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Consider a spiked random tensor obtained as a mixture of two compo-
nents: noise in the form of a symmetric Gaussian p-tensor for p ≥ 3 and
signal in the form of a symmetric low-rank random tensor. The latter is de-
fined as a linear combination of k independent symmetric rank-one random
tensors, referred to as spikes, with weights referred to as signal-to-noise ra-
tios (SNRs). The entries of the vectors that determine the spikes are i.i.d.
sampled from general probability distributions supported on bounded subsets
of R. This work focuses on the problem of detecting the presence of these
spikes, and establishes the phase transition of this detection problem for any
fixed k ≥ 1. In particular, it shows that for a set of relatively low SNRs it is
impossible to distinguish between the spiked and nonspiked Gaussian ten-
sors. Furthermore, in the interior of the complement of this set, where at least
one of the k SNRs is relatively high, these two tensors are distinguishable
by the likelihood ratio test. In addition, when the total number of low-rank
components, k, of the p-tensor of size N grows in the order o(N(p−2)/4) as
N tends to infinity, the problem exhibits an analogous phase transition. This
theory for spike detection is also shown to imply that recovery of the spikes
by the minimum mean square error exhibits the same phase transition. The
main methods used in this work arise from the study of mean field spin glass
models, where the phase transition thresholds are identified as the critical in-
verse temperatures distinguishing the high and low-temperature regimes of
the free energies. In particular, our result formulates the first full character-
ization of the high temperature regime for vector-valued spin glass models
with independent coordinates.

1. Introduction. This work studies the detection and recovery of a low-rank component
in a particular random tensor and characterizes their corresponding phase transitions. In order
to motivate this problem, we first discuss a simpler and widely-studied question: When can
principal component analysis (PCA) detect and recover low-rank linear structures in noisy
data? While detection only requires determining the presence or absence of low-rank struc-
ture, the task of recovery aims to reveal the concealed low-rank structure.

One common setting for addressing this question assumes data points y1, . . . , yL ∈ R
N

drawn independently from the multivariate normal distribution N (0, I + βuuT ), where I is
the N -dimensional identity matrix, which generates spherically symmetric Gaussian noise, u

is a unit column vector in R
N , which generates a rank-one signal, and β > 0 is the signal-

to-noise ratio (SNR). Under this model, the observations yi , i = 1, . . . ,L, take the form yi =
xi + εi , where xi is proportional to the signal u with signal-to-noise ratio β , and εi is the
Gaussian noise. The question is then whether or not it is possible to apply PCA to detect the
presence of the signal u when given the data points y1, . . . , yL with different choices of the
SNR parameter β . The earlier result for this problem traces back to the fundamental work of
Johnstone [35].
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Assume that N/L → γ < 1 as L → ∞. When β = 0, the Marchenko–Pastur distribution
[39] describes the limiting distribution of the eigenvalues of the sample covariance matrix.
The well-known Baik–Ben Arous–Péché phase transition [3, 4] states that when β ≤ √

γ , the
eigenvalues of this matrix still follow the Marchenko–Pastur distribution and thus detection of
the low-rank sample is impossible by PCA. In contrast, when β >

√
γ , the largest eigenvalue

of this matrix stays away from the typical location of the Marchenko–Pastur distribution and
PCA can detect the presence of the signal. This phase transition of spike detection is extended
in Paul [53] to spike recovery by PCA. More precisely, [53] shows that when β >

√
γ , there

is a nontrivial asymptotic correlation between the top eigenvector of the sample covariance
and u and thus one can approximately recover u by PCA. Moreover, when β ≤ √

γ this
asymptotic correlation is zero and PCA cannot recover u. Extension of detection and recovery
to the case where γ ≥ 1 is also established in [53].

Another common setting for studying the detection problem using PCA assumes a random
matrix of the form T = W + βN−1/2uuT , where W is an N × N Gaussian Wigner matrix1

and u is an N -dimensional random vector with i.i.d. entries sampled from a bounded distri-
bution on R. The parameter β is the SNR. We refer to the rank one component, uuT as a
spike and to T as a spiked random matrix. The problem is to detect the presence of the spike
in T , or equivalently, to distinguish between T and W . This detection problem exhibits a
phase transition similar to that of the previous setting, see Féral–Péché [28], Péché [54], and
Benaych–Georges–Nadakuditi [15, 16]. When the SNR is below a certain critical threshold,
the eigenvalue distribution of T follows Wigner’s semi-circle law and it is thus impossible
to distinguish between T and W . Once the value of β exceeds this critical threshold, the
largest eigenvalue jumps away from the typical location of the Wigner semi-circle law and
the top eigenvector nontrivially correlates with the signal. Consequently, in this case, one
can detect and approximately recover the signal by PCA. Recent studies of phase transitions
in detection and recovery of low-rank signals in random matrices include Lelarge–Miolane
[37], Miolane [42, 43], Montanari–Reichman–Zeitouni [44], Montanari–Richard [44, 46],
Onatski–Moreira–Hallim [48], and Perry–Wein–Bandeira–Moitra [55].

The latter setting of low-rank detection in spiked random matrices has a natural higher-
order generalization to spiked random tensors. This generalization considers the spiked sym-
metric random p-tensor

Tk = W + 1

N(p−1)/2

k∑
r=1

βru(r)⊗p.

The first component, W , is the symmetric Gaussian p-tensor of size Np , formally defined
in Section 2.1. The second component is the signal, which is a linear combination of the
spikes u(1)⊗p, . . . , u(k)⊗p . Here, u(1), . . . , u(k) are N -dimensional vectors whose entries
are i.i.d. sampled from probability measures μ1, . . . ,μk supported on bounded subsets of the
real line. We refer to β̂ = (β1, . . . , βk) as the vector of SNRs. The detection problem under
this setting asks whether identification of the low-rank signal

∑k
r=1 βru(r)⊗p in the tensor Tk

is possible for a given vector β̄ . The recovery problem seeks to recover, if possible, the low-
rank signal for given values of β̄ . Answering these question of whether the spike is detectable
or recoverable requires characterization of the phase transitions in β̄ of the detection and
recovery problems.

We remark that the generalized tensor setting is significantly more challenging than the
above setting of detecting and recovering rank-one structure in matrices. The former set-
ting involved the best rank-one approximation by PCA. However, for tensors, basic relevant

1W is a symmetric matrix with independent Wij ∼N (0,1/2) for 1 ≤ i < j ≤ N and Wii ∼N (0,1) for 1 ≤
i ≤ N .
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notion, such as rank and best low-rank approximation, are not obvious, see Kolda–Bader
[36]. Furthermore, many common algorithms for computing these and related notion are
NP-hard, see Hillar–Lim [30]. In this work, we study low-rank tensor detection and recov-
ery by common theoretical tests and estimators, which are hard to compute. We leave the
analysis of tractable procedures to future work. Following Chen [20], El Alaoui–Krzkala–
Jordan [27], Montanari–Reichman–Zeitouni [44], Montanari–Richard [45], and Perry–Wein–
Bandeira [56], we say that spike detection is impossible if the total variation distance between
W and Tk vanishes when N tends to infinity. In other words, any statistical test fails to dis-
tinguish W and Tk (see Section 2.1). On the other hand, we say that detection is possible
if this distance is one in the limit. This means that asymptotically one can find a statistical
test, in particular, the likelihood ratio test, that distinguishes between W and Tk (see Sec-
tion 2.1). For recovery, we follow [38] and use the minimum mean square error (MMSE) and
its corresponding estimator.

Many recent works, which are reviewed in Section 2.5, have studied detection and recovery
under the spiked random tensor model. Nevertheless, the optimal phase transition for low-
rank detection in spiked random tensors has not yet been established. This paper aims to close
this gap. Our main result states that there exist critical thresholds β1,c, . . . , βk,c and a set of
the form R̄ = (0, β1,c] × · · · × (0, βk,c] such that detection is impossible if β̄ = (β1, . . . , βk)

lies strictly in the interior of the set R̄. Furthermore, it is possible to detect the spike via the
likelihood ratio test when β̄ /∈ R̄. In other words, detection is possible only when at least
one of β1, . . . , βk exceeds its critical threshold; whereas, if β1, . . . , βk are all smaller than
their critical thresholds, one cannot detect the spike. Our result also allows the total number
of spikes to grow with N . In particular, if μ1 = · · · = μk and k = o(N(p−2)/4), then similar
statements hold. A byproduct of these developments is a new proof for a recent result on the
recovery problem by Lesieur–Miolane–Lelarge–Krzakala–Zdeborová [38] when assuming
the same setting of the present paper. In essence, their result states that β1,c, . . . , βk,c are the
critical thresholds for the MMSE recovery problem.

Our approach is based on methodologies from the study of mean-field spin glass mod-
els. Roughly speaking, spin glasses are spin systems that exhibit both quenched disorder and
frustration. That is, the interactions between sites are disordered and spin constraints cannot
be simultaneously satisfied. These two features are commonly shared by many problems that
involve randomized combinatorial optimization, see Mézard–Montanari [40] and Montanari–
Sen [47]. The book, Mézard–Parisi–Virasoro [41], reviews the area of spin glasses from the
point of view of physicists, whereas mathematical treatments of the subject appear in Tala-
grand [60, 61] and Panchenko [50].

Mean-field spin glasses are related to the detection problem by the following key observa-
tion: The total variation distance between W and Tk can be represented as an integral of the
distribution function of the so-called free energy of the re-centered pure p-spin model with
vector-valued spin configurations (see (3.2) and Lemma 4.2 below). From this observation,
to study the detection problem, we need to understand the full high-temperature regime of
this model and investigate a sharp upper bound on the fluctuation of the free energy for all
values of the SNR vector β̄ . Our results reveal that R̄ is indeed the high-temperature regime
of the free energy and its fluctuation is up to the order N−(p/2+1) when β̄ lies in the interior
of R̄ and is of order 1 when β̄ lies in the complement of R̄. These allow us to completely
characterize the phase transition of the detection problem. We mention that while our study
of the high-temperature behavior of the free energy is mainly used to derive results for spike
detection, it is also of independent interest in the field of spin glasses. Indeed, our result (see
Theorem 3.2) gives the first full characterization of the high temperature regime for vector-
valued spin glass models with independent coordinates.
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2. Main results. This section states the main results of this paper and provides the neces-
sary mathematical background. Additionally, it reviews prior results and describes the struc-
ture of the rest of the paper, particularly the structure of the proofs of Theorems 2.1—2.4.
Section 2.1 defines the necessary terminology, especially, the distinguishability of two ran-
dom tensors. Section 2.2 describes our main results for the detection problem in the case of
a single spike. In particular, it introduces an auxiliary function that characterizes the high-
temperature regime and allows one to simulate the critical SNR. Using this function, we
demonstrate numerical simulations of the critical SNR for the sparse Rademacher prior. Sec-
tion 2.3 states our main results for the detection problem in the case of multiple spikes.
Section 2.4 mentions a result for recovery by MMSE that is later obtained from our results
for spike detection. Section 2.5 surveys recent related results. Finally, Section 2.7 describes
the organization of the proofs of the main results.

2.1. Settings and definitions. Let p ≥ 2 be an integer. For any integer N ≥ 1, denote by
�N the set of all real-valued p-tensors Y = (Yi1,...,ip )1≤i1,...,ip≤N equipped with the Borel
σ -field. The inner product of two p-tensors is〈

Y,Y ′〉 = ∑
1≤i1,...,ip≤N

Yi1,...,ipY ′
i1,...,ip

.

Given a vector u = (u1, . . . , uN) ∈R
N , we form a rank-one p-tensor using the outer product

by (
u⊗p)

i1,...,ip
= ui1 · · ·uip ∀1 ≤ i1, . . . , ip ≤ N.

Given Y ∈ �N and a permutation π of the set {1,2, . . . , p}, define Yπ by

Yπ
i1,...,ip

= Yπ(i1),...,π(ip).

A p-tensor is said to be symmetric if Yπ
i1,...,ip

= Yi1,...,ip for all corresponding indices and
permutations. Throughout the rest of the paper, we assume that Y is a random p-tensor and
all entries in Y are i.i.d. standard Gaussian. The symmetric Gaussian p-tensor of size Np is
obtained by the averaging over all permutations in the symmetric group of N letters:

W = 1

p!
∑
π

Yπ .

In the case p = 2, W is the Gaussian–Wigner matrix.
Next, we define the notion of distinguishability and indistinguishability between two ran-

dom p-tensors in terms of the total variation distance. For any two random p-tensors U , V ,
denote by dTV(U,V ) the total variation distance between U and V , that is,

dTV(U,V ) = sup
A

∣∣P(U ∈ A) − P(V ∈ A)
∣∣,

where the supremum is taken over all sets A in the Borel σ -algebra generated by symmetric
p-tensors.

DEFINITION 2.1. Let UN , VN be two sequences of random p-tensors. We say that they
are distinguishable if

lim
N→∞dTV(UN,VN) = 1

and are indistinguishable if

lim
N→∞dTV(UN,VN) = 0.
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Distinguishability of UN and VN means that there exists a sequence of measurable subsets
AN of �N such that limN→∞ P(UN ∈ AN) = 1 and limN→∞ P(VN ∈ AN) = 0. From this,
if we consider a statistical test SN : �N → {0,1} defined by SN(w) = 0 for w ∈ AN and
SN(w) = 1 for w /∈ AN , then as N approaches infinity, the sum of type I and type II errors
approaches zero:

(2.1)
lim

N→∞
(
P
(
SN(UN) = 1

)+ P
(
SN(VN) = 0

))
= lim

N→∞
(
P(UN /∈ AN) + P(VN ∈ AN)

) = 0.

This means that one can statistically distinguish UN and VN by the test SN . Furthermore, if
UN and VN have nonvanishing densities fUN

and fVN
, the well-known formula

dTV(UN,VN) =
∫
fUN

≥fVN

(fUN
− fVN

) dw

implies that

dTV(UN,VN) = P(UN ∈ AN) − P(VN ∈ AN)

for

AN :=
{
w ∈ �N

∣∣∣ fUN
(w)

fVN
(w)

≥ 1
}
.

Therefore, one can naturally use the likelihood ratio test to distinguish UN and VN . In con-
trast, when UN and VN are indistinguishable, any statistical test is powerless as in this case
the total error approaches one as N tends to infinity.

REMARK 2.1. The setting of spiked matrices (see, e.g., [27, 62]) considers a weaker
notion of distinguishability that requires the limiting total error, which appears on the left
hand side of (2.1), to be less than 1. In our spiked tensor model with p > 2, the limiting total
error converges to either zero or one and this weaker notion of distinguishability coincides
with ours.

2.2. Main results for detection of a single spike. Let � be a bounded subset of R and μ be
a probability measure on the Borel σ -field of �. Assume that u1, . . . , uN are i.i.d. samplings
from μ and are independent of W . Denote u = (u1, . . . , uN). We refer to the random variable
u as the prior. Consider the spiked random p-tensor T defined by

(2.2) T = W + β

N(p−1)/2 u⊗p.

We say that detection of the spike u⊗p in T is possible if W and T are distinguishable and
detection is impossible if they are indistinguishable in the sense of Definition 2.1. Note that if∫

aμ(da) �= 0, one can immediately detect the spike by noting that Yi1,...,ip are i.i.d. standard
Gaussian and using the strong law of large number. Indeed,

1

N(p+1)/2

N∑
i1,...,ip=1

Wi1,...,ip = 1

N(p+1)/2

N∑
i1,...,ip=1

Yi1,...,ip → 0,

while

1

N(p+1)/2

N∑
i1,...,ip=1

Ti1,...,ip = 1

N(p+1)/2

N∑
i1,...,ip=1

Yi1,...,ip + β

(∑N
i=1 ui

N

)p

→ β

(∫
aμ(da)

)p

.
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We can thus restrict our discussion to the case when μ is centered, that is, when∫
R

aμ(da) = 0. Our first result on spike detection is formulated as follows.

THEOREM 2.1. Assume that μ is centered. For any p ≥ 3, there exists a constant βc > 0
such that:

(i) if 0 < β < βc, then detection is impossible;
(ii) if β > βc, then detection is possible.

In other words, βc is the critical threshold that describes the phase transition of the detec-
tion problem. As we explained in Section 2.1, when detection is possible, one can use the
likelihood ratio test, which uses the ratio of densities fT (w)/fW (w), to distinguish between
W and T . In Lemma 4.2 below, we relate this ratio to the free energy of the pure p-spin mean
field spin glass model.

The precise value of βc can be determined as follows. Let

ξ(s) = sp

and

(2.3) v∗ =
∫

a2μ(da).

For a ∈ R and t > 0, consider the geometric Brownian motion

Z(a, t) = exp
(
aBt − a2t

2

)
,

where Bt is a standard Brownian motion. For b ≥ 0, define an auxiliary function 
b(v) on
[0,∞) by

(2.4) 
b(v) =
∫ v

0
ξ ′′(s)

(
γb(s) − s

)
ds,

where for s ≥ 0,

(2.5) γb(s) := E

[
(
∫

aZ(a, b2ξ ′(s))μ(da))2∫
Z(a, b2ξ ′(s))μ(da)

]
.

