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Distality for the Asymptotic Couple of the Field of
Logarithmic Transseries

Allen Gehret and Elliot Kaplan

Abstract  We show that the theory Tjog of the asymptotic couple of the field
of logarithmic transseries is distal. As distal theories are NIP (have the non-
independence property), this provides a new proof that Tj,g is NIP.

1 Introduction

Distal theories and structures were introduced by Simon [13] as a way to distin-
guish those NIP theories which are in some sense purely unstable, that is, where
absolutely no stable behavior of any kind occurs. We sometimes think of distal-
ity as meaning: everything in sight is completely controlled or dominated by linear
orders, either overtly or covertly (see Definition 2.1). Any o-minimal theory is dis-
tal, and the p-adic fields are distal as well. In an o-minimal structure, everything is
controlled by the obvious underlying linear order. In the p-adics, there is no under-
lying linear order; however, everything is still controlled in some sense by the totally
ordered value group (up to a finite residue field). A non-example is the theory of
algebraically closed valued fields (ACVF). Indeed, the interpretable residue field is
an algebraically closed field, a purely stable structure which is not being controlled
by any linear order.

More recently, Chernikov, Galvin, and Starchenko showed that a strong Szemerédi-
type regularity lemma and other combinatorial results hold in all distal structures
(see [2], [4]). Consequently, there has been increased interest in classifying which
NIP structures are distal, as well as classifying which NIP structures have distal
expansions. In this paper we prove that a particular structure, the asymptotic couple
(Tog, ¥) of the ordered valued differential field T, of logarithmic transseries, is
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distal. Asymptotic couples arise as the value groups of certain types of valued dif-
ferential fields: the so-called asymprotic fields. See Aschenbrenner, van den Dries,
and van der Hoeven [1] for the full story. We now define the object (I'og, ¥).

Throughout, m and n range over N = {0, 1,2, ...}. Let EB,, Re;, be a vector space
over R with basis (e,). Then €p,, Re, can be made into an ordered group using the
usual lexicographical order, that is, by requiring for nonzero ), r;e; that

Z rie; >0 <= r, >0 for the least n such that r, # 0.

Let I'iog be the above ordered abelian group @n Re,,. It is often convenient to think
of an element )_r;e; as the vector (rg,r1,r2,...). We follow Rosenlicht [12] in
taking the function

1// . F]Og \ {0} — F]Og

defined by
©,...,0, 7n Fntts.) > (1,...,1,0,0,...)
S—— N—— S——
n #0 n+1

as a new primitive, calling the pair (I'ig, V) an asymptotic couple (the asymptotic
couple of Tiog). In [6] and [7], the first author studied the model theory of (I'ig, V)
in detail. There, (I, Y¥) is construed as an &Liog-structure for a certain first-order
language £io¢ (see, e.g., [6, Section 5]). In this paper we continue the study of the
theory Tiog = Thxlog(I‘log, ¥). The main result is the following.

Theorem 1.1 Thog is distal.

We provide a proof in Proposition 2.9 of the well-known fact that all distal theories
are NIP. Thus, Theorem 1.1 has the following immediate consequence.

Corollary 1.2 Tiog is NIP.

This provides a new proof of the main result from [7]. The original proof that T,
is NIP in [7] involved a counting-types argument which invoked a consistency result
of Mitchell and used the fact that the statement “7j,, is NIP” is absolute. The appeal
of the new proof of Corollary 1.2 is that it is algebraic, and avoids any set-theoretic
black boxes by taking place entirely within ZFC.

Theorem 1.1, together with [4, Corollary 6.3], also has the following amusing
consequence.

Corollary 1.3 No model of T interprets an infinite field of positive characteris-
tic.

We believe that no model of Ti,, interprets a field of characteristic zero either,
although we leave that story for another time and place.

In Section 2 we recall some definitions and basic facts around distality and NIP.
We also state and prove a general criterion for showing that a theory of a certain form
is distal. This criterion is based on one developed by Hieronymi and Nell [11]. There
they use it to show that certain “pairs” such as (R; 0, +, -, <, 2Z) are distal. We are
able to adapt it for use in our setting due to certain superficial syntactic similarities
between our structure and their pairs.

In Section 3 we discuss the basics of H -asymptotic couples with asymptotic inte-
gration. We also define the language &0, and discuss the theory Tj,s. We restate
some useful facts about models of Tj,, which were established in [6] and [7]. In
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Section 4 we go on to prove some additional lemmas concerning the behavior of
indiscernible sequences in models of Ti,.

In Section 5 we introduce a concept of an indiscernible sequence (a;);ey in a
model of Tiog being spread out by a parameter b. Roughly speaking, this means that
the sequence (a; — b);ey is sufficiently widely distributed in the convex hull of the
W-set. We then proceed to show that in such a situation, there is a certain desirable
monotone interaction between the translated sequence and the W-set (Lemma 5.3).
This is one of the key steps in the proof of distality of Tjqg.

In Section 6 we prove several finiteness results concerning finite-rank extensions
of the underlying groups of models of Tjog, and their relationship to the functions ¥,
s, and p from &£,.

In Section 7 we bring everything together to prove Theorem 1.1.

Ordered set conventions By ordered set we mean totally ordered set.

Let S be an ordered set. Below, the ordering on S will be denoted by <, and a
subset of S is viewed as ordered by the induced ordering. We put So, := S U {00},
where co ¢ S, with the ordering on S extended to a (total) ordering on S by S <
oo. Suppose that B is a subset of S. We put 2 := {s € S : 5 > b forevery b €
B}, and we denote S >{a} a5 just §74; similarly for >, <, and < instead of >. For
ACS, welet

conv(A) ;= {x € S:a <x <bforsomea,b € A}

be the convex hull of A in S, that is, the smallest convex subset of S containing A.
For A C §, we put

AV = {seS:s<aforsomea € A},

which is the smallest downward closed subset of S containing A.

We say that S is a successor set if every element x € S has an immediate succes-
sory € S,thatis, x < yandforallz € S, if x < z, then y < z. For example, N
and Z with their usual orderings are successor sets. We say that S is a copy of Z if
(S, <) is isomorphic to (Z, <).

Ordered abelian group conventions Suppose that G is an ordered abelian group.
Then we set G* = G \ {0}. Also G= := G~9; similarly for >, <, and > instead
of <. We define |g| := max(g,—g) for g € G. Fora € G, the archimedean class of
a is defined by

[a] :== {g € G :|a| <nl|g|and |g| < nla| for some n > 1}.

