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Abstract. We prove that the minimum number of critical points of a Weinstein Morse

function on a Weinstein domain of dimension at least six is at most two more than the

minimum number of critical points of a smooth Morse function on that domain; if the

domain has non-zero middle-dimensional homology, these two numbers agree. There is also

an upper bound on the number of gradient trajectories between critical points in smoothly

trivial Weinstein cobordisms. As an application, we show that the number of generators

for the Grothendieck group of the wrapped Fukaya category is at most the number of

generators for singular cohomology and hence vanishes for any Weinstein ball. We also

give a topological obstruction to the existence of finite-dimensional representations of the

Chekanov-Eliashberg DGA for Legendrians.

1. Introduction and Main results

Weinstein domains are exact symplectic manifolds equipped with Morse functions compat-

ible with their symplectic structures. These domains encompass a large class of symplectic

manifolds, e.g. cotangent bundles, and are closely related to Stein manifolds in complex

geometry [7]. The Weinstein Morse function gives a symplectic handle-body presentation of

the domain and allows one to study its symplectic geometry via high-dimensional Legendrian

knot theory. This handle-body presentation is not unique and, like a smooth handlebody

presentation, a Weinstein handle-body presentation can be modified by a series of moves,

or Weinstein homotopies, that preserve the symplectic structure of the ambient domain; see

Section 2. In this paper, we study how these moves can be used to simplify an arbitrary

Weinstein presentation.

Abouzaid and Seidel [1] introduced the complexity WCrit(W ) of a Weinstein structureW

as the minimal number of critical points of a Weinstein Morse function onW , up to Weinstein

homotopy. The corresponding notion for Stein domains was introduced by Eliashberg [15].

Complexity is tautologically a Weinstein homotopy invariant. The analog of WCrit in the

smooth setting is Crit(M), the minimal number of critical points of any Morse function on

a smooth manifold M . This is a classical invariant of smooth manifolds and we will study

the relationship between WCrit(W ) and Crit(W ) as a way of investigating the difference

between symplectic and smooth topology and the corresponding handle-body moves.

We first recall some results about Crit(M). A priori Crit(M) is just a smooth invariant of

M . Morse proved that there is a lower bound for Crit(M) in terms of the integral homology

H∗(M ;Z). Smale [39] showed in the proof of the h-cobordism theorem that if Mn is simply-

connected and n ≥ 6, then this lower bound is in fact sharp. More precisely, it is possible

to simplify an arbitrary Morse function on Mn to another Morse function whose number of

critical points agrees with the homological lower bound. So in this case, Crit(M) is actually

a homotopy invariant of Mn. To simplify an arbitrary Morse function, Smale uses certain
1
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moves called handle-slides and the Whitney trick, which requiresMn to be simply-connected

and n ≥ 6. The h-cobordism theorem generally fails without these assumptions.

In this paper, we will study how much of Smale’s h-cobordism theorem holds in the

symplectic setting. Since any Weinstein Morse function is a smooth Morse function, we

have the inequality WCrit(W ) ≥ Crit(W ) and Eliashberg [15] asked whether there are

examples where WCrit(W ) and Crit(W ) differ. As first shown by Seidel and Smith [37],

such examples do exist. For example, Crit(B2n) = 1 but any Weinstein structure Σ2n on

B2n that is not symplectomorphic to (the completion of) B2n
std must have WCrit(Σ2n) ≥

2; see Corollary 11.27 of [7]. In fact, WCrit(Σ2n) ≥ 3 since the Euler characteristic of

B2n is 1. Seidel and Smith constructed such an exotic Σ2n and distinguished it from B2n
std

by the presence of a Floer-theoretically essential Lagrangian torus. Hence the proof of

the inequality WCrit(Σ) ≥ Crit(Σ) + 2 depends crucially on J-holomorphic curve type

invariants. From a Weinstein homotopy point of view, WCrit and Crit differ because the

Whitney trick, the key part of Smale’s proof of the h-cobordism theorem, does not generally

work in the symplectic setting; more precisely, smoothly isotopic Legendrian submanifolds

are not necessarily Legendrian isotopic.

Given that Crit,WCrit can indeed be different, it is natural to ask how big this difference

can be. We first note that for domains of dimension at least six, there are infinitely many

different Weinstein structures in the same almost Weinstein class [1, 7, 30]. So in principle,

WCrit(W ) can be arbitrarily larger than Crit(W ). The first construction of infinitely many

exotic Weinstein structures is due to McLean [30]. He constructed a single exotic ball Σ2n
1

and then showed that Σ2n
k := \ki=1Σ

2n
1 , the boundary connected sum of k copies of Σ2n

1 , are

pair-wise non-symplectomorphic, distinguished by a J-holomorphic curve invariant called

symplectic homology. In particular, Σ2n
k has a natural Weinstein presentation with at least

4k−1 handles (3k handles for
∐k

i=1Σ
2n
1 and k−1 index 1 handles) making it seem that these

structures have unbounded complexity. Later Abouzaid and Seidel [1] constructed infinitely

many exotic Weinstein structures that do have bounded complexity.

On the other hand, recent work has shown that certain Weinstein structures have minimal

complexity, i.e. WCrit(W ) = Crit(W ). Cieliebak and Eliashberg [7] proved that flexible

Weinstein structures, which satisfy an h-principle that reduces their symplectic topology

to the underlying algebraic topology, have minimal complexity. Later Eliashberg, Ganatra,

and the author [16] constructed infinitely many examples of exotic (non-flexible) Weinstein

structures on T ∗Sn and showed that they also have minimal complexity. We will show that

minimal complexity holds quite generally.

1.1. Almost minimal Weinstein presentations. The above examples due to Seidel-

Smith and McLean show that there exist W for which WCrit(W ) ≥ Crit(W ) + 2. This

lower bound comes from J-holomorphic curve invariants (and some mild use of h-principles).

Our main result shows that this is the only constraint on WCrit. In the following, we

say a smooth domain W 2n (with the homotopy type of an n-dim CW complex) is smoothly

critical if every smooth proper Morse function has a critical point of index n; for example,

if Hn(W 2n;Z) is non-zero. A smooth domain W 2n is smoothly subcritical if W 2n admits

a smooth Morse function all of whose critical points have index strictly less than n. A

(smoothly subcritical) Weinstein domain is Weinstein subcritical if it admits a Weinstein
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Morse function all of whose critical points have index strictly less than n. Subcritical We-

instein domains are flexible and hence have minimal complexity as mentioned above [7]; see

Section 2.2 for details.

Theorem 1.1. If W 2n, n ≥ 3, is a Weinstein domain, then WCrit(W ) ≤ Crit(W ) + 2.

Furthermore, if W is smoothly critical, then WCrit(W ) = Crit(W ). If W is smoothly

subcritical and π1(W ) = 0, then WCrit(W ) = Crit(W ) if and only if W is a subcritical

Weinstein domain; otherwise, WCrit(W ) = Crit(W ) + 2.

More precisely, let WCritk(W
2n) denote the minimum number of index k critical points

of a Weinstein Morse function on W 2n; let Critk(W ) denote the same for a smooth Morse

function. Then the proof of Theorem 1.1 actually shows that WCritk(W
2n) = Critk(W

2n)

for k ≤ n−2 and eitherWCritn−1(W
2n) = Critn−1(W

2n) andWCritn(W
2n) = Critn(W

2n)

or WCritn−1(W
2n) = Critn−1(W

2n) + 1 and WCritn(W
2n) = 1. The second case can

only happen when Critn(W
2n) = 0, i.e. W is smoothly subcritical. So we always have

WCritn(W
2n) ≤ max{1, Critn(W

2n)}.

Now we give some examples illustrating Theorem 1.1.

Example 1.2. IfMn, n ≥ 3, is a closed smooth manifold, thenWCrit(T ∗M) = Crit(T ∗M) ≤

Crit(M) for any Weinstein structure on T ∗M since it is smoothly critical; if n ≥ 6 and

π1(M) = 0, then the second inequality is also an equality. In particular, all Weinstein

structures on T ∗Sn have WCrit(T ∗Sn) = 2; this generalizes the result in [16], where it was

proven that this holds for a particular infinite collection of exotic structures on T ∗Sn.

Example 1.3. Any Weinstein ball Σ2n, which is smoothly subcritical with Crit(Σ2n) = 1,

has eitherWCrit(Σ2n) = 1 or 3. Since π1(Σ
2n) = 0, the structure is Weinstein homotopic to

the standard structure B2n
std if and only if WCrit(Σ2n) = 1. In particular, McLean’s exotic

structures Σ2n
k , which have natural presentations with at least 4k− 1 critical points, can be

Weinstein homotoped to presentations with just 3 critical points, corresponding to handles

of index 0, n− 1, and n. They are all non-standard structures and so WCrit(Σ2n
k ) = 3.

Our proof of Theorem 1.1 relies on Murphy’s h-principle for loose Legendrians [31] (and

its consequences for flexible domains) as well as the smooth Whitney trick. Both of these

results hold only for n ≥ 3, hence our restriction on dimension.

Question 1.4. Is WCrit(W 4) ≤ Crit(W 4) + 2 for any Weinstein domain W 4?

1.2. Flexible subdomains. Our main result Theorem 1.1 essentially follows from the fol-

lowing theorem. For a Weinstein domain W 2n, n ≥ 3, let W 2n
flex be the unique flexible

Weinstein structure almost symplectomorphic to W 2n; see Section 2.2.

Theorem 1.5. Any Weinstein domain W 2n, n ≥ 3, can be Weinstein homotoped to W 2n
flex∪

C2n, where C2n is a smoothly trivial Weinstein cobordism with two critical points of index

n− 1, n.

This result implies that the smooth topology and the symplectic topology can be separated

in the sense that all the smooth topology can be put into a symplectically trivial (flexible)

domainW 2n
flex while all the symplectic topology can be put into a smoothly trivial cobordism

C2n, which is a smooth collar of the boundary of W 2n. In particular, Theorem 1.5 shows
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that Wflex is a Weinstein subdomain of W . This extends previous work of Eliashberg and

Murphy [17] who proved that Wflex is a Liouville subdomain of W , i.e. W\Wflex is an

exact symplectic cobordism, perhaps without a compatible Weinstein Morse function. The

decomposition in Theorem 1.5 has several applications, explored in later work; for example,

it is used to prove an existence h-principle for regular Lagrangians with boundary in arbitrary

Weinstein domains as well as regular Lagrangian caps [28] and construct ‘maximal’ Weinstein

domains that contain a complicated set of Lagrangians [27]. Theorem 1.5 implies most of

Theorem 1.1. The presentation in Theorem 1.5 shows thatWCrit(W ) ≤WCrit(Wflex)+2.

Since flexible structures have minimal complexity [7],WCrit(Wflex) = Crit(W ). Combining

these results, we get WCrit(W ) ≤ Crit(W ) + 2, the first claim in Theorem 1.1. The proof

of the smoothly critical case of Theorem 1.1 is similar.

Flexible Weinstein domains are defined only for n ≥ 3. The analog of these domains for

n = 2 are Weinstein domains whose index 2 handles are attached along stabilized Legen-

drians; we will call these stabilized domains. However, neither stabilized Legendrians nor

stabilized domains satisfy an h-principle and so we do not know whether Theorem 1.1 holds

for n = 2. However an analog of Theorem 1.5 holds for n = 2 if we replace flexible domains,

loose Legendrians with these analogous domains, Legendrians respectively.

Theorem 1.6. Any Weinstein domain W 4 can be Weinstein homotoped to V 4 ∪H2, where

V 4 is a stabilized domain that is simply homotopy equivalent to W 4 ∪H1.

