SIMPLIFYING WEINSTEIN MORSE FUNCTIONS

OLEG LAZAREV

ABSTRACT. We prove that the minimum number of critical points of a Weinstein Morse
function on a Weinstein domain of dimension at least six is at most two more than the
minimum number of critical points of a smooth Morse function on that domain; if the
domain has non-zero middle-dimensional homology, these two numbers agree. There is also
an upper bound on the number of gradient trajectories between critical points in smoothly
trivial Weinstein cobordisms. As an application, we show that the number of generators
for the Grothendieck group of the wrapped Fukaya category is at most the number of
generators for singular cohomology and hence vanishes for any Weinstein ball. We also
give a topological obstruction to the existence of finite-dimensional representations of the
Chekanov-Eliashberg DGA for Legendrians.

1. INTRODUCTION AND MAIN RESULTS

Weinstein domains are exact symplectic manifolds equipped with Morse functions compat-
ible with their symplectic structures. These domains encompass a large class of symplectic
manifolds, e.g. cotangent bundles, and are closely related to Stein manifolds in complex
geometry [7]. The Weinstein Morse function gives a symplectic handle-body presentation of
the domain and allows one to study its symplectic geometry via high-dimensional Legendrian
knot theory. This handle-body presentation is not unique and, like a smooth handlebody
presentation, a Weinstein handle-body presentation can be modified by a series of moves,
or Weinstein homotopies, that preserve the symplectic structure of the ambient domain; see
Section 2. In this paper, we study how these moves can be used to simplify an arbitrary
Weinstein presentation.

Abouzaid and Seidel [1] introduced the complezity W Crit(W') of a Weinstein structure W
as the minimal number of critical points of a Weinstein Morse function on W, up to Weinstein
homotopy. The corresponding notion for Stein domains was introduced by Eliashberg [15].
Complexity is tautologically a Weinstein homotopy invariant. The analog of W(C'rit in the
smooth setting is Crit(M), the minimal number of critical points of any Morse function on
a smooth manifold M. This is a classical invariant of smooth manifolds and we will study
the relationship between WCrit(W) and Crit(W) as a way of investigating the difference
between symplectic and smooth topology and the corresponding handle-body moves.

We first recall some results about Crit(M). A priori Crit(M) is just a smooth invariant of
M. Morse proved that there is a lower bound for Crit(M) in terms of the integral homology
H,(M;Z). Smale [39] showed in the proof of the h-cobordism theorem that if M™ is simply-
connected and n > 6, then this lower bound is in fact sharp. More precisely, it is possible
to simplify an arbitrary Morse function on M™ to another Morse function whose number of
critical points agrees with the homological lower bound. So in this case, Crit(M) is actually

a homotopy invariant of M™. To simplify an arbitrary Morse function, Smale uses certain
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moves called handle-slides and the Whitney trick, which requires M"™ to be simply-connected
and n > 6. The h-cobordism theorem generally fails without these assumptions.

In this paper, we will study how much of Smale’s h-cobordism theorem holds in the
symplectic setting. Since any Weinstein Morse function is a smooth Morse function, we
have the inequality WCrit(W) > Crit(W) and Eliashberg [15] asked whether there are
examples where WCrit(W) and Crit(W) differ. As first shown by Seidel and Smith [37],
such examples do exist. For example, Crit(B**) = 1 but any Weinstein structure 32" on
B?" that is not symplectomorphic to (the completion of) B2, must have WCrit($?") >
2; see Corollary 11.27 of [7]. In fact, WCrit(X?") > 3 since the Euler characteristic of
B?" is 1. Seidel and Smith constructed such an exotic £?" and distinguished it from B2,
by the presence of a Floer-theoretically essential Lagrangian torus. Hence the proof of
the inequality WCrit(X) > Crit(X) + 2 depends crucially on J-holomorphic curve type
invariants. From a Weinstein homotopy point of view, W(Crit and Crit differ because the
Whitney trick, the key part of Smale’s proof of the h-cobordism theorem, does not generally
work in the symplectic setting; more precisely, smoothly isotopic Legendrian submanifolds
are not necessarily Legendrian isotopic.

Given that Crit, W(Crit can indeed be different, it is natural to ask how big this difference
can be. We first note that for domains of dimension at least six, there are infinitely many
different Weinstein structures in the same almost Weinstein class [1, 7, 30]. So in principle,
WCrit(W) can be arbitrarily larger than Crit(1W). The first construction of infinitely many
exotic Weinstein structures is due to McLean [30]. He constructed a single exotic ball X"
and then showed that Ein = hf::lZ%”, the boundary connected sum of k copies of E%”, are
pair-wise non-symplectomorphic, distinguished by a J-holomorphic curve invariant called
symplectic homology. In particular, Ezn has a natural Weinstein presentation with at least
4k —1 handles (3k handles for [[*_, 2" and k—1 index 1 handles) making it seem that these
structures have unbounded complexity. Later Abouzaid and Seidel [1] constructed infinitely
many exotic Weinstein structures that do have bounded complexity.