The archimedean classes partition G. Each archimedean class [a] with a # 0 is
the disjoint union of the two convex sets [a] N G= and [a] N G~. We order the set
[G] :={[a] : a € G} of archimedean classes by

[a] < [b] ;<= nla| < |b| foralln > 1.
We have [0] < [a] for alla € G#, and

l[a] < [b] < la| <n|b| forsomen > 1.
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Model theory conventions In general, we adopt the model-theoretic conventions of
Appendix B of [1]. In particular, £ can be a many-sorted language. For a complete
£-theory T, we will sometimes consider a model M = T and a cardinal « (M) > |£|
such that M is k (M)-saturated and every reduct of M is strongly « (M)-homogeneous.
Such a model is called a monster model of T. In particular, every model of 7' of
size at most k(M) has an elementary embedding into M. All variables are finite
multivariables. By convention, we will write indiscernible sequence when we mean
@-indiscernible sequence.

Sequence conventions Suppose that (a;);cr is a sequence of distinct elements from
some set indexed by a linear order /. Given a subset or subsequence A C (a;), we
let />4 denote the index set

A= (Y tiel:i>igy 1

aiOEA
(similarly for 7 <#4). Furthermore, given Iy C I we denote by A } I the set

A[\IQ = {aieA:ielo} C A.

2 Distality and NIP

This section contains all of the general model-theoretic content we need for this
paper. This includes a definition of distality, a criterion for proving that theories
of a certain form are distal, and a proof that distal theories are NIP. Throughout this
section £ is a language and T is a complete L-theory.

Definition of distality In this subsection we fix a monster model M of T. We also let
11, I, range over infinite linearly ordered index sets. The definitions do not depend
on the choice of this monster model. We define distality in Definition 2.1 below
in terms of “upgradability” of a certain indiscernible sequence configuration. In
practice, this seems to be one of the more convenient definitions to work with, and it
is the only one we use in this paper. For other equivalent definitions of distality see
Simon [13] or [14, Chapter 9].

Definition 2.1 Given I and I, we say that T is Iy, I-distal if for every A € M,
for every x, and for every indiscernible sequence (a;);ey from My, if

() I =11+ (c)+I,and

(2) (a;)ier,+1, is A-indiscernible,

then (a;);es is A-indiscernible. We say that T is distal if T is I, I-distal for every
I and I,. Finally, we say that an £-structure M is distal if Th(.M) is distal.

It is also convenient to define what it means for a formula ¢(x; y) to be distal.
Definition 2.2 Given /; and /,, we say that a formula ¢(x; y) is I, I>-distal if

for every b € M), and every indiscernible sequence (a;);es from M such that

() I =1+ (c)+ I>,and
(2) (a;)ier,+1, is b-indiscernible,

then = @(ac;b) <> ¢(a;;b) for every i € 1. We say that the formula ¢(x; y) is
distal if it is I, I,-distal for every I; and /.
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It is well known that when checking distality, either for an individual formula or
an entire theory, one is free to use any specific /; and I, they wish. To make this
sentiment precise we have introduced the provisional terminology “I;, I,-distal”
which is not standard (see Lemmas 2.3 and 2.4). We exploit this freedom in the
proof of Distal Criterion 2.7 below.

Lemma 2.3 The following are equivalent for a formula ¢(x; y):
(1) @(x; ) is distal;
(2) @(x;y)is Iy, Iy-distal for some 11 and I,.

Proof  The standard lemma (see Tent and Ziegler [15, Lemma 5.1.3]) allows one to
convert a counterexample of /1, I,-distality into a counterexample of J;, J>-distality,
where J1, J, are two other infinite linear orders. The details are left to the reader. [

Lemma 2.4 The following are equivalent:
(1) T is distal.
(2) There are Iy and I, such that T is I, I-distal.
(3) Every ¢(x;y) € &L is distal.
(4) There are I1 and I, such that every ¢(x;y) € &L is I, I>-distal.

Proof (1) = (2) = (4) < (3) follow by definition and Lemma 2.3. For (3) =
(1), assume that 7" is not distal. Then there are /1 and I, such that 7 is not I,
I»-distal. This failure of 11, I»-distality is witnessed by some x, y, some sequence
(@i)ier, +(c)+1, from My, some formula ¢(xq,...,x,;y) where each x; is of the
same sort as x, and some parameter b € M. By adjusting this counterexample—
through a combination of joining outer elements of the sequence with the parameter
b, and/or grouping elements of the sequence together to create a new “thickened”
sequence—one arrives at a formula ¢(x’; y’) (same formula, possibly different pre-
sentation of free variables) which is not distal. The argument is routine and left to
the reader, although a word of caution is in order: in general /; and I, are not dense
linear orders, and they may or may not have endpoints, and so on. So the reduction
as described above really depends on /; and I, and where the elements from (a;)
which witness the failure of distality are located on these sequences. O

Lemma 2.4 permits us to work with any I, I, we wish. It will be convenient for us
to work with 7, I, of a special form.

Definition 2.5 We say that a linear order I = I + (¢) + I is in distal configu-
ration at c if I} and I, are infinite, /; does not have a greatest element, and I, does
not have a least element.

Working with sequences in distal configuration is primarily used in the proofs of
Distal Criterion 2.7 and Proposition 5.4 below. It is not clear how to remove the
assumption of distal configuration from these arguments, at least without making
things more complicated.

Remark 2.6 The collection of all distal formulas in the variables (x; y) is closed
under arbitrary boolean combinations, including negations. In the literature, there
is another local notion of distality: that of a formula ¢(x; y) having a strong honest
definition (see Chernikov and Simon [3, Theorem 21]). The collection of formulas
@(x; y) which have a strong honest definition is in general only closed under positive
boolean combinations.



346 Gehret and Kaplan

A criterion for distality To set the stage for Distal Criterion 2.7 below, we now con-
sider an extension £(%) := £ U & of the language £ by a set ¥ of new unary
function symbols involving sorts which are already present in £. We also consider
T (%), a complete £(F)-theory extending 7. Given a model M = T, we denote by
(M, &) an expansion of M to a model of T(F). For a subset X of a model M, we
let (X') denote the £-substructure of M generated by X. If M is a submodel of N,
then we let M (X ) denote (M U X) € N. For this subsection we also fix a monster
model M of T'(%). Note that M | £ is then a monster model of 7.

Distal Criterion 2.7 is a many-sorted, many-function generalization of [11, The-
orem 2.1]. We give a proof below. In the statement of Distal Criterion 2.7 and its
proof, x, X', xi, y, z, W, w;, and so on are variables.

Distal Criterion 2.7 (Hieronymi and Nell) Suppose that T is a distal theory and
the following conditions hold:

(1) The theory T (%) has quantifier elimination.

