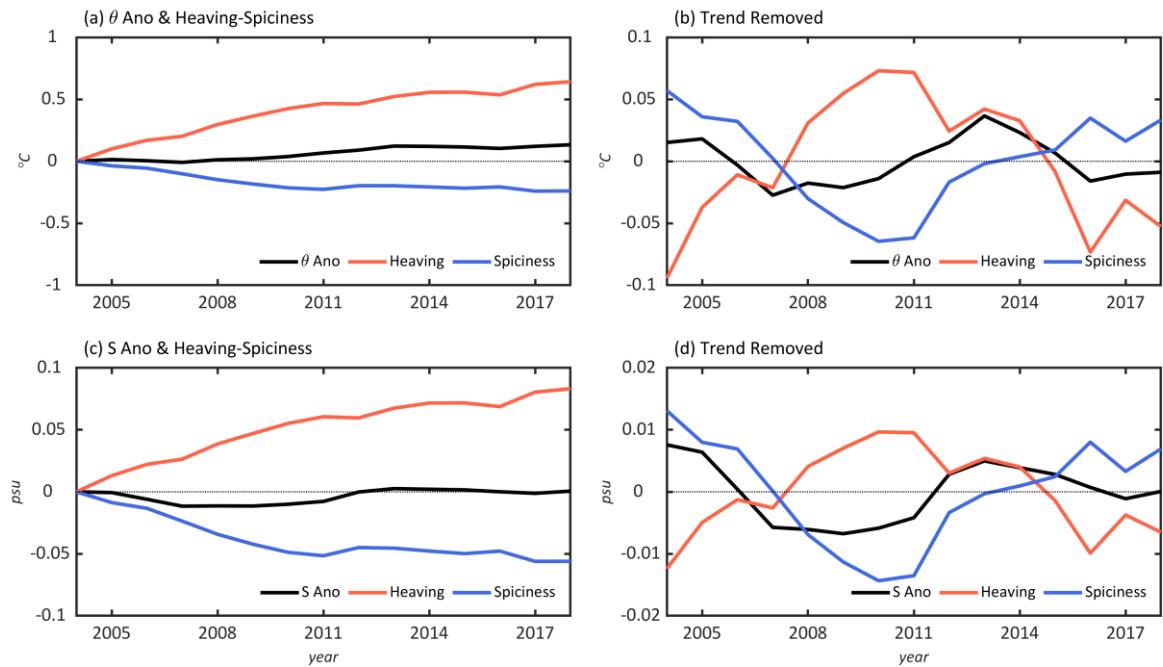

923

924 **Figure 1.** (a) Distribution of Argo profiling floats in 2018 December. (b) Monthly number of
 925 Argo profiling floats in the domain 20°-140°E and 10°-60°S (gray bars) and in the SAMW
 926 formation region [black box in (a), back bars].