The notation Hn
Λ denotes a Weinstein handle attached along an isotropic attaching sphere

Λ and we write Hn if we not specify the attaching sphere; see Section 2. Theorem 1.6 cannot

be improved so that V 4 is diffeomorphic toW 4∪H1. For example, there is a unique Weinstein

structure on T ∗T 2 and it has non-vanishing symplectic homology [14, 40]; the same holds for

T ∗T 2 ∪H1 [7]. On the other hand, stabilized domains have vanishing symplectic homology

and so T ∗T 2 ∪ H1 does not admit a stabilized Weinstein structure. The reason for this is

that stabilizing a 1-dimensional Legendrian knot changes its Thurston-Bennequin invariant,

which affects the framing used to attach the Weinstein handle and hence the intersection

form of the resulting Weinstein domain.

Theorem 1.5 shows that any Weinstein domain W 2n, n ≥ 3, can be presented as a flexible

domain W 2n
flex ∪H

n−1 plus a single critical handle. In fact, the proof of Theorem 3.1 is a bit

more explicit about the single extra handle.

Corollary 1.7. Every Weinstein domain W 2n, n ≥ 3, can be Weinstein homotoped to a

subcritical domain Vsub with handles attached to the Legendrian link Λ1
∐

· · ·
∐

Λk−1
∐

Λk ⊂

∂Vsub such that Λ1
∐

· · ·
∐

Λk−1 is a loose link and Λk is a loose Legendrian.

Even though all of the Legendrians in Corollary 1.7 are individually loose, the entire

link Λ1
∐

· · ·
∐

Λk−1
∐

Λk may not be loose, i.e. the loose charts of Λi intersect Λk and

loose chart of Λk intersects Λi. Otherwise all Weinstein domains would be flexible. So the

attaching Legendrians are themselves symplectically trivial but their linking is symplectically

non-trivial, i.e. the symplectic topology of the domain is captured in this linking. Of course,

Λk becomes non-loose once we attach handles to Λ1, · · · ,Λk−1 (and vice-versa).

Now we present an example demonstrating Theorem 1.5.

Example 1.8. Any Weinstein structure on T ∗Sn, n ≥ 3, can be Weinstein homotoped to

T ∗Sn
flex∪H

n−1∪Hn
Λ for some Legendrian Λ in the contact manifold ∂(B2n

std∪H
n−1). A slightly
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modified version of Theorem 1.5 shows that T ∗Sn can also be homotoped to B2n
std∪H

n
Λ; this is

why we always have WCrit(T ∗Sn) = 2 in Example 1.2. We can reformulate this as follows.

Let Legendrian((Y, ξ); Λ0) denote parametrized Legendrians in the contact manifold (Y, ξ),

up to Legendrian isotopy, that are in some fixed Legendrian formal isotopy class Λ0. Let X
2n

be an almost Weinstein domain, i.e. an almost complex domain with the homotopy type of

an n-dimensional CW complex; see Section 2. Then let Weinstein(X2n) denote Weinstein

structures on X2n up to Weinstein homotopy. There is a natural map

Hcrit : Legendrian((S
2n−1, ξstd); Λunknot) → Weinstein(T ∗Sn) (1.1)

taking a Legendrian Λ ⊂ (S2n−1, ξstd) = ∂B2n
std which is formally isotopic to Λunknot to the

Weinstein structure B2n
std ∪H

n
Λ on T ∗Sn. The statement that WCrit = 2 for any Weinstein

structure on T ∗Sn implies that this map is surjective, i.e. the class of connected Legendrians

is as complicated as the class of Weinstein structures.

Although our main result shows that Weinstein homotopy moves are more flexible than

they might seem, there are limits to this flexibility. For example, Theorem 1.5 shows that

any Weinstein domain can be presented as a flexible domain plus a single extra handle,

which is possibly non-flexible. As we now explain, it is crucial that the non-flexible critical

handle is attached last and in general, it is impossible to first attach non-flexible handles

and then attach flexible handles. So order of flexilibity/non-flexibility matters, which is a

sign of rigidity. As expected, this rigidity ultimately comes from J-holomorphic curves.

Example 1.9. By Theorem 1.5, T ∗Sn
std is Weinstein homotopic to T ∗Sn

flex ∪H
n−1 ∪Hn

Λ =

(B2n
std ∪H

n
flex) ∪H

n−1 ∪Hn
Λ for some Legendrian Λ. In this case, we attach flexible handles

first and then non-flexible handles. However, T ∗Sn
std cannot be presented as (B2n

std ∪H
n−1 ∪

Hn
Λ) ∪ Hn

flex, where we first attach non-flexible handles and then flexible handles. This

presentation is equivalent to a Weinstein structure of the form Σ2n ∪Hn
flex, for some exotic

ball Σ2n. We claim that T ∗Sn
std is not symplectomorphic to Σ2n ∪Hn

flex for any Σ2n. To see

this, let C ⊂ Σ2n∪Hn
flex be the Lagrangian co-core of Hn

flex. Since H
n
flex is attached along a

loose Legendrian in ∂Σ2n, the wrapped Floer homology WH(C,C;T ∗Sn
std) vanishes. But C

generates Hn(T
∗Sn, ∂T ∗Sn) ∼= Z and so C · Sn = 1, where Sn ⊂ T ∗Sn

std is the zero-section,

a closed exact Lagrangian. But WH(C,C;T ∗Sn
std) = 0 implies that WH(C, Sn;T ∗Sn

std) = 0

and so C · Sn = χ(WH(C, Sn;T ∗Sn
std)) = 0, a contradiction.

Since T ∗Sn
std is not of the form Σ2n ∪Hn

flex, the map

Hloose : Weinstein(B2n) → Weinstein(T ∗Sn) (1.2)

obtained by attaching a critical handle along a loose Legendrian unknot to an exotic We-

instein ball is not surjective. This map is well-defined since any contact structure ∂Σ2n in

the almost contact structure (S2n−1, Jstd) has a unique loose Legendrian in the standard

formal class. Furthermore, it has infinite image; for example, Hloose is injective on the exotic

structures Σ2n
k constructed by McLean [30]. We contrast the non-surjectivity of Hloose, a

rigidity result, to the surjectivity of the map Hcrit in Equation 1.1, a flexibility result.

Now we sketch the proof of Theorem 1.5, which implies the main result Theorem 1.1. The

key idea is that certain Weinstein homotopy moves called handle-slides can be used to make

a Legendrian loose; see Section 2. More precisely, given two Legendrians and a local chart



6 OLEG LAZAREV

intersecting them, the handle-slide produces another Legendrian, which was described by

Casals and Murphy [4]. We will show that there is a special choice of local chart such that

the handle-slid Legendrian is loose (not all choices of charts result in loose Legendrians).

For an arbitrary Weinstein domain, we fix one Legendrian and handle-slide the rest of the

Legendrians over that fixed Legendrian. For appropriate choices of local charts, the resulting

Legendrians form a loose link except for the fixed Legendrian which will in general intersect

the loose charts of the other Legendrians; this is the content of Theorem 1.5.

1.3. Weinstein presentations with few gradient trajectories. As mentioned before,

our goal is to study to what extent Smale’s h-cobordism theorem holds in the symplectic

setting. This theorem has two main steps. The first step is to apply handle-slides to make

handles with consecutive indices cancel algebraically, i.e. for the belt sphere of a k handle

and the attaching sphere of a k + 1 handle to have algebraic intersection number one. The

second step is to use the Whitney trick to reduce the number of intersection points between

algebraically cancelling handles to make them geometrically cancelling, i.e. have geometric

intersection number one. Since Weinstein handles can be handle-slid in the same way as

smooth handles, the first step can be done in the Weinstein setting. However the second

step necessarily fails sinceWCrit(W ) 6= Crit(W ) in general. By Theorem 1.5, any smoothly

trivial Weinstein cobordism W can be Weinstein homotoped to have two Weinstein handles

of index n − 1, n that cancel algebraically, i.e. W = Hn−1 ∪Hn
Λ. The Whitney trick shows

that in this case, it is possible to smoothly isotope the attaching sphere Λ so it intersects the

belt sphere of Hn−1 in exactly one point. However, if Λ intersects the belt sphere of Hn−1 in

a single point, it is loose [7] and the Weinstein cobordism is flexible. Hence, in general it is

impossible to realize this smooth isotopy by a Legendrian isotopy and to reduce the geometric

intersection number to one. The minimal possible number is therefore three; it is greater

than one and must be odd for homological reasons. Although we do not know whether the

geometric intersection number can always be reduced to three, in the following result we

reduce this number to some universal constant independent of the Weinstein structure. So

we can get uniformly close to realizing the second step of Smale’s h-cobordism proof.

Theorem 1.10. There exists a constant Cn ≥ 3 depending only on n such that any smoothly

trivial Weinstein cobordism W 2n, n ≥ 3, can be Weinstein homotoped to a presentation with

two handles of index n− 1, n such that the belt sphere of the n− 1 handle and the attaching

sphere of the n handle intersect Cn times.

This is equivalent to having a Weinstein Morse function with two critical points of index

n − 1, n such that there are Cn gradient trajectories from the index n to the index n − 1

critical point. The proof of Theorem 1.10 actually shows that it is possible in principle

to compute Cn but this depends on a good understanding of a certain (local) Legendrian

isotopy which comes from an h-principle and is therefore not very explicit. As we explain

in the following example, the situation is more complicated when the Weinstein cobordism

is not smoothly trivial. Namely, in the presence of multiple n − 1 handles, the attaching

Legendrian for the n-handle might have to pass through all n − 1 handles, even when this

is topologically unnecessary. Again this rigidity comes from J-holomorphic curves.

Example 1.11. Consider a subflexible Weinstein structure W 2n on B2n ∪Hn−1 that is not

flexible. Such an example was constructed by Murphy and Siegel [32] and has zero symplectic
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homology SH(W 2n) but non-zero deformed symplectic homology SHα(W 2n); here α is the

generator of Hn−1(B2n ∪ Hn−1) ∼= Z. So this domain is smoothly subcritical but is not

symplectically subcritical and hence by Theorem 1.1 admits a Weinstein presentation of the

form B2n
std ∪ Hn−1

1 ∪ Hn−1
2 ∪ Hn

Λ. Here Λ has algebraic intersection number 1 with Hn−1
1

and 0 with Hn−1
2 . However Λ has geometric intersection number at least 3 with Hn−1

1 since

otherwise Λ would be loose. Furthermore, Λ must have geometric intersection number at

least 2 with Hn−1
2 ; so Λ must interact with both Hn−1

1 and Hn−1
2 . Otherwise, the domain

would be of the form (B2n
std∪H

n−1
1 ∪Hn

Λ)∪H
n−1
2 = Σ2n∪Hn−1, for some exotic structure Σ2n

on B2n. However Σ2n∪Hn−1 has zero deformed symplectic homology as we now show. Since

Hn−1 is a subcritical handle, the Viterbo transfer map SHα(Σ2n∪Hn−1) → SH i∗α(Σ2n) is an

isomorphism, where i∗ : Hn−1(Σ2n∪Hn−1) → Hn−1(Σ2n) is the induced map on cohomology.

Since i∗α ∈ Hn−1(Σ2n) = 0, SH i∗α(Σ2n) agrees with the undeformed symplectic homology

SH(Σ2n). Since Σ2n is a subdomain of W 2n, which has vanishing SH, and the Viterbo map

is unital, SH(Σ) also vanishes. Therefore SHα(Σ2n ∪Hn−1) is also zero and so Σ2n ∪Hn−1

cannot be Weinstein homotopic to W 2n.