On the other hand, recent work has shown that certain Weinstein structures have minimal
complexity, i.e. WCrit(W) = Crit(W). Cieliebak and Eliashberg [7] proved that flexible
Weinstein structures, which satisfy an h-principle that reduces their symplectic topology
to the underlying algebraic topology, have minimal complexity. Later Eliashberg, Ganatra,
and the author [16] constructed infinitely many examples of exotic (non-flexible) Weinstein
structures on T*S™ and showed that they also have minimal complexity. We will show that
minimal complexity holds quite generally.

1.1. Almost minimal Weinstein presentations. The above examples due to Seidel-
Smith and McLean show that there exist W for which WCrit(W) > Crit(W) 4 2. This
lower bound comes from J-holomorphic curve invariants (and some mild use of h-principles).
Our main result shows that this is the only constraint on WCrit. In the following, we
say a smooth domain W?2" (with the homotopy type of an n-dim CW complex) is smoothly
critical if every smooth proper Morse function has a critical point of index n; for example,
if H"(W?";7Z) is non-zero. A smooth domain W?" is smoothly subcritical if W?" admits
a smooth Morse function all of whose critical points have index strictly less than n. A
(smoothly subcritical) Weinstein domain is Weinstein subcritical if it admits a Weinstein
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Morse function all of whose critical points have index strictly less than n. Subcritical We-
instein domains are flexible and hence have minimal complexity as mentioned above [7]; see
Section 2.2 for details.

Theorem 1.1. If W?" n > 3, is a Weinstein domain, then WCrit(W) < Crit(W) + 2.
Furthermore, if W is smoothly critical, then WCrit(W) = Crit(W). If W is smoothly
suberitical and m (W) = 0, then WCrit(W) = Crit(W) if and only if W is a subcritical
Weinstein domain; otherwise, WCrit(W) = Crit(W) + 2.

More precisely, let W Crity(W?") denote the minimum number of index k critical points
of a Weinstein Morse function on W?2; let Crity(W) denote the same for a smooth Morse
function. Then the proof of Theorem 1.1 actually shows that W Crit,(W?") = Crity(W?")
for k < n—2 and either WCrit,,_1(W?") = Crit,_1(W?") and W Crit, (W?") = Crit,(W?")
or WCrit, 1(W?") = Crit,_1(W?") + 1 and WCrit,(W?") = 1. The second case can
only happen when Crit,(W?") = 0, i.e. W is smoothly subcritical. So we always have
W Crit, (W?") < max{1, Crit,(W?")}.

Now we give some examples illustrating Theorem 1.1.

Example 1.2. If M™ n > 3, is a closed smooth manifold, then WCrit(T*M) = Crit(T*M) <
Crit(M) for any Weinstein structure on T*M since it is smoothly critical; if n > 6 and
m1(M) = 0, then the second inequality is also an equality. In particular, all Weinstein
structures on T*S™ have WCrit(T*S™) = 2; this generalizes the result in [16], where it was
proven that this holds for a particular infinite collection of exotic structures on 7*S™.

Example 1.3. Any Weinstein ball ¥2?  which is smoothly subcritical with Crit(X??) = 1,
has either WCrit(X?") = 1 or 3. Since 7 (%2") = 0, the structure is Weinstein homotopic to
the standard structure B2 if and only if WCrit(X?") = 1. In particular, McLean’s exotic
structures ¥2", which have natural presentations with at least 4k — 1 critical points, can be
Weinstein homotoped to presentations with just 3 critical points, corresponding to handles
of index 0,n — 1, and n. They are all non-standard structures and so WCrit(X2") = 3.

Our proof of Theorem 1.1 relies on Murphy’s h-principle for loose Legendrians [31] (and
its consequences for flexible domains) as well as the smooth Whitney trick. Both of these
results hold only for n > 3, hence our restriction on dimension.

Question 1.4. Is WCrit(W*) < Crit(W?) + 2 for any Weinstein domain W*?

1.2. Flexible subdomains. Our main result Theorem 1.1 essentially follows from the fol-
lowing theorem. For a Weinstein domain W?2", n > 3, let Wf{;x be the unique flexible
Weinstein structure almost symplectomorphic to W?2"; see Section 2.2.