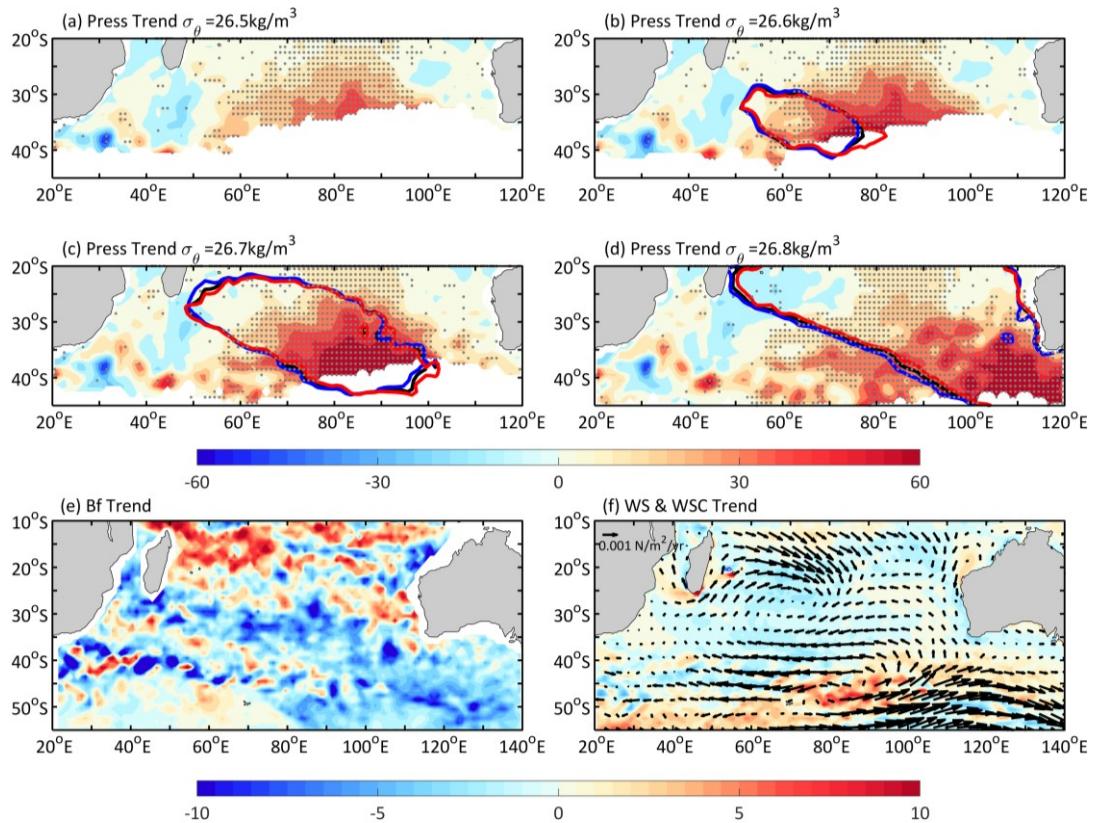
927

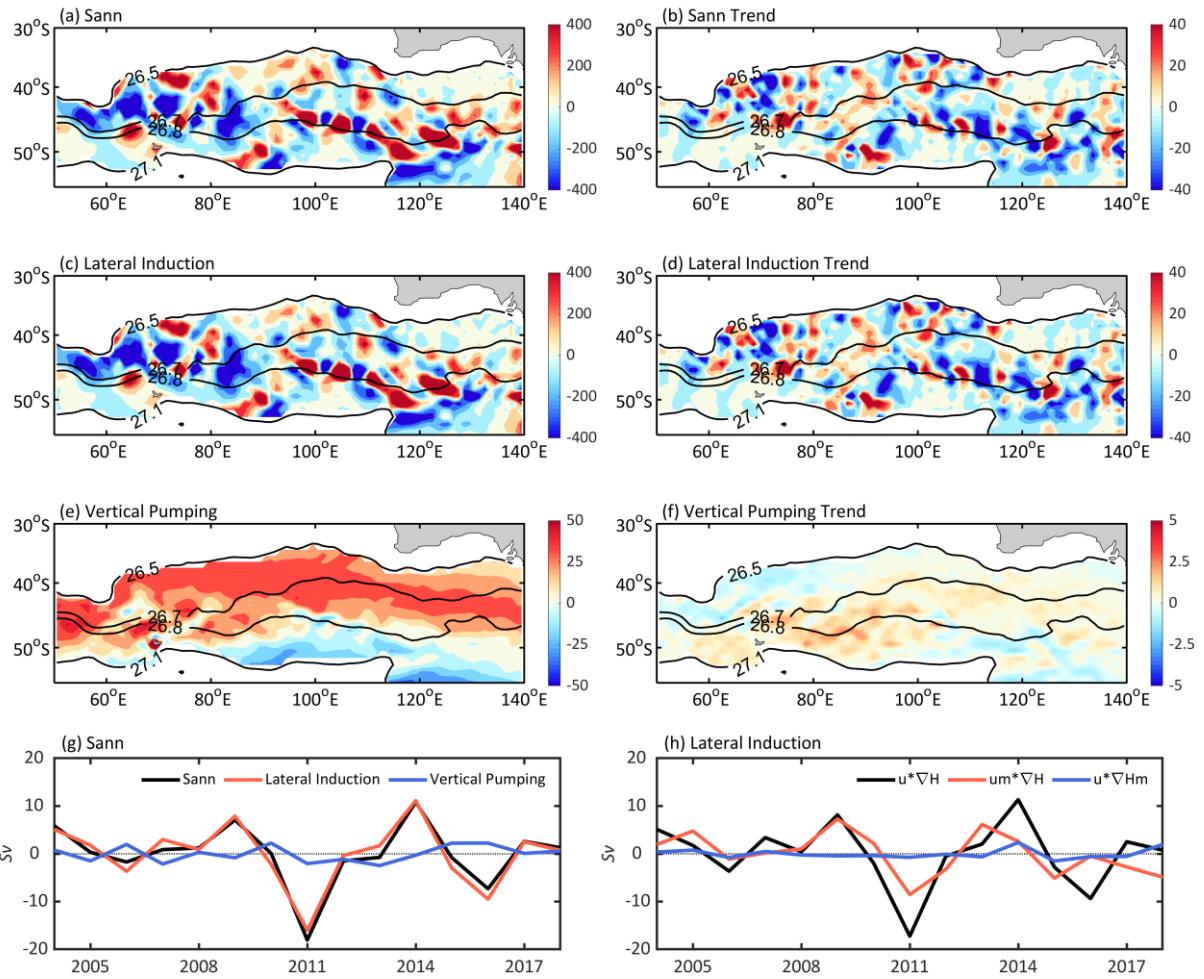

928

929



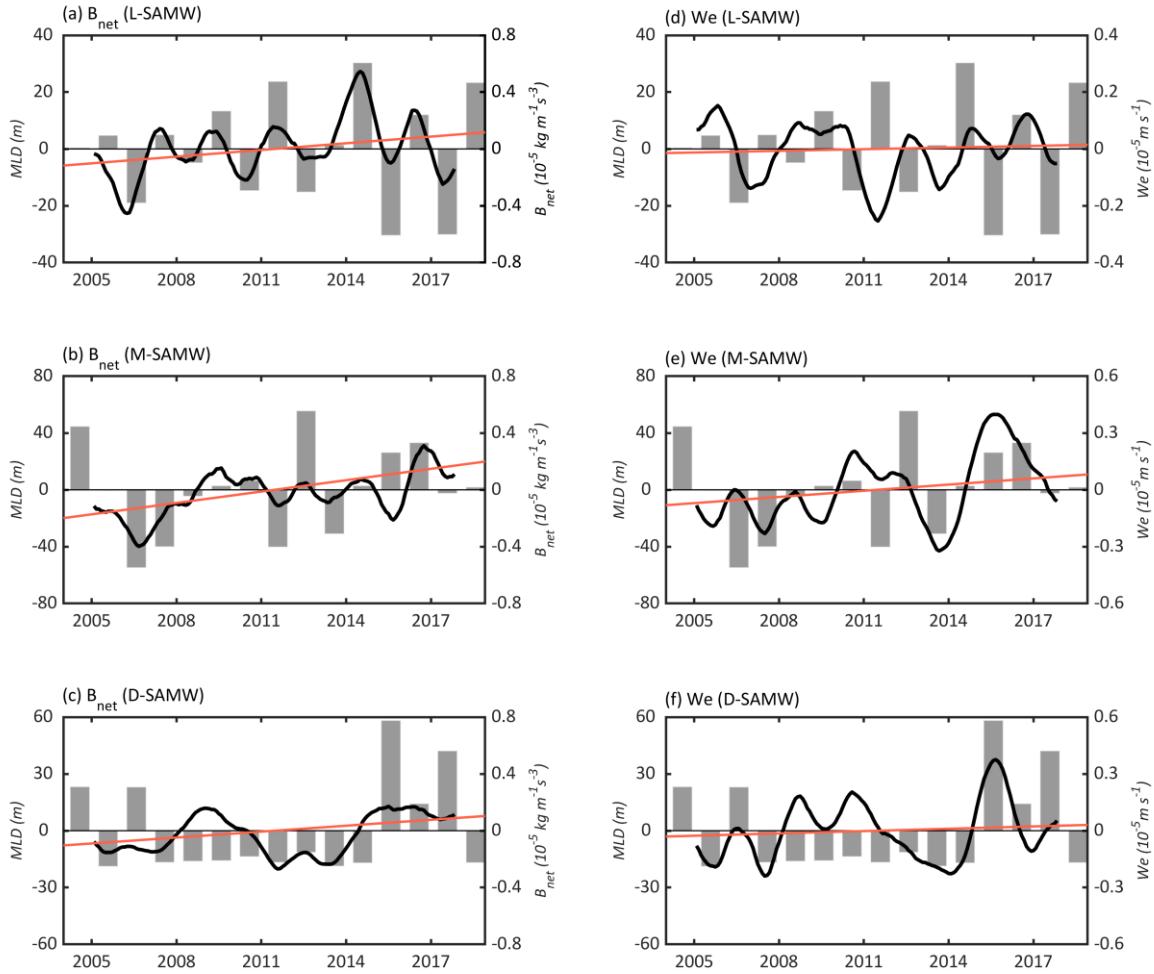
930


931 **Figure 2.** Linear trends of zonally averaged (60° - 120° E) (a) potential temperature ($^{\circ}\text{C} \cdot \text{yr}^{-1}$,
932 shaded) and (b) salinity ($\text{psu} \cdot \text{yr}^{-1}$, shaded) for 2004-2018, superimposed with the
933 climatological mean potential density (black contour) and PV ($10^{-10} \text{ m}^{-1} \text{s}^{-1}$, enclosed green
934 contours). Blue contours in (a) and red contours in (b) show potential density averaged during
935 2004-2009 and 2010-2015, respectively. The dotted areas in (a-b) indicate that linear trends are
936 statistically significant at the 95% confidence levels from a modified Mann-Kendall test.
937 Annual mean, the interannual to decadal variability, and linear trend of (c) volume, (d)
938 thickness at 32.5° S, (e) potential temperature, (f) salinity anomalies of the SAMW. The $p < 0.05$
939 means that the linear trends are statistically significant at the 95% confidence levels.