Since W is not of the form Σ2n ∪Hn−1 for any exotic Weinstein ball Σ2n, the map

Hsub : Weinstein(B2n) → Weinstein(B2n ∪Hn−1) (1.3)

obtained by attaching a subcritical handle to an exotic Weinstein ball is not surjective; see

[23] for an analog in the contact case. This rigidity result is similar to the non-surjectivity

of the map Hloose in Equation 1.2 for flexible handle attachment and in contrast to the

surjectivity of Hcrit in Equation 1.1 for critical handle attachment to the standard ball.

1.4. Results for the wrapped Fukaya category and the Chekanov-Eliashberg DGA.

We now give some applications of the flexibility results in Sections 1.1, 1.2 to certain J-

holomorphic curve invariants. To a Weinstein (or Liouville) domain X2n (with a choice of

grading data), one can associate the wrapped Fukaya category W(X) of X, a certain A∞-

category. The objects ofW(X) are (graded) exact Lagrangians inX2n that are closed or have

Legendrian boundary in ∂X2n; the morphisms are wrapped Floer cochains. In homological

mirror symmetry, one considers the derived Fukaya category DbW(X) := H0(Tw(W(X)),

the cohomology category of twisted complexes over W(X). To obtain a more explicit de-

scription of the wrapped Fukaya category, it is useful to find a set of generators. The derived

Fukaya categoryDbW(X) is triangulated so mapping cones exist. A set of objects Gi are gen-

erators of DbW(X) if every object of the category is isomorphic to an iterated mapping cone

on them; equivalently, DbW(X) ∼= H0(Tw(G)), where G is the A∞-subcategory with objects

Gi. Let g(W(X)) denote the minimum number of generators for DbW(X). Many proofs of

homological mirror symmetry involve finding some collection of generators for DbW(X) and

then showing that the endomorphism algebra of these generators is quasi-isomorphic to the

endomorphism algebra of some generating coherent sheaves on the mirror.

Theorem 1.1 can be used to bound the number of generators g(W(X)) for DbW(X). The

unstable manifold of an index n critical point of a Weinstein Morse function, or co-core, is

a Lagrangian disk with Legendrian boundary and hence defines an object in DbW(X). As

proven in [6, 21], the co-cores of the index n critical points of any Weinstein Morse function

on X generate DbW(X), i.e. g(W(X2n)) ≤ WCritn(X
2n). Theorem 1.1 shows that there
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is a topological bound on WCritn(X
2n) and hence on the number of generators needed. In

the following, let g(A) denote the minimum number of generators of an abelian group A.

Corollary 1.12. If X2n, n ≥ 3, is a Weinstein domain, then g(W(X)) ≤ max{1, g(Hn(X;Z))}.

A related notion is that of split-generation: a set of objects are split-generators if every ob-

jects is a summand of a twisted complex on these objects. This is a useful notion since there

are closed symplectic manifolds whose Fukaya categories have finitely many split-generators

but no finite collection of generators, e.g. the 2-torus. We emphasize that Corollary 1.12

concerns generation, not split-generation. Whenever there is a finite collection of generators

(or split-generators), there is a single split-generator, namely the sum of all these objects.

So the number of split-generators is not an interesting invariant.

The number of generators, on the other hand, is a meaningful invariant and in certain

cases, the inequality in Corollary 1.12 is sharp. For example, if X2n is a Weinstein ball, then

Corollary 1.12 shows that at most one generator is needed and if the Fukaya category of

this ball is non-trivial (as is the case for the exotic structures constructed by McLean [30]),

then at least one generator is needed. In certain cases, the number of generators needed

for W(X) is greater than one. Since DbW(X) is a triangulated category, we can consider

its Grothendieck group K0(W(X)) := K0(D
bW(X)). For any triangulated category, the

minimum number of generators for the Grothendieck group gives a lower bound on the

number of generators of the category. In particular, Corollary 1.12 implies that for any

Weinstein domain X2n, n ≥ 3, we have

g(K0(W(X))) ≤ g(W(X)) ≤ max{1, g(Hn(X2n;Z))} (1.4)

There are Weinstein domains for which g(K0(W(X))) is bigger than one. For example, con-

sider the boundary connected sum \kT ∗Sn of k copies of T ∗Sn
std. As explained to the author

by Abouzaid, K0(W(\kT ∗Sn)) has rank at least k. Namely, let ϕi : K0(W(\kT ∗Sn)) → Z

be χ(HW ( , Sn
i )), the Euler characteristic of morphisms from the ith-zero section Sn

i . Then

(ϕ1, · · · , ϕk) : K0(W(\kT ∗Sn)) → Z
k is surjective and so g(K0(W(\kT ∗Sn))) ≥ k. On the

other hand, g(Hn(\kT ∗Sn;Z)) = k and so all the inequalities in Equation 1.4 are all actually

equalities. The following result shows that Equation 1.4 can actually be improved.

Corollary 1.13. If X2n, n ≥ 3 is a Weinstein domain, then g(K0(W(X))) ≤ g(Hn(X;Z)).

In particular, if Hn(X;Z) = 0, then K0(W(X)) = 0.

If Hn(X;Z) 6= 0, then the result follows from Equation 1.4. If Hn(X;Z) = 0, we use

an additional boundary connected sum argument, which was explained to the author by

Ivan Smith in the case when X2n is a ball. In particular, any Weinstein ball Σ2n must

have K0(W(Σ)) = 0. There are many exotic Weinstein balls Σ2n with non-zero symplectic

homology [30]. So their wrapped Fukaya categories are examples of triangulated categories

with non-zero Hochschild cohomology but zero Grothendieck group; such phantom categories

have been studied in algebraic geometry [24, 19] and are possibly related to our wrapped

Fukaya categories via mirror symmetry. The vanishing of K0(W(Σ)) implies that any object

Q that has finite-dimensional morphism spaces with all other objectsK has χ(HW (Q,K)) =

0, generalizing the geometric result that any closed exact Lagrangian L ⊂ Σ2n has L ·K = 0

for any other Lagrangian K; however the object Q need not be a twisted complex of closed

exact Lagrangians. We also note that the inequality in Corollary 1.13 is sharp, e.g. \kT ∗Sn
std.
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Conversely, for any integer j ≤ k = g(Hn(\kT ∗Sn;Z)), there is a Weinstein structure X2n
j

on \kT ∗Sn so that g(K0(W(Xj))) = j, e.g. X2n
j = \jT ∗Sn

std\
k−jT ∗Sn

flex.

One natural question is what triangulated categories can arise as the wrapped Fukaya

category of Weinstein domains. For example, the wrapped Fukaya category of a Weinstein

domain is a smooth category with a non-compact Calabi-Yau structure [6, 20]. Corollary 1.13

further restricts which categories can arise as the Fukaya categories of Weinstein domains

and shows that in general the answer depends on the smooth topology of the domain.

Corollary 1.14. There is no Weinstein ball Σ2n such that Db(W(Σ2n)) is exact equivalent

Db(W(T ∗Sn
std)). There is no Weinstein structure X2n on T ∗Sn such that DbW(X2n) is

exact equivalent to DbW(T ∗Sn
std\T

∗Sn
std).

Proof. As noted above, g(K0(W(T ∗Sn
std))) = 1 and g(K0(W(T ∗Sn

std\T
∗Sn

sdtd))) = 2. How-

ever if Σ2n is a ball, g(K0(W(Σ2n))) = 0; if Hn(X;Z) ∼= Z, g(K0(W(X))) ≤ 1. �

On the other hand, for any Weinstein ball Σ2n, the Weinstein structure T ∗Sn
flex\Σ

2n on

T ∗Sn has the same Fukaya category as Σ2n. So the class of categories arising as Fukaya

categories of Weinstein structures on T ∗Sn is genuinely larger than that for a ball B2n.

Since Weinstein domains are constructed by attaching handles along Legendrians, Corol-

lary 1.13 has implications for J-holomorphic curve invariants of Legendrians. Given a Leg-

endrian sphere Λn−1 in a contact manifold (Y 2n−1, ξ) with a Weinstein fillingW 2n, there are

(at least) two associated Legendrian isotopy invariants: the Chekanov-Eliashberg algebra

CE(Λ) of Λ (augmented by the filling W 2n) and the wrapped Floer cochains CW (C,C) of

the co-core Cn of the Weinstein n-handle Hn
Λ in the Weinstein domain W 2n ∪Hn

Λ. For both

invariants, we work over a common ground field K. The former invariant is only rigorously

defined when (Y 2n−1, ξ) is P 2n−2 × R for some exact symplectic manifold P [10]; the latter

is always defined. A proof was sketched in [3] that these two invariants are quasi-isomorphic

and for the results in the rest of this section, we will assume this.

Remark 1.15. Alternatively, let CF (Dn, Dn; (W,Λ)) denote the Floer cochains of the linking

disk Dn of Λ in the partially wrapped Fukaya category of W 2n stopped at Λ; a proof was

sketched in [12] that this is quasi-isomorphic to the version of CE(Λ) with coefficients in

C(ΩSn−1), chains on the based loop space of Sn−1. Without any reference to CE(Λ), it was

proven in [21] that CF (Dn, Dn; (W,Λ))⊗C∗(ΩSn−1)C∗(ΩD
n) = CF (Dn, Dn; (W,Λ))⊗C∗(ΩSn−1)

K is quasi-isomorphic to CW (C,C) and so this invariant can be considered as a rigorous

replacement for CE(Λ); using this alternative invariant, all our results have complete proofs.

Certain geometric properties of a Legendrian have algebraic consequences for its Chekanov-

Eliashberg DGA. For example, an exact Lagrangian filling of Λ induces an augmentation of

CE(Λ), i.e. a differential graded algebra (DGA) map CE(Λ) → K, where the latter has

the zero differential and is concentrated in degree zero [11]. However, not all augmentations

come from exact Lagrangian fillings [18] and furthermore, there are examples of Legendrians

such that CE(Λ) is not acyclic but admits no augmentations. More generally, we can con-

sider n-dimensional representations of CE(Λ), i.e. DGA maps CE(Λ) → Mat(n,K). There

are examples [8, 38] of Legendrians for which CE(Λ) has a 2-dimensional representation but

no augmentations. This is a useful notion since Dimitroglou-Rizell and Golovko [8] showed

that Legendrians with finite-dimensional representations have an Arnold-type lower bound
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on the number of Reeb chords. On the other hand, they showed that for each n ≥ 1, there is

a Legendrian Λ ⊂ (R2n−1, ξstd) such that CE(Λ) is not acyclic but has no finite-dimensional

representations (although any non-acyclic DGA has an infinite-dimensional “representation”

to its characteristic algebra [33] ). These examples are obtained by spinning a particular

1-dimensional Legendrian studied by Sivek [38], who proved that it has no finite-dimensional

representations by explicit calculation. We now show that such Legendrians occur generally.

Consider a Legendrian Λ in (Sn−1 × Sn, ξstd) = ∂(B2n
std ∪H

n−1), n ≥ 3 that has algebraic

intersection number one with {p} × Sn for some p ∈ Sn−1, i.e. [Λ] = ±1 ∈ Hn−1(S
n−1 ×

Sn;Z) ∼= Z is primitive in homology. This implies that [Λ] = 1 ∈ Hn−1(B
2n
std ∪H

n−1;Z) ∼= Z

and hence Λ has no exact Lagrangian fillings in B2n
std∪H

n−1 for purely topological reasons. So

there are no augmentations of CE(Λ) that come from fillings. Using Corollary 1.13, we show

that CE(Λ) has no augmentations at all and in fact, no finite-dimensional representations.

Corollary 1.16. If a Legendrian Λn−1 ⊂ (Sn−1×Sn, ξstd), n ≥ 3, is primitive in homology,

CE(Λ) has no finite-dimensional representations and no DGA maps to a commutative ring.