The critical value βc in Theorem 2.1 can be calculated as follows:

THEOREM 2.2. If p ≥ 3 and μ is centered, then βc is the largest b such that
supv∈(0,v∗] 
b(v) = 0.

As an example of Theorem 2.2, we demonstrate numerical simulations for estimating the
critical threshold βc for the sparse Rademacher prior, in which the entries u1, . . . , uN in u are
i.i.d. sampled from the probability distribution

ρ

2
δ− 1√

ρ
+ (1 − ρ)δ0 + ρ

2
δ 1√

ρ
,

with parameter ρ ∈ (0,1] that controls the sparsity of the prior. The case ρ = 1 corresponds
to the usual Rademacher prior. If ρ < 1, the sparse Rademacher prior can be regarded as first
uniformly sampling approximately ρN of the coordinates and then for these coordinates,
sampling Bernoulli ±1/

√
ρ random variables with equal probability. The remaining approx-

imately (1 − ρ)N coordinates are set to zero. From this construction, the second moment of
‖u‖/√N is of order 1. To simulate βc according to the value established in Theorem 2.2, we
numerically evaluate 
b(v) for test values of v with increments .001 in the interval between 0
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FIG. 1. Numerical simulations for the critical value βc with sparse Rademacher prior and various values of p.
The top left plot is for p = 3, the top right for p = 4, the bottom left for p = 5, and the bottom right for p = 10.
The open circles are the simulated critical values βc . The dashed curve interpolates between these points and the
solid curve describes the function H(ρ).

and v∗ = 1. For this purpose, we have used the numerical integrator of Mathematica. The crit-
ical value βc is the largest value b such that 
b(v) ≤ 0 for all test values of v, where discrete
positive values of b with increments 0.001 were tested. Figure 1 summarizes the numerical
results for p = 3,4,5,10 and ρ = 0.1,0.2, . . . ,1.

The behavior of βc is influenced by the proportion of zeros and the magnitude of the
nonzero jumps. As can be seen, in each of the four figures there exists a threshold ρ∗ (de-
pending on p) such that ρ �→ βc is increasing on [0, ρ∗] and decreasing on [ρ∗,1]. Heuristi-
cally, in the interval [0, ρ∗), the large fraction of the zeros dominates the small proportion of
far jumps, whose magnitude 1/

√
ρ is large. On the other hand, in the interval (ρ∗,1], the far

jumps overpower the small fraction of zeros and their magnitude has relatively low variation
with ρ. In each subfigure of Figure 1, we indicate by a solid curve the following upper bound
for βc, which was pointed out in [56],

H(ρ) :=
√

2
(−ρ logρ − (1 − ρ) log(1 − ρ) + ρ log 2

)
.

We note that as p increases the estimated values of βc are closer to the ones of the upper
bound H(ρ). For p = 3, 4, 5, we see that if ρ is sufficiently small, then H(ρ) is still a good
approximation for βc.



PHASE TRANSITION IN SPIKED TENSORS 1875

2.3. Main results for detection of multiple spikes. In this subsection, we study the case of
more than one spike. Denote the number of spikes by k. Let �1, . . . ,�k be bounded subsets
of R and μ1, . . . ,μk be centered probability measures on the Borel σ -fields of �1, . . . ,�k ,
respectively. For any 1 ≤ r ≤ k, let u1(r), . . . , uN(r) be i.i.d. samplings from μr and set
u(r) = (u1(r), . . . , uN(r)). We assume that u(1), . . . , u(k) are independent of each other and
of W . For β̄ = (β1, . . . , βk) with β1, . . . , βk > 0, the spiked tensor Tk is defined by

(2.6) Tk = W + 1

N(p−1)/2

k∑
r=1

βru(r)⊗p.

In a manner similar to the previous subsection, we say that detection is possible if W and Tk

are distinguishable and is impossible if they are indistinguishable. For 1 ≤ r ≤ k, denote by
βr,c the critical threshold obtained by plugging μr into Theorem 2.2. We extend Theorem 2.1
to the case of multiple spikes as follows.

THEOREM 2.3. Assume that μ1, . . . ,μk are centered. For p ≥ 3, the following state-
ments hold.

(i) If β̄ ∈ (0, β1,c) × · · · × (0, βk,c), then detection is impossible;
(ii) If β̄ /∈ (0, β1,c] × · · · × (0, βk,c], then detection is possible.

Theorem 2.3 implies that in order to detect the spikes, at least one of the βr ’s has to exceed
its own marginal critical threshold βr,c. In particular, if all probability measures are the same,
that is, μ1 = · · · = μk , then the above result implies that W and Tk are indistinguishable if
max1≤r≤k βr < βc and are distinguishable if max1≤r≤k βr > βc, where βc is the common
threshold for all components.

REMARK 2.2. The first statement of Theorem 2.3 directly follows from Theorem 2.1
and a triangle inequality for the total variation distance, which is formulated in Lemma 4.3.
The second statement of Theorem 2.3 is nontrivial and requires a thorough study of the high
temperature regime of a spin glass model (see Section 3.2).

It is natural to ask whether this critical threshold βc would change if one allows k to
grow with N . We show that this is not the case if the growth of k = k(N) is of certain
polynomial order, which is sufficiently slow in comparison to the size of the p-tensor, Np .
To state our result, let μ be the probability measure considered in Section 2.2 and let βc be the
corresponding critical value provided by Theorem 2.2. Assume that μr = μ for all r ≥ 1 and
that (βr)r≥1 is a sequence of SNRs satisfying supr≥1 βr < ∞. Let Tk be the random tensor
in (2.6) with μr and βr for 1 ≤ r ≤ k.

THEOREM 2.4. Assume that p ≥ 3 and k = k(N) satisfies

lim
N→∞ k(N) = ∞ and lim

N→∞
k(N)

N(p−2)/4 = 0.

We have that:

(i) Detection is impossible if supr≥1 βr < βc.
(ii) Detection is possible if either of the following two assumptions is satisfied:

(a.1) There exists a fixed k0 ∈ N such that βr > βc for at least one r ≤ k0 and
supr>k0

βr < βc.
(a.2) p is even and there exists a fixed k0 ∈ N such that infr≥k0 βr > βc.
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REMARK 2.3. We expect that detection is possible if at least one of the βr ’s exceeds βc.
However, our proof requires more restrictive conditions for technical reasons. Note that con-
dition (a.1) excludes the case of infinitely many βr ’s above βc. On the other hand, condition
(a.2) does not exclude this case, but requires p to be even.

As the number of independent spikes grows in N , it seems reasonable to believe that the
critical threshold βc should become smaller since now we have more spikes and it should be
relatively easier to detect them in comparison to the case of a fixed finite number of spikes.
However, Theorem 2.4 presents a counterintuitive result that if the total number of spikes is
of smaller order than N(p−2)/4, then the critical threshold remains unchanged. In particular, if
we let βr = β̃/k for all 1 ≤ r ≤ k and use the average of the spikes, Uk = k−1 ∑k

r=1 u(r)⊗p ,
then we can write

Tk(N) = W + β̃

N(p−1)/2 Uk(N).

If k = k(N) satisfies the growth conditions above, Theorem 2.4 says that detection is impossi-
ble if β̃ < kβc and detection is possible when β̃ > kβc and p is even. Interestingly, this growth
rate of β̃ required for detection, matches some recent results about algorithmic thresholds for
spike recovery. In [45], Montanari and Richard established recovery via the tensor unfolding
up to the threshold N(�p/2�−1)/2 and predicted that the optimal threshold should be N(p−2)/4.
In addition, they obtained recovery via the tensor power iteration up to the threshold N(p−1)/2

and conjectured that the true threshold for the power iteration and the approximate message
passing algorithm is N(p−2)/2 with no comment on the initialization. In [13], Ben Arous–
Gheissari–Jagannath studied results for the Langevin dynamics and gradient descent and they
gave recovery guarantees when β̃ > N(p−2)/2 for spherical and spin glass initial data. It was
also known that the degree 4 sum-of-squares algorithm [32] and a related spectral algorithm
[31] (for p = 3) have sharp recovery threshold N(p−2)/4. More recently, a hierarchy of spec-
tral methods following Kikuchi free energy has been proposed in the spiked tensor model
[62], where it was shown that as long as the order parameter 
 satisfies 
 = o(N), then strong
recovery and detection hold whenever β̃ � 
−(p−2)/4N(p−2)/4√logN .

2.4. Byproduct: Result for recovery by MMSE. Recall the settings of Section 2.3. Let
θ̂ = (θ̂i1,...,ip ) be a RNp

-valued bounded random variable generated by the σ -field σ(Tk). We

also allow the random variable θ̂ to be dependent on other randomness that are independent
of the ui(r)’s and Tk . The minimum mean square error (MMSE) is defined by

(2.7) MMSEN(β̄) := min
θ̂

1

Np

∑
1≤i1,...,ip≤N

E

(
k∑

r=1

βrui1(r) · · ·uip(r) − θ̂i1,...,ip

)2

,

where the minimum is taken over all such θ̂ . The minimizer to this problem is attained by the
minimum mean square estimator,

θ̂MMSE =
(

k∑
r=1

βrE
[
ui1(r) · · ·uip(r)|Tk

])
1≤i1,...,ip≤N

.

By restricting the minimum in the definition of MMSEN(β̄) to the so-called dummy estima-
tors [37], that is, estimators where θ̂ is independent of T1, . . . , Tk , one obtains a trivial upper
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bound:

MMSEN(β̄) ≤ 1

Np

∑
1≤i1,...,ip≤N

(
E

(
k∑

r=1

βrui1(r) · · ·uip(r)

)2

−
(
E

[
k∑

r=1

βrui1(r) · · ·uip(r)

])2)
.

Denote vr,∗ := ∫
a2μr(da) for 1 ≤ r ≤ k. Applying the strong law of large numbers yields

lim sup
N→∞

MMSEN(β̄) ≤ DMSE(β̄) :=
k∑

r=1

β2
r vp

r,∗.

Note that from the Gaussianity of Y , it can be directly checked that conditionally on Tk , the
distribution of (u(1), . . . , u(k)) can be described by a Gibbs measure GA

N on �N
1 ×· · ·×�N

k ,
see (5.2) below. Denote by (σ (1), . . . , σ (k)) a sampling from GA

N and by 〈·〉A the expectation
associated to this measure. We show that

THEOREM 2.5. For p ≥ 3, the following statements hold.

(i) If β̄ ∈ (0, β1,c) × · · · × (0, βk,c), then

lim
N→∞ MMSEN(β̄) = DMSE(β̄),

lim
N→∞

k∑
r,r ′=1

βrβr ′E

〈(
1

N

N∑
i=1

ui(r)σi

(
r ′))p〉A

= 0.

(ii) If β̄ /∈ (0, β1,c] × · · · × (0, βk,c], then
lim sup
N→∞

MMSEN(β̄) < DMSE(β̄),

lim inf
N→∞

k∑
r,r ′=1

βrβr ′E

〈(
1

N

N∑
i=1

ui(r)σi

(
r ′))p〉A

> 0.

This theorem asserts that if the SNRs of all marginal spikes are less than their critical
thresholds, then when estimating for the tensor

∑k
r=1 βru(r)⊗p , the minimum mean square

estimator is no better than a random guess. In contrast, if at least one of the SNRs of the
marginal spikes is larger than its critical threshold, the minimum mean square estimator per-
forms better than all dummy estimators. In the case that p is even, Theorem 2.5(i) further
implies that the sampling (σ (1), . . . , σ (k)) does not provide useful information in recover-
ing (u(1), . . . , u(k)) since their inner products are essentially zero, whereas Theorem 2.5(ii)
shows that a weak form of recovery is possible as (u(1), . . . , u(k)) and (σ (1), . . . , σ (k)) are
asymptotically correlated.

As mentioned before, the spike recovery in the random tensor for general priors via the
MMSE was studied earlier by Lesieur–Miolane–Lelarge–Krzakala–Zdeborová [38]. They
computed the limiting mutual information between W and Tk and used it to establish a result
equivalent to Theorem 2.5. The proof of Theorem 2.5 relies heavily on our main results for
the detection problem and presents a different approach than the one taken in [38].
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2.5. Previous results. Understanding phase transitions of spike detection and recovery
problems in spiked random matrices and tensors has received a lot of attention in the past
several years. We summarize some recent works here.

Matrix case: p = 2. The PCA approach was studied by Baik–Ben Arous–Péché [3], Baik–
Silverstein [4], Féral–Péché [28], Johnstone [35], Paul [53], and Péché [54]. Barbier–Dia–
Macris–Krzakala–Lesieur–Zdeborová [6] studied the MMSE recovery problem in the spiked
random matrix in (2.2) (see the setting in Section 2.4 with p = 2 and k = 1) by deriving a
Parisi-type formula for the mutual information between W and T . Analogous study for the
case of multiple spikes (2.6) was handled by Lelarge–Miolane [37], where u(1), . . . , u(k) are
assumed to have finite second moments and are allowed to be correlated. Similar result for
the nonsymmetric case was pursued by Miolane [42].

As for the detection problem, under the same setting as (2.2), Alaoui–Krzakala–Jordan
[27] obtained the same critical value βc specified in equation (3.3) and Proposition 3.1 below.
It was deduced that above βc, detection is possible and below βc, a weak form of detection
remains possible in the sense that the limiting total error (the sum of type one and type two
errors) of the likelihood ratio test between W and T is strictly less than one. Incidentally, we
mention that when the results of [6, 37] apply to the case (2.2), βc is also the critical threshold
for recovery. In [26], El Alaoui and Jordan extended the results of [27] to the case of spiked
rectangular matrices, where the spike is of the form uvT and it was assumed that the entries
of u ∈ R

M , v ∈ R
N are chosen independently at random from possibly different priors and

M/N → α. It was shown that for a set of parameters (α,β) the results of [27] hold. This
set of parameters is sub-optimal for most priors as the spin-glass methods used fail near the
boundaries of the optimal parameter space for the model of [26].

Tensor case: p ≥ 3. Earlier results trace back to the works of Montanari–Richard [45] and
Montanari–Reichman–Zeitouni [44], where the authors considered (2.6) with k = 1 and a
spherical prior, that is, u in (2.2) is uniformly and independently sampled from the sphere,
{x ∈ R

N : ∑N
i=1 x2

i = N}. By adaptation of the second moment method, they showed that
there exist β− and β+ such that detection is impossible for β below β− and is possible for β

above β+.
Lesieur–Miolane–Lelarge–Krzakala–Zdeborová [38] considered (2.6) with a general set-

ting in which the vectors (ui(1), . . . , ui(k)) for 1 ≤ i ≤ N are i.i.d. sampled from a joint
distribution with finite second moments. For centered priors, they proved that there exists
a vector of critical thresholds (β ′

1,c, . . . , β
′
k,c) such that for any β̄ = (β1, . . . , βk) satisfying

βr > β ′
r,c for 1 ≤ r ≤ k, the MMSE estimator obtains a better error than any dummy esti-

mator. Consequently, one can also detect the spike in that case. In addition, when β̄ satisfies
βr < β ′

r,c for all 1 ≤ r ≤ k, the MMSE estimator is statistically irrelevant to recover the spike.
They did not provide results for the detection problem in this case. Notably, if u(1), . . . , u(k)

are chosen as in Section 2.3, our critical thresholds βr,c agree with β ′
r,c and as a consequence,

their result in this case is the same as Theorem 2.5. Barbier–Macris [8] provided a different
proof for the results of [38] by using stochastic interpolation. Analogous results to [38] were
developed in nonsymmetric settings by Barbier–Macris–Miolane [10].

Perry–Wein–Bandeira [56] focused on k = 1 and three priors: the spherical prior, the
Rademacher prior, and the sparse Rademacher prior. In these three settings, it was proved
that there exist lower and upper bounds β ′− and β ′+ such that detection is not possible when
0 < β ≤ β ′− and is possible when β ≥ β ′+. In particular, their result in the spherical case
improved the existing bounds in [44, 45] mentioned above. For the Rademacher prior, Chen
[20] closed the gap between β ′− and β ′+ by showing that βc in Theorem 2.2 is indeed the
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critical threshold for detection. The present work extends the results of [20, 56] to a broader
class of priors and also to k > 1.

Other related works. Since the likelihood ratio test and the MMSE estimator are often
intractable to compute, it is natural to ask about the performance of tractable algorithms for
detection and recovery for low-rank signals. The works [5, 7, 9, 22, 23, 37, 42, 46] studied the
performance of the approximate message passing (AMP) algorithm in recovering the spike.
See [12, 24, 34, 57] for the performance of AMP in compressed sensing. See [13] for the
performance of the Langevin dynamics and the gradient decent in the spiked tensor model.
The complexity of energy landscapes in spiked tensor models was studied in [14, 58].