942 **Figure 3.** Annual mean (a) volume, (b) thickness at 32.5°S, (c) ocean heat content, and (d)
943 ocean salinity content between different isopycnal layers of the SAMW. Light, Medium, and
944 Dense means L-SAMW, M-SAMW, and D-SAMW, respectively.

948 **Figure 4.** Contribution of heaving and spiciness processes to changes in the SAMW potential
 949 temperature (a-b) and salinity (c-d). Trends are removed in (b) and (d).

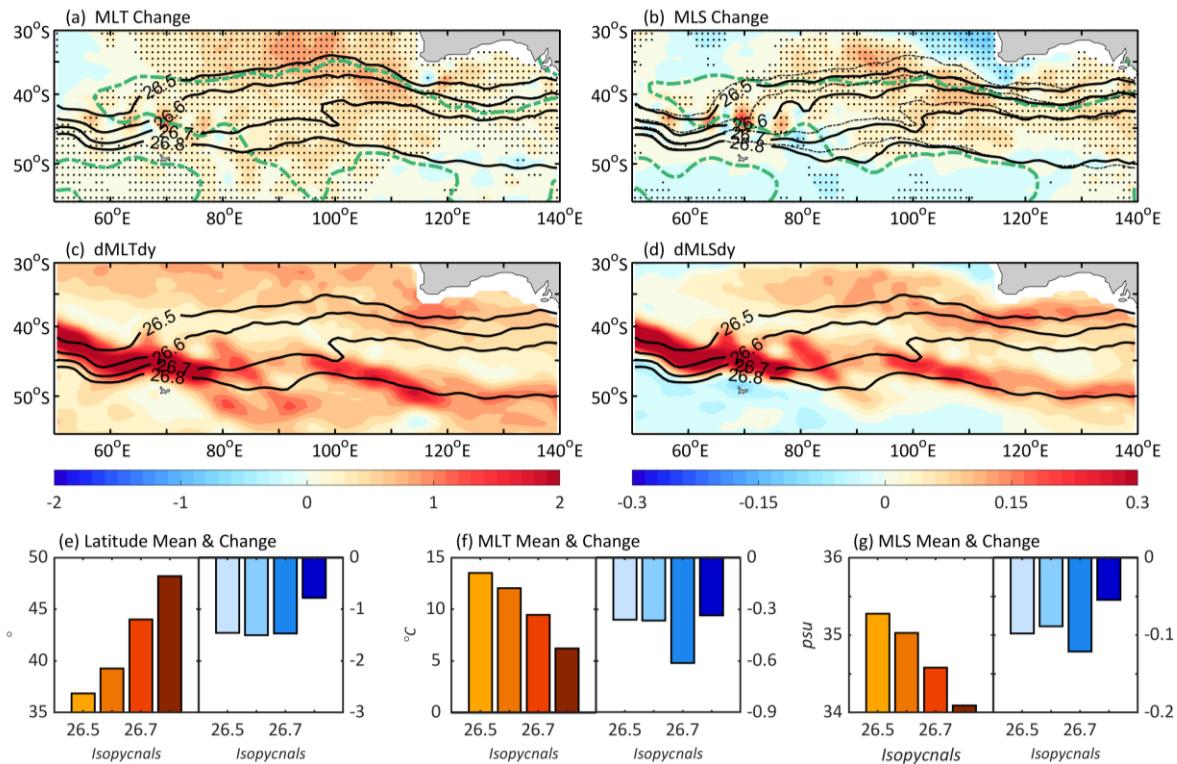
953 **Figure 5.** (a-d) Linear trends of pressure (dbar · decade⁻¹) of the $\sigma_\theta=26.5-26.8 \text{ kg} \cdot \text{m}^{-3}$
 954 isopycnal surfaces during 2004-2018, superimposing with annual-mean low PV (contours).
 955 Black contour represents mean value averaged over 2004-2018, blue (red) contour is mean
 956 value averaged during 2004-2009 (2013-2018). The dots indicate the area where the fitted
 957 linear trend is above 95% confidence level. Linear trend of (e) surface buoyancy flux ($10^{-7} \text{ kg} \cdot$
 958 $\text{m}^{-1} \cdot \text{s}^{-3} \cdot \text{yr}^{-1}$, shaded), and (f) wind stress ($\text{N} \cdot \text{m}^{-2} \cdot \text{yr}^{-1}$, vectors) and wind stress curl
 959 ($10^{-9} \text{ N} \cdot \text{m}^{-3} \cdot \text{yr}^{-1}$, shaded) during 2004-2018.



