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Distality for the Asymptotic Couple of the Field of
Logarithmic Transseries

Allen Gehret and Elliot Kaplan

Abstract We show that the theory Tlog of the asymptotic couple of the field
of logarithmic transseries is distal. As distal theories are NIP (have the non-
independence property), this provides a new proof that Tlog is NIP.

1 Introduction

Distal theories and structures were introduced by Simon [13] as a way to distin-
guish those NIP theories which are in some sense purely unstable, that is, where
absolutely no stable behavior of any kind occurs. We sometimes think of distal-
ity as meaning: everything in sight is completely controlled or dominated by linear
orders, either overtly or covertly (see Definition 2.1). Any o-minimal theory is dis-
tal, and the p-adic fields are distal as well. In an o-minimal structure, everything is
controlled by the obvious underlying linear order. In the p-adics, there is no under-
lying linear order; however, everything is still controlled in some sense by the totally
ordered value group (up to a finite residue field). A non-example is the theory of
algebraically closed valued fields (ACVF). Indeed, the interpretable residue field is
an algebraically closed field, a purely stable structure which is not being controlled
by any linear order.

More recently, Chernikov, Galvin, and Starchenko showed that a strong Szemerédi-
type regularity lemma and other combinatorial results hold in all distal structures
(see [2], [4]). Consequently, there has been increased interest in classifying which
NIP structures are distal, as well as classifying which NIP structures have distal
expansions. In this paper we prove that a particular structure, the asymptotic couple
.Älog;  / of the ordered valued di�erential field Tlog of logarithmic transseries, is
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distal. Asymptotic couples arise as the value groups of certain types of valued dif-
ferential fields: the so-called asymptotic fields. See Aschenbrenner, van den Dries,
and van der Hoeven [1] for the full story. We now define the object .Älog;  /.

Throughout,m and n range over N D π0; 1; 2; : : :º. Let
L
n Ren be a vector space

over R with basis .en/. Then
L
n Ren can be made into an ordered group using the

usual lexicographical order, that is, by requiring for nonzero
P
i riei thatX

riei > 0 ” rn > 0 for the least n such that rn ¤ 0.

Let Älog be the above ordered abelian group
L
n Ren. It is often convenient to think

of an element
P
riei as the vector .r0; r1; r2; : : :/. We follow Rosenlicht [12] in

taking the function
 W Älog n π0º ! Älog

defined by
.0; : : : ; 0„ ƒ‚ …

n

; rn„ƒ‚…
¤0

; rnC1; : : :/ 7! .1; : : : ; 1„ ƒ‚ …
nC1

; 0; 0; : : :/

as a new primitive, calling the pair .Älog;  / an asymptotic couple (the asymptotic
couple of Tlog). In [6] and [7], the first author studied the model theory of .Älog;  /

in detail. There, .Älog;  / is construed as an Llog-structure for a certain first-order
language Llog (see, e.g., [6, Section 5]). In this paper we continue the study of the
theory Tlog D ThLlog.Älog;  /. The main result is the following.

Theorem 1.1 Tlog is distal.

We provide a proof in Proposition 2.9 of the well-known fact that all distal theories
are NIP. Thus, Theorem 1.1 has the following immediate consequence.

Corollary 1.2 Tlog is NIP.

This provides a new proof of the main result from [7]. The original proof that Tlog
is NIP in [7] involved a counting-types argument which invoked a consistency result
of Mitchell and used the fact that the statement “Tlog is NIP” is absolute. The appeal
of the new proof of Corollary 1.2 is that it is algebraic, and avoids any set-theoretic
black boxes by taking place entirely within ZFC.

Theorem 1.1, together with [4, Corollary 6.3], also has the following amusing
consequence.

Corollary 1.3 No model of Tlog interprets an infinite field of positive characteris-
tic.

We believe that no model of Tlog interprets a field of characteristic zero either,
although we leave that story for another time and place.

In Section 2 we recall some definitions and basic facts around distality and NIP.
We also state and prove a general criterion for showing that a theory of a certain form
is distal. This criterion is based on one developed by Hieronymi and Nell [11]. There
they use it to show that certain “pairs” such as .RI 0;C; �; <; 2

Z
/ are distal. We are

able to adapt it for use in our setting due to certain superficial syntactic similarities
between our structure and their pairs.

In Section 3 we discuss the basics ofH -asymptotic couples with asymptotic inte-
gration. We also define the language Llog and discuss the theory Tlog. We restate
some useful facts about models of Tlog which were established in [6] and [7]. In
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Section 4 we go on to prove some additional lemmas concerning the behavior of
indiscernible sequences in models of Tlog.

In Section 5 we introduce a concept of an indiscernible sequence .ai /i2I in a
model of Tlog being spread out by a parameter b. Roughly speaking, this means that
the sequence .ai � b/i2I is su�ciently widely distributed in the convex hull of the
‰-set. We then proceed to show that in such a situation, there is a certain desirable
monotone interaction between the translated sequence and the ‰-set (Lemma 5.3).
This is one of the key steps in the proof of distality of Tlog.

In Section 6 we prove several finiteness results concerning finite-rank extensions
of the underlying groups of models of Tlog, and their relationship to the functions  ,
s, and p from Llog.

In Section 7 we bring everything together to prove Theorem 1.1.

Ordered set conventions By ordered set we mean totally ordered set.
Let S be an ordered set. Below, the ordering on S will be denoted by , and a

subset of S is viewed as ordered by the induced ordering. We put S1 WD S [ π1º,
where 1 … S , with the ordering on S extended to a (total) ordering on S1 by S <
1. Suppose that B is a subset of S . We put S>B WD πs 2 S W s > b for every b 2

Bº, and we denote S>πaº as just S>a; similarly for �; <, and  instead of >. For
A ✓ S , we let

conv.A/ WD πx 2 S W a  x  b for some a; b 2 Aº

be the convex hull of A in S , that is, the smallest convex subset of S containing A.
For A ✓ S , we put

A
#

WD πs 2 S W s  a for some a 2 Aº;

which is the smallest downward closed subset of S containing A.
We say that S is a successor set if every element x 2 S has an immediate succes-

sor y 2 S , that is, x < y and for all z 2 S , if x < z, then y  z. For example, N
and Z with their usual orderings are successor sets. We say that S is a copy of Z if
.S;</ is isomorphic to .Z; </.

Ordered abelian group conventions Suppose that G is an ordered abelian group.
Then we set G¤

WD G n π0º. Also G< WD G
<0; similarly for �, , and > instead

of <. We define jgj WD max.g;�g/ for g 2 G. For a 2 G, the archimedean class of
a is defined by

Œaç WD

®
g 2 G W jaj  njgj and jgj  njaj for some n � 1

¯
:

The archimedean classes partition G. Each archimedean class Œaç with a ¤ 0 is
the disjoint union of the two convex sets Œaç \ G

< and Œaç \ G
>. We order the set

ŒGç WD πŒaç W a 2 Gº of archimedean classes by

Œaç < Œbç W” njaj < jbj for all n � 1:

We have Œ0ç < Œaç for all a 2 G
¤, and

Œaç  Œbç ” jaj  njbj for some n � 1:
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Model theory conventions In general, we adopt the model-theoretic conventions of
Appendix B of [1]. In particular, L can be a many-sorted language. For a complete
L-theory T , we will sometimes consider a model M ˆ T and a cardinal .M/ > jLj

such thatM is .M/-saturated and every reduct ofM is strongly .M/-homogeneous.
Such a model is called a monster model of T . In particular, every model of T of
size at most .M/ has an elementary embedding into M. All variables are finite
multivariables. By convention, we will write indiscernible sequence when we mean
;-indiscernible sequence.