2.6. Our approaches. As mentioned above, the work [20] considered the Gaussian p-
tensor model for all p ≥ 3 with a single spike (2.2) sampled from the Rademacher prior and it
obtained the same result as Theorem 2.1. In the present paper, we extend [20] to general priors
and to multiple spikes. In view of [20], the approach was based on a connection between the
total variation distance of the pair (W,T ) and the free energy (see (3.2)) of the pure p-spin
spin glass model through an integral representation (see Lemma 4.2). From this, proving the
impossibility of detection relies on knowing the decaying rate of the tail probability of the free
energy in the high temperature regime. The core ingredient of obtaining this tail probability
relied on a delicate study of the fluctuation of the free energy via the Parisi formula, the
coupled free energy with overlap constraints, and the two-dimensional Guerra–Talagrand
inequality.

Theorem 2.1 follows essentially from the same treatments as [20] by studying the fluc-
tuation of a one-dimensional spin glass free energy (3.2). However, while the arguments in
[20] were greatly simplified due to the simple structure of the Rademacher prior, there are a
number of analytic obstacles in handling our generalization. For example, the main results in
[20] critically relied on the strict monotonicity of γβ in β (recalling (2.5)). The proof of this
property used the symmetry of the Rademacher prior and it does not carry through in our set-
ting. To prove our main results, we establish an analogous, though more general proposition,
in Lemma 6.1 below, which requires a completely new argument.

Our approach to the high-dimensional generalization, Theorem 2.3, relies on the high tem-
perature behavior of the free energy associated to the vector-valued pure p-spin spin glass
model, see Section 3.2. In spin glasses, vector-valued models are usually harder as the spin
components interact with each other in a highly complicated way. As a result, the analysis of
the Parisi formula for the corresponding free energy and its coupled version becomes more
involved. Nevertheless, to study the high temperature regime, we can directly handle the free
energy by reducing the high-dimensional Hamiltonian to one-dimensional ones by exploit-
ing the overlap constraints, see Section 9. This helps us avoid controlling the Parisi formula
of the vector-valued model and greatly simplifies our argument. Ultimately, this leads to a
full characterization of the high temperature regime of the vector-valued pure p-spin model
(Theorem 3.2 below) and concludes Theorem 2.3. We expect that this approach is also appli-
cable in characterizing the high temperature regimes for more general spin glass models, for
instance, the vector-valued mixed p-spin model without external field.

REMARK 2.4. The assumption on the boundedness of the support of μ is used for tech-
nical purposes. For example, one can note that the estimates in Lemmas 8.2–8.4 use the
bound M on the size of the support of μ. We believe that our results remain valid when μ is
unbounded, but has exponential tail probability.

REMARK 2.5. We derive our main results in Section 2 by studying the pure p-spin mean-
field spin glass model, whose one-dimensional Hamiltonian is defined in (3.1). As an alter-
native approach, one can study instead the planted model, whose Hamiltonian is formulated
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in (5.1) with t = 1. It is natural for Bayesian estimation and can save some technical issues.
Most notably, the analog of Proposition 7.1 for the planted model has a simpler proof. For
details, we refer the readers to check [27], Proposition 13, and [25], Proposition 16, which are
analogs of Proposition 7.1, but use the planted model for the one-dimensional spike detec-
tion problem in the matrix setting (i.e., p = 2). The planted model also yields an alternative
scheme for determining the critical threshold βc by using the replica symmetric Parisi for-
mula [38], Theorem 1. Nevertheless, the model that we consider in this paper is essential
to the field of spin glasses (see, e.g., Bolthausen [17], Section 6) and our study of its high-
temperature behavior is of independent interest.

2.7. Structure of the rest of the paper. The key ingredient of this paper relies on an ob-
servation that the total variation distance between W and Tk can be expressed as an integral
related to the free energy of the pure p-spin models with scalar- and vector-valued spin con-
figurations (Lemma 4.2). Section 3 defines these models, characterizes their high-temperature
regimes, and presents results on the fluctuation of the free energy and concentration of the
overlap of the models. Section 4 establishes Theorems 2.1–2.4, while Section 5 presents the
proof of Theorem 2.5. The rest of the sections are devoted to establishing the main results
in Section 3. In Sections 6 and 9, we prove the asserted structures of the high-temperature
regimes. These proofs are the most crucial components in this paper. Sections 7 and 8 estab-
lish the high-temperature behavior of the overlap and the free energy when k = 1.

3. Pure p-spin models. In this section, we introduce the pure p-spin mean field spin
glass models with scalar-valued and vector-valued spin configurations and formulate some
crucial results regarding their high-temperature behavior. Their proofs are deferred to later
sections.

3.1. Scalar-valued model. Recall the random tensor Y from Section 2.1 and the proba-
bility space (�,μ) from Section 2.2. For any σ ∈ �N , the Hamiltonian of the pure p-spin
model is defined as

(3.1) XN(σ) = 1

N(p−1)/2

〈
Y,σ⊗p〉 = 1

N(p−1)/2

∑
1≤i1,...,ip≤N

Yi1,...,ipσi1 · · ·σip ,

where the Yi1,...,ip ’s are i.i.d. standard Gaussian random variables. Note that by the symmetry
of W , we also have the identity XN(s) = N−(p−1)/2〈W,σ⊗p〉. For any two spin configura-
tions σ 1 and σ 2, the covariance of XN can be computed as

E
(
XN

(
σ 1)XN

(
σ 2)) = N

(
R
(
σ 1, σ 2))p,

where R(σ 1, σ 2) is the overlap between σ 1 and σ 2 defined by

R
(
σ 1, σ 2) = 1

N

N∑
i=1

σ 1
i σ 2

i .

Define the re-centered Hamiltonian HN,β(σ ) by

HN,β(σ ) = βXN(σ) − β2N

2
R(σ,σ )p.

Note that EeHN,β(σ ) = 1. Define the free energy and Gibbs measure respectively by

(3.2) FN(β) = 1

N
log

∫
eHN,β(σ )μ⊗N(dσ)
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and

GN,β(dσ) = eHN,β(σ )μ⊗N(dσ)

ZN,β

,

where ZN,β is the normalizing constant so that GN,β is a probability measure on �N . Denote
by 〈·〉β the Gibbs expectation with respect to the i.i.d. samplings σ,σ 1, σ 2, . . . from the Gibbs
measure GN,β .

A few properties of FN are in position. First of all, an application of the Gaussian con-
centration of measures implies that FN(β) is concentrated around EFN(β). Here, from the
Jensen’s inequality,

EFN(β) ≤ 1

N
log

∫
EeHN,β(σ )μ⊗N(dσ) = 1

N
log 1 = 0.

In addition, EFN(β) is a nonincreasing function since by using Gaussian integration by parts,

d

dβ
EFN(β) = 1

N
E
〈
XN(σ)

〉
β − βE

〈
R(σ,σ )p

〉
β

= −βE
〈
R
(
σ 1, σ 2)p〉

β = −β
∑

1≤i1,...,ip≤N

E
(〈σi1 · · ·σip〉2

β

) ≤ 0.

Second, it can be shown (see Proposition 6.1 below) that for all β , limN→∞EFN(β) exists.
Denote this limit by F(β). From above, F(β) is nonpositive and nonincreasing. Define the
high-temperature regime as

R = {
β > 0 : F(β) = 0

}
.

The low-temperature regime is define as Rc. Set the critical threshold βc by

(3.3) βc = supR.

In spin glasses, the parameter β is understood as the (inverse) temperature parameter, while in
the detection problem of (2.6), it is interpreted as the signal strength or SNR. These equivalent
meanings of β are justified below in Lemma 4.2 via an integral representation for the total
variation distance between W and T .

The following proposition shows that the high-temperature regime R is an interval and its
right-end boundary is βc. It also gives a characterization of R in terms of the constant v∗ and
the auxiliary function 
b(v) defined in (2.3) and (2.4), respectively.

PROPOSITION 3.1. For p ≥ 2, R = (0, βc]. For β > 0, β ∈ R if and only if

sup
v∈(0,v∗]


β(v) ≤ 0.

Next, we show that in the interior of the high-temperature regime, the overlap between two
i.i.d. samples σ 1 and σ 2 is concentrated around zero.

THEOREM 3.1. For p ≥ 2, m ∈ N, and 0 < β < βc, there exists a constant K > 0,
depending only on p, m, and β , such that

(3.4) E
〈∣∣R(

σ 1, σ 2)∣∣2m〉
sβ ≤ K

Nm
∀s ∈ [0,1],N ≥ 1.

Furthermore, we control the fluctuation of the free energy as follows.
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PROPOSITION 3.2. For p ≥ 2 and 0 < β < βc, there exists a constant K , depending
only on p and β , such that

P
(∣∣FN(β)

∣∣ ≥ l
) ≤ K

l2Np/2+1 ∀l > 0,N ≥ 1.

In the case that μ is a uniform probability measure on {−1,1}, the behavior of the overlap
and the fluctuation of the free energy at high-temperature is well-understood. The case p = 2
corresponds to the famous Sherrington–Kirkpatrick (SK) model. In this case, Aizenman–
Lebowitz–Ruelle [1] proved that NFN(β) converges to a Gaussian random variable when
β < βc = 1 and Talagrand [61], Chapters 11 and 13, obtained the moment control of The-
orem 3.1. For p ≥ 3, Bardina–Márquez–Carreras–Rovira–Tindel [11] established (3.4) for
β � βc. For even p ≥ 4, Bovier–Kurkova–Löwe [18] showed that Np/4+1/2FN(β) has a
Gaussian fluctuation up to some temperature strictly less than βc. More recently, Chen [20]
obtained the same statements as Theorem 3.1 and Proposition 3.2 for this choice of (�,μ).
Our main contribution here is to establish concentration of the overlap and the fluctuation
of the free energy up to the critical temperature for any spin configurations sampled from a
probability measure on a bounded subset of the real line.

3.2. High temperature regime of the vector-valued model. Next we consider the pure
p-spin model with k-dimensional vector-valued spin configurations, where k ≥ 2. Recall
the probability spaces (�1,μ1), . . . , (�k,μk) from Section 2.3. Set the product space and
measure by

�̄ = �1 × · · · × �k,

μ̄ = μ1 ⊗ · · · ⊗ μk.

For σ(r) ∈ �N
r , 1 ≤ r ≤ k, denote

σ̄i = (
σi(1), . . . , σi(k)

)T ∈ �̄, 1 ≤ i ≤ N,

σ̄ = (σ̄1, . . . , σ̄N) ∈ �̄N .

In other words, the spin configuration σ̄ is a k × N matrix: the rows are σ(1) ∈ �N
1 , . . . ,

σ (k) ∈ �N
k and the columns are σ̄1, . . . , σ̄N ∈ �̄. Given β̄ = (β1, . . . , βk) with β1, . . . , βk >

0, the re-centered pure p-spin Hamiltonian with vector-valued spin configurations is defined
as

HN,β̄(σ̄ ) =
k∑

r=1

βrXN

(
σ(r)

)−
k∑

r,r ′=1

βrβr ′

2
NR

(
σ(r), σ

(
r ′))p, σ̄ ∈ �N.

Similar to the scalar-valued model, the free energy and the Gibbs measure are defined as

(3.5) FN(β̄) = 1

N
log

∫
e
HN,β̄ (σ̄ )

μ̄⊗N(dσ̄ )

and

GN,β̄(dσ̄ ) = e
HN,β̄ (σ̄ )

μ̄⊗N(dσ̄ )

ZN,β̄

,

where ZN,β̄ is the normalizing constant. Define

F(β̄) = lim sup
N→∞

FN(β̄).
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There is a technical subtlety here that is not present in the previous subsection. In the
case of even p, Panchenko [52] proved that if one drops the overlap term in HN,β̄ , then
the limiting free energy with overlap constraint exists. Consequently, one can show that
F(β̄) = limN→∞ FN(β̄) (see the proof of Proposition 6.1 below). When p is odd, this limit
is preserved if k = 1, as explained in the previous subsection, but whether it is still true for
k ≥ 2 remains an open question.

An application of Jensen’s inequality ensures that F(β̄) ≤ 0. The high-temperature regime
is defined as

R̄ = {
β̄ = (β1, . . . , βk) | βr > 0 for all 1 ≤ r ≤ k and F(β̄) = 0

}
.

Again, while β̄ is understood as the vector of SNRs in the detection problem, we read the
entries of this vector as the temperature parameters in the setting of spin glass models. Let
βr,c be the critical temperature obtained from Section 3.1 by taking (�,μ) = (�r,μr). The
following theorem states that the high-temperature regime of the vector-valued p-spin model
is equal to the product of the high-temperature regimes of the marginal systems.

THEOREM 3.2. For p ≥ 3, R̄ = (0, β1,c] × · · · × (0, βk,c].
Theorem 3.2 highlights an interesting phenomenon: Although the Hamiltonian HN,β̄ in-

volves interactions coming from the overlaps R(σ(r), σ (r ′)) for all r �= r ′, in the high-
temperature regime the marginal spin configurations σ(1), . . . , σ (k) under HN,β̄ essen-
tially interact with each other independently. Consequently, they behave like k independent
one-dimensional systems associated to HN,β1, . . . ,HN,βk

. As a result, the high-temperature
regime of HN,β̄ is simply the product of the high-temperature regimes of the marginal sys-
tems.

4. Establishing spike detection. This section proves the main theorems of this paper.
Section 4.1 first expresses the total variation distance that appears in the detection problem in
terms of the free energy of the pure p-spin model. Using this expression and results described
in Section 3, Sections 4.2–4.3 conclude the proofs of Theorems 2.1–2.4.

4.1. Total variation distance. It is well known that one can relate the total variation dis-
tance between two continuous random variables to the ratio of their probability densities. See
for instance [20], Lemma 1.

LEMMA 4.1. If U and V are two N -dimensional random vectors with densities fU and
fV , respectively, and fU(x), fV (x) �= 0 a.e., then

dTV(U,V ) =
∫ 1

0
P

(
fU(V )

fV (V )
< x

)
dx =

∫ 1

0
P

(
fU(U)

fV (U)
>

1

x

)
dx.

Recall T and Tk from (2.2) and (2.6). Note that W is a symmetric Gaussian p-tensor and
the spikes are independent of W . From these, one can compute the density functions for W ,
T , and Tk explicitly and then apply Lemma 4.1 to the pairs (W,T ) and (W,Tk) to get

LEMMA 4.2. For any β ∈ (0,∞) and β̄ ∈ (0,∞)k ,

dTV(W,T ) =
∫ 1

0
P
(
FN(β) < N−1 logx

)
dx,(4.1)

dTV(W,Tk) =
∫ 1

0
P
(
FN(β̄) < N−1 logx

)
dx.(4.2)

For a detailed derivation, we refer the reader to [20], Lemma 2.
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4.2. Proof of Theorems 2.1 and 2.2. PROOF OF THEOREM 2.1. Let βc be the critical
temperature defined in (3.3). Assume that 0 < β < βc. From (4.1), using change of variable
y = − logx and writing

∫∞
0 = ∫ ε

0 + ∫∞
ε imply that

dTV(W,T ) =
(∫ ε

0
+
∫ ∞
ε

)
P
(
FN(β) < −N−1y

)
e−y dy

≤
∫ ε

0
e−y dy +

∫ ∞
ε

P
(∣∣FN(β)

∣∣ ≥ N−1y
)
e−y dy

≤ ε +
∫ ∞
ε

K

y2N
p
2 −1

e−y dy

≤ ε + K

εN
p
2 −1

∀ε > 0,

where the second inequality used Proposition 3.2. Letting ε = N−(p−2)/4 yields

(4.3) dTV(W,T ) ≤ 1 + K

N
p−2

4

.

This implies that W and T are indistinguishable, so detection is impossible. Next, assume
that β > βc. Recall that FN(β) converges to F(β) almost surely and note that F(β) < 0. It
follows that

lim
N→∞P

(
FN(β) − N−1 logx < 0

) = P
(
F(β) < 0

) = 1

and the dominated convergence theorem yields

lim
N→∞dTV(W,T ) =

∫ 1

0
P
(
F(β) < 0

)
dx = 1. �

PROOF OF THEOREM 2.2. We have seen from the proof of Theorem 2.1 that the crit-
ical temperature βc defined in (3.3) is the critical threshold for detection. In addition, from
Proposition 3.1, we see that βc satisfies supv∈(0,v∗] 
βc(v) ≤ 0 and that any β > 0 satisfying
supv∈(0,v∗] 
β(v) ≤ 0 must also satisfy β ≤ βc. From this, to complete the proof, it suffices to
show that supv∈(0,v∗] 
βc(v) = 0. If on the contrary supv∈(0,v∗] 
βc(v) < 0, then there exists
some β > βc such that supv∈(0,v∗] 
β(v) < 0 since 
β(v) is a continuous function in β and v.
This contradicts the fact that β ≤ βc. �

4.3. Proof of Theorems 2.3 and 2.4. The proof of Theorem 2.3 relies on the following
simple lemma:

LEMMA 4.3. Assume that Y1, Y2, Y3 are random vectors of the same size and Y2 is
independent of Y1 and Y3. Then

dTV(Y1, Y1 + Y2 + Y3) ≤ dTV(Y1, Y1 + Y2) + dTV(Y1, Y1 + Y3).