(2) Forevery{ € &, every model (N, &) = T(§), every substructure M C N
such that (M) € M forall g € §, every x, and every ¢ € Ny, thereisa y
and d € §(M{c)), such that

f(M(c)) S (f(M).d).

(3) Foreveryf € §, the following holds. Suppose that x' is an initial segment of
X, that g, h are £-terms of arities xy and X'z, respectively, and that by € M,
and by € f(M);. If (a;)ier is an indiscernible sequence from § (M) x» x M\ x/
such that
(@) I = I1 + (¢) + I, is in distal configuration at ¢, and (a;)iel,+1, is

b1by-indiscernible, and
(b) f(g(ai,b1)) = h(a;, b2) foreveryi € I + I,
then §(g(ac,b1)) = h(ac, ba).
Then T (%) is distal.

We refer the reader to Figure | which illustrates the bookkeeping being done in the
proof of Distal Criterion 2.7.

Proof  Fix an infinite linear order / = I; + (c¢) + I, which is in distal configu-
ration at ¢. By (1) and Lemma 2.4, it is enough to show that every quantifier-free
£(F)-formula ¢(x; y) is I, I-distal. We prove this by induction on the number of
times e(y) that any symbol from % occurs in . If e(y) = 0, this follows from

a* a’y

—_— —_——

[T [
T T T ° T T
Uuq e Ug i0 c V1 cee vy

-
I/
>ay <day
I I,
I I

Figure 1 Bookkeeping in the proof of Distal Criterion 2.7.
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the assumption that 7 is distal. Let ¢ > 0, and suppose that for all £(£)-formulas
¥’ with e(y') < e, ¥’ is distal. Let ¥ (x; y) be a quantifier-free &£(F)-formula
with e(y) = e. We will show that i (x; y) is I;, I>-distal. Take an indiscernible
sequence (a;);es from My and b € M, such that I = I; 4 (¢) + I and (a;)ier, +1,
is b-indiscernible.

Since e > 0, there is an £-term g and some f € % such that the term f(g(x; y))
appears in . In other words, there is a quantifier-free £(&)-formula ¢’/ (x; y; z)
such that e(y’) < e and

Y(xsy) = v (xyif(g(x: )
Let M be the £(F)-substructure of Ml generated by {a; : i € I 4+ I,} with reduct
Mg ;= M | £. By (2) applied to M C M } £, there is d € (Mg (b)), for some
w such that

f(Me(b) < (f(M),d). (A)
By (A), we have:
foreveryi € Iy + I, f(g(ai;b)) € (f(M)d) (B)
Next, take ¢, € Nandu; < --- <uy € Iy and vy < --- < v, € I, such that
d is in the £(F)-structure generated by a,ayb, where a, = (ay,,...,ay,) and

ay = (Ay,,....ap,).
Next, take ig € I;“*. Then applying (B) to this io, there is an £-term & and
L(F)-terms t1, ..., t; (all of the form f(s;) for £(F)-terms s;) such that

f(g(a,-o; b)) = h(tl(au,aio,av,a*), ol tl(au,aio,av,a*),d),
where a* is a tuple of new parameters from (a;);er, +1, not yet mentioned (i.e.,
disjoint from ayaya;,). By aya,bd-indiscernibility of (al')l-e(lfau +15av), We can
arrange that 7o is the largest index in /; among all indices specified so far (by sliding
the elements a* rlf% up to I). Now, leta* :=a* }' Iy, and leta’ :=a™ | I>.

>aya

Define I’ := I T 40+ I;avaJr, and note that iy € /' and that /' is also
in distal configuration at c. Since (a;)ies/\(c) is auaya™bd-indiscernible, it follows
that

f(g(aﬁ b)) = h(tl(au’ai»avsa*)v cooti(ay.ai,ay.a®), d) ©
foreveryi € I'\ (¢).

Foreachi € I, set
aj = (t1(au,ai,ay.a®), ... . t(ay, a;,ay,a*), a;).

1

Here (a;)ies is an indiscernible sequence from f(M)l x My and (a})ier\() is
ayaya*bd-indiscernible. Then by (C) and (3), it follows that

f(glac:b)) = h(t1(au.ac.ay.a*),....14(ay.ac.ay.a*).d). (D)
Finally, we note that
F V(ac:b)
< [ ¥'(ac;b:T(g(ac:b))) by definition of v’
— Evy'(ac;bih(t(au.ac.ay.a*), ... . t1(ay. ac.ay.a*),d)) by (D)
— Ev'(ai;bh(ti(au,ai,av.a”), ... t1(ay. a;,ay,a*),d))
(fori € I'\ (¢))
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by inductive hypothesis: e(y') = e(y'(x; y; h(wy, ..., w;, w))) < e
where wq, ..., w; and w are variables of the appropriate sort and

the partition of this last formula is (wy - - - w;x; yw)

— E¥'(ai;b:T(g@i;b))) (fori e I"\ (c)) by (O
<~ [k ¥(a;b) (fori €I\ (¢)).
This finishes the proof. O

Connection to NIP Distality was first introduced as a property which a NIP theory
may or may not have (see [13]). In this paper, we have defined what it means for an
arbitrary theory to be distal. This does not actually give us any additional generality
since Proposition 2.9 below shows that every distal theory is necessarily NIP. How-
ever, this does allow us to use distality as a means for establishing that a theory is
NIP, although there are more direct ways to do this (see Remark 2.10). Let M be a
monster model of T

Definition 2.8  We say that a partitioned £-formula ¢(x;y) has the non-
independence property (or is NIP) if for every b € M, and for every indiscernible
sequence (a;);jes from My, there is ¢ € {0, 1} and an index iy € I such that

= ¢(ai;b)® foreveryi e 1770,
We say that T is NIP if every partitioned £-formula is NIP.

It is known that distality implies NIP (see, e.g., [4, Remark 2.6]). The proof of this
fact that we include below was communicated to us by the authors of [11] and uses
only the definitions of distality and NIP given in this paper.

Proposition 2.9  If T is distal, then T is NIP.