Sequence conventions Suppose that .ai /i2I is a sequence of distinct elements from
some set indexed by a linear order I . Given a subset or subsequence A ✓ .ai /, we
let I>A denote the index set

I
>A

WD

\
ai0

2A
πi 2 I W i > i0º ✓ I

(similarly for I<A). Furthermore, given I0 ✓ I we denote by A�I0 the set

A�I0 WD πai 2 A W i 2 I0º ✓ A:

2 Distality and NIP

This section contains all of the general model-theoretic content we need for this
paper. This includes a definition of distality, a criterion for proving that theories
of a certain form are distal, and a proof that distal theories are NIP. Throughout this
section L is a language and T is a complete L-theory.

Definition of distality In this subsection we fix a monster model M of T . We also let
I1, I2 range over infinite linearly ordered index sets. The definitions do not depend
on the choice of this monster model. We define distality in Definition 2.1 below
in terms of “upgradability” of a certain indiscernible sequence configuration. In
practice, this seems to be one of the more convenient definitions to work with, and it
is the only one we use in this paper. For other equivalent definitions of distality see
Simon [13] or [14, Chapter 9].

Definition 2.1 Given I1 and I2, we say that T is I1, I2-distal if for everyA ✓ M,
for every x, and for every indiscernible sequence .ai /i2I from Mx , if

(1) I D I1 C .c/C I2, and
(2) .ai /i2I1CI2

is A-indiscernible,
then .ai /i2I is A-indiscernible. We say that T is distal if T is I1, I2-distal for every
I1 and I2. Finally, we say that an L-structure M is distal if Th.M/ is distal.

It is also convenient to define what it means for a formula '.xIy/ to be distal.

Definition 2.2 Given I1 and I2, we say that a formula '.xIy/ is I1, I2-distal if
for every b 2 My and every indiscernible sequence .ai /i2I from Mx such that

(1) I D I1 C .c/C I2, and
(2) .ai /i2I1CI2

is b-indiscernible,
then ˆ '.ac I b/ $ '.ai I b/ for every i 2 I . We say that the formula '.xIy/ is
distal if it is I1, I2-distal for every I1 and I2.
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It is well known that when checking distality, either for an individual formula or
an entire theory, one is free to use any specific I1 and I2 they wish. To make this
sentiment precise we have introduced the provisional terminology “I1, I2-distal”
which is not standard (see Lemmas 2.3 and 2.4). We exploit this freedom in the
proof of Distal Criterion 2.7 below.

Lemma 2.3 The following are equivalent for a formula '.xIy/:
(1) '.xIy/ is distal;
(2) '.xIy/ is I1, I2-distal for some I1 and I2.

Proof The standard lemma (see Tent and Ziegler [15, Lemma 5.1.3]) allows one to
convert a counterexample of I1, I2-distality into a counterexample of J1, J2-distality,
where J1, J2 are two other infinite linear orders. The details are left to the reader.

Lemma 2.4 The following are equivalent:
(1) T is distal.
(2) There are I1 and I2 such that T is I1, I2-distal.
(3) Every '.xIy/ 2 L is distal.
(4) There are I1 and I2 such that every '.xIy/ 2 L is I1, I2-distal.

Proof (1) ) (2) ) (4) , (3) follow by definition and Lemma 2.3. For (3) )

(1), assume that T is not distal. Then there are I1 and I2 such that T is not I1,
I2-distal. This failure of I1, I2-distality is witnessed by some x, y, some sequence
.ai /i2I1C.c/CI2

from Mx , some formula '.x1; : : : ; xnIy/ where each xi is of the
same sort as x, and some parameter b 2 My . By adjusting this counterexample—
through a combination of joining outer elements of the sequence with the parameter
b, and/or grouping elements of the sequence together to create a new “thickened”
sequence—one arrives at a formula '.x0

Iy
0
/ (same formula, possibly di�erent pre-

sentation of free variables) which is not distal. The argument is routine and left to
the reader, although a word of caution is in order: in general I1 and I2 are not dense
linear orders, and they may or may not have endpoints, and so on. So the reduction
as described above really depends on I1 and I2 and where the elements from .ai /

which witness the failure of distality are located on these sequences.

Lemma 2.4 permits us to work with any I1, I2 we wish. It will be convenient for us
to work with I1, I2 of a special form.

Definition 2.5 We say that a linear order I D I1 C .c/C I2 is in distal configu-
ration at c if I1 and I2 are infinite, I1 does not have a greatest element, and I2 does
not have a least element.

Working with sequences in distal configuration is primarily used in the proofs of
Distal Criterion 2.7 and Proposition 5.4 below. It is not clear how to remove the
assumption of distal configuration from these arguments, at least without making
things more complicated.

Remark 2.6 The collection of all distal formulas in the variables .xIy/ is closed
under arbitrary boolean combinations, including negations. In the literature, there
is another local notion of distality: that of a formula '.xIy/ having a strong honest
definition (see Chernikov and Simon [3, Theorem 21]). The collection of formulas
'.xIy/ which have a strong honest definition is in general only closed under positive
boolean combinations.
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A criterion for distality To set the stage for Distal Criterion 2.7 below, we now con-
sider an extension L.F/ WD L [ F of the language L by a set F of new unary
function symbols involving sorts which are already present in L. We also consider
T .F/, a complete L.F/-theory extending T . Given a model M ˆ T , we denote by
.M;F/ an expansion of M to a model of T .F/. For a subset X of a model M, we
let hXi denote the L-substructure of M generated by X . If M is a submodel of N ,
then we let MhXi denote hM [ Xi ✓ N. For this subsection we also fix a monster
model M of T .F/. Note that M�L is then a monster model of T .

Distal Criterion 2.7 is a many-sorted, many-function generalization of [11, The-
orem 2.1]. We give a proof below. In the statement of Distal Criterion 2.7 and its
proof, x, x0, xi , y, z, w, wi , and so on are variables.

Distal Criterion 2.7 (Hieronymi and Nell) Suppose that T is a distal theory and
the following conditions hold:

(1) The theory T .F/ has quantifier elimination.
(2) For every f 2 F, every model .N ;F/ ˆ T .F/, every substructure M ✓ N

such that g.M/ ✓ M for all g 2 F, every x, and every c 2 Nx , there is a y
and d 2 f.Mhci/y such that

f
�
Mhci

�
✓

˝
f.M/; d

˛
:

(3) For every f 2 F, the following holds. Suppose that x0 is an initial segment of
x, that g, h are L-terms of arities xy and x0

z, respectively, and that b1 2 My

and b2 2 f.M/z . If .ai /i2I is an indiscernible sequence from f.M/x0 ⇥Mxnx0
such that
(a) I D I1 C .c/ C I2 is in distal configuration at c, and .ai /i2I1CI2

is
b1b2-indiscernible, and

(b) f.g.ai ; b1// D h.ai ; b2/ for every i 2 I1 C I2,
then f.g.ac ; b1// D h.ac ; b2/.

Then T .F/ is distal.

We refer the reader to Figure 1 which illustrates the bookkeeping being done in the
proof of Distal Criterion 2.7.