PROOF. The assertion follows immediately by using the triangle inequality,

dTV(Y1, Y1 + Y2 + Y3) ≤ dTV(Y1, Y1 + Y2) + dTV(Y1 + Y2, Y1 + Y2 + Y3)

and noting that the independence between Y2 and Y1, Y3 yields

dTV(Y1 + Y2, Y1 + Y2 + Y3)

= sup
A

∣∣EY2

[
P(Y1 ∈ A − Y2|Y2) − P(Y1 + Y3 ∈ A − Y2|Y2)

]∣∣
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≤ EY2

[
sup
A

∣∣P(Y1 ∈ A − Y2|Y2) − P(Y1 + Y3 ∈ A − Y2|Y2)
∣∣]

= EY2

[
sup
A

∣∣P(Y1 ∈ A) − P(Y1 + Y3 ∈ A)
∣∣]

= dTV(Y1, Y1 + Y3),

where EY2 is the expectation with respect to Y2 only. �

PROOF OF THEOREM 2.3. Let β̄ = (β1, . . . , βk) ∈ (0, β1,c)×· · ·× (0, βr,c). For 1 ≤ r ≤
k, set

Tk,r = W + βr

N(p−1)/2 u(r)⊗p.

From Lemma 4.3 and an induction argument,

(4.4) dTV(W,Tk) ≤
k∑

r=1

dTV(W,Tk,r).

Since βr ∈ (0, βr,c), (4.3) implies that there exists a constant Kr > 0 such that for any N ≥ 1,

(4.5) dTV(W,Tk,r) ≤ Kr

N(p−2)/4 .

This together with (4.4) implies that detection is impossible. Next, assume that β̄ /∈ (0, β1,c]×
· · · × (0, βk,c]. Since

lim sup
N→∞

FN(β̄) = F(β̄) < 0 a.s.,

the Fatou lemma yields that for any x > 0,

lim inf
N→∞ P

(
FN(β̄) < N−1logx

) = lim inf
N→∞ E

[
I
(
FN(β̄) < N−1 logx

)]
≥ E

[
lim inf
N→∞ I

(
FN(β̄) < N−1 logx

)] = 1,

where I (·) is an indicator function. Using this, (4.2), and the Fatou lemma again, we arrive at

lim inf
N→∞ dTV(W,Tk) = lim inf

N→∞

∫ 1

0
P
(
FN(β̄) < N−1logx

)
dx

≥
∫ 1

0
lim inf
N→∞ P

(
FN(β̄) < N−1logx

)
dx =

∫ 1

0
1dx = 1.

Thus, detection is possible. �

PROOF OF THEOREM 2.4. Assume that supr≥1 βr < βc. From (4.4) and (4.5),

dTV(W,Tk) ≤ Kk

N(p−2)/4 ∀N ≥ 1,

where K is a universal constant independent of N . From the assumption on k, the right-hand
side vanishes as N tends to infinity and this establishes the assertion (i).

Next, we establish (ii) assuming (a.1). Suppose that N satisfies k = k(N) > k0. Denote

�k = 1

N(p−1)/2

∑
k0<r≤k

βru(r)⊗p.
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Since (u(r) : 1 ≤ r ≤ k0) is independent of (u(r) : r > k0),

dTV(Tk, Tk0) ≤ dTV(W + �k,W) ≤ ∑
k0<r≤k

dTV(W,Tk,r),

where the second inequality used Lemma 4.3 and Tk,r is defined in the proof of Theorem 2.3.
Hence, from the triangular inequality and (4.5), there exists a positive constant K such that

dTV(W,Tk0) ≤ dTV(W,Tk) + dTV(Tk, Tk0) ≤ dTV(W,Tk) + Kk

N(p−1)/4 ∀N ≥ 1.

Here, since βr > βc for at least one r ≤ k0, it means that (β1, . . . , βk0) /∈ (0, βc] × · · · (0, βc]
and from Theorem 2.3, dTV(W,Tk0) → 1. This implies that dTV(W,Tk) → 1 and the asser-
tion (ii) follows under (a.1).

To establish Theorem 2.4 assuming (a.2), note that since p is even, dropping the overlap
terms in HN,β̄(σ̄ ) yields FN(β̄) ≤ ∑k

r=1 FN,r(βr). In addition, note that EFN,r(·) is the same
function for every r and it can be checked, by using Gaussian integration by parts, that its
derivative is uniformly bounded as long as β stays in a bounded interval. Hence, for every
r ≥ 1, EFN,r(·) is a sequence of equicontinuous functions. As a result, the assumption that
infr≥k0 βr > βc and supr≥k0

βr < ∞ implies that there exist some δ > 0 and N0 ≥ 1 such that
EFN,r(βr) ≤ −δ for all r ≥ k0 and N ≥ N0. On the other hand, the Gaussian concentration
inequality implies that there exists a universal constant K > 0 such that

P(�N,r,t ) ≤ Ke−t2N/K ∀N ≥ 1, r ≥ 1, t > 0,

where �N,r,t := {|FN,r(βr) − EFN,r(βr)| ≥ t}. Fix 0 < t ≤ δ/2. From these, the probability
of the event

⋂
1≤r≤k �c

N,r,t is at least 1 − kKe−t2N/K . Furthermore, as long as N ≥ N0
satisfies k = k(N) > k0, on this event,

k∑
r=1

FN,r(βr) =
k∑

r=1

(
FN,r(βr) −EFN,r(βr)

)+
k∑

r=1

EFN,r(βr)

≤ δk

2
− ∑

k0<r≤k

δ = k0δ

2
− 1

2

∑
k0<r≤k

δ,

where the first inequality used EFN,r(βr) ≤ 0. Hence, from the assumption on k and the
Borel–Cantelli lemma, lim supN→∞ FN(β̄) = ∞ a.s. and this implies that for all x ∈ (0,1),

lim
N→∞P

(
FN(β̄) ≤ N−1 logx

) = 1.

From (4.2), the assertion (ii) follows. �

5. Establishing spike recovery. We present the proof of Theorem 2.5 in this section.
Recall that we handled the detection problem by means of the free energies of the spin glass
models defined in Section 3. Our treatment for Theorem 2.5 will also rely on an auxiliary
spin glass model, which arises naturally from the conditional distribution of u(1), . . . , u(r)

given Tk . This allows us to establish the so-called Nishimori identity and connect the MMSE
to the free energy associated to this auxiliary spin system.

5.1. Nishimori identity. Recall the probability spaces (�r,μr), the product probability
space (�̄, μ̄), and the Hamiltonians HN,β̄(σ̄ ) from Section 3.2. Fix a SNR vector β̄ . For any
t ≥ 0, define the random tensor Tk(t) by

Tk(t) = W +
√

t

Np−1

k∑
r=1

βru(r)⊗p.
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For σ̄ ∈ �̄N , define the auxiliary Hamiltonian

(5.1) HA
N,t,β̄

(σ̄ ) =
√

t

N(p−1)/2

k∑
r=1

βr

〈
Tk(t), σ (r)⊗p〉− t

2

k∑
r,r ′=1

βrβr ′NR
(
σ(r), σ

(
r ′))p.

For t ≥ 0, define the auxiliary free energy and Gibbs measure by

FA
N (t) = 1

N
log

∫
e
HA

N,t (σ̄ )
μ̄⊗N(dσ̄ ) and GA

N,t (dσ̄ ) = e
HA

N,t (σ̄ )
μ̄⊗N(dσ̄ )∫

e
HA

N,t (σ̄
′)
μ̄⊗N(dσ̄ ′)

.

Denote by σ̄ 1, σ̄ 2, . . . the i.i.d. samplings from GA
N,t and by 〈·〉At the Gibbs expectation with

respect to GA
N,t .

A key observation here is that the distribution of (u(1), . . . , u(k)) conditionally on Tk(t)

is described by the Gibbs measure,

(5.2) P
((

u(1), . . . , u(k)
) ∈ ·|Tk(t)

) = GA
N,t (·).

To see this equation, one uses the fact that W is Gaussian and is independent of u(r)’s and
then express the joint density of u(1), . . . , u(k), Tk(t) in terms of the Gaussian density, see,
for example, [20]. As a consequence, (5.2) implies the so-called Nishimori identity, namely,

(5.3)
〈
f
(
σ̄ 1, . . . , σ̄ n, u(1), . . . , u(k)

)〉A
t = 〈

f
(
σ̄ 1, . . . , σ̄ n, σ̄ n+1)〉A

t

for any bounded measurable function f . One may find more general settings, for instance, in
[38].

Consider the following auxiliary minimum mean square error

MMSEA
N(β̄, t) := min

θ̂

1

Np

N∑
i1,...,ip=1

E

(
k∑

r=1

βrui1(r) · · ·uip(r) − θ̂i1,...,ip

)2

,

where the minimum is taken over all RNp
-valued bounded random variables θ̂ = (θ̂i1,...,ip )

that are generated by the σ -field σ(Tk(t)) and are allowed to depend on other randomness
independent of both ui(r)’s and Tk . The following lemma summarizes some key properties
of EFA

N (t) and relates the auxiliary minimum mean square error to the derivative of the free
energy. These were originally discovered in [29, 63]. For completeness, we present their
proofs here.

LEMMA 5.1. The following statements hold:

(i) EFA
N (t) is a nondecreasing, nonnegative, and convex function of t .

(ii) d
dt
EFA

N (t) = 1
2
∑k

r,r ′=1 βrβr ′E〈R(σ(r), u(r ′))p〉At .

(iii) MMSEA
N(β̄, t) = ∑k

r,r ′=1 βrβr ′ER(u(r), u(r ′))p − 2 d
dt
EFA

N (t).

PROOF. Using Gaussian integration by parts implies

d

dt
EFA

N (t) =
k∑

r,r ′=1

βrβr ′
(
−1

2
E
〈
R
(
σ 1(r), σ 2(r ′))p〉A

t +E
〈
R
(
σ(r), u

(
r ′))p〉A

t

)
.

From (5.3), (ii) follows. To establish (iii), note that the minimizer of MMSEA
N is attained by

the estimator

θ̂A
i1,...,ip

=
k∑

r=1

βrE
[
ui1(r) · · ·uip(r)|Tk(t)

] =
k∑

r=1

βr〈σi1 · · ·σip〉At ,
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where the second equality used (5.3). Plugging this estimator into MMSEA
N(β̄, t) and apply-

ing (5.3) yield (iii).
Finally, we prove (i). Note that setting θ̂i1,...,ip ≡ 0 gives the upper bound

MMSEA
N(β̄, t) ≤

k∑
r,r ′=1

βrβr ′ER
(
u(r), u

(
r ′))p.

Combining this with (iii) shows that d
dt
EFA

N (t) is nonnegative, so EFA
N (t) is nondecreasing

in t . In addition, since FA
N (0) = 0, we conclude that EFA

N (t) is nonnegative. To establish the
convexity of EFA

N in t , from (iii) it suffices to show that MMSEA
N(β̄, t) is nonincreasing in t .

For any 0 ≤ t < t ′, write

1√
t
Tk(t) = 1√

Np−1

k∑
r=1

βru
⊗p(r) + 1√

t
W

d= 1√
t ′

Tk

(
t ′
)+

√
1

t
− 1

t ′
W ′,

where W ′ is an independent copy of W and is also independent of u(1), . . . , u(k). Write

E
[
ui1 · · ·uip |Tk

(
t ′
)] = E

[
ui1 · · ·uip |Tk

(
t ′
)
,W ′] = E

[
ui1 · · ·uip |Tk(t), Tk

(
t ′
)]

.

It follows that

MMSEA
N

(
β̄, t ′

) = 1

Np

N∑
i1,...,ip=1

E

(
k∑

r=1

βr

(
ui1 · · ·uip −E

[
ui1 · · ·uip |Tk(t), Tk

(
t ′
)]))2

≤ 1

Np

N∑
i1,...,ip=1

E

(
k∑

r=1

βr

(
ui1 · · ·uip −E

[
ui1 · · ·uip |Tk(t)

]))2

= MMSEA
N(β̄, t).

This establishes (i) and completes our proof. �

5.2. Proof of Theorem 2.5. We prove Theorem 2.5(i) first. Assume that β̄ ∈ (0, β1,c) ×
· · · × (0, βk,c). From Theorem 2.3, dTV(W,Tk) → 0. Note that

dTV(W,Tk) =
∫ 1

0
P
(
FN(β̄) < N−1 logx

)
dx =

∫ 1

0
P
(
FA

N (1) > −N−1 logx
)
dx.

Here the first equality is from Lemma 4.2, while the second equality follows from a similar
argument as that for Lemma 4.2 by using the second equality in Lemma 4.1. By Fatou’s
lemma and the above display,

lim inf
N→∞ P

(
FA

N (1) > −N−1 logx
) → 0, x ∈ (0,1)

and consequently, lim supN→∞ P(BN(ε)) = 1 for all ε ∈ (0,1), where BN(ε) := {FA
N (1) ≤

ε}. Therefore, from Hölder’s inequality,

EFA
N (1) = E

[
FA

N (1);BN(ε)
]+E

[
FA

N (1);BN(ε)c
]

≤ ε + (
EFA

N (1)2)1/2(
P
(
BN(ε)c

))1/2
.

Note that since μ1, . . . ,μk are defined on bounded sets, one can verify that the second mo-
ment of the random variable FA

N (1) is bounded in N . As a result,

lim sup
N→∞

EFA
N (1) ≤ 0.
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From Lemma 5.1(i), we then conclude that

lim
N→∞EFA

N (t) = 0 ∀t ∈ [0,1].

Now the convexity of EFA
N implies that limN→∞ d

dt
EFA

N (t) = 0 for t ∈ [0,1]. From
Lemma 5.1(ii) and (iii) and the strong law of large numbers, Theorem 2.5(i) follows.

Next, we assume that β̄ /∈ (0, β1,c] × · · · × (0, βk,c]. For s ∈ [0,1], define an interpolating
free energy by

F I
N(s) = 1

N
log

∫
exp

(
HN,β̄(σ̄ ) + s

k∑
r,r ′=1

βrβr ′NR
(
σ(r), u

(
r ′))p)μ̄⊗N(dσ̄ ).

Note that when t = 1,

HA
N,t (σ̄ ) = HN,β̄(σ̄ ) +

k∑
r,r ′=1

βrβr ′NR
(
σ(r), u

(
r ′))p.

This implies that FI
N(1) = FA

N (1) and FI
N(0) = FN(β̄). In addition, from Lemma 5.1(ii), and

the convexity of FI
N(s),

(5.4)
d

dt
EFA

N (1) = 1

2

d

ds
EFI

N(1) ≥ 1

2

d

ds
EFI

N(s) ∀s ∈ [0,1].

Note that since EFI
N is a family of equicontinuous and convex functions, one can pass to a

subsequence (Nn)n≥1 via a diagonalization procedure to show that EFI
N is pointwise conver-

gent along this subsequence. Furthermore, we can ensure that along this subsequence,

lim
n→∞

d

dt
EFI

Nn
(1) = lim inf

N→∞
d

dt
EFA

N (1).

Denote FI = limn→∞EFI
Nn

. Note that on the one hand, EFA
N (1) ≥ 0 by Lemma 5.1(i) and

on the other hand, F(β̄) = lim supN→∞EFN(β̄) < 0 by Theorem 3.2. Using the identities
FI

N(1) = FA
N (1) and FI

N(0) = FN(β̄) yields that FI (0) < 0 ≤ FI (1). Consequently, there
exists some s0 ∈ (0,1) such that FI is differentiable at this point and

lim
n→∞

d

ds
EFI

Nn
(s0) = d

ds
F I (s0) > 0.

This and (5.4) together yield

lim
n→∞

d

dt
EFA

Nn
(1) ≥ 1

2

d

ds
F I (s0) > 0.

Finally, from this inequality, Lemma 5.1(ii) and (iii), and the strong law of large numbers, the
assertion of Theorem 2.5(ii) follows.

6. Structure of the regimeR. In this section, we establish the proof of Proposition 3.1.
It is based on a subtle control of the Parisi formula for the free energy. While a similar
argument has appeared in [20] for the case that there is only one spike and it is sampled from
the Rademacher prior, our argument here works for more general priors.



1890 W.-K. CHEN, M. HANDSCHY AND G. LERMAN

6.1. The Parisi formula. Recall the probability space (�,μ) from Section 3.1. Denote

(6.1) V = {
u2 : u ∈ �

}
.