Proof  Suppose that ¢(x; y) is not NIP. Then there is an indiscernible sequence
(¢n)n<w in My and b € M, such that = ¢(c,; b) if and only if # is even. Now define
dy = (can, Can+1) € My x My, and note that the sequence (d, ), < satisfies that
(1) the sequence (dy,m)(n,m)ewx2 With the lexicographical ordering on @ x 2 is
indiscernible, and
(2) forevery n, = ¢(dn,0:0) A —¢(dn,1:b).
By the standard lemma (see [15, Lemma 5.1.3]), there is a b-indiscernible sequence
(ei)ieq in My x M such that EM((e;);eq/b) = EM((dn)n<e/b). In particular,
(3) the sequence (€;,m)(i,m)eqx2 With the lexicographical ordering on Q x 2 is
indiscernible, and
(4) forevery i, = ¢(ei0:b) A —p(ein:b).
Finally, for each i € QQ define the following element of M, :

eio ifi #0,
a; = .
e, ifi =0.
We claim that the sequence (a;);eq Witnesses that ¢(x; y) is not distal. Indeed,

(5) Q = (—00,0) + (0) + (0, +o0) is in distal configuration at 0,
(6) (@i)ie(—00,0)+(0,400) 18 b-indiscernible, but
(7) E play;b) A —¢p(ag; b). O
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Remark 2.10 Our route for proving Corollary 1.2 goes through Proposition 2.9
and Theorem 1.1, which uses Distal Criterion 2.7, a generalization of [11, Theorem
2.1]. If our only goal in this paper was to establish Corollary 1.2, we could have
taken a slightly more direct path by generalizing in a similar way Giinaydin and
Hieronymi’s [ 10, Theorem 4.1] to obtain a “NIP criterion.” In which case, we could
then use “NIP versions” of the results in Sections 4 and 5 to establish Corollary 1.2.

3 Asymptotic Couples and T,

In this section we give a summary of the basics of H -asymptotic couples with as-
ymptotic integration, as well as describing the language &£0; and the theory Tjo; =

Thxlog (Flog ’ W) .

Overview of asymptotic couples An asymptotic couple is a pair (I, y) where I is
an ordered abelian group and ¥ : I'* — T satisfies for all o, f € T'%,
(AC) a4+ B # 0= Y (a + f) = min(y (), ¥ (B)):
(AC2) ¥ (ka) = ¥ (a) for all k € Z7, in particular, ¥ (—a) = ¥ ();
(AC3) a > 0= a + ¥ () > ¥ (B).
If in addition for all &, 8 € T,
HO) 0 <a=<p= y(a) = ¥(B).
then (T, ) is said to be of H -fype, or to be an H -asymptotic couple.

For the rest of this subsection, (I', ) is an H -asymptotic couple. By convention,
we extend ¥ to all of T by setting ¥ (0) := oo. Then ¥ (o 4+ B) > min(y¥ («), ¥ (B))
holds for all @, 8 € T, and ¥ : I' — T' is a (non-surjective) convex valuation on
the ordered abelian group I'. The following basic fact about valuations is used often.

Fact 3.1 Ifa,B €' and ¥ (a) < ¥ (B), then ¥ (x + B) = V().

For @ € T'7, we define o’ := & + ¥ (). The following subsets of T play special
roles:

7Y ={ iy el?) () ={y/ 1y eI}
(<) :={y:yel~),  W:={y():yel?}
We think of the map id + : I'* — T as the derivative (this is because asymptotic

couples often arise in nature as the value groups of certain valued differential fields;
see [1]). When antiderivatives exist, they are unique.

Fact 3.2 ([1, Lemma 6.5.4(ii)]) Themapy — y =y + ¥ (y) : I'* — T'is
strictly increasing.

This allows us to talk about asymptotic integration.

Definition 3.3 If I' = (I'#), then we say that (T, ¥) has asymptotic integration.
Suppose that (T, ¥) has asymptotic integration. Given @ € T', we let [ & denote the
unique B € I'# such that 8’ = « and we call § = [ & the integral of «. This gives
us a function [ : T — I'# which is the inverse of y >y’ : T'* — T

We now further assume that (I, V) has asymptotic integration. A closely related
function to [ is the successor function s : T — W defined by & — s := ¥ ([ @).
The successor function gets its name due to its behavior on the W-set in the asymp-
totic couple (I'og, ¥). More generally, we have the following.
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Example 3.4 The asymptotic couple (I'iog, ¥) is of H-type and has asymptotic
integration. The functions | and s behave as follows:

(1) (Integral) For oo = (rg,71,72,...) € I, take the unique n such that r, # 1
and r,, = 1 form < n. Then

a=(,...,1, ry ,fu+1,n+2,.-..) > foz =(0,...,0,r,—1,rpq1, n42,...).
P N —
n #1 n
(2) (Successor) For a = (rp,r1,r2,...) € I, take the unique n such that
rn # land r,, = 1form < n. Then
Ol:(l,...,l, In ,rn+1,rn+2,...) b—>soz=(1,...,l,0,0,...).
~——— —— ~———
n #1 n+1

In particular, sO0 = (1, 0,0, ...).

We conclude this subsection with some general facts about the s-function which we
will need later.

Fact 3.5 Leta, B € I'. Then
1. ifa € s(I'), then s~ (o) N (') and s~ () N (')’ are convex in T,
2. (successor identity) if s < s8, then ¥ (a — B) = s«
3. ife e (T<) andn > 1, thena + (n + 1) (s — ) € (')’

Proof Item (1) is [6, Corollary 3.6], (2) is [6, Lemma 3.4], and (3) is [8, Lemma
3.10]. O

The theory T,y Let &£ac be the “natural” language of asymptotic couples:
Lac =1{0,+,—, <, ¥, 00},

where 0, co are constant symbols, + is a binary function symbol, — and v are unary
function symbols, and < is a binary relation symbol. We consider an asymptotic
couple (T, ¥) as an £ ac-structure with underlying set "o, and the obvious interpre-
tation of the symbols of £ac. We interpret the new constant symbol co as a default
value, that is, we declare that

—00 = y+00 =004+y =+ = Y0) = Y(co) ;= o0

forally e T.
Let Tac be the £ zc-theory whose models are the divisible H -asymptotic couples
with asymptotic integration such that

(1) W has least element sO as an ordered subset of I",

(2) s0 >0,

(3) W is a successor set as an ordered subset of I",

(4) for each @ € W, the immediate successor of « in W is sa, and

(5) y = sy : ¥ — W70 ig 3 bijection.
It is clear that (I'og, ¥) is @ model of Tac. For a model (I", ¥) of Txc, we define the
function p : W50 — W to be the inverse of the function y > sy : ¥ — U>50 We
extend p to a function I'ns — 'y by setting p(a) := oo for a € Ty \ U0,

Next, let £10g = Lac U {s, p,61,82,03,...} where s, p, and §, forn > 1 are
unary function symbols. All models of Tac are considered as &£i,¢-structures where
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s and p are interpreted as above and where 8, is interpreted as division by n, again
with 0o as a default value (so [ 0o = s00 = §,(00) := oo foralln > 1).

We let Tiog be the &£io.-theory whose models are the models of Tac. Here are
some of the main model-theoretic results concerning 7.