Proof Fix an infinite linear order I D I1 C .c/ C I2 which is in distal configu-
ration at c. By (1) and Lemma 2.4, it is enough to show that every quantifier-free
L.F/-formula '.xIy/ is I1, I2-distal. We prove this by induction on the number of
times e. / that any symbol from F occurs in  . If e. / D 0, this follows from

Figure 1 Bookkeeping in the proof of Distal Criterion 2.7.
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the assumption that T is distal. Let e > 0, and suppose that for all L.L/-formulas
 

0 with e. 0
/ < e,  0 is distal. Let  .xIy/ be a quantifier-free L.F/-formula

with e. / D e. We will show that  .xIy/ is I1, I2-distal. Take an indiscernible
sequence .ai /i2I from Mx and b 2 My such that I D I1C .c/CI2 and .ai /i2I1CI2

is b-indiscernible.
Since e > 0, there is an L-term g and some f 2 F such that the term f.g.xIy//

appears in  . In other words, there is a quantifier-free L.F/-formula  0
.xIyI z/

such that e. 0
/ < e and

 .xIy/ D  
0�
xIyI f

�
g.xIy/

��
:

Let M be the L.F/-substructure of M generated by πai W i 2 I1 C I2º with reduct
ML WD M � L. By (2) applied to M ✓ M� L, there is d 2 f.MLhbi/w for some
w such that

f
�
MLhbi

�
✓

˝
f.M/; d

˛
: (A)

By (A), we have:
for every i 2 I1 C I2, f

�
g.ai I b/

�
2

˝
f.M/; d

˛
: (B)

Next, take q; r 2 N and u1 < � � � < uq 2 I1 and v1 < � � � < vr 2 I2 such that
d is in the L.F/-structure generated by auavb, where au WD .au1

; : : : ; auq / and
av WD .av1

; : : : ; avr /.
Next, take i0 2 I

>au
1 . Then applying (B) to this i0, there is an L-term h and

L.F/-terms t1; : : : ; tl (all of the form f.si / for L.F/-terms si ) such that
f
�
g.ai0 I b/

�
D h

�
t1.au; ai0 ; av; a

⇤
/; : : : ; tl .au; ai0 ; av; a

⇤
/; d

�
;

where a⇤ is a tuple of new parameters from .ai /i2I1CI2
not yet mentioned (i.e.,

disjoint from auavai0 ). By auavbd -indiscernibility of .ai /i2.I>au
1 CI<av

2 /, we can
arrange that i0 is the largest index in I1 among all indices specified so far (by sliding
the elements a⇤ �I>ai0

1 up to I2). Now, let a⇤
� WD a

⇤ �I1, and let a⇤
C WD a

⇤ �I2.
Define I 0

WD I
>aua

⇤�
1 C .c/ C I

<ava
⇤
C

2 , and note that i0 2 I
0 and that I 0 is also

in distal configuration at c. Since .ai /i2I 0n.c/ is auava⇤
bd -indiscernible, it follows

that
f
�
g.ai I b/

�
D h

�
t1.au; ai ; av; a

⇤
/; : : : ; tl .au; ai ; av; a

⇤
/; d

�
(C)

for every i 2 I
0
n .c/.

For each i 2 I
0, set

a
0
i WD

�
t1.au; ai ; av; a

⇤
/; : : : ; tl .au; ai ; av; a

⇤
/; ai

�
:

Here .a0
i /i2I 0 is an indiscernible sequence from f.M/l ⇥ Mx and .a0

i /i2I 0n.c/ is
auava

⇤
bd -indiscernible. Then by (C) and (3), it follows that

f
�
g.ac I b/

�
D h

�
t1.au; ac ; av; a

⇤
/; : : : ; tl .au; ac ; av; a

⇤
/; d

�
: (D)

Finally, we note that
ˆ  .ac I b/

” ˆ  
0�
ac I bI f

�
g.ac I b/

��
by definition of  0

” ˆ  
0�
ac I bI h

�
t1.au; ac ; av; a

⇤
/; : : : ; tl .au; ac ; av; a

⇤
/; d

��
by (D)

” ˆ  
0�
ai I bI h

�
t1.au; ai ; av; a

⇤
/; : : : ; tl .au; ai ; av; a

⇤
/; d

��
.for i 2 I

0
n .c//
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by inductive hypothesis: e. 0
/ D e. 

0
.xIyI h.w1; : : : ; wl ; w/// < e

where w1; : : : ; wl and w are variables of the appropriate sort and
the partition of this last formula is .w1 � � �wlxIyw/

” ˆ  
0�
ai I bI f

�
g.ai I b/

��
.for i 2 I

0
n .c// by (C)

” ˆ  .ai I b/ .for i 2 I
0
n .c//:

This finishes the proof.

Connection to NIP Distality was first introduced as a property which a NIP theory
may or may not have (see [13]). In this paper, we have defined what it means for an
arbitrary theory to be distal. This does not actually give us any additional generality
since Proposition 2.9 below shows that every distal theory is necessarily NIP. How-
ever, this does allow us to use distality as a means for establishing that a theory is
NIP, although there are more direct ways to do this (see Remark 2.10). Let M be a
monster model of T .

Definition 2.8 We say that a partitioned L-formula '.xIy/ has the non-
independence property (or is NIP) if for every b 2 My and for every indiscernible
sequence .ai /i2I from Mx , there is " 2 π0; 1º and an index i0 2 I such that

ˆ '.ai I b/
" for every i 2 I

>i0 .

We say that T is NIP if every partitioned L-formula is NIP.

It is known that distality implies NIP (see, e.g., [4, Remark 2.6]). The proof of this
fact that we include below was communicated to us by the authors of [11] and uses
only the definitions of distality and NIP given in this paper.

Proposition 2.9 If T is distal, then T is NIP.

Proof Suppose that '.xIy/ is not NIP. Then there is an indiscernible sequence
.cn/n<! in Mx and b 2 My such that ˆ '.cnI b/ if and only if n is even. Now define
dn WD .c2n; c2nC1/ 2 Mx ⇥ Mx , and note that the sequence .dn/n<! satisfies that

(1) the sequence .dn;m/.n;m/2!⇥2 with the lexicographical ordering on ! ⇥ 2 is
indiscernible, and

(2) for every n, ˆ '.dn;0I b/ ^ :'.dn;1I b/.
By the standard lemma (see [15, Lemma 5.1.3]), there is a b-indiscernible sequence
.ei /i2Q in Mx ⇥ Mx such that EM..ei /i2Q=b/ D EM..dn/n<!=b/. In particular,

(3) the sequence .ei;m/.i;m/2Q⇥2 with the lexicographical ordering on Q ⇥ 2 is
indiscernible, and

(4) for every i , ˆ '.ei;0I b/ ^ :'.ei;1I b/.
Finally, for each i 2 Q define the following element of Mx :

ai WD

´
ei;0 if i ¤ 0;

ei;1 if i D 0.

We claim that the sequence .ai /i2Q witnesses that '.xIy/ is not distal. Indeed,
(5) Q D .�1; 0/C .0/C .0;C1/ is in distal configuration at 0,
(6) .ai /i2.�1;0/C.0;C1/ is b-indiscernible, but
(7) ˆ '.a1I b/ ^ :'.a0I b/.
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Remark 2.10 Our route for proving Corollary 1.2 goes through Proposition 2.9
and Theorem 1.1, which uses Distal Criterion 2.7, a generalization of [11, Theorem
2.1]. If our only goal in this paper was to establish Corollary 1.2, we could have
taken a slightly more direct path by generalizing in a similar way Günaydin and
Hieronymi’s [10, Theorem 4.1] to obtain a “NIP criterion.” In which case, we could
then use “NIP versions” of the results in Sections 4 and 5 to establish Corollary 1.2.

3 Asymptotic Couples and Tlog

In this section we give a summary of the basics of H -asymptotic couples with as-
ymptotic integration, as well as describing the language Llog and the theory Tlog D

ThLlog.Älog;  /.