Fix v ∈ V and let Mv be the space of probability measures on [0, v]. Recall that ξ(s) = sp .
For α ∈ Mv and λ ∈ R, define the Parisi functional by

Pβ,v(α,λ) = �β,v,α(0,0, λ) − λv − β2

2

∫ v

0
α(s)ξ ′′(s)s ds,

where �β,v,α(0,0, λ) is defined as the weak solution of the following PDE on [0, v]×R×R

(see [33]):

∂s�β,v,α = −β2ξ ′′

2

(
∂xx�β,v,α + α(∂x�β,v,α)2)

with the boundary condition

�β,v,α(v, x, λ) = log
∫

exa+λa2
μ(da).

The Parisi formula states that

lim
N→∞

1

N
log

∫
eβXN(σ)μ⊗N(dσ) = sup

v∈V
inf

(α,λ)∈Mv×R

Pβ,v(α,λ).

This formula was initially established by Talagrand [59] for the mixture of even p-spin
Hamiltonians and � = {−1,1}. Later it was generalized to arbitrary mixtures of pure p-
spin Hamiltonians including odd p and any probability space (�,μ) with bounded � ⊂ R

by Panchenko [49, 52]. The following proposition shows that the limiting free energy F(β)

can also be expressed as a Parisi-type formula.

PROPOSITION 6.1 (Parisi formula). For any β > 0,

F(β) := lim
N→∞FN(β) = sup

v∈V
inf
α,λ

Qβ,v(α,λ),

where for (α,λ) ∈Mv ×R,

Qβ,v(α,λ) := Pβ,v(α,λ) − β2vp

2
.

PROOF. For any measurable A ⊂ V , define the free energy restricted to A by

FN(β,A) = 1

N
log

∫
R(σ,σ )∈A

eHN,β(σ )μ⊗N(dσ).

For any η > 0 and v ∈ V , set Aη(v) = (v − η, v + η). Note that it is already known from [52]
that for any v ∈ V ,

lim
η↓0

lim
N→∞FN

(
β,Aη(v)

) = inf
Mv×R

Qβ,v(α,λ).

From this, for any δ > 0, there exist η(v) and N(v) such that for any N ≥ N(v)

(6.2)
∣∣∣FN

(
β,Aη(v)

)− inf
Mv×R

Qβ,v(α,λ)
∣∣∣ ≤ δ.

Note that V is bounded and that for any η > 0, (Aη(v) : v ∈ V) forms an open covering for
the closure of V . From these, we can pass to a finite covering, Aη(vj ) for 1 ≤ j ≤ n, such
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that (6.2) is valid. From this,

FN

(
β,Aη(vj )

) ≤ FN(β)

≤ 1

N
log

n∑
j=1

expNFN

(
β,Aη(vj )

)

≤ logn

N
+ max

1≤j≤n
FN

(
β,Aη(vj )

)
and hence, as long as N is large enough,

inf
Mv×R

Qβ,v(α,λ) − δ ≤ FN(β) ≤ max
1≤j≤n

inf
Mvj

×R

Qβ,vj
(α,λ) + 2δ.

Thus,

max
1≤j≤n

inf
Mvj

×R

Qβ,vj
(α,λ) − δ ≤ lim inf

N→∞ FN(β)

≤ lim sup
N→∞

FN(β) ≤ max
1≤j≤n

inf
Mvj

×R

Qβ,vj
(α,λ) + 2δ.

This completes our proof by letting δ ↓ 0 and noting that infMv×RQβ,v(αλ) is continuous
in v. �

6.2. Two technical lemmas. Recall 
b from (2.4) and γb from (2.5). The following tech-
nical inequality establishes the strict monotonicity of γb in the temperature parameter b. This
will be of great importance for the rest of this section as well as in Section 7.

LEMMA 6.1. If 0 < β < β ′, then γβ(s) < γβ ′(s) for all s > 0.

PROOF. Note that γβ(0) = 0. Let Bt be a standard Brownian motion. Define

gj (t, x) =
∫

aj eax− a2t
2 μ(da) ∀j = 0,1,2,3.

Set Xt = g1(t,Bt )
2 and Yt = g0(t,Bt )

−1. Note that γβ(s) = EXtYt if we let t = β2ξ ′(s).
From Itô’s formula,

dXt = 2g1∂tg1 dt + 2g1∂xg1 dBt + (
g1∂xxg1 + (∂xg1)

2)dt

= −g1g3 dt + 2g1g2 dBt + (
g1g3 + (g2)

2)dt = (g2)
2 dt + 2g1g2 dBt

and

dYt = −∂tg0

g2
0

dt − ∂xg0

g2
0

dBt − 1

2

(
∂xxg0

g2
0

− 2(∂xg0)
2

g3
0

)
dt

= g2

2g2
0

dt − g1

g2
0

dBt − 1

2

(
g2

g2
0

− 2(g1)
2

g3
0

)
dt = (g1)

2

g3
0

dt − g1

g2
0

dBt .

Now from the product rule,

d(XtYt ) = XtdYt + YtdXt + d〈Xt,Yt 〉

= g2
1

(
g2

1

g3
0

dt − g1

g2
0

dBt

)
+ g−1

0

(
(g2)

2 dt + 2g1g2 dBt

)− 2g2
1g2

g2
0

dt
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=
(

g4
1

g3
0

+ g2
2

g0
− 2g2

1g2

g2
0

)
dt +

(
−g3

1

g2
0

+ 2g1g2

g0

)
dBt

= g0

(
g2

1

g2
0

− g2

g0

)2
dt +

(
−g3

1

g2
0

+ 2g1g2

g0

)
dBt ,

where 〈·, ·〉 is the quadratic variation and the third equality follows from the identity

g4
1

g3
0

+ g2
2

g0
− 2g2

1g2

g2
0

= g0

(
g4

1

g4
0

+ g2
2

g2
0

− 2
g2

1

g2
0

g2

g0

)
= g0

(
g2

1

g2
0

− g2

g0

)2
.

From this, we conclude that XtYt is a submartingale and thus EXtYt ≤ EXt ′Yt ′ for any 0 ≤
t < t ′.

If equality holds for some 0 ≤ t < t ′, then∫ t ′

t
E

[
g0(s,Bs)

(
g1(s,Bs)

2

g0(s,Bs)2 − g2(s,Bs)

g0(s,Bs)

)2]
ds = EXt ′Yt ′ −EXtYt = 0.

This implies that

(∫
� aeaBs− a2s

2 μ(da)∫
� eaBs− a2s

2 μ(da)

)2
= g1(s,Bs)

2

g0(s,Bs)2 = g2(s,Bs)

g0(s,Bs)
=

∫
� a2eaBs− a2s

2 μ(da)∫
� eaBs− a2s

2 μ(da)

for all t ≤ s ≤ t ′. From this, the necessary condition for obtaining equality in Jensen’s in-
equality implies that

a′ =
∫
� aeaBs− a2s

2 μ(da)∫
� eaBs− a2s

2 μ(da)

∀a′ ∈ �.

The above equation implies that � consists of a single element, which contradicts the assump-
tion that μ is centered and � contains more than one element. Therefore, EXtYt < EXt ′Yt ′
for any 0 ≤ t < t ′. Finally, for s > 0 and 0 ≤ β < β ′, plugging t = β2ξ ′(s) and t ′ = β ′2ξ ′(s)
into this inequality yields γβ(s) < γβ ′(s). �

Recall the constant v∗ from (2.3). Set the parameter

λ∗ = −β2ξ ′(v∗)
2

= −β2pv
p−1∗

2
.

Recall the Parisi formula from Proposition 6.1. For any v ∈ [0, v∗], define αv ∈ Mv by
αv(s) = 1 for s ∈ [0, v]. The next lemma studies some variational properties of the functional
Qβ,v defined in Proposition 6.1.

LEMMA 6.2. The following two statements hold:

(i) If v �= v∗, then infλQβ,v(αv, λ) < 0.
(ii) If v = v∗, then infλQβ,v(αv, λ) = 0 and λ∗ is a minimizer.

PROOF. Note that

Pβ,v(αv, λ) = logE
∫

exp
(
βz

√
ξ ′(v)a + λa2)μ(da) − λv − β2

2

∫ v

0
ξ ′′(s)s ds

= log
∫

exp
(

β2pvp−1

2
a2 + λa2

)
μ(da) − λv − β2(p − 1)

2
vp,
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where z is standard Gaussian. Consequently,

inf
λ
Qβ,v(αv, λ) = inf

λ

(
log

∫
exp

(
λa2)μ(da) − λv

)
,

where the right-hand side is obtained through a change of variable λ �→ λ−β2ξ ′(v)/2. Define

F(v,λ) = log
∫

exp
(
λa2)μ(da) − λv.

Note that Hölder’s inequality implies that F(v, ·) is convex. If v = v∗, then ∂λF (v,0) = 0
and thus λ = 0 is a minimizer of F(v, ·). Recalling the substitution λ �→ λ − β2ξ ′(v)/2, this
means that property (ii) holds. To show (i), note that F(v,0) = 0. If v �= v∗, then ∂λF (v,0) =
v∗ − v �= 0. This means that 0 is not a minimizer of F(v, ·) and therefore infλ F (v,λ) < 0.
This implies property (i) and completes our proof. �

6.3. Proof of Proposition 3.1. First, we prove that for β > 0, β ∈ R if and only if
supv∈(0,v∗] 
β(v) ≤ 0. Let β ∈ R. From Proposition 6.1,

0 = F(β) = sup
v

inf
α,λ

Qβ,v(α,λ).

From Lemma 6.2(i), we see that for any v �= v∗,

inf
α,λ

Qβ,v(α,λ) ≤ inf
λ
Qβ,v(αv, λ) < 0,

which implies that

sup
v

inf
α,λ

Qβ,v(α,λ) = inf
α,λ

Qβ,v∗(α,λ) = 0.

From this and Lemma 6.2(ii), we conclude that (αv∗, λ∗) is an optimizer of Qβ,v∗ . Now we
use this conclusion to show that β must satisfy supv∈(0,v∗] 
β(v) ≤ 0 as follows. Note that

Qβ,v∗(α,λ∗) = �β,v∗,α(0,0, λ∗) − β2

2

∫ v∗

0
α(s)ξ ′′(s) ds + β2(p − 1)v

p∗
2

.

Since the boundary condition �β,v∗,α(v∗, x, λ) is convex in (x, λ), an argument identical
to that in [2] yields that (α,λ) ∈ Mv∗ × R �→ Qβ,v∗(α,λ) is a convex functional. For any
(α,λ) ∈ Mv∗ ×R and θ ∈ [0,1], set

αθ := (1 − θ)αv∗ + θα and λθ := (1 − θ)λ∗ + θλ.

The directional derivative of Qβ,v∗ at (αv∗, λ∗) can be computed as (see, e.g., [19], Theo-
rem 2, and the derivation of (7.2) below),

d

dθ
Qβ,v∗(αθ , λθ )

∣∣∣∣
θ=0

= β2

2

∫ v∗

0
ξ ′′(s)

(
α(s) − αv∗(s)

)(
γβ(s) − s

)
ds

+
(∫

a2μ(da) − v∗
)
(λ − λ∗)

= β2

2

∫ v∗

0
ξ ′′(s)

(
α(s) − αv∗(s)

)(
γβ(s) − s

)
ds,

where the derivative is from the right-hand side of 0. As a result, the optimality of (αv∗, λ∗)
implies that the last line of the above display is nonnegative. Write∫ v∗

0
ξ ′′(s)

(
α(s) − αv∗(s)

)(
γβ(s) − s

)
ds

=
∫ v∗

0

∫ s

0
ξ ′′(s)

(
γβ(s) − s

)
α(da)ds −

∫ v∗

0
ξ ′′(s)

(
γβ(s) − s

)
ds

=
∫ v∗

0

(∫ v∗

a
ξ ′′(s)

(
γβ(s) − s

)
ds

)
α(da) −

∫ v∗

0
ξ ′′(s)

(
γβ(s) − s

)
ds.
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From this, the optimality of (αv∗, λ∗) is equivalent to∫ v∗

v
ξ ′′(s)

(
γβ(s) − s

)
ds ≥

∫ v∗

0
ξ ′′(s)

(
γβ(s) − s

)
ds ∀v ∈ [0, v∗],

and hence, this is also equivalent to 
β(v) ≤ 0 for all v ∈ [0, v∗]. Conversely, if 
β(v) ≤ 0
for all v ∈ [0, v∗], then this inequality implies that the above directional derivative of
Qβ,v∗ is nonnegative. This means that (αv∗, λ∗) is an optimizer of the variational prob-
lem infα,λQβ,v∗(α,λ) and infα,λQβ,v∗(α,λ) = Qβ,v∗(αv∗, λ∗) = 0. From these and Propo-
sition 6.1, we arrive at 0 = infα,λQβ,v∗(α,λ) ≤ F(β) ≤ 0 and hence, F(β) = 0. This estab-
lishes the statement that for β > 0, β ∈ R if and only if supv∈(0,v∗] 
β(v) ≤ 0.

Finally, the assertion R = (0, βc] can be established similarly. Clearly, R ⊆ (0, βc]. If
0 < β ≤ βc, then Lemma 6.1 and the above proof imply that 
β(v) ≤ 
βc(v) ≤ 0 for all
v ∈ [0, v∗] and thus, β ∈ R. This completes our proof.

7. Overlap concentration with exponential tail. Recall the probability space (�,μ),
the Gibbs measure GN,β , and the Gibbs expectation 〈·〉β from Section 3.1. The following
proposition states that in the high-temperature regime, the overlap of two i.i.d. sampled spin
configurations from GN,β is concentrated around the origin with overwhelming probability.
This result will be essential when we later bound the overlap moments. Let I (A) denote the
indicator function of a set A.

PROPOSITION 7.1. Assume that 0 < β < βc and that s0 ∈ (0,1). For any ε > 0, there
exists a constant K > 0, depending only on β , s0, and ε, such that the following property
holds for any N ≥ 1 and s ∈ [s0,1]: For i.i.d. samplings σ 1 and σ 2 from GN,sβ ,

E
〈
I
(∣∣R(

σ 1, σ 2)∣∣ ≥ ε
)〉

sβ ≤ Ke−N/K.

The rest of this section is devoted to proving Proposition 7.1.

7.1. The Guerra–Talagrand bound. Our main tool is the Guerra–Talagrand bound for
the coupled free energy that we formulate as follows. Denote by M2(R) the space of all
real-valued 2 × 2 matrices equipped with the metric∥∥V − V ′∥∥

max = max
1≤r,r ′≤2

∣∣Vrr ′ − V ′
rr ′

∣∣.
For C,D ∈ M2(R), denote by 〈C,D〉 the inner product of C and D, that is, 〈C,D〉 =∑2

i,j=1 CijDij ; when x, y ∈ R
2, denote by 〈x, y〉 the usual scalar product between x and y.

For any σ 1, σ 2 ∈ �N , define the overlap matrix by

R
(
σ 1, σ 2) =

[
R
(
σ 1, σ 1) R

(
σ 1, σ 2)

R
(
σ 1, σ 2) R

(
σ 2, σ 2)

]
.

For any subset A ⊂ M2(R), define the coupled free energy restricted to A by

CFN(β,A) = 1

N
log

∫
R(σ 1,σ 2)∈A

eHN,β(σ 1)+HN,β(σ 2)μ⊗N (
dσ 1)μ⊗N (

dσ 2).
Recall the space V from (6.1) and recall that Mv is the set of all probability measures on
[0, v]. Let v ∈ V and v0 ∈ [0, v] be fixed. Set

V :=
[

v v0
v0 v

]
.
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Let T be a M2(R)-valued function on [0, v] defined by

T (s) =
[
1 1
1 1

]
∀s ∈ [0, v0) and T (s) =

[
1 0
0 1

]
∀s ∈ [v0, v].

For any α ∈ Mv , consider the weak solution �β,V,α to the following PDE for (s, x, λ) ∈
[0, v) ×R

2 × M2(R):

∂s�β,V,α = −β2ξ ′′

2

(〈
�2�β,V,α, T

〉+ α〈T��β,V,α,��β,V,α〉)
with boundary condition �β,V,α(v, x, λ) = log

∫
e〈a,x〉+〈λa,a〉(μ ⊗ μ)(da). For the existence

of �β,V,α , we refer the readers to [33]. For α ∈Mv and λ ∈ M2(R), define

Pβ,V (α,λ) = �β,V,α(0,0, λ) − 〈λ,V 〉 − β2
(∫ v

0
ξ ′′(s)sα(s) ds +

∫ v0

0
ξ ′′(s)sα(s) ds

)
.

Denote Aη(V ) = {V ′ ∈ M2(R) : ‖V − V ′‖max < η}. The Guerra-Talagrand inequality (see
[61]) states that if p is even, then for any (α,λ) ∈ Mv × M2(R),

(7.1)
lim
η↓0

lim sup
N→∞

1

N
E log

∫
R(σ 1,σ 2)∈Aη(V )

eβXN(σ 1)+βXN(σ 2)μ⊗N (
dσ 1)μ⊗N (

dσ 2)
≤ Pβ,V (α,λ).