If Λ intersects {p} × Sn geometrically once, then Λ is a loose Legendrian [4]; see Sec-

tion 1.3. In this case, CE(Λ) is acyclic and hence has no finite-representations for trivial

reasons. Corollary 1.16 generalizes this to the case of algebraic intersection one, a topo-

logical condition. Although our proof of Corollary 1.16 holds only for n ≥ 3, the n = 2

case for augmentations was proven in [29] using a different approach. We also note that a

homological condition is necessary since the Chekanov-Eliashberg DGA of Legendrians in

(Sn−1 × Sn, ξstd) that have Lagrangian fillings in B2n
std ∪H

n−1 have augmentations.

Corollary 1.16 has applications to the C0-topology of the space of Legendrians. Murphy

[31] proved that any Legendrian can be C0-approximated by a loose Legendrian. On the

other hand, Dimitroglou-Rizell and Sullivan [35] recently used persistent homology to show

that loose Legendrians cannot be C0-approximated by certain non-loose Legendrians: if

Λ ⊂ (R2n−1, ξstd) is in a contact neighborhood N(Λloose) of a loose Legendrian Λloose and

the map i∗ : Hn−1(Λ;Z/2) → Hn−1(N(Λloose);Z/2) ∼= Z/2 is non-zero, then CE(Λ) has no

augmentations. Using Corollary 1.16, we give a different proof of a slightly different result.

Corollary 1.17. If Λ ⊂ (S2n−1, ξstd), n ≥ 3, is in a contact neighborhood of a loose Leg-

endrian Λloose and is primitive in Hn−1(Λloose;Z), then CE(Λ) has no finite-dimensional

representations or DGA maps to a commutative ring.

So the size of contact neighborhoods depends on Legendrian isotopy class. In the proof of

Corollary 1.17, the condition that Λ is in N(Λloose) is used to show that a related Legendrian

is disjoint from the loose chart of another loose Legendrian; the homological condition is

needed to apply Corollary 1.16. Some homology condition is necessary since otherwise any

Legendrian in (S2n−1, ξstd) can be isotoped into a neighborhood of any other Legendrian.

Corollaries 1.16, 1.17 place strong restrictions on the Chekanov-Eliashberg DGA’s of cer-

tain Legendrians. Furthermore, if these Legendrians satisfy stronger conditions, e.g. have

geometric intersection one with {p}×Sn instead of algebraic intersection one, then they are

loose, showing that there is not much room for interesting Legendrians. Nonetheless, we

show that there are many examples of such Legendrians with non-trivial DGA’s, essentially

one for each exotic Weinstein ball; this shows that Corollaries 1.16, 1.17 are sharp.
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Corollary 1.18. For n ≥ 4, there exist infinitely many different Legendrian spheres Λk ⊂

(Sn−1 × Sn, ξstd) for which CE(Λk) is not acyclic but has no finite-dimensional representa-

tions. The same holds for (S2n−1, ξstd), n ≥ 4. Furthermore, these Legendrians are C0-close

to loose Legendrians Λloose and are primitive in Hn−1(Λloose;Z).

The restriction n ≥ 4 is because we currently have examples of exotic Weinstein balls only

in such dimensions [30]. The Legendrians Λk are distinguished by the Hochschild homology

of CE(Λk), which is isomorphic to the symplectic cohomology of these Weinstein balls.

Now we give an outline of the rest of the paper. In Section 2, we provide some background

material on Weinstein domains, loose Legendrians, and handle-slides. In Section 3, we give

proofs of the results stated in the Introduction.

Acknowledgements

We thank Mohammed Abouzaid, Roger Casals, Emmy Murphy, Kyler Siegel, Semon

Rezchikov, and Ivan Smith for many helpful discussions. This work was partially supported

by an NSF postdoc fellowship.

2. Background

In this section, we present some background material, including necessary definitions and

theorems that were assumed in the Introduction.

2.1. Liouville and Weinstein domains.

2.1.1. Definitions. A Liouville domain is a pair (W 2n, λ) such that

• W 2n is a compact manifold with boundary

• dλ is a symplectic form on W

• the Liouville field Xλ, defined by iXdλ = λ, is outward transverse along ∂W .

A Weinstein domain is a triple (W 2n, λ, ϕ) such that

• (W,λ) is a Liouville domain

• ϕ :W → R is a Morse function with maximal level set ∂W

• Xλ is a gradient-like vector field for ϕ.

Liouville and Weinstein cobordisms are defined similarly.

Since W is compact and ϕ is a Morse function with maximal level set ∂W , ϕ has finitely

many critical points. We will call ϕ a Weinstein Morse function. Note that for any regular

value c, W c = {ϕ ≤ c} is also a Weinstein domain and is called a Weinstein subdomain.

If Σ2n−1 ⊂ (W 2n, λ) is a hypersurface such that Xλ is transverse to Σ, then ker(λ|Σ) is a

contact structure on Σ. In the Weinstein case, a regular level set Y c = ϕ−1(c) of ϕ is such

a hypersurface and so (Y c, λ|Y c) is a contact manifold. In particular, the boundary ∂W of

Liouville or Weinstein domain W has a natural contact structure given by ξ = ker(λ|∂W ).

The completion Ŵ ofW is the non-compact, exact symplectic manifold obtained by attaching

the symplecticization (∂W × [0,∞), d(etλ|∂W )) of (∂W, ξ) to W . Whenever we speak of the

symplectomorphism type of a Weinstein domain, we will mean the symplectomorphism type

of its completion.
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2.1.2. Weinstein handle attachment. A Weinstein structure yields a special handle-body

decomposition for W . First, recall that λ vanishes on the Xλ-stable disc Dp of a critical

point p; see [7]. In particular, Dp is isotropic with respect to dλ and so all critical points of

ϕ have index less than or equal to n. If all critical points of ϕ have index strictly less than

n, then the Weinstein domain is subcritical.

Since λ vanishes on Dp, then Λp := Dp ∩ Y
c ⊂ (Y c, λ|Y c) is an isotropic sphere, where

c = ϕ(p) − ε for sufficiently small ε. Furthermore, Λp comes with a parametrization and

framing, i.e. a trivialization of its normal bundle. Note that a framing of Λp is equivalent to

the framing of the conformal symplectic normal bundle of Λp; see [22]. Hence parametrized

Legendrians come with a canonical framing.

Suppose that c1 < c2 are regular values of ϕ andW c2 \W c1 contains a unique critical point

p of ϕ. Then W c2\W c1 is an elementary Weinstein cobordism between Y c1 and Y c2 and

the symplectomorphism type of W c2 is determined by the symplectomorphism type of W c1

along with the framed isotopy class of the isotropic sphere Λp ⊂ Y c1 . If ϕ is an arbitrary

Weinstein Morse function on W with distinct critical values, then W can be viewed as the

concatenation of such elementary Weinstein cobordisms.

On the other hand, one can explicitly construct such elementary cobordisms and use them

to modify Liouville domains. Given a Liouville domain X and a framed isotropic sphere Λ

in its contact boundary Y = ∂X, we can attach an elementary Weinstein cobordism with

critical point p and Λp = Λ to X and obtain a new Liouville domain that we denote by XΛ or

X∪Hk
Λ, where k = ind p = dimΛ+1. This operation is called Weinstein handle attachment

and Λ is called the attaching sphere of the Weinstein handle. If X is Weinstein, then so is

XΛ. If the dimension of Λ ⊂ Y 2n−1 is less than n− 1, the handle attachment operation and

Λ itself are all called subcritical. So any (subcritical) Weinstein domain can be obtained by

attaching (subcritical) Weinstein handles to the standard Weinstein structure on B2n.

The corresponding modification of contact manifolds by Weinstein handle attachment

is called contact surgery. If Λ ⊂ (Y, ξ) is a framed isotropic sphere, then there exists an

elementary Weinstein cobordism W with ∂−W = (Y, ξ) and attaching sphere Λ. Then

we say ∂+W is the result of contact surgery on Λ and denote this by YΛ or Y ∪ Hk
Λ. In

particular, the contact boundary of any (subcritical) Weinstein domain can be obtained by

doing (subcritical) contact surgery to (S2n−1, ξstd) = ∂B2n.

2.1.3. Weinstein homotopies. The natural notion of equivalence between Weinstein struc-

tures (W,λ0, ϕ0), (W,λ1, ϕ1) on a fixed manifold W is a Weinstein homotopy, i.e. a 1-

parameter family of Weinstein structures (W,λt, ϕt), t ∈ [0, 1], connecting them, where ϕt

is allowed to have birth-death critical points. Weinstein homotopic domains have exact

symplectomorphic completions [7].

We will prove our main result Theorem 3.1 by starting with an arbitrary Weinstein domain

and then applying a special Weinstein homotopy. As in the smooth setting, Weinstein

homotopies consist of three elementary moves: doing an isotopy of the attaching spheres

through isotropic submanifolds, moving critical points that are not connected by gradient

trajectories past each other, and sliding handles of the same index over each other. The only

difference between the Weinstein and smooth setting is the first move: in the Weinstein case,

the isotopies of attaching spheres must be through isotropics instead of arbitrary embedded

spheres. Since subcritical handles satisfy an h-principle [7], Weinstein domains are essentially
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Σ1 (starting from the chart U1) past the belt sphere of Λ in YΛ. Therefore since Σ2, · · · ,Σk

are disjoint from an ε1-neighborhood of Λ in Y and the chart U1, the handle-slid Legendrian

hΛ,ε1(Σ1) is isotopic to Σ1 in YΛ\(Σ2
∐

· · ·
∐

Σk), where we view Σ2, · · · ,Σk as Legendrians

of YΛ. Hence the link hΛ,ε1(Σ1)
∐

Σ2
∐

· · ·
∐

Σk is isotopic to Σ1
∐

Σ2
∐

· · ·
∐

Σk in YΛ.

Now we build the rest of the handle-slid link by induction and show that it is isotopic to the

original link Σ at each stage. Namely, suppose we have constructed the ith link hi(Σ) :=

hΛ,ε1(Σ1)
∐

· · ·
∐
hΛ,εi(Σi)

∐
Σi+1

∐
· · ·

∐
Σk and proved that it is isotopic to hi−1(Σ) in YΛ.

Next we construct hi+1(Σ) := hΛ,ε1(Σ1)
∐

· · ·
∐
hΛ,εi(Σi)

∐
hΛ,εi+1

(Σi+1)
∐

Σi+2
∐

· · ·
∐

Σk

by taking sufficiently small εi+1 < εj for all j ≤ i and a chart Ui+1 disjoint from hi(Σ)\Σi+1

such that Σi+1,Λ appear in Ui+1 as in Figure 1. As explained above, the new link hi+1(Σ)

is Legendrian isotopic to the previous link hi(Σ) in YΛ since hi(Σ)\Σi+1 is disjoint from

Ui+1 and hi(Σ) is disjoint from an εi+1-neighborhood of Λ (since the Legendrians in hi(Σ)

are at most εi-close to Λ), which proves the inductive i + 1 case. For i = k, we get the

desired Legendrian hk(Σ) which is isotopic to Σ in YΛ by induction. This implies that

W ∪Hn
Λ ∪Hn

Σ1
∪ · · · ∪Hn

Σk
is Weinstein homotopic to W ∪Hn

Λ ∪Hn
hΛ(Σ1)

∪ · · · ∪Hn
hΛ(Σk)

, a

fact that we will use repeatedly later.

We also note that the handle-slide depend on more than just the data of Σ and Λ. The

resulting Legendrian depend crucially on the choice of chart U where Λ,Σ appear as in

the left-hand-side of Figure 1. We will use the notation hΛ,ε,U (Σ) when we emphasize the

dependence on U . In particular, different chart choices U1, U2 can result in Legendrians

hΛ,ε,U1
(Σ), hΛ,ε,U2

(Σ) that are not Legendrian isotopic in Y (but are still smoothly isotopic

in Y ); however hΛ,ε,U1
(Σ), hΛ,ε,U2

(Σ) are Legendrian isotopic in YΛ. We also note that

Σ, hΛ,ε(Σ) will generally not be smoothly isotopic in Y , while they are Legendrian isotopic

in YΛ.