Overview of asymptotic couples An asymptotic couple is a pair .Ä;  / where Ä is
an ordered abelian group and  W Ä

¤
! Ä satisfies for all ˛; ˇ 2 Ä

¤,
(AC1) ˛ C ˇ ¤ 0 H)  .˛ C ˇ/ � min. .˛/;  .ˇ//;
(AC2)  .k˛/ D  .˛/ for all k 2 Z¤, in particular,  .�˛/ D  .˛/;
(AC3) ˛ > 0 H) ˛ C  .˛/ >  .ˇ/.
If in addition for all ˛; ˇ 2 Ä ,
(HC) 0 < ˛  ˇ H)  .˛/ �  .ˇ/,

then .Ä;  / is said to be of H -type, or to be an H -asymptotic couple.
For the rest of this subsection, .Ä;  / is an H -asymptotic couple. By convention,

we extend  to all of Ä by setting  .0/ WD 1. Then  .˛Cˇ/ � min. .˛/;  .ˇ//
holds for all ˛; ˇ 2 Ä , and  W Ä ! Ä1 is a (non-surjective) convex valuation on
the ordered abelian group Ä . The following basic fact about valuations is used often.

Fact 3.1 If ˛; ˇ 2 Ä and  .˛/ <  .ˇ/, then  .˛ C ˇ/ D  .˛/.

For ˛ 2 Ä
¤, we define ˛0

WD ˛ C  .˛/. The following subsets of Ä play special
roles:

.Ä
¤
/
0
WD π�

0
W � 2 Ä

¤
º; .Ä

>
/
0
WD π�

0
W � 2 Ä

>
º;

.Ä
<
/
0
WD π�

0
W � 2 Ä

<
º; ‰ WD

®
 .�/ W � 2 Ä

¤¯
:

We think of the map id C W Ä
¤

! Ä as the derivative (this is because asymptotic
couples often arise in nature as the value groups of certain valued di�erential fields;
see [1]). When antiderivatives exist, they are unique.

Fact 3.2 ([1, Lemma 6.5.4(iii)]) The map � 7! �
0

D � C  .�/ W Ä
¤

! Ä is
strictly increasing.

This allows us to talk about asymptotic integration.

Definition 3.3 If Ä D .Ä
¤
/
0, then we say that .Ä;  / has asymptotic integration.

Suppose that .Ä;  / has asymptotic integration. Given ˛ 2 Ä , we let
R
˛ denote the

unique ˇ 2 Ä
¤ such that ˇ0

D ˛ and we call ˇ D

R
˛ the integral of ˛. This gives

us a function
R

W Ä ! Ä
¤ which is the inverse of � 7! �

0
W Ä

¤
! Ä .

We now further assume that .Ä;  / has asymptotic integration. A closely related
function to

R
is the successor function s W Ä ! ‰ defined by ˛ 7! s˛ WD  .

R
˛/.

The successor function gets its name due to its behavior on the ‰-set in the asymp-
totic couple .Älog;  /. More generally, we have the following.
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Example 3.4 The asymptotic couple .Älog;  / is of H -type and has asymptotic
integration. The functions

R
and s behave as follows:

(1) (Integral) For ˛ D .r0; r1; r2; : : :/ 2 Älog, take the unique n such that rn ¤ 1

and rm D 1 for m < n. Then

˛ D .1; : : : ; 1„ ƒ‚ …
n

; rn„ƒ‚…
¤1

; rnC1; rnC2; : : :/ 7!

Z
˛ D .0; : : : ; 0„ ƒ‚ …

n

; rn�1; rnC1; rnC2; : : :/:

(2) (Successor) For ˛ D .r0; r1; r2; : : :/ 2 Älog, take the unique n such that
rn ¤ 1 and rm D 1 for m < n. Then

˛ D .1; : : : ; 1„ ƒ‚ …
n

; rn„ƒ‚…
¤1

; rnC1; rnC2; : : :/ 7! s˛ D .1; : : : ; 1„ ƒ‚ …
nC1

; 0; 0; : : :/:

In particular, s0 D .1; 0; 0; : : :/.

We conclude this subsection with some general facts about the s-function which we
will need later.

Fact 3.5 Let ˛; ˇ 2 Ä . Then
1. if ˛ 2 s.Ä/, then s�1

.˛/ \ .Ä
>
/
0 and s�1

.˛/ \ .Ä
<
/
0 are convex in Ä ,

2. (successor identity) if s˛ < sˇ, then  .˛ � ˇ/ D s˛,
3. if ˛ 2 .Ä

<
/
0 and n � 1, then ˛ C .nC 1/.s˛ � ˛/ 2 .Ä

>
/
0.

Proof Item (1) is [6, Corollary 3.6], (2) is [6, Lemma 3.4], and (3) is [8, Lemma
3.10].

The theory Tlog Let LAC be the “natural” language of asymptotic couples:

LAC D π0;C;�; <;  ;1º;

where 0, 1 are constant symbols, C is a binary function symbol, � and  are unary
function symbols, and < is a binary relation symbol. We consider an asymptotic
couple .Ä;  / as an LAC-structure with underlying set Ä1 and the obvious interpre-
tation of the symbols of LAC. We interpret the new constant symbol 1 as a default
value, that is, we declare that

�1 D � C 1 D 1 C � D 1 C 1 D  .0/ D  .1/ WD 1

for all � 2 Ä .
Let TAC be the LAC-theory whose models are the divisibleH -asymptotic couples

with asymptotic integration such that
(1) ‰ has least element s0 as an ordered subset of Ä ,
(2) s0 > 0,
(3) ‰ is a successor set as an ordered subset of Ä ,
(4) for each ˛ 2 ‰, the immediate successor of ˛ in ‰ is s˛, and
(5) � 7! s� W ‰ ! ‰

>s0 is a bijection.
It is clear that .Älog;  / is a model of TAC. For a model .Ä;  / of TAC, we define the
function p W ‰

>s0
! ‰ to be the inverse of the function � 7! s� W ‰ ! ‰

>s0. We
extend p to a function Ä1 ! Ä1 by setting p.˛/ WD 1 for ˛ 2 Ä1 n‰

>s0.
Next, let Llog D LAC [ πs; p; ı1; ı2; ı3; : : :º where s, p, and ın for n � 1 are

unary function symbols. All models of TAC are considered as Llog-structures where
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s and p are interpreted as above and where ın is interpreted as division by n, again
with 1 as a default value (so

R
1 D s1 D ın.1/ WD 1 for all n � 1).

We let Tlog be the Llog-theory whose models are the models of TAC. Here are
some of the main model-theoretic results concerning Tlog.

Theorem 3.6 The Llog-theory Tlog

(1) has a universal axiomatization,
(2) has quantifier elimination,
(3) is complete,
(4) is decidable,
(5) is model complete,
(6) has NIP,
(7) does not have the Steinitz exchange property, and
(8) is not strongly NIP (in the sense of [5]).

Proof Items (1)–(5) are in [6], and (6) and (7) are in [7]. Item (8) is proved by the
first author in [9, Section 4.6], although we repeat the proof here.

Let N be a saturated model of Tlog. By Dolich and Goodrick [5, Corollary 2.14],
it is enough to show that for every ✏ > 0 in N there is an infinite definable discrete
set X ✓ N such that X ✓ .0; ✏/. The infinite definable set ‰N is discrete and has
the property that for every ˛ 2 ‰N , the set ‰>˛N is also infinite and discrete. Let
✏ > 0, and take ˛ 2 ‰N such that .˛ C 2.s˛ � ˛// � ˛ D �2

R
˛ < ✏. Note

that then ˛ C 2.s˛ � ˛/ > ‰N by Fact 3.5(3). The definable infinite discrete set
X WD ‰

>˛
N � ˛ has the desired property.