Theorem 3.6 The Liog-theory Tiog

(1) has a universal axiomatization,

(2) has quantifier elimination,

3) is complete,

(4) is decidable,

(5) is model complete,

(6) has NIP,

(7) does not have the Steinitz exchange property, and
(8) is not strongly NIP (in the sense of [5]).

Proof Items (1)—(5) are in [6], and (6) and (7) are in [7]. Item (8) is proved by the
first author in [9, Section 4.6], although we repeat the proof here.

Let N be a saturated model of Ti,,. By Dolich and Goodrick [5, Corollary 2.14],
it is enough to show that for every € > 0 in N there is an infinite definable discrete
set X € N such that X C (0, ¢). The infinite definable set Wy is discrete and has
the property that for every o € W, the set W3* is also infinite and discrete. Let

€ > 0, and take @ € Wy such that (¢ + 2(se —)) —a = =2 [« < €. Note
that then o + 2(so — o) > W, by Fact 3.5(3). The definable infinite discrete set
X 1= W3 — « has the desired property. O

We shall also need the following facts about models of Tio,. For Facts 3.7 and 3.8,
we let (I, ¥) = Thog.

Fact 3.7 ([6, Lemma 6.8]) W is a linearly independent subset of I' as a vector
space over Q.

Fact 3.8 ([6, Corollary 6.5]) Letn > 1, leta; < - < ap € ¥, and leta =
Y _1qjajforgs.....q, € Q%. Then

(1) Z?:lqj # 1= sa = 50,

2 Z’}=1Qj =1= sa = so;.

4 Some Indiscernible Lemmas

In this section Ml is a monster model of T,g with underlying set Iso. Furthermore,
1 = I1 + (¢) + I is an ordered index set with infinite Iy and I, and i, j, k range
over I. In this section we will handle most of the cases that will arise when verifying
hypothesis (3) from Distal Criterion 2.7 in our proof of distality for 7j,.

In terms of Distal Criterion 2.7(3), Lemma 4.1 will handle most of the cases
where the sequence (g(a;, b1)) which gets plugged into § is nonconstant, but the
output sequence (h(a;, by)) is constant. The arguments involved use essentially that
¥ is a convex valuation on I'*, and that s behaves in a similar topological manner

to Y.

Lemma 4.1 Let (ai)ier be a nonconstant indiscernible sequence from T', and
suppose that (b, b) € T' x W is such that (a;)icr1,+1, is bb-indiscernible. Then

(1) ifv(a; —b) = l;foralli # ¢, then Y (a, — b) = b;
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() ifs(a; —b) = b foralli # c, then s(ac — b) = b;
(3) f(ai —b) # oo foralli, where § € {, s};
@) p(a; —b) # b foreveryi € I1 + I5.

Proof  For (1), assume that ¥ (a; —b) = b for all i # c¢. By bg—indiscernibility, the
sequence (a; — b)jer,+1, is contained entirely within the convex set '~ N w_l(g)
or it is contained entirely within the convex set ' N y~! (l;). In either case, a. — b
is also contained in the same convex set by monotonicity of (a; — b);e;. Thus
Y(ac —b) =b.

The argument for (2) is similar to the argument for (1), except that the two convex
sets are (<) N s~1(b) and (I'>) N s~1(b) (see Fact 3.5(1)).

For (3), the case { = s follows from s(I') = W. Suppose that { = . If
Y(aj —b) = oo for some j, then a; = b. However, if j = c, then since (a;);er
is nonconstant and monotone, we would get that (a;);c7, and (a;);er, would lie on
separate sides of b, contradicting b-indiscernibility of (a;)ier,+1,.- If j # ¢, then
again by b-indiscernibility we would get that a; = b for every i, contradicting the
nonconstant assumption.

For (4), suppose that p(a; — b) = b for some i € Iy + I,. Then by
bl;-indiscernibility, we get that p(a; — b) = b for every j € I + I,. How-
ever, by definition of p this implies that (a;);er, +1, is a constant sequence, which is
a contradiction. O

Lemma 4.2 will handle the cases where both sequences (g(a;, b1)) and (h(a;, b2))
are nonconstant.

Lemma 4.2 Let (a;d;)ier be an indiscernible sequence from I' x W such that (a;)
and (d;) are each nonconstant, and suppose that b € T is such that (a;a;)ier, +1, 1S
b-indiscernible. Then

(1) ifv(a; —b) = a; foralli # c, then Y (a. — b) = ac;

(2) ifs(a; —b) = a; foralli # c, then s(a. —b) = ac;

3) if p(aj —b) = a; foralli # c, then p(a. — b) = a..

Proof  Without loss of generality, we will assume that (g;) is strictly increasing.

For (1), we first observe that if i < j, then ¥ (a; —a;) = d;. Indeed, by indis-
cernibility, it suffices to show this for i < j both from /; + I,. Given suchi < j,
we have

v(ai —aj) = (@ —b)+ (b—aj)) = min(@;,d;) = d;.
Next, suppose that j € I, and note that
Y(ac—b) = y((ac —a;) + (a; —b)) = min(ac,d;) = de.
For (2), we first claim that if i < j, then ¥ (a; — a;) = a;. By indiscernibility,

it suffices to show this for i < j both from Iy + I,. Given suchi < j, we have
a; = s(a; —b) < s(a; —b) = a;. By the successor identity (Fact 3.5(2)), we have

ai = s(ai —b) = y((a —b)—(aj —b)) = ¥(a; —aj).
Next, suppose that j < k are both from /,. Then by monotonicity of (a; — b);er
and b-indiscernibility of (a;)ier, +15,

s(ac —b) < s(aj —b) < s(ar —b).
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By the successor identity, we have
dc = Y(ac—ar) = Y¥((ac—b)—(ax —b)) = s(ac —b).
Finally for (3), we note thatif i € I1 + I, thena; —b € U™ and so
a; —b =sp(a; —b) = sa;.

From this we see that a; — sa; = b and, in particular, (a; — $4;)ier, +1, iS constant.
By indiscernibility of (a;d;);er, we have a, — sa, = b and so p(a. — b) = psac.
Asa; e Wforalli € I} + I, we have a, € ¥, and so psa, = dc. O

Lemma 4.3 will handle the cases where both sequences (g(a;, b1)) and (h(a;, bz))
are constant. This case is trivial, but it does implicitly rely on the behavior £-terms,
where £ := {0, +, —, <, (1) n<w, 00} S Liog-

Lemma 4.3 Given | € {{, s, p}, let g, h be £-terms of aritiesn + k and m + [,
respectively, with m < n. Let by € MF, let b, € f(M), and let (a;)ics be an
indiscernible sequence from T (M)™ x M"™™ such that

(1) (@i)ier,+1, is biba-indiscernible,

(2) f(g(ai,b1)) = h(ai,by) for every i # c,

(3) (g(ai.b1))ier,+1, is a constant sequence.
Then f(g(ac,b1)) = h(ac, ba).