Example 2.3. We start with a Legendrian link consisting of two linked unknots in (R2n−1, ξstd),

with one Legendrian the Reeb push-off of the other Legendrian; see Figure 2. The two light-

blue boxes are the Darboux charts used in the handleslides. In the top row, the handle-slide

produces a linked pair of Legendrian unknots (which can be seen by doing a Legendrian Rei-

demeister move), i.e htopΛunknot
(Λunknot) = Λunknot. In the bottom row, the handle-slide results

in a link where one of the Legendrians is loose, i.e. hbottomΛunknot
(Λunknot) = Λloose. The dark blue

box is the loose chart of this Legendrian; see Section 2.2 for definition. Since the Legendrian

unknot is not loose, the handle-slid Legendrians htopΛunknot
(Λunknot), h

bottom
Λunknot

(Λunknot) are not

isotopic in the original contact manifold (R2n−1, ξstd). Of course, these Legendrians are both

isotopic in the surgered manifold YΛunknot
since they are both isotopic to the push-off of the

attaching sphere there, i.e the image of Λunknot in YΛunknot
.

2.2. Loose Legendrians and flexible Weinstein domains. There exist many Legen-

drians with rich symplectic topology invisible from the point of view of algebraic topology.

On the other hand, Murphy [31] showed that exists a certain class of loose Legendrians

which satisfy a h-principle and whose symplectic topology is governed by their underlying

algebraic topology. These loose Legendrians are defined using a local model. We will use

the following local model from Section 2.1 of [5]. Let B3 ⊂ (R3, ξstd = kerαstd) be a unit

ball and let Λ0 be the 1-dimensional Legendrian whose front projection is shown in Figure 3.

Let Qn−2, n ≥ 3, be a closed manifold and U a neighborhood of the zero-section Q ⊂ T ∗Q.
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• any two loose Legendrians that are formally Legendrian isotopic are genuinely Leg-

endrian isotopic [31]

We now define a class of Weinstein domains introduced in [7] that are constructed by

iteratively attaching Weinstein handles along loose Legendrians.

Definition 2.6. A Weinstein domain (W 2n, λ, ϕ), n ≥ 3, is flexible if there exist regular

values c1, · · · , ck of ϕ such that c1 < minϕ < c2 < · · · < ck−1 < maxϕ < ck and for all

i = 1, · · · , k − 1, {ci ≤ ϕ ≤ ci+1} is a Weinstein cobordism with a single critical point p

whose the attaching sphere Λp is either subcritical or a loose Legendrian in (Y ci , λ|Y ci ).

Flexible Weinstein cobordisms are defined similarly. Also, Weinstein handle attachment

or contact surgery is called flexible if the attaching Legendrian is loose. So any flexible

Weinstein domain can be constructed by iteratively attaching subcritical or flexible handles

to (B2n, ωstd). A Weinstein domain that is Weinstein homotopic to a Weinstein domain

satisfying Definition 2.6 will also be called flexible. Finally, we note that subcritical domains

are automatically flexible.

Our definition of flexible Weinstein domains is a bit different from the original definition

in [7], where several critical points are allowed in {ci ≤ ϕ ≤ ci+1}. There are no gradient

trajectories between these critical points and their attaching spheres form a loose link in

(Y ci , λ|Y ci ), i.e each Legendrian is loose in the complement of the others. These two defi-

nitions are the same up to Weinstein homotopy. Indeed if we have an ordered collection of

Legendrians such that each one is loose in the complement of the previous ones, then we can

use the loose Legendrian h-principle to move each Legendrian away from the loose charts of

the previous ones so that all Legendrians are loose in the complement of each other.

Since they are built using loose Legendrians, which satisfy an h-principle, flexible Wein-

stein domains also satisfy an h-principle as proven by Cieliebak and Eliashberg [7]. Again,

the h-principle has an existence and uniqueness part:

• any almost Weinstein domain of dimension at least six admits a flexible Weinstein

structure in the same almost symplectic class

• any two flexible Weinstein domains that are almost symplectomorphic are Weinstein

homotopic (and hence have exact symplectomorphic completions and contactomor-

phic boundaries).

3. Proofs of Main Results

In this section, we prove the results described in the Introduction. We first prove a simpler

version of Theorem 1.5 without as much control on the topology of the flexible subdomain.

Theorem 3.1. Any Weinstein domain W 2n, n ≥ 3, can be Weinstein homotoped to a We-

instein domain V 2n
flex ∪ Hn obtained by attaching a single n-handle to a flexible Weinstein

domain V 2n
flex.

Remark 3.2. Theorem 3.1 also holds for Weinstein cobordisms.

Proof of Theorem 3.1. Let W 2n = (W 2n, λ, ϕ), n ≥ 3, be a Weinstein domain. By Lemma

12.20 of [7], we can Weinstein homotope W so that ϕ is self-indexing, i.e. if p is a critical
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point of index k, then ϕ(p) = k. In particular, we can assume that W is the result of at-

taching k index n handles to a subcritical Weinstein domainWsub along disjoint Legendrians

Λ1, · · · ,Λk.

If k = 0, thenW =Wsub =Wsub∪H
n−1∪Hn, where Hn−1, Hn are two cancelling handles

of index n − 1 and n; the domain Wsub ∪ H
n−1 is subcritical and hence flexible. If k = 1,

thenW =Wsub∪H
n
Λ1
; againWsub is subcritical and hence flexible. Therefore we can assume

W =Wsub ∪H
n
Λ1

∪ · · · ∪Hn
Λk

for some k ≥ 2.

The key step is to handle-slide HΛ2
, · · · , HΛk

over HΛ1
. We will do this by induction.

More precisely, we will prove that for every j with 2 ≤ j ≤ k, W is Weinstein homotopic to

Wsub ∪H
n
Λ′

1

∪ · · · ∪Hn
Λ′

k

for some Legendrian link
∐k

i=1 Λ
′

i such that
∐j

i=2 Λ
′

i is a loose link

in ∂Wsub. Then the case j = k completes the proof since then W is Weinstein homotopic to

the flexible domain Wsub ∪H
n
Λ′

2

∪ · · · ∪Hn
Λ′

k

with the single handle Hn
Λ′

1

attached. The proof

shows that we can assume that Λ1 actually stays fixed throughout.

We first prove the base case j = 2. We begin by modifying Λ1,Λ2 by Legendrian isotopies

that move only a small neighbhorhood of a single point, i.e. the resulting Legendrians are

the Legendrian connected sum of Λ1,Λ2 with certain Legendrian unknots. More precisely,

let U2 be a Darboux ball in the contact manifold ∂Wsub that is disjoint from Λ1∪· · ·∪Λk. Let

S2 be a Legendrian unknot in U2 and let T2 be a negative Reeb push-off of S2 also contained

in U2 so that S2, T2 are symplectically unlinked. We apply a Legendrian “Reidemeister

move” to S2 so that it appears as in Figure 4; this move is a Legendrian isotopy which is

contained in U2 and the resulting Legendrian, which we also call S2, is still symplectically

unlinked with T2. For one-dimensional Legendrians, this isotopy is the first Reidemeister

move and in higher dimenions (as in our situation) it results in a spherically rotated version

of this Reidemeister move. Note that the isotopy is not obtained by spherically rotating the

one-dimensional isotopy; see [4] for details on this isotopy.

Now we choose isotropic arcs γ1, γ2 connecting Λ1 to T2 and Λ2 to S2 respectively. Since

these arcs are subcritical, we can assume that they are disjoint; furthermore, we can assume

that γ1 is disjoint from Λi, i 6= 1 and γ2 is disjoint from Λi, i 6= 2. We can also ensure that

they intersect U2 as depicted in the left-hand-side of Figure 4. Let Λ′

1 := Λ1]T2 be the

Legendrian connected sum of Λ1 and T2 along γ1; see [34] for details about the connected

sum operation. Similarly, let Λ′

2 := Λ2]S2 be the Legendrian connected sum of Λ2 and S2
along γ2. By choice of γ1, γ2, the Legendrians Λ′

1 ∩ U2,Λ
′

2 ∩ U2 look as in right-hand-side of

Figure 4. Since U2 is disjoint from Λ1 and T2 is a Legendrian unknot in U2, Λ
′

1 is isotopic

to Λ1; we pull the unknot T2 to Λ1 using the isotropic arc γ1. Similarly, Λ′

2 is Legendrian

isotopic to Λ2. In fact, the whole Legendrian link Λ′

1

∐
Λ′

2

∐
Λ3

∐
· · ·

∐
Λk is Legendrian

isotopic to the link Λ1
∐

Λ2
∐

Λ3
∐

· · ·
∐

Λk because γ1, γ2 are disjoint from Λ3, · · · ,Λk and

S2, T2 are symplectically unlinked in U2.

Now we handle-slide Λ′

2 over Λ′

1. We first take sufficiently small ε2 > 0 so that an ε2-

neighborhood of Λ′

1 is disjoint from all other Legendrians. The ball U2 contains a smaller

chart V2 where Λ′

1,Λ
′

2 look as in Figure 1; see the blue box in the right-hand side of Fig-

ure 4. So we can use this chart to handle-slide Λ′

2 over Λ′

1 and produce hΛ′

1,ε2
(Λ′

2); see

the Legendrian in black in the right-hand-side of Figure 5. Then hΛ′

1,ε2
(Λ′

2) is isotopic to

the Legendrian Λ′

2 in ∂(Wsub ∪ Hn
Λ′

1

); in fact, the whole link hΛ′

1,ε2
(Λ′

2)
∐

Λ3
∐

· · ·
∐

Λk

is Legendrian isotopic to Λ′

2

∐
Λ3

∐
· · ·

∐
Λk in ∂(Wsub ∪ Hn

Λ′

1

) as explained in Remark
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times. We will now show that h2Λ0
(Λi) has algebraic intersection number zero with this belt

sphere. Indeed, consider the orientation of the two branches of h2Λ0
(Λi) as they approach the

belt sphere. The tangent space of these branches can be decomposed into a 1-dimensional

part in the “page” (as depicted in Figure 8) and an (n − 2)-dimensional part transverse to

the page. The tangent spaces parallel to the page have opposite orientations for the two

branches; see the arrows in Figure 8. The tangent spaces transverse to the page differ by

the antipodal map on Dn−1 due to passage through the crossing point of the Reidemeister

move. Hence if n is even, the two branches of h2Λ0
(Λi) have opposite orientations and so

h2Λ0
(Λi) has algebraic intersection zero with the belt sphere of Hn−1 as desired. If n is

odd, the Legendrian h2Λ0
(Λi) as described above has algebraic intersection two with the belt

sphere. So instead of doing the Reideimeister move as in the even case, we perform the

1-dimensional Reideimester move spun by Sn−2 ⊂ Λn−1; so this move modifies Λn−1 in a

neighborhood of Sn−2. Then we form h2Λ0
(Λi) by handle-sliding using a chart that intersects

the bottom branch of this Legendrian. Now there is no crossing point and so h2Λ0
(Λi) has

algebraic intersection zero with the belt sphere of Hn−1; this modified procedure works for

the n even case as well but it is more complicated to depict, which is why we have explained

the n even case separately. Finally, we note that h2Λ0
(Λi) is loose, even though we have

used a different Reidemeister move and so a loose chart as defined in Definition 2.4 does

not obviously appear. Namely, h2Λ0
(Λi) has a 1-dimensional zig-zag arc and since this arc

is in a Darboux ball, it has arbitrary thickness and so defines a loose chart; see [4]. In

conclusion, h2Λ0
(Λi) is loose for all n ≥ 3 and has algebraic intersection number zero with the

belt sphere of Hn−1. We do this procedure for all the Legendrian Λi and so, as in Theorem

3.1, h2Λ0
(Λ1)

∐
· · ·

∐
h2Λ0

(Λk) form a loose link; more precisely, the ith Legendrian is loose

in the complement of the previous (i− 1) Legendrians, which implies that the link is loose.