When p is odd, the validity of this inequality is an open question. Nevertheless, in the case of
the Rademacher prior, that is, μ = δ1/2 + δ−1/2, the work [20] proved that for odd p, (7.1)
remains valid if α ∈ Mv,v0 for 0 ≤ v0 ≤ v, where

Mv,v0 := {
α ∈ Mv : α is a fixed constant on [0, v0) and α(s) = 1 on [v0, v]}.

In view of the proof in [20], the argument does not rely on the measure μ in an essential way
and it is applicable to the current general setting so that (7.1) remains valid for odd p and
(α,λ) ∈ Mv,v0 × M2(R). In the Appendix, we present a sketch of the proof for this inequal-
ity. Now substituting the overlap term in HN,β via the restriction Aη(V ) in CFN(β,Aη(V ))

yields

PROPOSITION 7.2 (Guerra-Talagrand Bound). For any p ≥ 2, v ∈ V , v0 ∈ [0, v], λ ∈
M2(R) and α ∈ Mv,v0 ,

lim
η↓0

lim sup
N→∞

ECFN

(
β,Aη(V )

) ≤ Qβ,V (α,λ) := Pβ,V (α,λ) − β2vp.

7.2. Proof of Proposition 7.1. Before proving Proposition 7.1, we need a lemma, which
will also be used later in Section 9.

LEMMA 7.1. Assume that β ∈ R. For any s0 ∈ (0,1] and ε > 0, there exists a constant
K > 0 independent of N such that

E
〈
I
(∣∣R(σ,σ ) − v∗

∣∣ ≥ ε
)〉

sβ ≤ Ke−N/K ∀s ∈ [s0,1],N ≥ 1,

where σ is a sampling from GN,sβ .

PROOF. From Jensen’s inequality and EeHN,sβ (σ ) = 1,

lim sup
N→∞

1

N
E log

∫
R(σ,σ )/∈(v∗−ε,v∗+ε)

eHN,sβ(σ )μ⊗N(dσ)

≤ lim sup
N→∞

1

N
log

∫
R(σ,σ )/∈(v∗−ε,v∗+ε)

μ⊗N(dσ).
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Observe that in the second integral σ = (σ1, . . . , σN) are i.i.d. random variables with respect
to the measure μ, which has a bounded support and variance v∗. Using Cramér’s theorem
(see, e.g., [21], Theorem 2.2.3), there exists a δ > 0 such that∫

R(σ,σ )/∈(v∗−ε,v∗+ε)
μ⊗N(dσ) ≤ e−Nδ ∀N ≥ 1.

Hence, from the above inequalities and Proposition 3.1,

lim sup
N→∞

1

N
E log

∫
R(σ,σ )/∈(v∗−ε,v∗+ε)

eHN,sβ(σ )μ⊗N(dσ) ≤ −δ = F(sβ) − δ ∀s ∈ [s0,1].

Next, by using Gaussian integration by parts, one can compute the derivatives in the s variable
for

1

N
E log

∫
R(σ,σ )/∈(v∗−ε,v∗+ε)

eHN,sβ(σ )μ⊗N(dσ) and EFN(sβ)

to show that the resulting derivatives are uniformly bounded over s ∈ [s0,1]. As a conse-
quence, these two sequences of functions are equicontinuous. From this and the above in-
equality, there exists some N0 ≥ 1 such that

1

N
E log

∫
R(σ,σ )/∈(v∗−ε,v∗+ε)

eHN,sβ(σ )μ⊗N(dσ) ≤ EFN(sβ) − δ

2
∀s ∈ [s0,1],N ≥ N0.

Finally, from this inequality and the Gaussian concentration inequality for FN(sβ) and its
restricted free energy, there exists a universal constant K > 0 such that for any s ∈ [s0,1] and
N ≥ N0, with probability at least 1 − Ke−N/K ,

1

N
log

∫
R(σ,σ )/∈(v∗−ε,v∗+ε)

eHN,sβ(σ )μ⊗N(dσ) ≤ FN(sβ) − δ

4
,

which implies that

E
〈
I
(∣∣R(σ,σ ) − v∗

∣∣ ≥ ε
)〉

sβ ≤ e−Nδ/4 + Ke−N/K.

This completes our proof. �

Now we establish the proof of Proposition 7.1. Let 0 < β < βc, 0 < ε < v∗, and s0 ∈ (0,1)

be fixed. Let v = v∗. Suppose that v0 ∈ [ε, v]. For s ∈ [0,1], denote βs = sβ . Let λ ∈ M2(R)

with λ1,1 = λ2,2 = −β2
s ξ ′(v∗)/2 and λ1,2 = λ2,1 = 0. Let α ∈ Mv,v0 satisfy α ≡ 0 on [0, v0),

and α ≡ 1 on [v0, v]. For θ ∈ [0,1], set

αθ(s) =
⎧⎨
⎩

1 − θ

2
if s ∈ [0, v0),

1 if s ∈ [v0, v].
Using the Cole–Hopf transformation, one can compute that

Qβs,V (αθ , λ) = 2

1 − θ
logE

[
g0
(
β2

s ξ ′(v0), βsξ
′(v0)

1/2z
)1−θ ]+ β2

s ξ ′(v)v

− β2
s

(
(1 − θ)

∫ v0

0
ξ ′′(r)r dr +

∫ v

v0

ξ ′′(r)r dr

)
− β2

s vp,

where

g0(t, x) :=
∫

eax−a2t/2μ(da)
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and z is a standard normal random variable. A direct differentiation in θ yields

∂θQβs,V (αθ , λ)|θ=0 = −2Eg(t,
√

tz) logg(t,
√

tz) + β2
s

∫ v0

0
ξ ′′(s) ds, t = β2

s ξ ′(v0).

To handle this equation, we use Gaussian integration by parts to get

d

dt
Eg(t,

√
tz) logg(t,

√
tz)

= E∂tg(t,
√

tz)
(
logg(t,

√
tz) + 1

)
+ 1

2

(
E∂xxg(t,

√
tz)

(
logg(t,

√
tz) + 1

)+E
∂xg(t,

√
tz)2

g(t,
√

tz)

)

= −1

2
E∂xxg(t,

√
tz)

(
logg(t,

√
tz) + 1

)

+ 1

2

(
E∂xxg(t,

√
tz)

(
logg(t,

√
tz) + 1

)+E
∂xg(t,

√
tz)2

g(t,
√

tz)

)

= 1

2
E

∂xg(t,
√

tz)2

g(t,
√

tz)
,

where the last equality used the observation ∂tg = −∂xxg/2. Consequently,

(7.2)

∂θQβs,V (αθ , λ)|θ=0

= 2β2
s

∫ v0

0

1

2
ξ ′′(r)E∂xg(β2

s ξ ′(r), βs

√
ξ ′(r)z)2

g(β2
s ξ ′(r), βs

√
ξ ′(r)z)

dr − β2
s

∫ v0

0
ξ ′′(s) ds

= β2
s

∫ v0

0
ξ ′′(r)

(
γβs (r) − 1

)
dr

< β2
s

∫ v0

0
ξ ′′(r)

(
γβc(r) − 1

)
dr = β2

s 
βc(v0) ≤ 0

for all 0 < s ≤ 1, where the strict inequality used the monotonicity of the function γb(r) in
b by Lemma 6.1 and the last inequality used Proposition 3.1. Now since Qβs,V (αθ , λ) is a
continuous function in (s, v0, θ) and Qβs,V (αθ , λ)|θ=0 = 0, there exist δ, δ′ > 0 such that

sup
s∈[s0,1]

sup
v0∈[ε,v+δ′]

inf
θ∈[0,1]Qβs,V (αθ , λ) ≤ −δ.

Consequently, from Proposition 7.2, we see that the coupled free energy exhibits a free energy
cost, that is, for any v0 ∈ [ε, v + δ′] and s ∈ [s0,1],
(7.3) lim

η↓0
lim sup
N→∞

ECFN

(
βs,Aη(V )

) ≤ −δ.

Set

A+ = {
V ∈ M2(R) : V positive semi-definite with

V12 = V21 ≥ ε,V11,V22 ∈ [
v − δ′, v + δ′]},

A− = {
V ∈ M2(R) : V positive semi-definite with

V12 = V21 ≤ −ε,V11,V22 ∈ [
v − δ′, v + δ′]}.

Using the inequality

log(x1 + · · · + xk) ≤ log k + max
1≤
≤k

logx
 ∀x1, . . . , xk > 0,
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we see from the compactness of A+ and (7.3) that for any s ∈ [s0,1],

(7.4) lim sup
N→∞

ECFN

(
βs,A

+) ≤ −δ

2
.

To obtain the same inequality for A−, we note that when p is even, HN,β(σ ) = HN,β(−σ),
which implies that ECFN(βs,A

+) = ECFN(βs,A
−) and thus,

lim sup
N→∞

ECFN

(
βs,A

−) ≤ −δ

2
.

When p is an odd number, Jensen’s inequality yields that

lim sup
N→∞

ECFN

(
βs,A

−) ≤ lim sup
N→∞

1

N
log

∫
R(σ 1,σ 2)∈A−

eβ2NR(σ 1,σ 2)pμ⊗N (
σ 1)μ⊗N (

σ 2)
< −β2εp < 0.

Combining these and Proposition 3.1 together implies that there exists a constant δ′′ > 0 such
that for all s ∈ [s0,1],
(7.5) lim sup

N→∞
ECFN

(
βs,A

+ ∪ A−) < −δ′′ = 2F(βs) − δ′′.

The rest of the proof follows essentially in the same way as that for Lemma 7.1. By com-
puting the derivatives of ECFN(βs,A

+ ∪A−) and EFN(βs) in s and using Gaussian integra-
tion by parts, it can be checked that these derivatives are uniformly bounded over s ∈ [s0,1].
Hence, s �→ ECFN(βs,A

+ ∪ A−) and s �→ EFN(βs) are two families of equicontinuous
functions. From this and (7.5), there exists some N0 ≥ 1 such that as long as N ≥ N0 and
s ∈ [s0,1],

ECFN

(
βs,A

+ ∪ A−) ≤ 2EFN(βs) − δ′′

2
.

From the Gaussian concentration inequality for CFN(βs,A
+ ∪ A−) and FN(βs), there exists

a constant K > 0 such that for any N ≥ N0 and s ∈ [s0,1], with probability at least 1 −
Ke−N/K ,

CFN

(
βs,A

+ ∪ A−) ≤ 2FN(βs) − δ′′

4
,

which leads to〈
I
(
R
(
σ 1, σ 2) ∈ A+ ∪ A−)〉

βs
= eN(CFN(βs,A

+∪A−)−2FN(βs)) ≤ e− δ′′N
4 .

By taking the expectation, there exists a constant K ′ > 0 such that for any N ≥ N0 and
s ∈ [s0,1],
(7.6) E

〈
I
(
R
(
σ 1, σ 2) ∈ A+ ∪ A−)〉

βs
≤ K ′e−N/K ′

.

Finally, from Lemma 7.1, there exists some K ′′ > 0 such that for any N ≥ 1, s ∈ [s0,1], and

 = 1,2,

E
〈
I
(
R
(
σ
, σ 
) /∈ (

v − δ′, v + δ′))〉
βs

≤ K ′′e−N/K ′′
.

This together with (7.6) implies that for any N ≥ N0 and s ∈ [s0,1],
E
〈
I
(∣∣R(

σ 1, σ 2)∣∣ ≥ ε
)〉

βs
≤ K ′e−N/K ′ + 2K ′′e−N/K ′′

and this completes the proof of Proposition 7.1.
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8. Overlap concentration with moment control. As we have seen in Proposition 7.1,
overlaps between i.i.d. samples of GN,β are concentrated around the origin with exponential
tail control. The aim of this section is to establish the proof of Theorem 3.1, namely, the
moment control of the overlap. The proof is based on the so-called cavity method in mean
field spin glasses. As an immediate consequence of Theorem 3.1, we also present the proof
of Proposition 3.2.

Briefly speaking, the cavity method is an induction argument that compares the systems
of sizes N and N − 1 by parameterizing an interpolating path between the two systems and
controlling the derivative in the parameter along this path. This technique is a very well-
known tool in the physics literature, see [41]. Mathematically, it was implemented in the
study of the high-temperature behavior for a number of mean field spin glass models by
Talagrand [60]. For technical reasons, most of the existing results in [60] are valid only for
a sub-region of the high-temperature regime and not up to the critical temperature. In the
present paper, by adapting the argument in [61], Chapter 13, and [20], it turns out that from
our understanding of the structure of the high-temperature regime R as well as the Parisi
variational formula for the marginal free energy, we can show that the cavity method can
indeed be applied throughout the entire high-temperature regime and ultimately it leads to
the asserted moment control of the overlaps.

Before turning to the proof, we set some notation. For any 
, 
′ ≥ 1 and 1 ≤ r , r ′ ≤ k,
denote by σ,σ 1, σ 2, . . . the spin configurations from �N . Set overlaps

R
,
′ = R
(
σ
, σ 
′)

, R− = 1

N

N−1∑
i=1

σiσi, R−

,
′ = 1

N

N−1∑
i=1

σ

i σ 
′

i .

In Section 8.1, we device an interpolating system that connects the model of sizes N − 1 and
N . Section 8.2 computes and bounds the derivative of the expectations of functions of the
replicas sampled from the interpolating Gibbs measure along our interpolation. Additionally,
this subsection presents some lemmas that are simple yet necessary to bound various powers
of overlaps. These results are used in Section 8.3, where we present the cavity argument to
establish an iterative inequality for the moments of the overlaps. Finally, Sections 8.4 and 8.5
prove Theorem 3.1 and Proposition 3.2, respectively.

8.1. Constructing an interpolation path. For each S ⊆ {1, . . . , p}, define IS as the set of
indices (i1, . . . , ip) ∈ {1, . . . ,N}p such that is = N for all s ∈ S and is < N otherwise. For
example, if p = 4 and S = {1,3}, then IS = {(N, i,N, j) : 1 ≤ i, j < N}. Define a Gaussian
process indexed by S:

XS
N(σ) = 1

N(p−1)/2

∑
(i1,...,ip)∈IS

Yi1,...,ipσi1 · · ·σip .

It is easy to check that

EXS
N

(
σ 1)XS

N

(
σ 2) = N

(
R−

1,2

)p−|S|(
σ 1

Nσ 2
N

)|S|
.

Notice that S = ∅ is the only set such that XS
N(σ) does not involve the last spin σN . For

t ∈ [0,1], define the interpolating Hamiltonian by

HN,β,t (σ ) = β

(
X∅

N(σ) + √
t

p∑
j=1

∑
S⊂{1,...,p}:|S|=j

XS
N(σ )

)

− β2

2

((
R−)p + t

Nj−1

p∑
j=1

∑
S⊂{1,...,p}:|S|=j

(
R−)p−j

(σNσN)j

)
.
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From the binomial formula, one readily checks that when t = 0, HN,β,0(σ ) is equal to HN−1
at a different temperature:

β
(N − 1)(p−1)/2

N(p−1)/2 .

When t = 1, HN,β,1(σ ) is simply the original Hamiltonian HN,β(σ ). We define the Gibbs
measure associated to HN,β,t in the same manner as GN,β , that is,

GN,β,t (dσ ) = expHN,β,t (σ )μ⊗N(dσ)∫
expHN,β,t (σ ′)μ⊗N(dσ ′)

.

As before, denote by (σ 
)
≥1 a sequence of i.i.d. samples from GN,β,t and by 〈·〉β,t the
Gibbs average with respect to this sequence. For any bounded measurable function f of the
sequence (σ 
)
≥1, set νβ,t (f ) = E〈f 〉β,t . When t = 1, we simply write νβ(f ) = νβ,1(f ). We
also denote the t-derivative of νβ,t (f ) by ν′

β,t (f ).

8.2. Some auxiliary lemmas. We gather some lemmas that will be used in the proof of
Theorem 3.1 below. As their proofs are fairly standard, we refer the readers to [60], Chapter 1,
or [20]. First, we compute the derivative of νβ,t (f ).

LEMMA 8.1. For any bounded function f of σ 1, . . . , σ n, we have

ν′
β,t (f ) = β2

p∑
j=1

(
p

j

)
1

Nj−1

( ∑
1≤
<
′≤n

νβ,t

(
f
(
R−


,
′
)p−j (

σ

Nσ
′

N

)j )

− n
∑

≤n

νβ,t

(
f
(
R−


,n+1

)p−j (
σ


Nσn+1
N

)j )

+ n(n + 1)

2
νβ,t

(
f
(
R−

n+1,n+2

)p−j (
σn+1

N σn+2
N

)j ))
.

Note that since � is bounded, there exists a constant M > 1 such that � ⊆ [−M,M]. The
next lemma controls νβ,t (f ) by the terminal value νβ(f ).