961

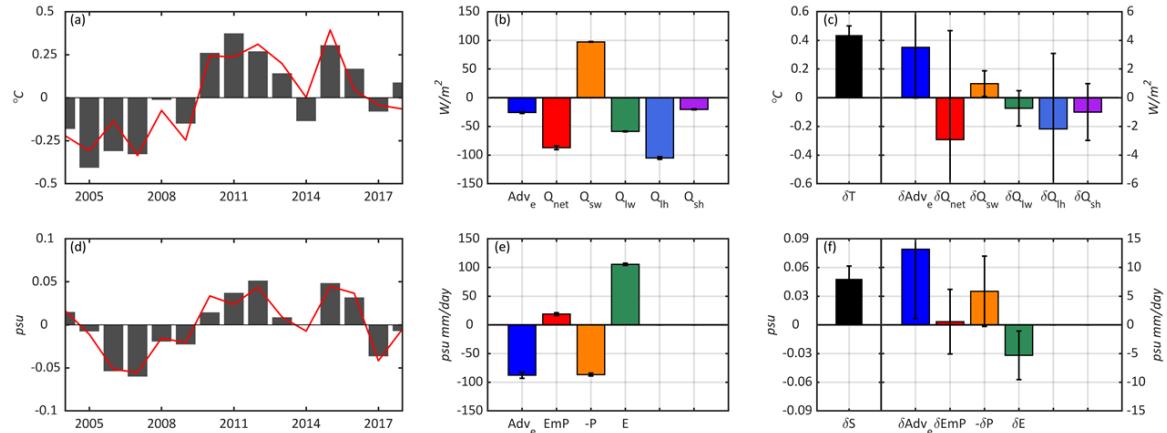
962 **Figure 6.** Climatological mean and linear trend of (a, b) annual subduction rate, (c, d) lateral
 963 induction term, and (e, f) vertical pumping term during 2004-2018. Units are m yr^{-1} and
 964 m yr^{-2} , respectively. (g, h) Time series of annual mean subduction rate, lateral induction
 965 term and vertical pumping term averaged within the mixed-layer density range of 26.5-27.1
 966 kg m^{-3} . $u * \nabla H$, $um * \nabla H$, and $u * \nabla Hm$ in (h) represent lateral induction with temporally
 967 geostrophic current and mixed layer depth, lateral induction with climatological geostrophic
 968 current and temporally varying mixed layer depth, and lateral induction with climatological
 969 mixed layer depth and temporally varying geostrophic current, respectively.

970


971

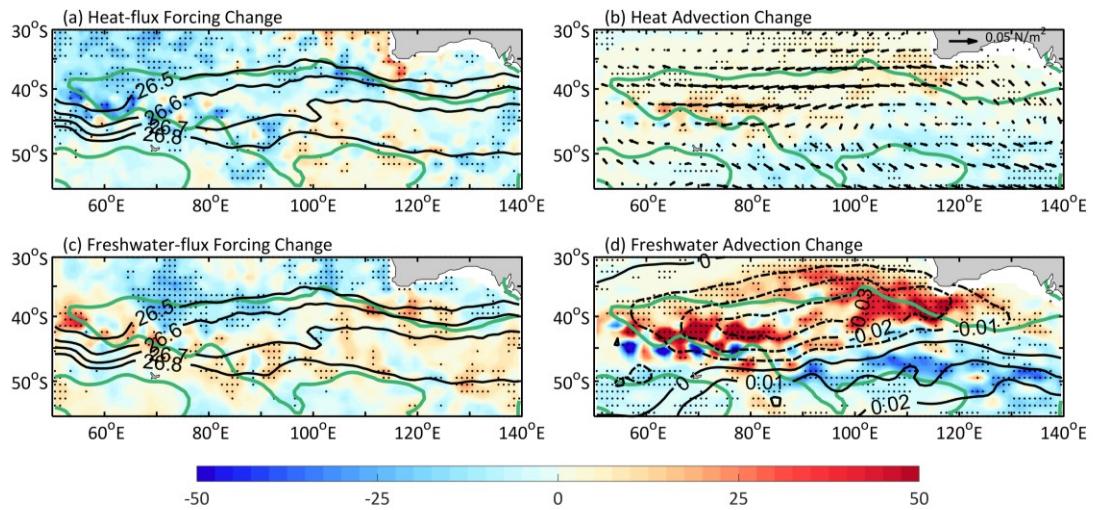
972

973 **Figure 7.** Wintertime (July-September, JAS) mixed-layer depth anomalies (bar), (a-c) sea
 974 surface buoyance ($-B_{net}$, positive means buoyancy loss, line), and (d-f) downward Ekman
 975 pumping velocity (line) averaged over the SAMW subduction regions (55° - 140° E, 30° - 55° S)
 976 between different isopycnal layers. High-frequency signals are removed by applying a 13-
 977 month running mean twice.