We shall also need the following facts about models of Tlog. For Facts 3.7 and 3.8,
we let .Ä;  / ˆ Tlog.

Fact 3.7 ([6, Lemma 6.8]) ‰ is a linearly independent subset of Ä as a vector
space over Q.

Fact 3.8 ([6, Corollary 6.5]) Let n � 1, let ˛1 < � � � < ˛n 2 ‰, and let ˛ DPn
jD1 qj˛j for q1; : : : ; qn 2 Q¤. Then
(1)

Pn
jD1 qj ¤ 1 H) s˛ D s0,

(2)
Pn
jD1 qj D 1 H) s˛ D s˛1.

4 Some Indiscernible Lemmas

In this section M is a monster model of Tlog with underlying set Ä1. Furthermore,
I D I1 C .c/C I2 is an ordered index set with infinite I1 and I2, and i , j , k range
over I . In this section we will handle most of the cases that will arise when verifying
hypothesis (3) from Distal Criterion 2.7 in our proof of distality for Tlog.

In terms of Distal Criterion 2.7(3), Lemma 4.1 will handle most of the cases
where the sequence .g.ai ; b1// which gets plugged into f is nonconstant, but the
output sequence .h.ai ; b2// is constant. The arguments involved use essentially that
 is a convex valuation on Ä¤, and that s behaves in a similar topological manner
to  .

Lemma 4.1 Let .ai /i2I be a nonconstant indiscernible sequence from Ä , and
suppose that .b; Qb/ 2 Ä ⇥‰ is such that .ai /i2I1CI2

is b Qb-indiscernible. Then
(1) if  .ai � b/ D

Qb for all i ¤ c, then  .ac � b/ D
Qb;
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(2) if s.ai � b/ D
Qb for all i ¤ c, then s.ac � b/ D

Qb;
(3) f.ai � b/ ¤ 1 for all i , where f 2 π ; sº;
(4) p.ai � b/ ¤

Qb for every i 2 I1 C I2.

Proof For (1), assume that  .ai�b/ D
Qb for all i ¤ c. By b Qb-indiscernibility, the

sequence .ai � b/i2I1CI2
is contained entirely within the convex set Ä< \  

�1
. Qb/

or it is contained entirely within the convex set Ä> \  
�1
. Qb/. In either case, ac � b

is also contained in the same convex set by monotonicity of .ai � b/i2I . Thus
 .ac � b/ D

Qb.
The argument for (2) is similar to the argument for (1), except that the two convex

sets are .Ä</0 \ s
�1
. Qb/ and .Ä>/0 \ s

�1
.b/ (see Fact 3.5(1)).

For (3), the case f D s follows from s.Ä/ D ‰. Suppose that f D  . If
 .aj � b/ D 1 for some j , then aj D b. However, if j D c, then since .ai /i2I
is nonconstant and monotone, we would get that .ai /i2I1

and .ai /i2I2
would lie on

separate sides of b, contradicting b-indiscernibility of .ai /i2I1CI2
. If j ¤ c, then

again by b-indiscernibility we would get that ai D b for every i , contradicting the
nonconstant assumption.

For (4), suppose that p.ai � b/ D
Qb for some i 2 I1 C I2. Then by

b Qb-indiscernibility, we get that p.aj � b/ D
Qb for every j 2 I1 C I2. How-

ever, by definition of p this implies that .ai /i2I1CI2
is a constant sequence, which is

a contradiction.

Lemma 4.2 will handle the cases where both sequences .g.ai ; b1// and .h.ai ; b2//
are nonconstant.

Lemma 4.2 Let .ai Qai /i2I be an indiscernible sequence from Ä⇥‰ such that .ai /
and . Qai / are each nonconstant, and suppose that b 2 Ä is such that .ai Qai /i2I1CI2

is
b-indiscernible. Then

(1) if  .ai � b/ D Qai for all i ¤ c, then  .ac � b/ D Qac;
(2) if s.ai � b/ D Qai for all i ¤ c, then s.ac � b/ D Qac;
(3) if p.ai � b/ D Qai for all i ¤ c, then p.ac � b/ D Qac .

Proof Without loss of generality, we will assume that . Qai / is strictly increasing.
For (1), we first observe that if i < j , then  .ai � aj / D Qai . Indeed, by indis-

cernibility, it su�ces to show this for i < j both from I1 C I2. Given such i < j ,
we have

 .ai � aj / D  
�
.ai � b/C .b � aj /

�
D min. Qai ; Qaj / D Qai :

Next, suppose that j 2 I2, and note that

 .ac � b/ D  
�
.ac � aj /C .aj � b/

�
D min. Qac ; Qaj / D Qac :

For (2), we first claim that if i < j , then  .ai � aj / D Qai . By indiscernibility,
it su�ces to show this for i < j both from I1 C I2. Given such i < j , we have
Qai D s.ai � b/ < s.aj � b/ D Qaj . By the successor identity (Fact 3.5(2)), we have

Qai D s.ai � b/ D  
�
.ai � b/ � .aj � b/

�
D  .ai � aj /:

Next, suppose that j < k are both from I2. Then by monotonicity of .ai � b/i2I
and b-indiscernibility of .ai /i2I1CI2

,

s.ac � b/  s.aj � b/ < s.ak � b/:
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By the successor identity, we have
Qac D  .ac � ak/ D  

�
.ac � b/ � .ak � b/

�
D s.ac � b/:

Finally for (3), we note that if i 2 I1 C I2, then ai � b 2 ‰
>s0 and so

ai � b D sp.ai � b/ D s Qai :

From this we see that ai � s Qai D b and, in particular, .ai � s Qai /i2I1CI2
is constant.

By indiscernibility of .ai Qai /i2I , we have ac � s Qac D b and so p.ac � b/ D ps Qac .
As Qai 2 ‰ for all i 2 I1 C I2 we have Qac 2 ‰, and so ps Qac D Qac .

Lemma 4.3 will handle the cases where both sequences .g.ai ; b1// and .h.ai ; b2//
are constant. This case is trivial, but it does implicitly rely on the behavior L-terms,
where L WD π0;C;�; <; .ın/n<! ;1º ✓ Llog.

Lemma 4.3 Given f 2 π ; s; pº, let g, h be L-terms of arities nC k and mC l ,
respectively, with m  n. Let b1 2 Mk , let b2 2 f.M/l , and let .ai /i2I be an
indiscernible sequence from f.M/m ⇥ Mn�m such that

(1) .ai /i2I1CI2
is b1b2-indiscernible,

(2) f.g.ai ; b1// D h.ai ; b2/ for every i ¤ c,
(3) .g.ai ; b1//i2I1CI2

is a constant sequence.
Then f.g.ac ; b1// D h.ac ; b2/.

Proof We will essentially do a case distinction on “whether 1 plays a nontrivial
role or not.” This will be made more precise in the proof of the following general
claim.

Claim Suppose that t .u; v/ is an L-term of arity r C s, that .ci /i2I is an indis-
cernible sequence from Mr , and that d 2 Ms . Then if .t.ci ; d //i2I1CI2

is a constant
sequence, .t.ci ; d //i2I is also a constant sequence.

Proof of claim We will consider several cases relating to the role of 1.
Case 1: Suppose that the constant 1 occurs in the term t . Then by definition of

how the symbol 1 is interpreted, we have t .ci ; d / D 1 for every i , so .t.ci ; d //i2I
takes constant value 1.