Hence W ′ :=Wsub ∪H
n−1 ∪Hn

h2
Λ0

(Λ1)
∪ · · · ∪Hn

h2
Λ0

(Λk)
is flexible and W =W ′ ∪Hn

Λ0
.

Since the algebraic intersection number of h2Λ0
(Λi) with the belt sphere of Hn−1 is zero,

n ≥ 3, and π1(∂(B
2n∪Hn−1)) = 0, we can use the Whitney trick to smoothly isotope h2Λ0

(Λi)

away from this belt sphere. In fact, we can assume that this smooth isotopy is supported in

∂(B2n ∪Hn−1). To see this, note that we can take the boundary of the Whitney disk to lie

in this region; see the green portion of Legendrian in the fourth diagram of Figure 8. This

region is simply-connected and hence the Whitney disk also lies in this region; so the isotopy

is also supported in this region. Since n ≥ 3, the Whitney disks will be generically disjoint

for different i and so we can smoothly isotope the whole link h2Λ0
(Λ1)

∐
· · ·

∐
h2Λ0

(Λk) off

the belt sphere of Hn−1 (again via an isotopy supported in ∂(B2n ∪Hn−1)).

The Legendrian link h2Λ0
(Λ1)

∐
· · ·

∐
h2Λ0

(Λk) is loose and so the smooth isotopy can be

approximated by a Legendrian isotopy. Since the smooth isotopy is supported in ∂(B2n ∪

Hn−1) and the Legendrians are loose in this region, the Legendrian isotopy is also sup-

ported in this region. Let ϕt be the ambient contact isotopy inducing this Legendrian

isotopy and supported in a small neighborhood of the Legendrian isotopy; in particular ϕt

is also supported in ∂(B2n ∪ Hn−1). Since h2Λ0
(Λ1)

∐
· · ·

∐
h2Λ0

(Λk) is a loose link, so is

ϕ(h2Λ0
(Λ1))

∐
· · ·

∐
ϕ(h2Λ0

(Λk)), where ϕ := ϕ1. Furthermore, we can assume that this link

is loose in the complement of Hn−1 and Λ0 but not in the complement of ϕ(Λ0). See the

fifth diagram in Figure 8. The upper Legendrian in black is ϕ(h2Λ0
(Λi)) and the blue box is

its loose chart. The red Legendrian is ϕ(Λ0). This fifth diagram is purely schematic and is
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meant to demonstrate that ϕ(Λ0) intersects the belt sphere of Hn−1 some number of times

and is linked with ϕ(h2Λ0
(Λ1)) in some way such that ϕ(Λ0) intersects the loose chart of

ϕ(h2Λ0
(Λi)) (since Λ0 intersected the loose chart of h2Λ0

(Λi)).

Now we apply the contact isotopy ϕ to all attaching Legendrians; see the transition from

the fourth to the fifth diagram in Figure 8. As a result, we get that W = Wsub ∪ H
n−1 ∪

Hn
h2
Λ0

(Λ1)
∪ · · · ∪Hn

h2
Λ0

(Λk)
∪Hn

Λ0
is Weinstein homotopic to Wsub ∪H

n−1 ∪Hn
ϕ(h2

Λ0
(Λ1))

∪ · · · ∪

Hn
ϕ(h2

Λ0
(Λk))

∪Hn
ϕ(Λ0)

. The key point is that the latter presentation is Weinstein homotopic

to Wsub ∪H
n
ϕ(h2

Λ0
(Λ1))

∪ · · · ∪Hn
ϕ(h2

Λ0
(Λk))

∪Hn−1 ∪Hn
ϕ(Λ0)

because we can attach the handles

Hn
ϕ(h2

Λ0
(Λ1))

∪ · · · ∪Hn
ϕ(h2

Λ0
(Λk))

before Hn−1 since ϕ(h2Λ0
(Λ1))

∐
· · ·

∐
ϕ(h2Λ0

(Λk)) is disjoint

from the belt sphere of Hn−1. Let W ′′ be the domain Wsub ∪H
n
ϕ(h2

Λ0
(Λ1))

∪ · · · ∪Hn
ϕ(h2

Λ0
(Λk))

obtained by viewing ϕ(h2Λ0
(Λ1))

∐
· · ·

∐
ϕ(h2Λ0

(Λk)) as a Legendrian link in ∂Wsub. So

W is Weinstein homotopic to W ′′ ∪ Hn−1 ∪ Hn
ϕ(Λ0)

. We note that W ′′ is flexible since

ϕ(h2Λ0
(Λ1))

∐
· · ·

∐
ϕ(h2Λ0

(Λk)) is loose in the complement of Hn−1.

Finally, we show that the Weinstein cobordism W\W ′′ = Hn−1 ∪ Hn
ϕ(Λ0)

is smoothly

trivial. Since ϕ is smoothly isotopic to the identity, ϕ(Λ0) is smoothly isotopic to Λ0 in

∂(Wsub∪H
n−1). Since Λ0 intersects the belt sphere of Hn−1 exactly once, this isotopy gives

Whitney disks that cancel out all intersection points between ϕ(Λ0) and the belt sphere of

Hn−1 (except for one). Since n ≥ 3, the Whitney disks will be generically disjoint from the

link ϕ(h2Λ0
(Λ1))

∐
· · ·

∐
ϕ(h2Λ0

(Λk)). So ϕ(Λ0) can be smoothly isotoped in the complement

of this link to a sphere that intersects the belt sphere of Hn−1 exactly once. This means

that ϕ(Λ0) can be smoothly isotoped in ∂(W ′′ ∪Hn−1) to intersect this belt sphere exactly

once, which proves that W\W ′′ = Hn−1 ∪Hn
ϕ(Λ0)

is smoothly trivial.

Any almost symplectic structure on a smoothly trivial cobordism can be deformed relative

to the negative end to the product almost symplectic structure. In particular, W,W ′′ are

almost symplectomorphic. Since W ′′ is flexible, by the uniqueness h-principle [7] it is the

flexibilization Wflex of W . �

Now we prove the 4-dimensional analog of Theorem 1.5.

Proof of Theorem 1.6. We take V 4 to be W ′ from the proof of Theorem 1.5 so that W =

V ∪ H2
Λ0
. Note that V 4 is obtained by attaching a 1-handle and some 2-handles along

h2Λ0
(Λk) to W 4

sub. Each attaching knot for the 2-handles is stabilized in the complement

of the previous ones; hence V 4 is a stabilized domain. Finally, we note that V 4 is simply

homotopy equivalent to W 4 ∪ H1. To see this, we consider the six-dimensional domain

V 4×B2; as can be seen explicitly, the attaching knots h2Λ0
(Λk) are unknotted in the B6∪H1

region and hence can be smoothly isotoped to Λk. As a result, this domain is diffeomorphic

to (W 4 ∪H1)×B2. Here we do not use the Whitney trick directly since the region B6 ∪H1

is not simply-connected. �

Using Theorem 1.5, we can prove Theorem 1.1, our result relating WCrit and Crit.

Proof of Theorem 1.1. By Theorem 1.5, we can Weinstein homotope any Weinstein domain

W 2n, n ≥ 3, to its flexiblization plus two smoothly cancelling handles of index n−1, n, i.e. to

Wflex∪H
n−1∪Hn

Λ1
where Λ1 can be smoothly isotoped to intersect the belt sphere of Hn−1

exactly once. For any smooth Morse function f with critical points of index at most n onW ,
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there is a Weinstein homotopy of Wflex to a Weinstein presentation with Weinstein Morse

function f ; see Theorem 14.1 of [7]. Furthermore, if f has ∂Wflex as a regular level set,

then this Weinstein homotopy is fixed on ∂Wflex up to scaling. By Smale’s handle-trading

trick, there exists such a smooth function onW that minimizes the number of critical points,

i.e. with Crit(W ) critical points, and so we can Weinstein homotope Wflex to a Weinstein

presentation with Crit(W ) critical points. Since this homotopy is fixed up to scaling on

∂Wflex, it extends to a Weinstein homotopy of Wflex ∪ Hn−1 ∪ Hn
Λ1
, which is fixed up to

scaling in W\Wflex. In particular, this homotopy on Wflex ∪H
n−1 ∪Hn

Λ1
does not alter the

number of critical points inW\Wflex. Combining the homotopy ofW toWflex∪H
n−1∪Hn

Λ1

and this second homotopy of Wflex ∪H
n−1 ∪Hn

Λ1
to a presentation with few critical points,

we get a Weinstein homotopy of W to a Weinstein presentation with Crit(W ) + 2 critical

points: Crit(W ) critical points inWflex and 2 critical points inW\Wflex due to the handles

Hn−1, Hn
Λ1
. This proves the first claim in Theorem 1.1.

Now we prove the third claim in Theorem 1.1 about smoothly subcritical domains W 2n.

If W 2n is Weinstein subcritical, then W 2n is flexible and so by the above discussion can

be homotoped to a Weinstein presentation with Crit(W ) critical points, i.e. WCrit(W ) =

Crit(W ). Conversely, suppose that WCrit(W ) = Crit(W ) and π1(W ) = 0. If π1(W ) =

0, the proof of Smale’s h-cobordism theorem shows that Crit(W ) equals the number of

generators and relations for integral homology; see Theorem 6.1 of [39]. Then any minimizing

smooth Morse function on W cannot have any critical points of index greater than n − 1

since these critical points are algebraically unnecessarily; we can remove them and still

have generators for integral homology since Hn(W ;Z) = 0 and Hn−1(W ;Z) is torsion-

free for smoothly subcritical W . Hence if π1(W ) = 0 and WCrit(W ) = Crit(W ), then

the minimal Weinstein presentation gives a minimal smooth presentation and so cannot

have any critical points of index greater than n − 1. Therefore W is Weinstein subcritical.

Finally, we note that if WCrit(W 2n) 6= Crit(W 2n), then WCrit(W 2n) = Crit(W 2n) + 2

since WCrit(W 2n) ≤ Crit(W 2n) + 2 by the first claim and WCrit(W 2n) ≡ Crit(W 2n) + 2

mod 2 by the Euler characteristic.

Now we prove the smoothly critical case. Suppose that ψ is a minimal smooth Morse

function on W with k = Crit(W ) critical points. By assumption, one of these critical points

has index n (and the rest of the critical points have index at most n). By the previous

discussion, we can assume that ψ is a Weinstein Morse function on Wflex and two other

smoothly cancelling handles Hn−1, Hn
Λ1

are attached to Wflex to form W . The smooth

isotopy from Λ1 to cancelling position gives some number of Whitney disks in ∂(Wflex ∪

Hn−1) pairing off all intersection points of Λ1 and the belt sphere of Hn−1 (except for one

intersection point).

We can suppose that the index n critical point of ψ on Wflex is attached along a loose

Legendrian Λ0; so Wflex = W ′

flex ∪ Hn
Λ0

and W = W ′

flex ∪ Hn−1 ∪ Hn
Λ0

∪ Hn
Λ1
. Note that

Λ0 is disjoint from the belt sphere of Hn−1 (since Hn−1 is attached after Hn
Λ0
). We view

Λ1 ⊂ ∂(W ′

flex ∪ Hn−1) by taking any Legendrian in ∂(W ′

flex ∪ Hn−1) that is isotopic to

Λ1 in ∂(W ′

flex ∪ Hn−1 ∪ Hn
Λ0
); in general, there will be many such Legendrians, which are

non-isotopic in ∂(W ′

flex ∪H
n−1). Since n ≥ 3, we can assume that the Whitney disks of Λ1

in ∂(Wflex∪H
n−1) are disjoint from the belt sphere of Hn

Λ0
and hence lie in ∂(W ′

flex∪H
n−1).

