

Comparing Example-Based Collaborative Reflection to Problem-
Solving Practice for Learning during Team-Based Software

Engineering Projects

Sreecharan Sankaranarayanan, Siddharth Reddy Kandimalla, Christopher Bogart, R. Charles Murray, Haokang

An, Michael Hilton, Majd Sakr, Carolyn Rosé
sree@cmu.edu, skandima@andrew.cmu.edu, cbogart@andrew.cmu.edu, rcmurray@andrew.cmu.edu,
haokanga@andrew.cmu.edu, mhilton@cmu.edu, msakr@andrew.cmu.edu, cprose@andrew.cmu.edu

Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Abstract: Contributing to the literature on aptitude-treatment interactions between worked
examples and problem-solving, this paper addresses differential learning from the two
approaches when students are positioned as domain experts learning new concepts. Our
evaluation is situated in a team project that is part of an advanced software engineering course.
In this course, students who possess foundational domain knowledge but are learning new
concepts engage alternatively in programming followed by worked example-based reflection.
They are either allowed to finish programming or are curtailed after a pre-specified time to
participate in a longer worked example-based reflection. We find significant pre- to post-test
learning gains in both conditions. Then, we not only find significantly more learning when
students participated in longer worked example-based reflections but also a significant
performance improvement on a problem-solving transfer task. These findings suggest that
domain experts learning new concepts benefit more from worked example-based reflections
than from problem-solving.

Introduction
The trade-off between problem-solving practice and worked example study has not been deeply investigated in
the software engineering context, especially for students who have moved beyond basic syntactic and semantic
knowledge about programming and on to advanced topics such as Cloud Computing. In this context, the concepts
and skills that students are learning are new, but they have acquired substantial foundational knowledge from their
prior learning experiences. In domains where this trade-off between problem-solving practice and worked
example study has been thoroughly investigated, extensive problem-solving practice is generally considered
inferior for positively impacting student learning (Renkl, 2014). Contrary to what this might suggest for software
engineering also, problem-solving practice (i.e., computer programming) has remained the predominant form of
pedagogy. This may be because the literature on computer science education does not provide a definitive answer
about this trade-off or that the findings are thought to apply especially to conceptual knowledge, and not to
performance on more authentic, complex problem-solving tasks. Studies adjacent to the worked example literature
relying still on cognitive load theory have variously found positive effects (Margulieux et al., 2012) as well as
mixed effects (Morrison et al., 2015) in the software engineering context warranting further study about this
important comparison. We seek, therefore, to contribute to the literature on aptitude-treatment interactions
between worked examples and problem-solving by addressing the fundamental question of how students learn
differentially from the two when they are positioned as domain experts learning new concepts and skills. We
position our investigation in the software engineering context. We are also especially interested in the follow-up
question of whether they might gain more conceptual knowledge from worked example study but be left less able
to engage effectively in subsequent problem-solving.

To answer these questions, we conduct our study in a synchronous, online, team-based software
engineering course on Cloud Computing for graduate students and advanced undergraduate students. We assign
students, in their teams, to two conditions. In the first, which we call the maximize learning from problem-solving
(MLPS) condition, teams are tasked to complete problem-solving and then engage in a brief collaborative
reflection based on a worked example in the remaining time. In the second, called the maximize learning from
reflection (MLR) condition, teams are curtailed from problem-solving after a pre-specified amount of time
regardless of whether they reach a completed solution. They subsequently engage in a full-length reflection based
on the worked example. The difference is where the time boundary is placed between problem-solving and
collaborative reflection. The results challenge deeply held assumptions in computer science education about the
extensive computer programming practice being an activity necessary for student learning.

mailto:sree@cmu.edu
mailto:skandima@andrew.cmu.edu
mailto:cbogart@andrew.cmu.edu
mailto:rcmurray@andrew.cmu.edu
mailto:haokanga@andrew.cmu.edu
mailto:mhilton@cmu.edu
mailto:msakr@andrew.cmu.edu
mailto:cprose@andrew.cmu.edu

Method

Course Context
This study was conducted in a graduate-level project-based online software engineering course on Cloud
Computing offered to graduate and advanced undergraduate students at Carnegie Mellon University and its branch
campuses. The course is structured around five project-based units. Each unit has several sub-units and culminates
in a large individual project that has assessment components to evaluate achievement in each sub-unit. Our
experiment is situated within unit 3.3 that focuses on “multi-threaded programming and consistency”. In this
sub-unit, students, in groups of 4, work with our synchronous collaborative programming activity, called the
Online Programming Exercise (OPE). A summary of the course structure and the location of the study within it
is shown in Figure 1. A total of 74 students completed the exercise and the subsequent project. Enrollment
numbers were about half the usual as a result of the COVID-19 pandemic. No other substantial changes in course
content or structure were needed since the course had been offered online for over 10 prior semesters.

Figure 1: Course structure, pre-test, post-test, and delayed post-test alignment.