For the rest of this proof, we may assume that 1 does not occur in t . We now write
the variables u, v as u D .u1; : : : ; ur / and v D .v1; : : : ; vs/. By writing t D t .u; v/,
we mean that the free variables of the term t are among u1; : : : ; ur ; v1; : : : ; vs . Let
ui1 ; : : : ; uip ; vj1

; : : : ; vjq be those variables which actually occur in the term t . Then
there are rational numbers ⇢i1 ; : : : ; ⇢ip ; ⇢j1

; : : : ; ⇢jq 2 Q such that
t .u; v/ D ⇢i1ui1 C � � � C ⇢ipuip C ⇢j1

vj1
C � � � C ⇢jqvjq ;

where equality here is in the sense that the interpretations of both sides as functions
MrCs

! M agree. For the following two cases, it will be convenient to write out
d D .d1; : : : ; ds/, and for each index i0 2 I , we have ci0 D .ci0;1; ci0;2; : : : ; ci0;r /.

Case 2: Suppose that one of dj1
; : : : ; djq is equal to 1. In this case, it follows

that t .ci ; d / D 1 for all i , so again we have a constant sequence.
Case 3: Suppose that there is some i0 2 I1 C I2 such that one of ci0;i1 ; ci0;i2 ; : : : ;

ci0;ip is equal to 1. Without loss of generality, say that ci0;i1 D 1. Then by
indiscernibility we have ci;i1 D 1 for all i 2 I . Thus, since the variable ui1 actually
shows up in t , it follows that t .ci ; d / D 1 for all i , and so .t.ci ; d //i2I is a constant
sequence.
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Case 4: Suppose that we are not in Case 1, 2, or 3. In this case, t .ci ; d / is a
legitimate Q-linear combination of elements of Ä (not 1). In particular, we have

�
t .ci ; d /

�
i2I1CI2

is constant H) .⇢i1ci;i1 C � � � C ⇢ipci;ip /i2I1CI2
is constant

H) .⇢i1ci;i1 C � � � C ⇢ipci;ip /i2I is constant
H)

�
t .ci ; d /

�
i2I is constant,

where the second implication follows from indiscernibility. Note: in Case 4 it is
possible that 1 shows up somewhere in the sequence .ci / or in the parameter d , just
not in a way where it is actually being plugged in to the term t .

The lemma now is an immediate consequence of the above claim applied separately
to the sequences .g.ai ; b1//i2I and .h.ai ; b2//i2I .

The following lemma greatly simplifies the sequence .h.ai ; b2//. We no longer
assume that j and k range over I .

Lemma 4.4 Let h.x; y/ be an L-term of arity mC n, let b 2 Mn, and let .ai /i2I
be an indiscernible sequence from ‰

m
1, with ai D .ai;1; : : : ; ai;m/. Assume that

h.ai ; b/ 2 ‰1 for infinitely many i . Then one of the following is true:
(1) h.ai ; b/ D 1 for every i ;
(2) there is ˇ 2 ‰ such that h.ai ; b/ D ˇ for every i ;
(3) there is l 2 π1; : : : ; mº such that h.ai ; b/ D ai;l for every i .

Proof If one of the components of b which corresponds to a free variable which
actually occurs in h is 1, then h.ai ; b/ D 1 for every i . Similarly, if the constant
1 occurs in the term h, then h.ai ; b/ D 1 for every i as well. Thus we may assume
for the remainder of the proof that none of the components of b are 1 and that 1

does not occur in the term h. We may then write h.x; b/ D .
Pm
jD1 qjxj /C c where

c ¤ 1 is a Q-linear combination of the components of b and q1; : : : ; qm 2 Q. We
consider three disjoint cases.

Case 1: There is i0 2 I with h.ai0 ; b/ D 1. Then there must be j 2 π1; : : : ; mº

with ai0;j D 1, and so ai;j D 1 for every i . We conclude that h.ai ; b/ D 1 for
every i .

Case 2: h.ai ; b/ ¤ 1 for every i , and there are distinct i0; i1 2 I and ˇ 2 Ä with
h.ai0 ; b/ D h.ai1 ; b/ D ˇ. We see then that

Pm
jD1 qjai0;j D

Pm
jD1 qjai1;j and soPm

jD1 qjai;j D

Pm
jD1 qjai 0;j for every i; i 0 2 I by indiscernibility. We conclude

that h.ai ; b/ D ˇ for every i and since h.ai ; b/ 2 ‰1 for infinitely many i , we see
that ˇ 2 ‰.

Case 3: h.ai ; b/ ¤ 1 for every i , and h.ai ; b/ ¤ h.ai 0 ; b/ for all distinct i
and i 0. We will first clean up the summation by removing constant and redundant
sequences. By indiscernibility, there are m0 � 1 and natural numbers 1  ⌘.1/ <

� � � < ⌘.m0/  m such that
(1) for every j 2 π⌘.1/; : : : ; ⌘.m0/º, the sequence .ai;j /i2I is nonconstant,
(2) for every j; j 0

2 π⌘.1/; : : : ; ⌘.m0/º such that j ¤ j
0, ai;j ¤ ai;j 0 for every

i , and
(3) given j 2 π1; : : : ; mº n π⌘.1/; : : : ; ⌘.m0/º, either

(a) the sequence .ai;j /i2I is constant, or
(b) there is j 0

2 π⌘.1/; : : : ; ⌘.m0/º such that ai;j D ai;j 0 for every i .
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By rearranging the components of .ai / and the qj ’s, we may assume for the rest
of the proof that ⌘.j / D j for j D 1; : : : ; m0.

Next, for j 2 π1; : : : ; m0º, define

Qqj WD

X
j 02A

qj 0 ;

where A WD πj
0
W ai;j D ai;j 0 for every iº and

Qc WD c C

X
j2B

ai0;j ;

where B WD πj W .ai;j /i2I is a constant sequenceº and i0 2 I is some fixed index.
We now have that for every i ,

h.ai ; b/ D

⇣ m0X
jD1

Qqjai;j

⌘
C Qc;

and for every i , i 0 and j; j 0
2 π1; : : : ; m0º, ai;j ¤ ai 0;j 0 whenever .i; j / ¤ .i

0
; j

0
/.

Choose distinct i0; i1; : : : ; im0C1 2 I such that h.aik ; b/ 2 ‰ for k 2

π0; : : : ; m0 C 1º. We have for each k that
⇣ m0X
jD1

Qqjai0;j

⌘
� h.ai0 ; b/ D � Qc D

⇣ m0X
jD1

Qqjaik ;j

⌘
� h.aik ; b/

and so

h.aik ; b/ D

⇣ m0X
jD1

Qqjaik ;j

⌘
�

⇣ m0X
jD1

Qqjai0;j

⌘
C h.ai0 ; b/: (⇤)

Since ai0;1; : : : ; ai0;m0
; aik ;1; : : : ; aik ;m0

are distinct elements of ‰, and h.aik ; b/
and h.ai0 ; b/ are also distinct elements from ‰, we deduce from the Q-linear inde-
pendence of ‰ (Fact 3.7) that

h.aik ; b/ 2 πai0;1; : : : ; ai0;m0
; aik ;1; : : : ; aik ;m0

º:

We claim that h.aik ; b/ 2 πaik ;1; : : : ; aik ;m0
º for at least one k 2 π1; : : : ; m0 C 1º.