978

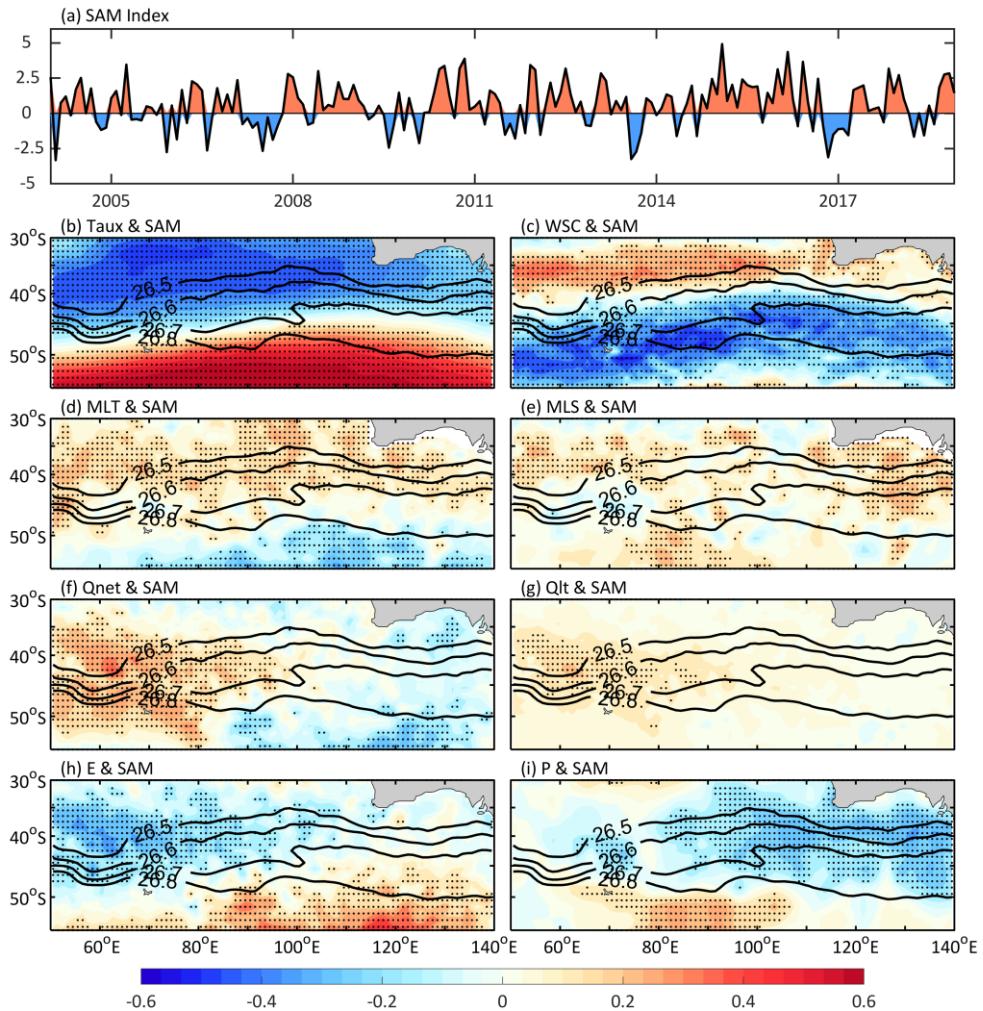
981 **Figure 8.** Wintertime (JAS) mixed-layer (a) temperature (°C, shaded) and (b) salinity (psu,
 982 shaded) differences between 2010-2015 and 2004-2009, superimposing with climatological
 983 mean potential density (solid black lines) and mixed layer depth of 150 m (dashed green lines)
 984 during 2004-2009 and 2010-2015, respectively. Climatological mean mixed-layer (c)
 985 temperature (°C) and (d) salinity (psu) meridional gradients in JAS during 2004-2018.
 986 Wintertime (JAS) mixed-layer (e) potential density latitude and corresponding (f) temperature
 987 and (g) salinity along longitude averaged during 2004-2018 and their differences between
 988 2010-2015 and 2004-2009.