Proof We will essentially do a case distinction on “whether oo plays a nontrivial
role or not.” This will be made more precise in the proof of the following general
claim.

Claim Suppose that t(u, v) is an £-term of arity r + s, that (¢;)iey is an indis-
cernible sequence from M, and that d € M. Then if (t(ci, d))ier, +1, is a constant
sequence, (t(ci,d))ier is also a constant sequence.

Proof of claim  We will consider several cases relating to the role of oo.

Case 1: Suppose that the constant oo occurs in the term t. Then by definition of
how the symbol oo is interpreted, we have ¢ (c;, d) = oo for every i, so (¢(ci,d))ier
takes constant value co.

For the rest of this proof, we may assume that oo does not occur int. We now write

the variables u, v asu = (uy,...,u,)and v = (vy,...,vs). By writing t = ¢ (u, v),
we mean that the free variables of the term ¢ are among vy, ..., u,,v1,..., 5. Let
Uips ooy Uiy Vjpseens V), be those variables which actually occur in the term 7. Then
there are rational numbers p;,, ..., 0i,, Pj;s--..Pj, € @Q such that

t(u,v) = Pi Uiy + o+ piUi, + 005 + 0+ 05,V
where equality here is in the sense that the interpretations of both sides as functions
M’ +$ — M agree. For the following two cases, it will be convenient to write out
d = (di,...,ds), and for each index io € I, we have c¢;, = (cg,1,Cig,2:- - - Cig,r)-

Case 2: Suppose that one of dj,, ....,d;, is equal to co. In this case, it follows
that #(c;, d) = oo for all 7, so again we have a constant sequence.

Case 3: Suppose that there is some iy € Iy + I such that one of ¢iy i, Cigins - - - »
Cig,ip is equal to co. Without loss of generality, say that ¢;,;, = oo. Then by
indiscernibility we have ¢; ;; = oo foralli € I. Thus, since the variable u;, actually
shows up in ¢, it follows that ¢ (c;, d) = oo for all i, and so (¢(c;, d));es is a constant
sequence.
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Case 4: Suppose that we are not in Case 1, 2, or 3. In this case, t(c;,d) is a
legitimate Q-linear combination of elements of I (not co). In particular, we have

((ci, d))iell-i-lz is constant == (p;, Ci,i; + -+ + pi,Ci,i,)iel, +1, iS constant
= (piCi,iy + -+ pi,Ci,i,)iel is constant
= (t(ci. d)), ., is constant,

where the second implication follows from indiscernibility. Note: in Case 4 it is
possible that oo shows up somewhere in the sequence (c;) or in the parameter d, just
not in a way where it is actually being plugged in to the term ¢. [

The lemma now is an immediate consequence of the above claim applied separately
to the sequences (g(a;, b1))ier and (h(a;, b2))ier- O

The following lemma greatly simplifies the sequence (h(a;, bs)). We no longer
assume that j and k range over I.

Lemma 4.4 Let h(x, y) be an £-term of arity m + n, let b € M", and let (a;)ier
be an indiscernible sequence from W7, with a; = (ai1,...,aim). Assume that
h(a;,b) € W for infinitely many i. Then one of the following is true:

(1) h(a;j,b) = oo foreveryi;

(2) thereis B € V such that h(a;,b) = B for everyi;

(3) thereis! € {1,...,m} such that h(a;,b) = a;; for every i.

Proof If one of the components of b which corresponds to a free variable which
actually occurs in / is oo, then h(a;, b) = oo for every i. Similarly, if the constant
oo occurs in the term £, then k(a;, b) = oo for every i as well. Thus we may assume
for the remainder of the proof that none of the components of b are oo and that co
does not occur in the term 2. We may then write 4 (x,b) = (Z'}Ll qjxj)+ c where
¢ # oo is a Q-linear combination of the components of b and ¢1,...,qm € Q. We
consider three disjoint cases.

Case 1: There is i € I with h(a;,,b) = oc. Then there mustbe j € {1,...,m}
with a;,,; = 0o, and so a;,; = oo for every i. We conclude that i(a;,b) = oo for
every i.

Case 2: h(a;,b) # oo for every i, and there are distinct iy, i; € I and B € T with
h(aiy,b) = h(ai,,b) = B. We see then that Y_"_, q;ai,; = D7, q;ai,,j and so
Y io1qjaij = Y7—qjair,; forevery i,i’ € I by indiscernibility. We conclude
that h(a;,b) = B for every i and since h(a;,b) € W for infinitely many i, we see
that 8 € V.

Case 3: h(a;,b) # oo for every i, and h(a;,b) # h(aj,b) for all distinct i
and i’. We will first clean up the summation by removing constant and redundant
sequences. By indiscernibility, there are my > 1 and natural numbers 1 < (1) <
.-+ < n(mg) < m such that

(1) forevery j € {n(1),...,n(mo)}, the sequence (a;,;)ies is nonconstant,
(2) forevery j,j' € {n(1l),...,n(mg)} such that j # j', a; ; # a; ;s for every
i, and

(3) given j € {1,...,m}\ {n(1),...,n(mng)}, either
(a) the sequence (a;,;);er is constant, or
(b) thereis j' € {n(1),...,n(mo)} such that a; ; = a; ;- for every i.
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By rearranging the components of (a;) and the ¢;’s, we may assume for the rest
of the proof that n(j) = j for j = 1,...,myg.
Next, for j € {1,...,mq}, define

=
Jj'eA
where A := {j’ : a;;; = a; ;s for every i} and
ci=c+ Z Qig,j»
jeB
where B := {j : (ai,j)ier is a constant sequence} and i9 € [ is some fixed index.
We now have that for every i,

h(ai,b) = (% 4jai;) + ¢,
j=1

and forevery i, i’ and j, j' € {1,...,mo}, ai j # ai,j» whenever (i, j) # (i’, j').
Choose distinct ig,i1,...,img+1 € I such that h(a; ,b) € W for k €
{0,...,mg + 1}. We have for each k that

mo mo
(X djaio ) — hiaig.b) = =& = (D djas.s) —hiai. )
j=1 j=1

and so
mo mo
h(ai, . b) = (Z Cijaik,j) - (Z qjaio,j) + h(aiy, b). ()
j=1 j=1
Since a1, . .-, Aigmgs Qig 15 - - - » Qi ,m are distinct elements of ¥, and h(a;,, b)

and h(a;,, b) are also distinct elements from ¥, we deduce from the QQ-linear inde-
pendence of W (Fact 3.7) that