LEMMA 8.2. For any nonnegative and bounded function f of σ 1, . . . , σ n, we have

νβ,t (f ) ≤ exp
(
n22p+1M2pβ2)νβ(f ).

In the proof of Theorem 3.1, it will sometimes be desirable to work with the overlaps R−
1,2

instead of the overlaps R1,2 and vice versa. Lemma 8.3 will allow us to replace (R1,2)
m by

(R−
1,2)

m (or vice versa). On the other hand, Lemma 8.4 states that we can also control the
moments of R−

1,2 by the bounds on R1,2.

LEMMA 8.3. For any m ≥ 1,

∣∣(R1,2)
m+1 − (

R−
1,2

)m+1∣∣ ≤ M2m

N

(|R1,2|m + ∣∣R−
1,2

∣∣m).
LEMMA 8.4. Let m ∈ N. Assume that there exists some K ≥ 1 such that νβ((R1,2)

2j ) ≤
K/Nj for any 0 ≤ j ≤ m. Then

νβ

((
R−

1,2

)2m) ≤ 22mM4mK

Nm
.



PHASE TRANSITION IN SPIKED TENSORS 1901

8.3. Cavity argument. The following lemma is the key ingredient of our argument. It is
obtained via a purely algebraic cavity computation and does not require any fact about the
high-temperature behavior of the overlaps.

LEMMA 8.5. Let m be a nonnegative integer and β > 0. Assume that there exists a
constant K0 ≥ 1 such that for all 0 ≤ j ≤ m and N ≥ 1

νβ

(
(R1,2)

2j ) ≤ K0

Nj
.

Then

νβ

(|R1,2|2m+2) ≤ K1(β)νβ

(|R1,2|2m+3)+ K2(β)

Nm+1

for all N ≥ 1, where K1 and K2 are two nonnegative continuous functions of β and they are
independent of N . In addition, K1 is nondecreasing with K1(0) = 0 if and only if β = 0.

PROOF. We divide our proof into four steps.
Step 1: By symmetry between sites, write

νβ

(
(R1,2)

2m+2) = νβ

(
σ 1

Nσ 2
N(R1,2)

2m+1) = νβ

(
σ 1

Nσ 2
N

(
R−

1,2

)2m+1)+ E .

Here,

E := νβ

(
σ 1

Nσ 2
N

(
(R1,2)

2m+1 − (
R−

1,2

)2m+1))
can be controlled by Lemmas 8.3 and 8.4 as follows:

|E | ≤ M2ν
(∣∣(R1,2)

2m+1 − (
R−

1,2

)2m+1∣∣)

≤ 2mM4

N

(
νβ

(|R1,2|2m)+ νβ

(∣∣R−
1,2

∣∣2m)) ≤ C1

Nm+1 ,

where C1 := K0(2mM4 + m22m+1M4m+4). Thus, we arrive at

(8.1) νβ

(
(R1,2)

2m+2) ≤ νβ

(
σ 1

Nσ 2
N

(
R−

1,2

)2m+1)+ C1

Nm+1 .

Next, in order to control the right-hand side, we define f = σ 1
Nσ 2

N(R−
1,2)

2m+1. Recall that
since μ is centered, ν0(f ) = 0. This together with an application of the mean value theorem
and (8.1) results in the inequality

(8.2) νβ

(
(R1,2)

2m+2) ≤ νβ(f ) + C1

Nm+1 ≤ sup
0≤t≤1

∣∣ν′
β,t (f )

∣∣+ C1

Nm+1 .

Step 2: We control |ν′
β,t (f )|. Applying Lemma 8.1 with n = 2 and noting that |σ


Nσ
′
N | ≤

M2 for any 1 ≤ 
, 
′ ≤ n yield the following bound on |ν′
β,t (f )|:

β2
p∑

j=1

(
p

j

)
(M2)j+1

Nj−1

(
νβ,t

(∣∣R−
1,2

∣∣2m+1|R1,2|p−j )+ 2νβ,t

(∣∣R−
1,2

∣∣2m+1∣∣R−
1,3

∣∣p−j )

+ 2νβ,t

(∣∣R−
1,2

∣∣2m+1∣∣R−
2,3

∣∣p−j )+ 3νβ,t

(∣∣R−
1,2

∣∣2m+1∣∣R−
3,4

∣∣p−j ))
.

For each 1 ≤ j ≤ p, set the Hölder conjugate exponents

τ 1
j = 2m + 1 + p − j

2m + 1
, τ 2

j = τ 1
j

1 − τ 1
j

.
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By Hölder’s inequality, for each 1 ≤ j ≤ p and each pair of replica indices 1 ≤ 
, 
′ ≤ n,

νβ,t

(∣∣R−
1,2

∣∣2m+1∣∣R−

,
′

∣∣p−j ) ≤ νβ,t

(∣∣R−
1,2

∣∣2m+1+p−j )1/τ 1
j νβ,t

(∣∣R−

,
′

∣∣2m+1+p−j )1/τ 2
j

= νβ,t

(∣∣R−
1,2

∣∣2m+1+p−j )
.

This inequality leads to

∣∣ν′
β,t (f )

∣∣ ≤ 8β2
p∑

j=1

(
p

j

)
(M2)j+1

Nj−1 νβ,t

(∣∣R−
1,2

∣∣2m+1+p−j )
.

Consequently, Lemma 8.2 allows us to replace νβ,t by νβ on the right-hand side above to
obtain that

(8.3)
∣∣ν′

β,t (f )
∣∣ ≤ 8e2p+3M2pβ2

β2
p∑

j=1

(
p

j

)
(M2)j+1

Nj−1 νβ

(∣∣R−
1,2

∣∣2m+1+p−j )
.

Step 3: We break the above sum into two pieces: When j = 1, νβ(|R−
1,2|2m+1+p−j ) =

νβ(|R−
1,2|2m+p); when 2 ≤ j ≤ p, since M > 1,

νβ

(∣∣R−
1,2

∣∣2m+1+p−j ) ≤ M2(1+p−j)νβ

(∣∣R−
1,2

∣∣2m) ≤ 22mM2(1+p−j+2m)K0

Nm
.

The last inequality used the given assumption and Lemma 8.4. Let

C(β) := 8e2p+3M2pβ2
β2, C2 := pM4, C3 := 22m+pM2(2m+p+2)K0.

From (8.3) and the last two inequalities,

∣∣ν′
β,t (f )

∣∣ ≤ C(β)C2νβ

(∣∣R−
1,2

∣∣2m+p)+ C(β)C3

Nm+1 ,

and subsequently, plugging this into (8.2) gives

(8.4) νβ

(
(R1,2)

2m+2) ≤ C(β)C2νβ

(∣∣R−
1,2

∣∣2m+p)+ C(β)C3 + C1

Nm+1 .

Step 4: We may now perform a procedure similar to Step 1 to bring R−
1,2 back to R1,2. By

Lemma 8.3 and M > 1,

νβ

(∣∣R−
1,2

∣∣2m+p) ≤ νβ

(|R1,2|2m+p)+ 2m + p

N
M2(νβ

(∣∣R−
1,2

∣∣2m+p−1)+ νβ

(|R1,2|2m+p−1))

≤ νβ

(|R1,2|2m+p)+ 2m + p

N
M2p(νβ

(∣∣R−
1,2

∣∣2m)+ νβ

(|R1,2|2m)).
Consequently, from Lemma 8.4, it follows that

νβ

(∣∣R−
1,2

∣∣2m+p) ≤ νβ

(|R1,2|2m+p)+ C4

Nm+1

for C4 := (2m + p)M2pK0(22mM4m + 1). Plugging this into (8.4) and noting that p ≥ 3
imply

νβ

(
(R1,2)

2m+2) ≤ C(β)C2νβ

(
(R1,2)

2m+p)+ C(β)(C2C4 + C3) + C1

Nm+1

≤ C(β)C2M
2(p−3)νβ

(|R1,2|2m+3)+ C(β)(C2C4 + C3) + C1

Nm+1 .

Setting K1(β) = C(β)C2M
2(p−3) and K2(β) = C(β)(C2C4 +C3)+C1 completes the proof.

�
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8.4. Proof of Theorem 3.1. We prove Theorem 3.1 by induction on m ≥ 0. Clearly the
case m = 0 is valid. Assume that for some m ≥ 0, there exists a constant K ≥ 1 such that
(3.4) holds for all N ≥ 1 and s ∈ [0,1]. Our goal is to show that there exists some K ′ ≥ 1
such that

νsβ

(|R1,2|2(m+1)) ≤ K ′

Nm+1

for all N ≥ 1 and s ∈ [0,1]. Let K1 and K2 be the two nonnegative continuous functions
from the statement of Lemma 8.5 so that for all N ≥ 1 and s ∈ [0,1]
(8.5) νsβ

(|R1,2|2m+2) ≤ K1(sβ)νsβ

(|R1,2|2m+3)+ K2(sβ)

Nm+1 .

Note that K1(sβ) is a nondecreasing function in s and K1(0) = 0. Set

s0 = sup
{
s ∈ [0,1] : K1(sβ)M2 ≤ 1

2

}
.

Now we divide our proof into two cases:
Case 1: s ∈ [0, s0]. Combining (8.5) and the observation that |R1,2| ≤ M2 results in

νsβ

(
(R1,2)

2m+2) ≤ K1(s0β)M2νsβ

(|R1,2|2m+2)+ K2(sβ)

Nm+1

≤ 1

2
νsβ

(
(R1,2)

2m+2)+ K2(sβ)

Nm+1 ∀s ∈ [0, s0].
This gives that

νsβ

(
(R1,2)

2m+2) ≤ 2K2(sβ)

Nm+1 ∀s ∈ [0, s0].
Case 2: s ∈ (s0,1]. Choose ε > 0 such that

(8.6) ε max
s∈[s0,1]K1(sβ) <

1

2
.

From Proposition 7.1, there exists a constant K ′′ independent of N and s ∈ [s0,1] such that

νsβ

(
I
(|R1,2| > ε

))
< K ′′e−N/K ′′ ∀N ≥ 1.

Note that

νsβ

(|R1,2|2m+3) = νsβ

(|R1,2|2m+3I
(|R1,2| > ε

))+ νsβ

(|R1,2|2m+3I
(|R1,2| < ε

))
≤ M2(2m+3)νsβ

(
I
(|R1,2| > ε

))+ ενsβ

(|R1,2|2m+2I
(|R1,2| < ε

))
≤ M2(2m+3)K ′′e−N/K ′′ + ενsβ

(|R1,2|2m+2).
Plugging this into (8.5) leads to

νsβ

(|R1,2|2m+2) ≤ εK1(sβ)νsβ

(|R1,2|2m+2)+ K1(sβ)M2(2m+3)K ′′e−N/K ′′ + K2(sβ)

Nm+1 .

Thus, from (8.6), we conclude that for all N ≥ 1 and s ∈ [s0,1]

νsβ

(|R1,2|2m+2) ≤ 2K1(sβ)M2(2m+3)K ′′e−N/K ′′ + 2K2(sβ)

Nm+1 .

Finally, from the above two cases, our proof is completed by taking K ′ as the supremum of
this bound for s ∈ [0,1].
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8.5. Proof of Proposition 3.2. The proof of Proposition 3.2 relies on the following bound:
for any p ≥ 2, β > 0, and l > 0,

P
(∣∣FN(β)

∣∣ ≥ l
) ≤ 2β2

l2N
E
〈|R1,2|p〉β + 2

l2

(∫ β

0
tE

〈|R1,2|p〉t dt

)2
.

This result is essentially taken from [20], Lemma 10. Although there the spin configurations
are sampled from the uniform probability measure on the hypercube {−1,+1}N , the same
argument applies to the current general setting. Now, from this and the moment control in
Theorem 3.1, there exists a constant K > 0 such that

P
(∣∣FN(β)

∣∣ ≥ l
) ≤ 2β2K

Np/2l2N
+ 2

l2

(∫ β

0

tK

Np/2 dt

)2

= 2β2K

Np/2+1l2 + β4K2

2Npl2 ≤ 2β2K

Np/2+1l2

(
1 + β2K

)
.

This completes our proof.

9. Structure of the regime R̄. This section presents the proof of Theorem 3.2. Re-
call the probability spaces (�r,μr), the temperature vector β̄ = (β1, . . . , βr), the Hamil-
tonian HN,β̄ , the free energy FN(β̄), the Gibbs measure GN,β̄ , and the critical tempera-
tures βr,c from Section 3.2. For each 1 ≤ r ≤ k, let HN,βr , FN,r(βr), and Fr(βr) be the
Hamiltonian, free energy, and limiting free energy, respectively, corresponding to the scalar-
valued spin glass in Section 3.1 with temperature βr and probability space (�r,μr). Denote
vr,∗ = ∫

a2μr(da).

9.1. Concentration of total overlap. Let Mk(R) be the space of real-valued k×k matrices
equipped with the metric ∥∥V − V ′∥∥

max = max
1≤r,r ′≤k

∣∣Vr,r ′ − V ′
r,r ′

∣∣.
For any ε > 0 and V ∈ Mk(R), let Aε(V ) be the collection of all V ′ ∈ Mk(R) with ‖V −
V ′‖max < ε. Denote the total overlap matrix by

R(σ̄ ) =R
(
σ(1), . . . , σ (k)

) := (
R
(
σ(r), σ

(
r ′)))

1≤r,r ′≤k.

Set V∗ = (V∗,r,r ′)1≤r,r ′≤k ∈ Mk(R) where V∗,r,r = v∗,r and V∗,r,r ′ = 0 for r �= r ′. For any
measurable subset A ⊆ Mk(R), define the restricted free energy FN(β̄,A) as

FN(β̄,A) = 1

N

∫
R(σ̄ )∈A

e
HN,β̄ (σ̄ )

μ̄⊗N(dσ̄ ).

For i.i.d. samplings σ̄ , σ̄ 1, σ̄ 2, . . . from GN,β̄ , denote by 〈·〉β̄ the Gibbs expectation with
respect to these random variables.

The following proposition states that the self-overlap of σ̄ sampled from the Gibbs mea-
sure GN,β̄ is concentrated around V∗ in the high-temperature regime R̄.

PROPOSITION 9.1. Assume that β̄ ∈ R̄. Let σ̄ be sampled from GN,β̄ . For any ε > 0,
there exist positive constants K and δ such that for any N ≥ 1, with probability at least
1 − Ke−N/K ,

(9.1) FN

(
β̄,Aε(V∗)c

) ≤ FN(β̄) − δ.



PHASE TRANSITION IN SPIKED TENSORS 1905

PROOF. We adapt a similar argument as the one for Lemma 7.1. Let β̄ ∈ R̄. For 1 ≤ r ,
r ′ ≤ k, define

Aε

(
r, r ′) = {

V ∈ Mk(R) | ∣∣Vr,r ′ − (V∗)r,r ′
∣∣ < ε

}
.

Note that
⋂

1≤r,r ′≤k Aε(r, r
′) = Aε(V∗). Using Jensen’s inequality and Ee

HN,β̄ (σ̄ ) = 1 yields

lim sup
N→∞

EFN

(
β̄,Aε(V∗)c

) ≤ lim sup
N→∞

1

N
log

∑
1≤r,r ′≤k

∫
R(σ̄ )∈Aε(r,r ′)c

μ̄⊗N(dσ̄ ).

Note that the coordinates σ1(r), . . . , σN(r) of σ(r) are i.i.d. with distribution μr , which has
bounded support. Also, note that σ(r) is independent of σ(r ′) for any r �= r ′. In addition, the
mean of σ1(r)σ1(r

′) under μ̄ is equal to (V∗)r,r ′ for any 1 ≤ r , r ′ ≤ k. By Cramér’s theorem,
there exists a positive constant δ such that∑

1≤r,r ′≤k

∫
R(σ̄ )∈Aε(r,r ′)c

μ⊗N(dσ̄ ) ≤ k2e−Nδ.

Note that F(β̄) = 0. It follows that

lim sup
N→∞

EFN

(
β̄,Aε(V∗)c

) ≤ F(β̄) − δ.

Finally, (9.1) follows by using the Gaussian concentration inequality for FN(β̄,Aε(V∗)c) and
FN(β̄). We omit the details here as they are the same as those in the proof of Lemma 7.1. �

9.2. Proof of Theorem 3.2: R̄ ⊆ (0, β1,c] × · · · × (0, βk,c]. Suppose that β̄ = (β1, . . . ,

βk) ∈ R̄. By the definition of R̄, F(β̄) = 0. Let ε > 0. On the one hand, recall that from
Proposition 9.1, there exist two positive constants K,δ > 0 such that for any N ≥ 1, with
probability at least 1 − Ke−N/K ,

(9.2) FN

(
β̄,Aε(V∗)c

) ≤ FN(β̄) − δ.

On the other hand, note that Vr,r ′ = 0 for r �= r ′ and that R(σ̄ ) ∈ Aε(V∗) implies∣∣R(
σ(r), σ

(
r ′))p∣∣ = ∣∣R(

σ(r), σ
(
r ′))p − V

p

r,r ′,∗
∣∣ ≤ εp ∀1 ≤ r �= r ′ ≤ k.