990


991

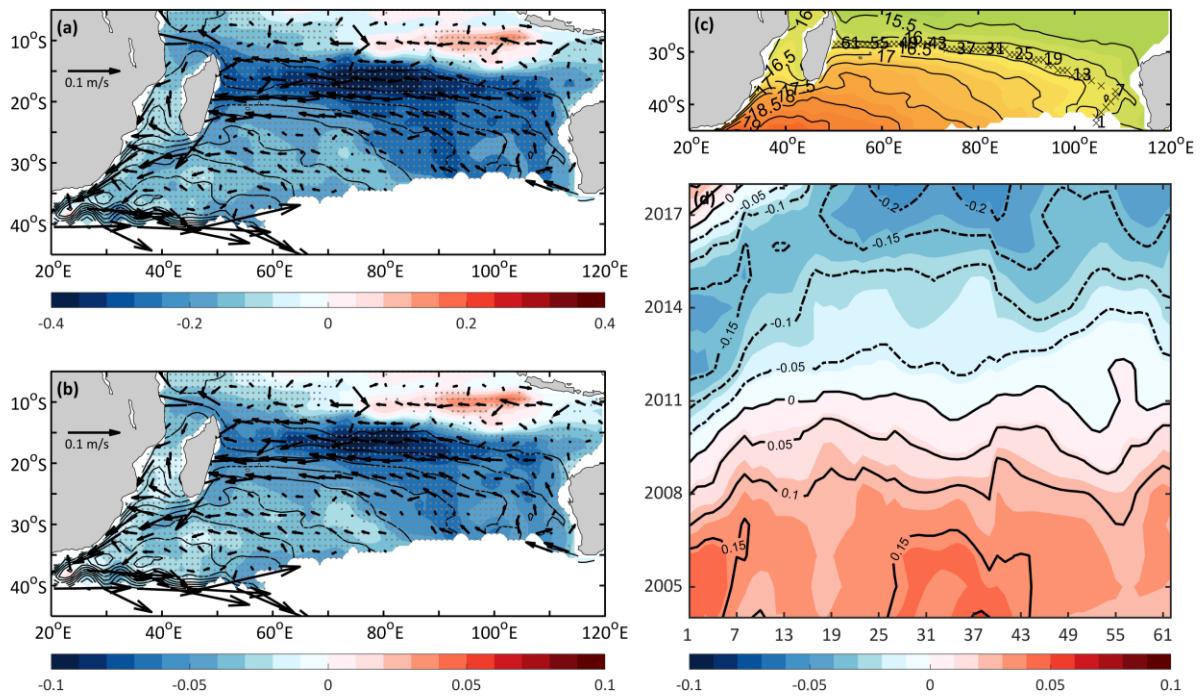
992

993 **Figure 9.** Mixed layer variations in the SAMW formation region and contribution of air-sea
 994 fluxes and meridional Ekman heat/freshwater advection during winter (JAS). Time series of
 995 mixed-layer (a) potential temperature, (b) climatological mean air-sea heat fluxes ($Q_{\text{net}} =$
 996 $Q_{\text{sw}} + Q_{\text{lw}} + Q_{\text{lh}} + Q_{\text{sh}}$: net air-sea heat flux; Q_{sw} : shortwave radiation; Q_{lw} : longwave
 997 radiation; Q_{lh} : latent heat flux; Q_{sh} : sensible heat flux) and meridional Ekman heat advection
 998 ($\text{Adv}_e = -\rho C_p V_e \frac{d\text{MLT}}{dy}$) and (c) their changes between 2010-2015 and 2004-2009. Time series
 999 of mixed-layer (c) salinity, (d) climatological mean air-sea freshwater fluxes [$S_0(E - P)$; P :
 1000 precipitation; E : evaporation] and meridional Ekman freshwater advection ($\text{Adv}_e = -V_e \frac{d\text{MLS}}{dy}$)
 1001 and (e) their changes between 2010-2015 and 2004-2009. Bars in (a and d) represent changes
 1002 in winter (JAS), and lines represent yearly mean change.