h(aikvb) € {aio,lv v Qigmos Qig 15+ -+ vaik,mo}'
We claim that h(a;, ,b) € {ai, 1,...,ai,,m,) for atleastone k € {1,...,mo + 1}.
Suppose not. Then there is a function o : {1,...,mg + 1} — {1, ..., mq} such that

h(ai, . b) = ajy o). As h(ai,,b) # h(a;,,.b) forall k,k" € {1,...,mo + 1} such
that k # k’, we must have that o is injective, which is a contradiction. Therefore, we
cantake k € {1,...,mo + 1} and ! € {1,...,mq} such that h(a;_,b) = a;, ;. In
particular, a;, ; # 0 and so a;,; # 0. Again from (), the Q-linear independence

of W, and the fact that a; 1, . .., Gig,mg» dig,1, - - - » Qiy ,m, are all distinct, we deduce
that h(a;,, b) = aj, 1, that §; = 1, and that g; = 0 for j # /. From this, we deduce
that ¢ = 0, and so fi(a;, b) = a;; forevery i. O

5 Spread Out Sequences

In this section M is a monster model of Tiog with underlying set I'eo. Furthermore,
1 is an infinite ordered index set, i, j range over I, and (a;)iey is a strictly increas-
ing indiscernible sequence from T'.

Definition 5.1 Given a, b € conv(W), we write a K b if s"a < b for every n. If
there is b € T such that (a; —b);e; C conv(W), and foreveryi < j,s0 K a; —b <K
a; — b, then we say that (a;);ey is spread out by b.
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0 50 ap—b ar—b ay—b a3—b as—>b

Figure 2 Five elements of a sequence being spread out by b.

Intuitively, the idea behind (a;);e; being spread out by b is that upon translating
(a;j)ier by b, all elements of the sequence (a; — b);e; are now in the convex hull of
the W-set, and each element of the sequence “lives on” its own copy of Z (or really,
the convex hull of a copy of Z). In Figure 2 we suppose that (a;)ic; = (dn)n<w i an
indiscernible sequence spread out by b, and we illustrate the positions of (@, —b),<5.
Furthermore, each element a; —b will have a “nearest” element of the W-set, namely,
ps(a; — b). The next lemma shows that these nearest elements do not depend on b.

Lemma 5.2 Suppose that (a;)iey is spread out by b. Then for everyi < j,
s(ai —b) = Y(ai —ay).

Proof Leti < j be arbitrary. Then by definition, a; — b <« a; — b, and by the
successor identity,

V(a; —aj) = y((a; —b)—(ai —b)) = s(a; —b). O

If (a;) is spread out by b, then the sign of the difference (a; — b) — ps(a; — b) can
depend on i and b, although in a very dependent way (see Figure 3).

Lemma 5.3 Suppose that (a;)iey is spread out by b. Let

7%= {I if I does not have a greatest index,

1<% if I has a greatest index d.

Then the function i +— a; — ps(a; — b) : 1* — T is either constant, strictly
increasing, or strictly decreasing.

Proof Fix indices ip < jo from I*, and fix * € {=, <, >} such that
(aio — ps(ai, — b)) * (ajo —ps(aj, — b))

Next, let j < k be arbitrary indices from /*, and fix an index d € I which is greater
than jo and k. Note that the sequence (a;); <« is ag-indiscernible. Thus

(aig — ps(aiy — b)) * (aj, — ps(aj, — b))
= (aip — p¥(ai, —aaq)) * (aj,— p¥(aj, —aaq))
—  (a;—py¥(a;j—aq)) * (ax — p¥(ax —aq))
> (aj—psla;—b)) * (ax — ps(ax —Db)).

Thus the function i + a;—ps(a;—b) : I* — T iseither constant, strictly increasing,
or strictly decreasing, depending on *. O

The following is the key proposition.
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as—b

Figure 3 To illustrate Lemma 5.3 we apply ps to the sequence (a, — b),<s from
Figure 2.

Proposition 5.4 Suppose that I = I + (c) + I is in distal configuration at c.
Further suppose thatb € T is such that (a;)ier, +1, is b-indiscernible. If p(a;—b) =
oo for everyi € I + I, then p(a. — b) = oc.

Proof = We have several cases to consider.

Case 1: There is iy # c such that a;, —b > W. Then by b-indiscernibility and
monotonicity, a; — b > W foreveryi € I,and soa, —b ¢ ¥, so p(a. —b) = oc.

Case 2: There is n and iy # c such that a;, —b < s"0. Again by b-indiscernibility
and monotonicity, we have that a; — b < s"0 for every i. Assume toward a contra-
diction that p(a, — b) # oco. Then a, — b = s™0 for some 1 < m < n, and so
fori # c¢,a; —b < s™0if and only if i < ¢, contradicting the indiscernibility of
(@i = b)ier,+1-

We may now assume by monotonicity that (a; — b)ic; € I'76"On 0 W, In
particular, sO < a; — b for every i.

Case 3: The sequence (ps(a; — b))ier,+1, takes the constant value B. Then by
b-indiscernibility and monotonicity, either for all i, a;—b < B orforalli,a;—b > B.
In either case, a. — b # B, however ps(a. —b) = B. Thusa, — b # V.

Case 4: The sequence (ps(a; — b))ier,+1, is strictly increasing. Then the
sequence (ps(a; —b));ey is strictly increasing, and it follows from b-indiscernibility
of (ai)ier,+1, and I being in distal configuration at ¢ that (a;);e; is spread
out by b. By Lemma 5.3 and b-indiscernibility of (a;)ier,+1,, the function
i = a; — ps(a; —b) : I — T is either constant, strictly increasing, or strictly
decreasing. By b-indiscernibility and the assumption that p(a; — b) = oo for every
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i € I1 + I, it follows that this function takes values entirely below b, or entirely
above b. Thus a. — ps(a. —b) # b,andsoa. —b ¢ W. O

6 Extensions

In this section (I',{) is a model of Tio,. Here we will prove the relevant facts that
will allow us to later verify condition (2) in Distal Criterion 2.7, with (T, ¥) playing
the role of “(N,&).” In Distal Criterion 2.7(2), we are allowed to assume that the
substructure M of N is closed under every function from .

For the case f = ¥, we do not need the subgroup I'y of I" to be closed under any
of the functions ¥, s, or p.