Design of the Online Programming Exercise (OPE)
The collaborative programming exercise is divided into four tasks, each targeting a learning objective (LO).
Each task is divided into a problem-solving phase and a collaborative reflection phase. During the problem-
solving phase, students are assigned to four independent roles (Driver, Navigator, Researcher, Project Manager)
based on an instructional adaptation of the industry practice of Mob Programming (Sankaranarayanan, 2019;
Sankaranarayanan et al., 2019). In the subsequent collaborative reflection phase, they are guided by
conversational agent-based prompts to reflect based on a presented worked example. The prompting
infrastructure is based on the open-source Bazaar conversational agent framework (Adamson et al., 2014). The
roles that students are assigned to rotates after each task. In the pre- and post-tests that students complete
immediately before and after the task, respectively, they attempt two multiple-choice questions per LO.
Performance improvement from pre- to post-test averaged per LO is used as a measure of students’ conceptual
learning from the task. The individual programming project that serves as a procedural and conceptual delayed
post-test is graded by the instructor on a rubric with 12 quality scores, each of which ranges between 0 and 1.
Table 1 shows the learning objectives, examples of pre- and post-test questions, and conversational agent-based
collaborative reflection prompts corresponding to each task, while Figure 1 shows the position of pre-, post-,
and delayed post-tests within the course.

Table 1: Learning Objectives, Corresponding Pre/Post Test Questions (Examples), Information and
Transactivity Prompts

 Learning
Objective

Example Pre/Post Test Question -
Multiple-Choice

Example Collaborative Reflection Prompts

1 Building blocks
of
multithreading.

Which of the following statements
about multithreading in Java is
INCORRECT?

Was your approach similar to the reference
solution? What Thread class functions did you
use? Take turns explaining the logic.

2 Diagnosing and
fixing
deadlocks.

The usage of notify() will never
result in a deadlock in which of the
following multithreaded scenarios?

In an ideal scenario, can you think of a built-in
Java thread-safe class that could replace the
priority queue? Take turns explaining.

3 Diagnosing and
preventing a
race condition.

Examining the following code
snippets, identify the one that will
NEVER lead to a race condition.

Comparing your approach to the reference
solution, how did you avoid the race condition
here? Take turns explaining the logic.

4 Ensuring strong
consistency in
data stores.

How would you acquire a lock on
a critical resource shared by
multiple threads to ensure
consistent runtime behavior?

Can you put what you are learning in all these
tasks together to think about ensuring strong
consistency? Take turns explaining.

Experimental Design
Two weeks before the experimental manipulation, students participated in a training OPE session in randomly
formed teams of 4 based on their time availability. In preparation, students were provided with videos and text
explaining the OPE and motivating its use for collaborative team projects. The exercise was relatively simple data
processing using the ‘pandas’ library in Python. While still a meaningful component of the course, it was meant
as an opportunity for students to familiarize themselves with role-taking, role-rotation, collaborative reflection,
and the interface of the Cloud9 IDE used for the task. Each exercise session lasted for a total of 80 minutes.
 For the experimental manipulation, students were again grouped randomly into teams of 4 based on their
time availability while ensuring that they weren’t placed into teams with students they had done the training with.
The activity, once again, lasted a total of 80 minutes. A total of 74 students were assigned to 19 teams of which
17 were 4-member teams and 2 were 3-member teams. In the 3 member teams, the student assigned to the project
manager role also acted as the researcher. 9 teams were assigned to the maximize learning from problem-solving
(MLPS) condition, where for each task, teams complete the problem-solving and then enter into a reflection phase
for the remaining time, and 10 teams were assigned to the maximize learning from reflection (MLR) condition,
where problem-solving was curtailed after a pre-specified amount of time, and they enter the reflection regardless
of whether they completed the problem-solving or not.

Hypotheses, Analysis, and Results

Hypothesis 1: The Online Programming Exercises (OPEs) results in pre- to post-test learning gains

To evaluate the general value for learning of the activity regardless of condition, we compared pre- and post-test
scores per learning objective, role, and condition, where pre- and post-test scores vary between 0 and 1 per
learning objective. For this analysis, we build an ANOVA model with test score as the dependent variable, and
time-point (pre- vs post-test), condition (MLPS vs MLR), role (Driver, Navigator, Researcher, Project Manager),
and learning objective (listed in Table 1) as independent variables. We also included pairwise interaction terms
between time-point and each of the other three independent variables. There was a significant effect of time-point
F(1,410) = 3.77, p < .0001, effect size .38 s.d., with an average pre-test score of .55 (.37 s.d.) and average post-
test score of .69 (.37 s.d.). None of the pairwise interactions were significant. Thus, we confirmed that students in
both conditions learned based on the significant difference between pre- and post-test scores across the two
conditions regardless of role or learning objective. Thus, the first hypothesis is confirmed.

Hypothesis 2: The MLR condition will result in better pre- to post-test learning gains.