In particular, Λ1 can be smoothly isotoped in ∂(W ′

flex ∪H
n−1) to intersect the belt sphere
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of Hn−1 in a single point. Furthermore, since the Whitney disks are disjoint from Λ0 (since

they are disjoint from its belt sphere), we can assume that this isotopy is supported away

from Λ0. We can also assume that this smooth isotopy of Λ1 is the identity in a neighborhood

of some point x in Λ1. We take an isotropic path γ from x to Λ0 and also assume that the

isotopy is the identity in a neighborhood of this path.

Now we handle-slide Λ1 over Λ0 using the path γ. More precisely, we take the Legendrian

connected sum of Λ1 with a Legendrian unknot near Λ0 via the isotropic arc γ and then

handle-slide using a chart near this Legendrian unknot as in Theorem 3.1. We also do

the handleslide so that the resulting Legendrian hΛ0
(Λ1) is loose in ∂(W ′

flex ∪ Hn−1) (but

not in the complement of Λ0). Now we note that hΛ0
(Λ1) can also be smoothly isotoped in

∂(W ′

flex∪H
n−1) to a cancelling sphere that intersects the belt sphere of Hn−1 once. Namely,

we can use exactly the same smooth isotopy that takes Λ1 to a cancelling sphere. This is

because hΛ0
(Λ1) is topologically the connected sum of Λ0 and Λ1. Since the previous isotopy

is supported away from Λ0 and the path γ used for the connected sum, we can extend it to

the connected sum. Furthermore, Λ0 is disjoint from the belt sphere of Hn−1 and so after

the smooth isotopy, hΛ0
(Λ1) intersects this belt sphere once.

Since hΛ0
(Λ1) is loose in ∂(W ′

flex ∪Hn−1) and smoothly cancels Hn−1, we can symplec-

tically cancel Hn−1 and Hn
hΛ0

(Λ1)
. Therefore W ′

flex ∪ Hn−1 ∪ Hn
Λ0

∪ Hn
hΛ0

(Λ1)
is Weinstein

homotopic to W ′

flex ∪H
n
Λ′

0

. Here Λ′

0 is the Legendrian obtained by handle-sliding Λ0 off the

cancelling pairHn−1∪Hn
hΛ0

(Λ1)
, i.e. Λ′

0 is the image of Λ0 inW
′

flex =W ′

flex∪H
n−1∪Hn

hΛ0
(Λ1)

.

Since W ′

flex has a Weinstein presentation with k − 1 critical points, W ′

flex ∪ Hn
Λ′

0

has a

presentation with k = Crit(W ) critical points. This completes the proof since W =

W ′

flex ∪ Hn−1 ∪ Hn
Λ0

∪ Hn
Λ1

is Weinstein homotopic to W ′

flex ∪ Hn−1 ∪ Hn
Λ0

∪ Hn
hΛ0

(Λ1)
,

which is homotopic to W ′

flex ∪H
n
Λ′

0

. �

The proof of Theorem 1.1 can be used to prove Corollary 1.7: all Legendrians in our

Legendrian link can be made individually loose.

Proof of Corollary 1.7. The proof of Theorem 1.1 in the smoothly critical case shows that

W = W ′

flex ∪ Hn−1 ∪ Hn
Λ0

∪ Hn
hΛ0

(Λ1)
where Λ0, hΛ0

(Λ1) are both loose; Λ0 is loose by as-

sumption and hΛ0
(Λ1) is loose because of the handle-slide. Combining Λ0 with the attaching

spheres of the n-handles of W ′

flex ∪ Hn−1 (which form a loose link for some presentation),

we get the desired result. For general W , we first add a pair of symplectically cancelling

handles to Wflex and then proceed as in the smoothly critical case. �

Next we prove Theorem 1.10 about the number of intersection points between the belt

and attaching spheres of smoothly cancelling handles.

Proof of Theorem 1.10. By Theorem 3.1, we can assume that the smoothly trivial Weinstein

cobordism W consists of two smoothly cancelling handles Hn−1
1 , Hn

Λ1
, i.e. Λ1 is smoothly

isotopic to a Legendrian that intersects the belt sphere of Hn−1
1 in a single point. Now we

follow the proof of Theorem 1.5. We first attach two cancelling handles Hn−1
0 , Hn

Λ0
in a small

Darboux ball and do two handle-slides (of opposite orientations) of Λ1 over Λ0 so that the

resulting Legendrian h2Λ0
(Λ1) is loose. Then we use the contact isotopy ϕ to isotope h2Λ0

(Λ1)

away from the belt sphere ofHn−1
0 . The result isW = Hn−1

0 ∪Hn−1
1 ∪Hn

ϕ(h2
Λ0

(Λ1))
∪Hn

ϕ(Λ0)
; see
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the fifth diagram in Figure 8. The key observation is that this local diagram is independent

of Λ1 since all isotopies were done near Hn−1
0 ∪Hn

Λ0
. In particular, let Cn be the number of

times that ϕ(Λ0) intersects the belt sphere of Hn−1
0 ; in Figure 8, this number is 5 but since

we do not compute this isotopy ϕ explicitly we do not know the exact number.

Next we note that Legendrian ϕ(h2Λ0
(Λ1)) is still smoothly isotopic to a Legendrian that

intersects the belt sphere of Hn−1
1 in a single point. This is because ϕ(h2Λ0

(Λ1)) is exactly

the same as Λ1 except for a loose chart; see the blue box in the fifth diagram of Figure 8.

Furthermore, we can assume that this smooth isotopy is supported away from Hn−1 ∪Hn
Λ0
.

Since ϕ(h2Λ0
(Λ1)) is loose, there is a contact isotopy ψ taking it to a Legendrian that intersects

the belt sphere of Hn
1 in one point; since ϕ(h2Λ0

(Λ1)) is loose away from Hn−1∪Hn
Λ0

and the

smooth isotopy is supported away from this region, we can assume that this contact isotopy

is also supported away from Hn−1
0 ∪ Hn

Λ0
. In particular, ψ(ϕ(Λ0)) still intersects the belt

sphere of Hn−1
0 in Cn points. Finally, we handle-slide ψ(ϕ(Λ0)) over ψ(ϕ(h

2
Λ0
(Λ1)) and off

Hn−1
1 . This also does not change its geometric intersection number with the belt sphere of

Hn−1
0 since ψ(ϕ(h2Λ0

(Λ1)) is disjoint from this belt sphere. We call the resulting Legendrian

Λ′

0. Then W = Hn−1
0 ∪Hn

Λ′

0

and Λ′

0 intersects the belt sphere of Hn−1
0 exactly Cn times as

desired. The Legendrian Λ′

0 is depicted in the sixth diagram of Figure 8. This diagram is

also schematic and is mean to signify that Λ′

0 has an upper and lower part; the lower part

of Λ′

0 is close to Hn−1
0 and is independent of Λ1 while the upper part of Λ′

0 depends on Λ1

(and hence on W ). �

Now we give proofs of the results in Section 1.4. We first prove Corollary 1.12 concerning

the number of generators g(W(X)) of the wrapped Fukaya category W(X).

Proof of Corollary 1.12. The proof of Theorem 1.1 shows thatWCritn(X) ≤ max{1, Critn(X)}

for all X2n. Combining this with the result from [6, 21], we get the inequality g(W(X)) ≤

max{1, Critn(X)}. If X2n is simply-connected, then Smale’s h-cobordism theorem (which

holds since n ≥ 3) implies that Critn(X) = g(Hn(X;Z)), which proves the result in that

case. If X2n is not simply-connected, we attach some 2-handles to X2n to get a simply-

connected Weinstein domain Y 2n. Since n ≥ 3, we have Hn(Y 2n;Z) ∼= Hn(X2n;Z) and so

g(Hn(Y 2n;Z)) = g(Hn(X2n;Z)). Furthermore, since n ≥ 3, the 2-handles are subcritical

and hence DbW(Y ) is exact equivalent to DbW(X) by [21] and so g(W(X)) = g(W(Y )).

Then the result for Y 2n, which is simply-connected, implies the result for X2n. �

Next we prove Corollary 1.13 that g(K0(W(X))) ≤ g(Hn(X;Z)).

Proof of Corollary 1.13. The case g(Hn(X;Z)) ≥ 1 is proven by Equation 1.4 so it suffices

to do the case when g(Hn(X;Z)) = 0. Then g(K0(W(X))) ≤ 1 by Equation 1.4 and if

g(K0(W(X))) = 0, we are done. Otherwise, g(K0(W(X))) = 1 and so K0(W(x)) ∼= Z/kZ

for some integer k ≥ 0. Now we take the boundary connected sum and form the new We-

instein domain X\X. Since 1-handles are subcritical, DbW(X\X) ∼= DbW(X
∐
X) by [21]

and DbW(X
∐
X) ∼= DbW(X)

∏
DbW(X). As a result, K0(W(X\X)) ∼= K0(W(X)) ⊕

K0(W(X)) ∼= Z/kZ ⊕ Z/kZ. This implies that g(K0(W(X\X))) = 2 since Z/kZ ⊕ Z/kZ

is not a cyclic group. On the other hand, we also have Hn(X\X;Z) ∼= Hn(X;Z)/ ⊕

Hn(X;Z) ∼= 0 and so g(Hn(X\X;Z)) = 0. Again using the previous inequality, we get
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that g(K0(W(X\X))) ≤ 1, which contradicts g(K0(W(X\X))) = 2. Therefore, we must

have that g(K0(W(X))) = 0 and so K0(W(X)) = 0 as desired. �

Remark 3.4. A similar boundary connected sum trick was used by Smith to show that all

exact symplectic fillings of (S2n−1, ξstd) have vanishing symplectic cohomology [36]; also see

[41].

Next we prove our results about the Chekanov-Eliashberg algebra CE(Λ) of Legendrians.

These results depend on the surgery formula [3]; alternatively, we can use the partially

wrapped invariant CF (D,D; (W,Λ)) and the rigorous proof of the surgery formula given in

[21]. We first prove Corollary 1.16: the Chekanov-Eliashberg algebra of a Legendrian Λn−1 ⊂

(Sn−1 × Sn, ξstd) that is primitive in homology has no finite-dimensional representations.

Proof of Corollary 1.16. We first assume that Λ is a sphere and prove the general case later.

Let X2n := B2n
std∪H

n−1∪Hn
Λ. Since [Λ] = 1 ∈ Hn−1(S

n−1×Sn;Z) ∼= Z, Hn(X2n;Z) = 0 and

so K0(W(X)) = 0 by Corollary 1.13. Let Cn ⊂ X2n be the co-core of Hn
Λ. Since Cn is the

only index n co-core for X2n, Cn generates W(X) and so DbW(X) := H0(Tw(Fuk(X)))

is equivalent to H0(Tw(CW (C,C))), where we treat CW (C,C) is an A∞-category with

one object. By [3], CW (C,C) is quasi-isomorphic to CE(Λ) and hence DbW(X) is exact

equivalent to H0(Tw(CE(Λ))).