Proposition 6.1 Suppose that Ty is a divisible ordered subgroup of I'. Given
C1y...,cm € T'\ Ty, we have

Hy((ro+ L oa)) \ werd)) = m

In particular, there are n < m and distinct

dioeevds € w((Fo+ 300) ") \ ward)
i=1

such that

m n
r((ro+Y ) ) < (D w)e@ad).

i=1 wcy (TF) j=1
Proof  This follows by induction on m. To simplify notation, we will show the
inductive step only form = 1. Letc € T'\ Tg. If ¥ (I'g + Qc) = ¥ (Iy), then
we are done. Otherwise, suppose that ¥ (I'g + Qc) # ¥ (Ip). As ¥ is constant on
archimedean classes, we must have that [[g + Qc] # [Io]. By [1, Lemma 2.4.4],
there is ¢* € Ty + Qc with [Ty + Qc] = [To] U {[c*]} and so ¥ (T'y + Qc) =
Y (Lo) U{y (e} O

For the case f = s, we will need the subgroup to be closed under the functions ¥
and s, as the following example illustrates.

Example 6.2 Suppose that (I", ¥) has an element « € W such that ¢ > 5”0 for
every n. Fix such an element a. Let I'g be the divisible ordered subgroup of I'
generated by

{s"0:n>1yU{a; —ap :ag,ap € ¥ &s0 K ag < ay}.

By Fact 3.8, we have s(I'g) = {s"0 : n > 1} C I'y. However, ¥ C 'y + Qo and
thus
#(s(To + Qu) \ s(Tp)) = #(V\{s"0:n>1}) = oo.

Proposition 6.3 Suppose that Ty is a divisible ordered subgroup of I such that
s(Tp) € Ty and 1//(Fgé) C Iy. Givency,...,cm € T'\ Ty, we have

#(S(Fo + i@ci) \s(Fo)) < m+l
i=1

In particular, there are n < m + 1 and distinct
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di,....d, € s(ro + i@ci) \s(ro)

i=1

(o 00) € (@ ao)s (Boa)

i=1 aes(To)

such that

Proof  Suppose thatcy,...,cym € T'\ Tg,andset T’y := Ty + Z:’;l Qc;. Assume
toward a contradiction that there are m + 2 distinct elements in s (I";) \ s(I'g). Choose

€1,...,em+2 € I'1 such that se; < --- < sey42 and such that se; ¢ s(I'y) for each
i = 1,...,m + 2. By the successor identity, we have that V¥ (e;+1 — ¢;) = se;
foreachi = 1,...,m + 1. The closure assumptions on I'g imply that (I'y, ¥) is

an asymptotic couple with asymptotic integration, and so s(I'g) = ¥ (I'g). Thus
there are m + 1 distinct elements in ¥ (I'1) \ ¥ (I'p), contradicting Proposition 6.1
above. O

Proposition 6.4 Suppose that (g, ) < (T, ¥). Given c1,...,¢c, € T'\ T, we

have "
#(p(ro + ZQci) \ p(Fo)) < m+l
i=1

In particular, there are n < m + 1 and distinct

divevdy € p(To+300) \ p(T)

i=1
such that

p(l“o+§@ci) <( & Qa)ea(é}l@d,-)u{oo}.

aep(ly),a#o00

Proof  Suppose thatcy,...,cm € T'\ Tg,and set T’y := Ty + Z:’;l Qc;. Assume
toward a contradiction that there are m 42 elements ey, . .., ey42 € 'y with p(e;) €
p(I'1) \ p(I'p) for each i and with p(e;) # p(e;) foralli # j. Thene; is in W for
each i and, as s is injective on W, we have that se; # se; foralli # j. As

p(To) = s(Ip) U{oo} = (¥ NTp) U {oo},

we have that se; ¢ s(I"g) for each i, contradicting Proposition 6.3. O

7 Proof of Theorem 1.1

In this section we prove Theorem 1.1 by applying Distal Criterion 2.7. In the lan-
guage of Distal Criterion 2.7, the role of T will be played by the reduct T' := Tj,, | &,
where £ = {0, +, —, <, (64)n<w, 00}. The £L-theory T is essentially the same as the
theory of ordered divisible abelian groups, except that it contains the element oo
which serves as a default value “at infinity.” It follows that 7" is o-minimal and there-
fore it is distal by [13, Lemma 2.10], since o-minimal theories are dp-minimal.

We now construe Tiog as Tioe = T(F), with § = {¢, s, p}. In particular, £,,; =
L(%). By [6, Theorem 5.2], T'(F) has quantifier elimination, which is condition (1)
in Distal Criterion 2.7. Verifying Distal Criterion 2.7(2) involves three cases: f = ¥,
s, and p. These cases are handled, respectively, by Propositions 6.1, 6.3, and 6.4.
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Finally, we will show how to verify condition (3) in Distal Criterion 2.7. Fix a
monster model M of T with underlying set I'so. Let f € &, and let g, i be £-terms
of arities n + k and m + [, respectively, with m < n. Let b; € MF, let by € f(M)l,
and let (a;);jes be an indiscernible sequence from f(M)™ x M"~" such that

(@ I = I + (c) + I is in distal configuration at ¢, and (a;)ier,+1, is
b1b,-indiscernible, and
(b) T(g(ai,b1)) = h(a;,by) foreveryi € I1 + I>.

Our job is to show that f(g(ac, b1)) = h(ac, by). We have several cases to consider.

Case 1: (g(ai,b1))ier,+1, is a constant sequence. In this case, it follows from
Lemma 4.3 that f(g(ac,b1)) = h(ac, by).

For the remainder of the proof, we assume that (g(a;, b1))ier,+1, is not a con-
stant sequence. In particular, the symbol co does not appear in g, in by, or in the
last n coordinates of a;, so the £-term g(x, y) is equal to a Q-linear combination
of its arguments. By grouping these QQ-linear combinations, we get b € I', and a
nonconstant indiscernible sequence (ag) ieg from M such that

(c) glaj,by) =a; —bforeveryi €1,

(d) (a;a})ier is an indiscernible sequence from f(M)™ x M"~+1,
(e) (aia})ier,+1, is bibyb-indiscernible, and

() f(a; —b) = h(a;,by) foreveryi € Iy + I.

Our job now is to show that f(@, — b) = h(ac,b2). Since (M) C Wy, for each f,
by Lemma 4.4 we get three more cases.

Case 2: h(a;j,by) = oo for everyi € I. By Lemma 4.1(3), this case cannot
happen for € {i,s}. If f = p, then this case is handled by Proposition 5.4.

Case 3: There is B € WV such that h(a;,by) = B foreveryi € I. If f = ¢ or
f = s, then this case is handled by Lemma 4.1(1) or (2). By Lemma 4.1(4), this case
cannot happen for f = p.

Case 4: There is | € {1, ..., m} such that h(a;,by) = a;; for every i € I. This
case is handled by Lemma 4.2.

This completes the verification of condition (3) in Distal Criterion 2.7 and so we
are done with our proof of Theorem 1.1.
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