In order to test the effect of condition on the magnitude of learning we compared post-test scores between
conditions controlling for pre-test scores. In particular, we computed an ANCOVA model with post-test score as
dependent variable, pre-test score as the covariate, and condition (MLPS vs MLR), and learning objective as
independent variables. We found a significant effect of condition such that students in the MLR condition learned
more F(1,254) = 6.0, p < .05, effect size .24 s.d.. For the MLR condition, the average pre-test score was .53 (.36
s.d.) and post-test score was .72 (.34 s.d.), and for the MLPS condition, average pre-test score was .57 (.38 s.d.)
and post-test score was .65 (.37 s.d.) We find significantly higher pre- to post-test gains in the MLR condition in
comparison with the MLPS condition (p < 0.05), which suggests that students with domain expertise benefit more
from the worked example-based reflection than the problem-solving for acquisition of new conceptual knowledge.
Thus, the second hypothesis is confirmed.

Hypothesis 3: The MLPS condition will result in better performance on the delayed post-test

In order to test the effect of condition on achievement on the transfer task, we considered each of the 12 quality
ratings assigned by the instructor within a single model in order to control for multiple comparisons. In particular,

we computed a single ANCOVA model with numeric quality rating as the dependent variable, total pre-test score
across learning objectives as a covariate, and the condition and the name of the quality rating as independent
variables. We also include the pairwise interaction term between the two independent variables. There was a
significant effect of condition such that students in the MLR condition scored higher than students in the MLPS
condition, F(1,707) = 4.36, p< .05, effect size .15 s.d., which is a weak effect. The average score was 4.7 (2.7 s.d.)
for the MLPS condition and 5.0 (2.5 s.d.) for the MLR condition. There was no significant interaction between
condition and quality rating name. Thus, although the effect is weak, students in the MLR condition performed
better than students in the MLPS condition across the 12 quality ratings. The third hypothesis is rejected, and in
fact, the opposite is supported.

Discussion and Conclusion
In this paper we presented a study in which we contrasted two conditions: maximize learning from problem-
solving and maximize learning from reflection.

First, we find that the team project exercises lead to significant pre- to post-test learning in both
conditions. This indicates that both worked example study, and problem-solving practice are potentially valuable
for learning. While we did not compare the sequential presentation of the problem-solving, worked examples and
the collaboration scaffolds with either of the scaffolds provided on their own, the lack of a detrimental effect in
either condition means that the role of the scaffolds was not so redundant as to draw student attention away from
the relevant problem states.

When comparing across conditions, we see that the condition where students spent more time on worked
example-based reflection resulted in significantly more pre- to post-test learning. Based on cognitive load theory,
we could surmise that it is indeed the case that extensive problem-solving consists of production steps that are
superfluous to the learning here. While problem-solving practice was not detrimental to student learning, we can
more efficiently use student time and impact their learning more if we use worked examples as well, with an
emphasis on time spent on reflecting rather than the completion of the problem-solving.

One concern among educators has been that while students’ conceptual learning can be positively
impacted by the use of worked examples, they may not perform as well when asked to problem-solve on a transfer
task because they received less practice. We started with the hypothesis that this might be the case, and we would
have not been surprised to have found that. However, what we found was the opposite. Students who reflected
longer also performed better on a subsequent authentic programming task, though the effect size was small. We
can conclude that students, at this point in the course, had already acquired the procedural knowledge of
programming enough to not need the practice i.e., given a schema, they were able to translate that into a solution
to the problem. The positive impact of the worked example condition on the conceptual process of schema
acquisition and induction then led to a positive impact on student performance on the subsequent project also.

References
Adamson, D., Dyke, G., Jang, H., & Rosé, C. P. (2014). Towards an agile approach to adapting dynamic

collaboration support to student needs. International Journal of Artificial Intelligence in Education,
24(1), 92-124.

Margulieux, L. E., Guzdial, M., & Catrambone, R. (2012, September). Subgoal-labeled instructional material
improves performance and transfer in learning to develop mobile applications. In Proceedings of the
ninth annual international conference on International computing education research (pp. 71-78).

Morrison, B. B., Margulieux, L. E., & Guzdial, M. (2015, August). Subgoals, context, and worked examples in
learning computing problem-solving. In Proceedings of the eleventh annual international conference
on international computing education research (pp. 21-29).

Renkl, A. (2014). Toward an instructionally oriented theory of example‐based learning. Cognitive
science, 38(1), 1-37.

Sankaranarayanan, S. (2019, February). Online Mob Programming: Effective Collaborative Project-Based
Learning. In Proceedings of the 50th ACM Technical Symposium on Computer Science Education (pp.
1296-1296).

Sankaranarayanan, S., Wang, X., Dashti, C., An, M., Ngoh, C., Hilton, M., Sakr, M., & Rosé, C. (2019, June).
An Intelligent-Agent Facilitated Scaffold for Fostering Reflection in a Team-Based Project Course.
In International Conference on Artificial Intelligence in Education (pp. 252-256). Springer, Cham.

Acknowledgements
This work was funded in part by NSF grants IIS 1822831, IIS 1917955 and funding from Microsoft.

	Introduction
	Method
	Course Context
	Design of the Online Programming Exercise (OPE)
	Experimental Design

	Hypotheses, Analysis, and Results
	Discussion and Conclusion
	References
	Acknowledgements