1003

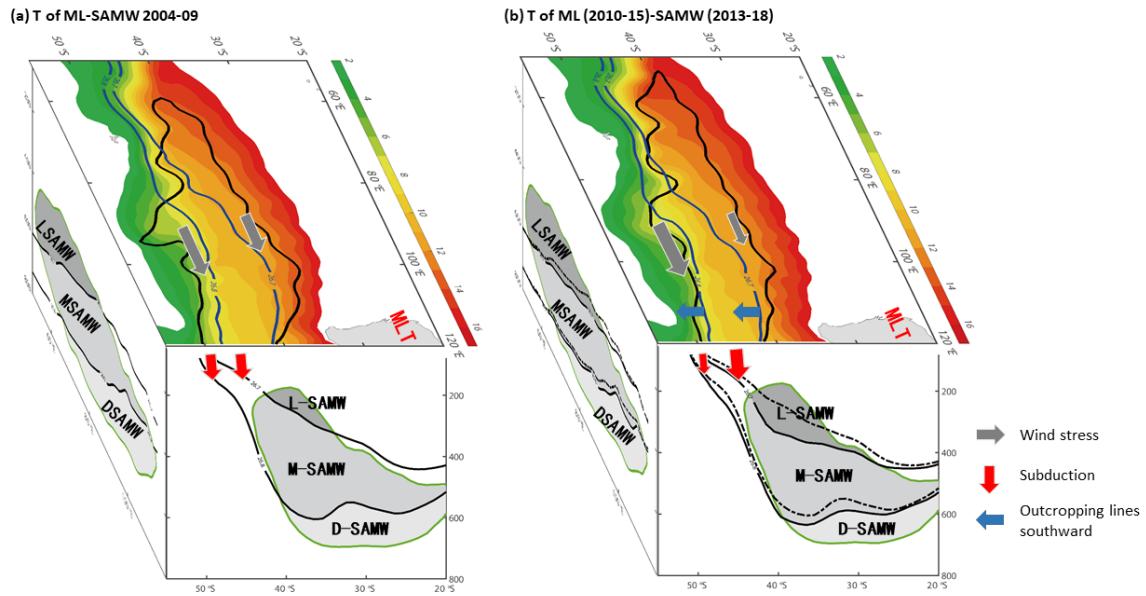
1006 **Figure 10.** The change of (a) air-sea heat flux ($\text{W} \cdot \text{m}^{-2}$), (b) wind stress ($\text{N} \cdot \text{m}^{-2}$, vector) and
1007 Ekman heat advection ($\text{W} \cdot \text{m}^{-2}$, shaded), (c) freshwater flux ($\text{psu} \cdot \text{mm} \cdot \text{day}^{-1}$), and (d) zonal
1008 wind stress ($\text{N} \cdot \text{m}^{-2}$, contour) and Ekman freshwater advection ($\text{psu} \cdot \text{mm} \cdot \text{day}^{-1}$, shaded)
1009 averaged during July-September between 2004-2009 and 2010-2015. The green contour in (a-
1010 d) represents a winter deep mixed layer at a depth of 150 m averaged during 2004-2018.

1012


1013

1014

1015 **Figure 11.** (a) Time-series of SAM index. The mapped correlation coefficient of (b) zonal wind
 1016 stress, (c) wind stress curl, (d) mixed-layer temperature, (e) mixed-layer salinity, (f) net air-sea
 1017 heat flux, (g) latent heat flux, (h) evaporation and (i) precipitation with SAM index. The dots
 1018 in (b-i) indicate the area where the fitted correlation is above 95% confidence level.


1019

1022 **Figure 12.** The linear trend of Argo annual mean (a) potential temperature ($^{\circ}\text{C} \cdot \text{yr}^{-1}$, shaded)
1023 and (b) salinity ($\text{psu} \cdot \text{yr}^{-1}$, shaded) averaged on $\sigma_{\theta}=26.5\text{-}26.8 \text{ kg} \cdot \text{m}^{-3}$ isopycnal surfaces
1024 during 2004-2018, superimposing with annual-mean streamlines (contours) and geostrophic
1025 currents (vectors). (c) Annual-mean streamlines (acceleration potential) for mean current
1026 averaged on 26.6-26.8 isopycnal surfaces from 2004-2018, superimposing with the pathway
1027 for anomalous spiciness signals. (d) Hovmöller diagrams of Argo salinity anomalies along
1028 point stations shown in (c). High-frequency signals are removed by applying a 3-year running
1029 mean.

1032

1033

1034

1035 **Figure 13.** Schematic diagram of changes in the SAMW properties and formation. (a) Surface:
1036 climatological mean winter mixed-layer temperature (shading), deep mixed layer at a depth of
1037 150 m (black contour), and potential density (blue lines) during 2004-2009; Subsurface:
1038 different classes of the SAMW (shading) and potential density (black lines) during 2004-2009,
1039 and climatological mean low-PV (enclosed green contour); (b) Same with (a), but for the
1040 (mixed layer) 2010-2015/ (subsurface) 2013-2018. Color and corresponding areas in the
1041 subsurface low-PV (enclosed green contour) represent average temperature and volume of
1042 different classes of the SAMW, respectively.

1043