Suppose not. Then there is a function � W π1; : : : ; m0 C 1º ! π1; : : : ; m0º such that
h.aik ; b/ D ai0;�.k/. As h.aik ; b/ ¤ h.aik0 ; b/ for all k; k0

2 π1; : : : ; m0 C 1º such
that k ¤ k

0, we must have that � is injective, which is a contradiction. Therefore, we
can take k 2 π1; : : : ; m0 C 1º and l 2 π1; : : : ; m0º such that h.aik ; b/ D aik ;l . In
particular, aik ;l ¤ 0 and so ai0;l ¤ 0. Again from .⇤/, the Q-linear independence
of ‰, and the fact that ai0;1; : : : ; ai0;m0

; aik ;1; : : : ; aik ;m0
are all distinct, we deduce

that h.ai0 ; b/ D ai0;l , that Qql D 1, and that Qqj D 0 for j ¤ l . From this, we deduce
that Qc D 0, and so h.ai ; b/ D ai;l for every i .

5 Spread Out Sequences

In this section M is a monster model of Tlog with underlying set Ä1. Furthermore,
I is an infinite ordered index set, i , j range over I , and .ai /i2I is a strictly increas-
ing indiscernible sequence from Ä .

Definition 5.1 Given a; b 2 conv.‰/, we write a ⌧ b if sna < b for every n. If
there is b 2 Ä such that .ai �b/i2I ✓ conv.‰/, and for every i < j , s0 ⌧ ai �b ⌧

aj � b, then we say that .ai /i2I is spread out by b.
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Figure 2 Five elements of a sequence being spread out by b.

Intuitively, the idea behind .ai /i2I being spread out by b is that upon translating
.ai /i2I by b, all elements of the sequence .ai � b/i2I are now in the convex hull of
the ‰-set, and each element of the sequence “lives on” its own copy of Z (or really,
the convex hull of a copy of Z). In Figure 2 we suppose that .ai /i2I D .an/n<! is an
indiscernible sequence spread out by b, and we illustrate the positions of .an�b/n<5.
Furthermore, each element ai �b will have a “nearest” element of the‰-set, namely,
ps.ai � b/. The next lemma shows that these nearest elements do not depend on b.

Lemma 5.2 Suppose that .ai /i2I is spread out by b. Then for every i < j ,
s.ai � b/ D  .ai � aj /:

Proof Let i < j be arbitrary. Then by definition, ai � b ⌧ aj � b, and by the
successor identity,

 .ai � aj / D  
�
.aj � b/ � .ai � b/

�
D s.ai � b/:

If .ai / is spread out by b, then the sign of the di�erence .ai � b/ � ps.ai � b/ can
depend on i and b, although in a very dependent way (see Figure 3).

Lemma 5.3 Suppose that .ai /i2I is spread out by b. Let

I
⇤

WD

´
I if I does not have a greatest index;
I
<d if I has a greatest index d .

Then the function i 7! ai � ps.ai � b/ W I
⇤

! Ä is either constant, strictly
increasing, or strictly decreasing.

Proof Fix indices i0 < j0 from I
⇤, and fix ? 2 πD; <;>º such that�

ai0 � ps.ai0 � b/
�
?

�
aj0

� ps.aj0
� b/

�
:

Next, let j < k be arbitrary indices from I
⇤, and fix an index d 2 I which is greater

than j0 and k. Note that the sequence .ai /i2I<d is ad -indiscernible. Thus�
ai0 � ps.ai0 � b/

�
?

�
aj0

� ps.aj0
� b/

�

”

�
ai0 � p .ai0 � ad /

�
?

�
aj0

� p .aj0
� ad /

�

”

�
aj � p .aj � ad /

�
?

�
ak � p .ak � ad /

�

”

�
aj � ps.aj � b/

�
?

�
ak � ps.ak � b/

�
:

Thus the function i 7! ai�ps.ai�b/ W I
⇤

! Ä is either constant, strictly increasing,
or strictly decreasing, depending on ?.

The following is the key proposition.
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Figure 3 To illustrate Lemma 5.3 we apply ps to the sequence .an � b/n<5 from
Figure 2.

Proposition 5.4 Suppose that I D I1 C .c/ C I2 is in distal configuration at c.
Further suppose that b 2 Ä is such that .ai /i2I1CI2

is b-indiscernible. If p.ai�b/ D

1 for every i 2 I1 C I2, then p.ac � b/ D 1.

Proof We have several cases to consider.
Case 1: There is i0 ¤ c such that ai0 � b > ‰. Then by b-indiscernibility and

monotonicity, ai � b > ‰ for every i 2 I , and so ac � b … ‰, so p.ac � b/ D 1.
Case 2: There is n and i0 ¤ c such that ai0 �b  s

n
0. Again by b-indiscernibility

and monotonicity, we have that ai � b < s
n
0 for every i . Assume toward a contra-

diction that p.ac � b/ ¤ 1. Then ac � b D s
m
0 for some 1 < m < n, and so

for i ¤ c, ai � b < s
m
0 if and only if i < c, contradicting the indiscernibility of

.ai � b/i2I1CI2
.

We may now assume by monotonicity that .ai � b/i2I ✓ Ä
>.sn0/n

\ ‰
#. In

particular, s0 ⌧ ai � b for every i .
Case 3: The sequence .ps.ai � b//i2I1CI2

takes the constant value ˇ. Then by
b-indiscernibility and monotonicity, either for all i , ai�b < ˇ or for all i , ai�b > ˇ.
In either case, ac � b ¤ ˇ, however ps.ac � b/ D ˇ. Thus ac � b ¤ ‰.

Case 4: The sequence .ps.ai � b//i2I1CI2
is strictly increasing. Then the

sequence .ps.ai �b//i2I is strictly increasing, and it follows from b-indiscernibility
of .ai /i2I1CI2

and I being in distal configuration at c that .ai /i2I is spread
out by b. By Lemma 5.3 and b-indiscernibility of .ai /i2I1CI2

, the function
i 7! ai � ps.ai � b/ W I ! Ä is either constant, strictly increasing, or strictly
decreasing. By b-indiscernibility and the assumption that p.ai � b/ D 1 for every
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i 2 I1 C I2, it follows that this function takes values entirely below b, or entirely
above b. Thus ac � ps.ac � b/ ¤ b, and so ac � b … ‰.

6 Extensions

In this section .Ä;  / is a model of Tlog. Here we will prove the relevant facts that
will allow us to later verify condition (2) in Distal Criterion 2.7, with .Ä;  / playing
the role of “.N ;F/.” In Distal Criterion 2.7(2), we are allowed to assume that the
substructure M of N is closed under every function from F.

For the case f D  , we do not need the subgroup Ä0 of Ä to be closed under any
of the functions  , s, or p.

Proposition 6.1 Suppose that Ä0 is a divisible ordered subgroup of Ä . Given
c1; : : : ; cm 2 Ä n Ä0, we have

#
⇣
 

⇣⇣
Ä0 C

mX
iD1

Qci
⌘¤⌘ /

 .Ä
¤
0 /

⌘
 m:

In particular, there are n  m and distinct

d1; : : : ; dn 2  

⇣⇣
Ä0 C

mX
iD1

Qci
⌘¤⌘ /

 .Ä
¤
0 /

such that

 

⇣⇣
Ä0 C

mX
iD1

Qci
⌘¤⌘

✓

⇣ M

˛2 .Ä¤
0 /

Q˛
⌘

˚

⇣ nM
jD1

Qdj
⌘
:

Proof This follows by induction on m. To simplify notation, we will show the
inductive step only for m D 1. Let c 2 Ä n Ä0. If  .Ä0 C Qc/ D  .Ä0/, then
we are done. Otherwise, suppose that  .Ä0 C Qc/ ¤  .Ä0/. As  is constant on
archimedean classes, we must have that ŒÄ0 C Qcç ¤ ŒÄ0ç. By [1, Lemma 2.4.4],
there is c⇤

2 Ä0 C Qc with ŒÄ0 C Qcç D ŒÄ0ç [ πŒc
⇤
çº and so  .Ä0 C Qc/ D

 .Ä0/ [ π .c
⇤
/º.