Suppose that CE(Λ) has a DGA map to Mat(n,K). Then there is an A∞-functor

Tw(CE(Λ)) → Tw(Mat(n,K)) and an exact functorH0(Tw(CE(Λ)) → H0(Tw(Mat(n,K)))

taking CE(Λ) to Mat(n,K) (considered as twisted complexes). Let D(Mat(n,K)) de-

note the classical derived category of Mat(n,K)-modules and D∞(Mat(n,K)) its A∞ ana-

log, i.e. the homotopy category of A∞-modules over Mat(n,K). There is an embedding

D(Mat(n,K)) → D∞(Mat(n,K)); see [25]. Since H0(Tw(Mat(n,K))) is equivalent to the

subcategory of D∞(Mat(n,K)) generated by the free module Mat(n,K) and since the exact

subcategory DMat(n,K) contains this free module, H0(Tw(Mat(n,K))) is also equivalent to

the subcategory of DMat(n,K) generated by the free module Mat(n,K). This subcategory

is an exact subcategory of DbProj(Mat(n,K)), the bounded derived category of projective

Mat(n,K)-modules. In summary, there is an exact functor DbW(X) → DbProj(Mat(n,K))

taking the co-core Cn to the free module Mat(n,K). This functor induces a map of

Grothendieck groups K0(W(X)) → K0(D
bProj(Mat(n,K)), and the latter is just the usual

Grothendieck group K0(Mat(n,K)) of projective Mat(n,K)-modules. It is well-known that

[Mat(n,K)] ∈ K0(Mat(n,K)) ∼= Z is non-zero. Therefore K0(W(X)) is also non-zero, which

contradicts Corollary 1.13. Similarly, there are no DGA maps from CE(Λ) to a commutative

ring R since [R] ∈ K0(R) is non-zero for commutative rings.

Now we prove the case when Λn−1 is not a sphere. In this case, we cannot attach a

standard n-handle along Λ but we can attach a generalized handle. Namely, let Mn be

a smooth manifold with boundary Λn−1. Then we can construct the Weinstein domain

X2n := B2n
std∪H

n−1∪ΛT
∗M , where we glue T ∗M toB2n

std∪H
n−1 by identifying the Legendrian

∂M ⊂ ∂T ∗M with Λ ⊂ ∂(B2n
std ∪ Hn−1); more precisely, we fix parametrized Legendrian

embeddings i : Λ ↪→ ∂(B2n
std∪H

n−1) and j : Λ ↪→ ∂T ∗M , which give us identifications of their

neighborhoods with J1(Λ) that we use to glue B2n
std∪H

n−1 to T ∗M . Then CE(Λ;C∗(ΩM
n)),

the Chekanov-Eliashberg algebra with coefficients in chains on the loop space ofMn, is quasi-

isomorphic to CW (T ∗

xM,T ∗

xM), wrapped Floer cochains of the cotangent fiber T ∗

xM ⊂
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T ∗M ⊂ X2n; the partially wrapped analog of this result is proven in [21]. The cotangent

fiber T ∗

xM is the co-core of the only index n handle of X2n and hence generates DbW(X).

The condition that Λ is primitive in Hn−1(S
n−1 × Sn;Z) again implies that Hn(X;Z) = 0.

HenceK0(W(X)) = 0 and so by the same argument as when Λ is a sphere, CE(Λ;C∗(ΩM
n))

has no finite-dimensional representations or DGA maps to a commutative ring. On the

other hand, there is a DGA map CE(Λ;C∗(ΩM
n)) → CE(Λ) induced by the DGA map

C∗(ΩM) → C∗(ΩD
n) = K. Any finite-dimensional representation or map to a commutative

ring from CE(Λ) pulls back to such a map from CE(Λ;C∗(ΩM
n)), which we have proved

cannot happen. So CE(Λ) also cannot have any finite-dimensional representations or DGA

maps to commutative rings. �

Now we prove Corollary 1.17 concerning Legendrians that can be isotoped into a neigh-

borhood of a loose Legendrian Λloose ⊂ (S2n−1, ξstd).

Proof. 1.17 We first prove the case when Λloose is the loose Legendrian unknot Λunknot,loose

and then prove the general case. Consider a loose Legendrian sphere A ⊂ (Sn−1 × Sn, ξstd)

that is primitive in Hn(S
n−1 × Sn;Z). Let B ⊂ (Sn−1 × Sn, ξstd) be the stabilization of

A, followed by a small Reeb push-off so that A,B are disjoint and form a loose link. The

stabilization is done so that A,B are formally isotopic (and hence Legendrian isotopic). We

can also assume that exist disjoint contact neighborhoods U, V of A,B respectively so that

A,B are loose in the complement of V,U respectively.

Since A is loose, B2n
std ∪ Hn−1 ∪ Hn

A is Weinstein homotopic to B2n
std. By attaching the

handle Hn
A using a neighborhood of A contained in U , we can assume that B and its neigh-

borhood V are disjoint from the attaching neighborhood and hence extend to a Legendrian

B′ ⊂ (S2n−1, ξstd) = ∂B2n
std and a contact neighborhood V ′ of B′. Since B is loose in the

complement of U , its loose chart extends to (S2n−1, ξstd) and so B′ is loose. The belt sphere

of Hn
A is the standard Legendrian unknot and so B′ is formally isotopic to the Legendrian

unknot. Since B′ is loose, it is the loose Legendrian unknot Λunknot,loose.

As in the statement of this result, consider a Legendrian Λ ⊂ (S2n−1, ξstd) that can iso-

toped into a neighborhood of Λunknot,loose = B′ and is primitive in Hn−1(Λunknot,loose;Z); we

can assume that this neighborhood is V ′. Using the identification between V ′ ⊂ (S2n−1, ξstd)

and V ⊂ (Sn−1×Sn, ξstd), Λ ⊂ V ′ defines a Legendrian Λ0 ⊂ V ⊂ (Sn−1×Sn, ξstd). In par-

ticular, Λ ⊂ (S2n−1, ξstd) is obtained by trivially extending Λ0 ⊂ (Sn−1 × Sn, ξstd) through

the Weinstein cobordism from B2n
std ∪ H

n−1 to B2n
std = B2n

std ∪ H
n−1 ∪ Hn

A given by handle

attachement along A ⊂ (Sn−1 × Sn, ξstd). Since Λ0 ⊂ V , A ⊂ (Sn−1 × Sn, ξstd) is loose in

the complement of Λ0. Handle attachment along the loose Legendrian A does not change

the Chekanov-Eliashberg algebras of Legendrians, like Λ0, that are disjoint from the loose

chart of A; see [3, 26]. Hence CE(Λ0), CE(Λ) are quasi-isomorphic; this is the key point

where we use the fact that Λ is in a neighborhood of Λunknot,loose = B′, which implies that

Λ0 is disjoint from the loose chart of A. Without this condition, CE(Λ0), CE(Λ) could be

completely different and in fact, CE(Λ0) could be zero while CE(Λ) is arbitrary.

The fact that Λ is primitive in Hn−1(Λunknot,loose;Z) implies that Λ0 ⊂ (Sn−1 × Sn, ξstd)

is primitive in Hn−1(B;Z) and hence primitive in Hn−1(S
n−1×Sn;Z). So H0(Tw(CE(Λ0))

is equivalent to DbW(X), where X2n is the Weinstein ball B2n
std ∪H

n−1 ∪Hn
Λ0
. Then as in
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with no finite-dimensional representations; these Legendrians are also in a contact neighbor-

hood of loose Legendrians and are primitive in their homology.

Proof of Corollary 1.18. McLean [30] showed that there are infinitely many exotic Weinstein

balls Σ2n
k for each n ≥ 4, distinguished by symplectic cohomology. As explained in Example

1.3, WCrit(Σ2n
k ) = 3 and so Σ2n

k can be presented as B2n
std∪H

n−1∪Hn
Λk

for some Legendrian

Λk ⊂ (Sn−1 ×Sn, ξstd). Since Σ2n
k is a ball, Λk is primitive in homology and so by Corollary

1.16, CE(Λk) has no finite-dimensional representations. By [3], the symplectic cohomology

of Σ2n
k is isomorphic to the Hochschild homology of CE(Λk) and hence CE(Λk) are not

acyclic and are different for different k, as desired.

Next we show that the Legendrians Λk can be isotoped into a contact neighborhood of a

loose Legendrian and is primitive in its homology class. Note that B2n
std∪H

n−1 is a subcritical

Weinstein domain and hence Weinstein homotopic toD∗Sn−1×D2, whereD∗Sn−1 is the unit

disk cotangent bundle. So (Sn−1×Sn, ξstd) = ∂(B2n
std∪H

n−1) can be viewed as the boundary

of the Lefschetz fibration D∗Sn−1×D2. By smoothing the corners of this Lefschetz fibration,

(Sn−1×Sn, ξstd) has an open book decomposition obtained by gluing (T ∗Sn−1×S1, λ+ dz)

to (ST ∗Sn−1×D2, λ+xdy−ydx) by identifying ST ∗Sn−1× [1,∞)×S1 ⊂ T ∗Sn−1×S1 with

ST ∗Sn−1 × (D2\0) ⊂ ST ∗Sn−1 ×D2 via the contactomorphism (x, r, θ) → (x, 1/r2, θ). The

pages of the open book decomposition are T ∗Sn−1 × θ, where θ ∈ S1. Akbulut and Arikan

[2] showed that there is a Legendrian isotopy of Λn−1 so that it becomes disjoint from the

closure T ∗Sn−1 × θ
∐
ST ∗Sn−1 × (0, 0) of the page T ∗Sn−1 × θ. The complement of the

closure of this page is T ∗Sn−1 × (S1\θ), which is a standard contact neighborhood of the

Legendrian Sn−1×−θ. In particular, Λk can be isotoped into a neighborhood of Sn−1×−θ.

Since Sn−1 × −θ and Λk are both primitive in Hn−1(S
n−1 × Sn;Z) ∼= Z, Λk is primitive in

Hn−1(S
n−1 ×−θ;Z). Finally, we note that Sn−1 ×−θ is a loose Legendrian since it passes

through the belt sphere of Hn−1 exactly once.

For the second part of this corollary about Legendrians in (S2n−1, ξstd), we essentially

reverse the procedure in the proof of Corollary 1.17. Take a loose Legendrian A ⊂ (Sn−1 ×

Sn, ξstd) disjoint from Λk and loose in the complement of Λk. Then B2n
std ∪ H

n−1 ∪ Hn
A is

flexible and hence Weinstein homotopic to B2n
std. Since Λk is disjoint from A, Λk defines a

Legendrian sphere Λ′

k in (S2n−1, ξstd) = ∂B2n
std. Since A is loose in the complement of Λk,

CE(Λ′

k) is quasi-isomorphic to CE(Λk) by [3, 26], as discussed in the proof of Corollary 1.17.

Therefore, H0(Tw(CE(Λk))) is equivalent to H0(Tw(CE(Λ′

k))) and so Λ′

k ⊂ (S2n−1, ξstd)

has the same properties as Λk ⊂ (Sn−1 × Sn, ξstd), i.e. CE(Λ′

k) has no finite-dimensional

representations or DGA maps to a commutative ring and their Hochschild homology are

different for different k. Finally, we observe that Λ′

k is in a contact neighborhood of a loose

Legendrian in (S2n−1, ξstd) and is primitive in its homology. By the previous paragraph,

Λk ⊂ (Sn−1 × Sn, ξstd) is in a contact neighborhood of the loose Legendrian Sn−1 ×−θ and

is primitive in its homology. The Legendrian Sn−1 × −θ is isotopic to the Legendrian B

obtained by stabilizing A and taking a small Reeb push-off; so we assume from the start

that Λk is in a neighborhood of B, is primitive in Hn−1(B;Z), and is disjoint from A. So

the extension Λ′

k of Λk is in a neighborhood of the extension B′ of B to (S2n−1, ξstd) and is

primitive in Hn−1(B
′;Z). Since B is loose in the complement of A, B′ ⊂ (S2n−1, ξstd) is a

loose Legendrian, in fact the loose Legendrian unknot, which proves the claim. �
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