From this, we can bound the overlap terms and then release the constraint Aε(V∗) to get

(9.3) FN

(
β̄,Aε(V∗)

) ≤
k∑

r=1

FN,r(βr) + εp

2

∑
r �=r ′

βrβr ′ .

Note that

FN(β̄) = N−1 log
(
eNFN(β̄,Aε(V∗)) + eNFN(β̄,Aε(V∗)c))

and that

log(x + y) ≤ log 2 + max(logx, logy) ∀x, y > 0.

From (9.2), (9.3), and these two displays, after taking N → ∞,

0 = F(β̄) ≤ max

(
F(β̄) − δ,

k∑
r=1

Fr(βr) + εp

2

∑
r �=r ′

βrβr ′

)

= max

(
−δ,

k∑
r=1

Fr(βr) + εp

2

∑
r �=r ′

βrβr ′

)
.



1906 W.-K. CHEN, M. HANDSCHY AND G. LERMAN

Consequently, we obtain

0 ≤
k∑

r=1

Fr(βr) + εp

2

∑
r �=r ′

βrβr ′

and letting ε ↓ 0 yields
∑k

r=1 Fr(βr) ≥ 0. Since Fr(βr) ≤ 0 for all 1 ≤ r ≤ k, we must have
Fr(βr) = 0 for all r . Hence, βr ∈ (0, βr,c] for all 1 ≤ r ≤ k by Proposition 3.1. This estab-
lishes that R̄ ⊆ (0, β1,c] × · · · (0, βk,c].

9.3. Proof of Theorem 3.2: R̄ ⊇ (0, β1,c]× · · · × (0, βk,c]. We divide our discussion into
two cases.

Case 1: β̄ ∈ (0, β1,c) × · · · (0, βk,c), but β̄ /∈ R̄. In this case, Fr(βr) = 0 for 1 ≤ r ≤ k

and F(β̄) < 0. Then there exists a positive constant η such that EFN(β̄) < −η for large
enough N . Note that for any ε > 0 and N ≥ 1,

FN

(
β̄,Aε(V∗)

) ≤ FN(β̄).

Thus, from the Gaussian concentration inequality for FN(β̄), there exists a constant K > 0
such that for any large enough N , with probability at least 1 − Ke−N/K ,

FN

(
β̄,Aε(V∗)

) ≤ FN(β̄) < −η

2
.

Note that the off-diagonal entries of V∗ are all zero. The restriction Aε(V∗) allows us to pull
the off-diagonal entries of the total overlap outside of the free energy to get

1

N
log

∫
R(σ̄ )∈Aε(V∗)

exp

(
k∑

r=1

HN,βr

(
σ(r)

))
μ⊗N(dσ̄ ) <

εp

2

∑
r �=r ′

βrβr ′ − η

2
.

Now, if we take ε > 0 with εp ∑
r �=r ′ βrβr ′ < η/2, then the above inequality reduces to

(9.4)
1

N
log

∫
R(σ̄ )∈Aε(V∗)

exp

(
k∑

r=1

HN,βr

(
σ(r)

))
μ̄⊗N(dσ̄ ) < −η

4
.

Denote by 〈·〉′ the Gibbs average with respect to the independent samplings

σ̄ = (
σ(1), . . . , σ (k)

)
, σ̄ 1 = (

σ 1(1), . . . , σ 1(k)
)
, σ̄ 2 = (

σ 2(1), . . . , σ 2(k)
)

from the product measure
∏k

r=1 GN,βr (dσ (r)). The combination of (9.4), the fact that
Fr(βr) = 0, and the Gaussian concentration inequality for Fr(βr) implies that the self-overlap
matrix R(σ̄ ) is concentrated around V∗ in the sense that there exists a constant K ′ > 0 such
that for sufficiently large N ,

(9.5) E
〈
I
(
R(σ̄ ) ∈ Aε(V∗)

)〉′ ≤ K ′e−N/K ′
.

Next, in order to deduce a contradiction, we recall that Lemma 7.1 states

(9.6) lim
N→∞E

〈
I
(∣∣R(

σ(r), σ (r)
)− vr,∗

∣∣ ≤ δ
)〉′ = 1.

Here we used the fact that for a sampling σ̄ from 〈·〉′, the components σ(1), . . . , σ (k) are
independent of each other. For the same reason, it also follows from Proposition 7.1 and the
assumption β̄ ∈ (0, β1,c) × · · · × (0, βk,c) that for any δ > 0 and 1 ≤ r ≤ k,

(9.7) lim
N→∞E

〈
I
(∣∣R(

σ 1(r), σ 2(r)
)∣∣ ≤ δ

)〉′ = 1.
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For r �= r ′, observe that

E
〈
R
(
σ(r), σ

(
r ′))2〉′ = 1

N2

N∑
i,j=1

E
〈
σi(r)σj (r)

〉′〈
σi

(
r ′)σj

(
r ′)〉′,

where the second equality holds since σi(r), σj (r) are independent of σi(r
′), σj (r

′) under
〈·〉′. Consequently, an application of the Cauchy–Schwarz inequality implies that

E
〈
R
(
σ(r), σ

(
r ′))2〉′

≤
(

1

N2

N∑
i,j=1

E
(〈
σi(r)σj (r)

〉′)2

)1/2(
1

N2

N∑
i,j=1

E
(〈
σi

(
r ′)σj

(
r ′)〉′)2

)1/2

= (
E
〈
R
(
σ 1(r), σ 2(r)

)2〉′)1/2(
E
〈
R
(
σ 1(r ′), σ 2(r ′))2〉′)1/2

,

where the last equality uses the identity

1

N2

N∑
i,j=1

E
(〈
σi(r)σj (r)

〉′)2 = 1

N2

N∑
i,j=1

E
〈
σ 1

i (r)σ 1
j (r)σ 2

i (r)σ 2
j (r)

〉′

= E
〈
R
(
σ 1(r), σ 2(r)

)2〉′
,

which also holds when r ′ replaces r . From the above inequality and (9.7),

lim
N→∞E

〈
R
(
σ(r), σ

(
r ′))2〉′ = 0,

which means that R(σ(r), σ (r ′)) is essentially concentrated at 0 under 〈·〉′. Combining the
latter observation, the inequality (9.6), and the fact that the off-diagonal entries of V ∗ are all
zero yields

lim
N→∞E

〈
I
(
R(σ̄ ) ∈ Aε(V∗)

)〉′ = 1.

However, this contradicts (9.5). Thus, we must have β̄ ∈R.
Case 2: β̄ = (β1, . . . , βk) ∈ (0, β1,c] × · · · × (0, βk,c], but β̄ = (β1, . . . , βk) /∈ (0, β1,c) ×

· · · × (0, βk,c). Note that the free energies F,F1, . . . ,Fk are continuous functions of the tem-
perature parameters. We can approximate F(β̄) by F(β̄ ′) for β̄ ′ ∈ (0, β1,c) × · · · × (0, βk,c).
From this and Case 1, we see that F(β̄) = 0 and so β̄ ∈ R̄.

APPENDIX: PROOF OF THE GUERRA–TALAGRAND BOUND

Recall XN from Section 3.1 and recall V , Mv,v0 , and Pβ,V from Section 7.1. The goal of
this Appendix is to give a sketch of the proof for the Guerra–Talagrand inequality stated in
(7.1). We follow the same argument in [20], Proposition 2.

Step 1: Fix v0 and assume that α ∈ Mv,v0 is of the form α(s) = m1[0,v0)(s) + 1[v0,v](s)
for some m ∈ [0,1]. Let m0 = 0 < m1 = m < m2 < m3 = 1. Let (cτ )τ∈N2 be the Ruelle
probability cascades associated to 0 < m1 < m2 < 1, see [61], Section 14.1. Set

ρ11
0 = 0, ρ11

1 = v0, ρ11
2 = v,

ρ12
0 = 0, ρ12

1 = v0, ρ12
2 = v0,

ρ21
0 = 0, ρ21

1 = v0, ρ21
2 = v0,

ρ22
0 = 0, ρ11

1 = v0, ρ22
2 = v.



1908 W.-K. CHEN, M. HANDSCHY AND G. LERMAN

Assume that (z1
1, z

2
1) and (z1

2, z
2
2) are two independent Gaussian random vectors with mean

zero and covariance,

Ez

az


′
a = ξ ′(ρ

′

a

)− ξ ′(ρ

′
a−1

)
for a = 1,2 and 
, 
′ = 1,2. Let (z1

i,1,j1
, z2

i,1,j1
)j1∈N for 1 ≤ i ≤ N be i.i.d. copies of (z1

1, z
2
1)

and (z1
i,2,j1,j2

, z2
i,2,j1,j2

)(j1,j2)∈N2 for 1 ≤ i ≤ N be i.i.d. copies of (z1
2, z

2
2). These are also

independent of each other. For 0 ≤ t ≤ 1, consider the interpolating Hamiltonian

XN,t

(
σ 1, σ 2, τ

) := √
t
(
XN

(
σ 1)+ XN

(
σ 2))+ √

1 − t
∑

1≤i≤N

∑

=1,2

σ

i (zi,1,j + zi,2,τ1,τ2)

for σ 1, σ 2 ∈ �N and τ = (τ1, τ2) ∈ N
2. Define the interpolating free energy

φN,η(t) = 1

N
E log

∑
τ∈N2

cτ

∫
R(σ 1,σ 2)∈Aη(V )

eβXN,t (σ
1,σ 2,τ )μ⊗N (

dσ 1)μ⊗N (
dσ 2).

Note that

φN,η(1) = 1

N
E log

∫
R(σ 1,σ 2)∈Aη(V )

eβXN(σ 1)+βXN(σ 2)μ⊗N (
dσ 1)μ⊗N (

dσ 2),
and φN,η(0) involves only linear spin interactions.

Step 2: We proceed to compute the derivative of φN,η(t). Consider the Gibbs measure

GN,η,t

(
dσ 1, dσ 2, τ

) := 1

ZN,η,t

cτ e
βXN,t (σ

1,σ 2,τ )μ⊗N (
dσ 1)μ⊗N (

dσ 2)

for (σ 1, σ 2, τ ) ∈ �N × �N × N
2 satisfying that R(σ 1, σ 2) ∈ Aη(V ), where ZN,η,t is the

normalizing constant. Let 〈·〉N,η,t be the Gibbs expectation associated to this free energy.
Denote by (σ 1, σ 2, τ ) and (σ̂ 1, σ̂ 2, τ̂ ) two independent samplings from GN,η,t . We set the
overlaps between these two pairs by Q

′ = R(σ
, σ̂ 
′

) for 1 ≤ 
, 
′ ≤ 2 and

τ ∧ τ̂ =

⎧⎪⎪⎨
⎪⎪⎩

0 if τ1 �= τ2,

1 if τ1 = τ̂1, τ2 �= τ̂2,

2 if τ1 = τ̂1, τ2 = τ̂2.

From the same computation in [61], Chapter 15, that uses Gaussian integration by parts,

φ′
N,η(t) = −�N,η(t) − EN,η(t) + O(η)

for

�N,η(t) := β2

2

∑

,
′=1,2

(
θ
(
ρ

′

2
)−E

〈
θ
(
ρ

′

τ∧τ̂

)〉
N,η,t

)
,

EN,η(t) := β2

2

∑

,
′=1,2

E
〈


(
ρ

′

τ∧τ̂ ,Q


′)〉

N,η,t ,

where O(η) means that it uniformly vanishes as η ↓ 0, θ(x) := xξ ′(x)−ξ(x), and 
(x, y) :=
ξ(y) − yξ ′(x) + θ(x).

Step 3: We handle �N,η(t) and EN,η(t) as follows. First, using the fact (see [61], Sec-
tion 14.1) that

(A.8) E
〈
I (τ ∧ τ̂ = a)

〉 = ma+1 − ma, 0 ≤ a ≤ 2
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leads to

�N,η(t) = β2(2m
(
θ(v0) − θ(0)

)+ m2
(
θ(v) − θ(v0)

))
.

The treatment for EN,η(t) is the harder part. If p is an even number, we obviously have

(A.9) 
(x, y) ≥ 0 ∀x, y ∈ R,

which implies EN,η(t) ≥ 0. If p is odd, (A.9) is no longer valid and we do not have an obvi-
ous sign for EN,η(t). The idea to overcome this difficulty is to add an asymptotically vanish-
ing perturbation to the interpolating Hamiltonian such that the entries in the overlap matrix
(Q

′

)1≤
,
′≤2 are synchronized in the limit, see [51]. A crucial fact here is that this property
will force the overlap matrix to be asymptotically positive semi-definite under E〈·〉N,η,t for
all 0 ≤ t ≤ 1 as N → ∞ and η ↓ 0, see [52]. For the precise choice of this perturbation, we
refer the reader to the proof of [20], Proposition 2.

For clarity, we adapt the same notation for the free energy and the Gibbs expectation.
Note that the procedure of adding an asymptotically vanishing perturbation will also not
affect the value of the coupled free energy when N → ∞ and η ↓ 0 and the derivative of the
corresponding φN,η(t) still has the same form. Now write

(A.10)

EN,η(t) = β2

2
E

〈
I (τ ∧ τ̂ = 0)

∑

,
′=1,2



(
Q

′

,0
)〉

N,η,t

+ β2

2
E

〈
I (τ ∧ τ̂ = 1)

∑

,
′=1,2



(
Q

′

, v0
)〉

N,η,t

+ β2

2
E

〈
I (τ ∧ τ̂ = 2)

∑

,
′=1,2



(
Q

′

, ρ

′
2

)〉
N,η,t

.

To hand this, we recall a lemma from [20], Lemma 11,2 that for any s ≥ 0 and x, y, z ∈ R so
that [

x z

z y

]
is positive semi-definite, we have


(s, x) + 
(s, y) + 2
(s, z) ≥ 0.

By using the positive semi-definiteness of the overlap matrix, this lemma implies that the first
and second terms on the right-hand side of (A.10) are asymptotically nonnegative. Also, from
(A.8), the third term of (A.10) is upper bounded by C(1 − m2). Hence, when p is odd, we
have

lim inf
η↓0

lim inf
N→∞ EN,η(t) ≥ −C(1 − m2).

To summarize, from the above discussion, no matter if p is even or odd,

(A.11)

lim
η↓0

lim sup
N→∞

φN,η(1)

≤ lim
η↓0

lim sup
N→∞

φN,η(0) + lim sup
η↓0

lim sup
N→∞

∫ 1

0
φ′

N,η(t) dt

≤ lim
η↓0

lim sup
N→∞

φN,η(0)

− β2(2m
(
θ(v0) − θ(0)

)+ m2
(
θ(v) − θ(v0)

))+ C(1 − m2).

2Although the statement there also requires s ≤ 1 and x, y, z ∈ [−1,1], they are not actually needed in the
proof. Hence the result is still valid under the present assumption.
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Step 4: Our last step is to rearrange the right-hand side of the last inequality. Note that we
can release the constraint R(σ 1, σ 2) ∈ Aη(V ) in φN,η(0) by introducing a Lagrange variable
λ ∈ M2(R) so that

φN,η(0) ≤ 1

N
E log

∑
τ∈N2

cτ

∫
eβXN,0(σ

1,σ 2,τ )+N〈λ,R(σ 1,σ 2)〉μ⊗N (
dσ 1)μ⊗N (

dσ 2)

− 〈λ,V 〉 + η.

If we denote

w1
i,τ = z1

i,1,τ1
+ z1

i,2,τ1,τ2
, w2

i,τ = z2
i,1,τ1

+ z2
i,2,τ1,τ2

,

w1 = z1
1 + z1

2, w2 = z2
1 + z2

2,

then the first term on the right-hand side of the last inequality can be written as

1

N
E log

∑
τ∈N2

cτ

N∏
i=1

∫
expβ

(
w1

i,τ σ
1
i + w2

i,τ σ
2
i + ∑


,
′=1,2

λ

′σ

i σ 
′

i

)
μ
(
dσ 1

i

)
μ
(
dσ 2

i

)

= 1

m1
logE1 exp

m1

m2
logE2

[
exp

(
m2 log

∫
eβw1a1+βw2a2+〈λa,a〉μ

(
da1)μ(

da2))],
where E1 is the expectation with respect to (z1

1, z
2
1) only and E2 is the expectation with respect

to (z1
2, z

2
2) only. Here, this equality is valid by using [61], Theorem 14.2.1. From this, after

sending m2 → 1, it can be checked directly by the Cole–Hopf transformation that the last
equation is indeed equal to �β,V,α(0,0, λ). On the other hand, the second and third terms in
the last line of (A.11) together equal

β2
(∫ v

0
ξ ′′(s)sα(s) ds +

∫ v0

0
ξ ′′(s)sα(ds)

)
.

These and (A.11) complete our proof.
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