For the case f D s, we will need the subgroup to be closed under the functions  
and s, as the following example illustrates.

Example 6.2 Suppose that .Ä;  / has an element ˛ 2 ‰ such that ˛ > s
n
0 for

every n. Fix such an element ˛. Let Ä0 be the divisible ordered subgroup of Ä
generated by

πs
n
0 W n � 1º [ π˛1 � ˛0 W ˛1; ˛0 2 ‰ & s0 ⌧ ˛0 < ˛1º:

By Fact 3.8, we have s.Ä0/ D πs
n
0 W n � 1º ✓ Ä0. However, ‰ ✓ Ä0 C Q˛ and

thus
#
�
s.Ä0 C Q˛/ n s.Ä0/

�
D #

�
‰ n πs

n
0 W n � 1º

�
D 1:

Proposition 6.3 Suppose that Ä0 is a divisible ordered subgroup of Ä such that
s.Ä0/ ✓ Ä0 and  .Ä¤

0 / ✓ Ä0. Given c1; : : : ; cm 2 Ä n Ä0, we have

#
⇣
s

⇣
Ä0 C

mX
iD1

Qci
⌘ /

s.Ä0/

⌘
 mC 1:

In particular, there are n  mC 1 and distinct
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d1; : : : ; dn 2 s

⇣
Ä0 C

mX
iD1

Qci
⌘ /

s.Ä0/

such that

s

⇣
Ä0 C

mX
iD1

Qci
⌘

✓

⇣ M
˛2s.Ä0/

Q˛
⌘

˚

⇣ nM
jD1

Qdj
⌘
:

Proof Suppose that c1; : : : ; cm 2 Ä nÄ0, and set Ä1 WD Ä0 C

Pm
iD1Qci . Assume

toward a contradiction that there aremC2 distinct elements in s.Ä1/ns.Ä0/. Choose
e1; : : : ; emC2 2 Ä1 such that se1 < � � � < semC2 and such that sei … s.Ä0/ for each
i D 1; : : : ; m C 2. By the successor identity, we have that  .eiC1 � ei / D sei

for each i D 1; : : : ; m C 1. The closure assumptions on Ä0 imply that .Ä0;  / is
an asymptotic couple with asymptotic integration, and so s.Ä0/ D  .Ä0/. Thus
there are m C 1 distinct elements in  .Ä1/ n  .Ä0/, contradicting Proposition 6.1
above.

Proposition 6.4 Suppose that .Ä0;  / 4 .Ä;  /. Given c1; : : : ; cm 2 Ä n Ä0, we
have

#
⇣
p

⇣
Ä0 C

mX
iD1

Qci
⌘ /

p.Ä0/

⌘
 mC 1:

In particular, there are n  mC 1 and distinct

d1; : : : ; dn 2 p

⇣
Ä0 C

mX
iD1

Qci
⌘ /

p.Ä0/

such that

p

⇣
Ä0 C

mX
iD1

Qci
⌘

✓

⇣ M
˛2p.Ä0/;˛¤1

Q˛
⌘

˚

⇣ nM
jD1

Qdj
⌘

[ π1º:

Proof Suppose that c1; : : : ; cm 2 Ä nÄ0, and set Ä1 WD Ä0 C

Pm
iD1Qci . Assume

toward a contradiction that there aremC2 elements e1; : : : ; emC2 2 Ä1 with p.ei / 2

p.Ä1/ n p.Ä0/ for each i and with p.ei / ¤ p.ej / for all i ¤ j . Then ei is in ‰ for
each i and, as s is injective on ‰, we have that sei ¤ sej for all i ¤ j . As

p.Ä0/ D s.Ä0/ [ π1º D .‰ \ Ä0/ [ π1º;

we have that sei … s.Ä0/ for each i , contradicting Proposition 6.3.

7 Proof of Theorem 1.1

In this section we prove Theorem 1.1 by applying Distal Criterion 2.7. In the lan-
guage of Distal Criterion 2.7, the role of T will be played by the reduct T WD Tlog �L,
where L D π0;C;�; <; .ın/n<! ;1º. The L-theory T is essentially the same as the
theory of ordered divisible abelian groups, except that it contains the element 1

which serves as a default value “at infinity.” It follows that T is o-minimal and there-
fore it is distal by [13, Lemma 2.10], since o-minimal theories are dp-minimal.

We now construe Tlog as Tlog D T .F/, with F D π ; s; pº. In particular, Llog D

L.F/. By [6, Theorem 5.2], T .F/ has quantifier elimination, which is condition (1)
in Distal Criterion 2.7. Verifying Distal Criterion 2.7(2) involves three cases: f D  ,
s, and p. These cases are handled, respectively, by Propositions 6.1, 6.3, and 6.4.
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Finally, we will show how to verify condition (3) in Distal Criterion 2.7. Fix a
monster model M of T with underlying set Ä1. Let f 2 F, and let g, h be L-terms
of arities nC k and mC l , respectively, with m  n. Let b1 2 Mk , let b2 2 f.M/l ,
and let .ai /i2I be an indiscernible sequence from f.M/m ⇥ Mn�m such that

(a) I D I1 C .c/ C I2 is in distal configuration at c, and .ai /i2I1CI2
is

b1b2-indiscernible, and
(b) f.g.ai ; b1// D h.ai ; b2/ for every i 2 I1 C I2.

Our job is to show that f.g.ac ; b1// D h.ac ; b2/. We have several cases to consider.
Case 1: .g.ai ; b1//i2I1CI2

is a constant sequence. In this case, it follows from
Lemma 4.3 that f.g.ac ; b1// D h.ac ; b2/.

For the remainder of the proof, we assume that .g.ai ; b1//i2I1CI2
is not a con-

stant sequence. In particular, the symbol 1 does not appear in g, in b1, or in the
last n coordinates of ai , so the L-term g.x; y/ is equal to a Q-linear combination
of its arguments. By grouping these Q-linear combinations, we get b 2 Ä , and a
nonconstant indiscernible sequence .a0

i /i2I from M such that
(c) g.ai ; b1/ D a

0
i � b for every i 2 I ,

(d) .aia0
i /i2I is an indiscernible sequence from f.M/m ⇥ Mn�mC1,

(e) .aia0
i /i2I1CI2

is b1b2b-indiscernible, and
(f) f.a0

i � b/ D h.ai ; b2/ for every i 2 I1 C I2.
Our job now is to show that f. Qac � b/ D h.ac ; b2/. Since f.M/ ✓ ‰1 for each f ,
by Lemma 4.4 we get three more cases.

Case 2: h.ai ; b2/ D 1 for every i 2 I . By Lemma 4.1(3), this case cannot
happen for f 2 π ; sº. If f D p, then this case is handled by Proposition 5.4.

Case 3: There is ˇ 2 ‰ such that h.ai ; b2/ D ˇ for every i 2 I . If f D  or
f D s, then this case is handled by Lemma 4.1(1) or (2). By Lemma 4.1(4), this case
cannot happen for f D p.

Case 4: There is l 2 π1; : : : ; mº such that h.ai ; b2/ D ai;l for every i 2 I . This
case is handled by Lemma 4.2.

This completes the verification of condition (3) in Distal Criterion 2.7 and so we
are done with our proof of Theorem 1.1.
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