Theorem 1.5. Any Weinstein domain W?", n > 3, can be Weinstein homotoped to Wﬁéx

C?", where C*™ is a smoothly trivial Weinstein cobordism with two critical points of index
n—1,n.

This result implies that the smooth topology and the symplectic topology can be separated
in the sense that all the smooth topology can be put into a symplectically trivial (flexible)
domain Wf{fex while all the symplectic topology can be put into a smoothly trivial cobordism
C?". which is a smooth collar of the boundary of W?". In particular, Theorem 1.5 shows
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that Wy, is a Weinstein subdomain of W. This extends previous work of Eliashberg and
Murphy [17] who proved that Wy, is a Liouville subdomain of W, i.e. W\Wy, is an
exact symplectic cobordism, perhaps without a compatible Weinstein Morse function. The
decomposition in Theorem 1.5 has several applications, explored in later work; for example,
it is used to prove an existence h-principle for regular Lagrangians with boundary in arbitrary
Weinstein domains as well as regular Lagrangian caps [28] and construct ‘maximal” Weinstein
domains that contain a complicated set of Lagrangians [27]. Theorem 1.5 implies most of
Theorem 1.1. The presentation in Theorem 1.5 shows that WCrit(W) < WCrit(Wyie,) + 2.
Since flexible structures have minimal complexity [7], W Crit(Wye,) = Crit(W). Combining
these results, we get WCrit(W) < Crit(W) + 2, the first claim in Theorem 1.1. The proof
of the smoothly critical case of Theorem 1.1 is similar.

Flexible Weinstein domains are defined only for n > 3. The analog of these domains for
n = 2 are Weinstein domains whose index 2 handles are attached along stabilized Legen-
drians; we will call these stabilized domains. However, neither stabilized Legendrians nor
stabilized domains satisfy an h-principle and so we do not know whether Theorem 1.1 holds
for n = 2. However an analog of Theorem 1.5 holds for n = 2 if we replace flexible domains,
loose Legendrians with these analogous domains, Legendrians respectively.

Theorem 1.6. Any Weinstein domain W* can be Weinstein homotoped to VAU H?, where
V4 is a stabilized domain that is simply homotopy equivalent to W4 U H'.

The notation H} denotes a Weinstein handle attached along an isotropic attaching sphere
A and we write H™ if we not specify the attaching sphere; see Section 2. Theorem 1.6 cannot
be improved so that V4 is diffeomorphic to WAUH?!. For example, there is a unique Weinstein
structure on T*T? and it has non-vanishing symplectic homology [14, 40]; the same holds for
T*T?U H' [7]. On the other hand, stabilized domains have vanishing symplectic homology
and so T*T? U H! does not admit a stabilized Weinstein structure. The reason for this is
that stabilizing a 1-dimensional Legendrian knot changes its Thurston-Bennequin invariant,
which affects the framing used to attach the Weinstein handle and hence the intersection
form of the resulting Weinstein domain.

Theorem 1.5 shows that any Weinstein domain W?2" n > 3, can be presented as a flexible
domain Wﬁém U H™ ! plus a single critical handle. In fact, the proof of Theorem 3.1 is a bit
more explicit about the single extra handle.

Corollary 1.7. Every Weinstein domain W?".n > 3, can be Weinstein homotoped to a
suberitical domain Vi, with handles attached to the Legendrian link Ay [« [ Ag—1 ][] Ax C
OViup such that A J]---[]Ax—1 is a loose link and Ay is a loose Legendrian.

Even though all of the Legendrians in Corollary 1.7 are individually loose, the entire
link Aj [ - [JAg—1]]Ax may not be loose, i.e. the loose charts of A; intersect Aj and
loose chart of Ay intersects A;. Otherwise all Weinstein domains would be flexible. So the
attaching Legendrians are themselves symplectically trivial but their linking is symplectically
non-trivial, i.e. the symplectic topology of the domain is captured in this linking. Of course,
A, becomes non-loose once we attach handles to Ay, -+, Ax_1 (and vice-versa).

Now we present an example demonstrating Theorem 1.5.

Example 1.8. Any Weinstein structure on 7*5™ n > 3, can be Weinstein homotoped to
T*S?ZEIUH”_luHX for some Legendrian A in the contact manifold 9(BZ,UH"1). A slightly
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modified version of Theorem 1.5 shows that T*S5"™ can also be homotoped to BSQZQUH V. this is
why we always have WCrit(T*S™) = 2 in Example 1.2. We can reformulate this as follows.
Let Legendrian((Y,€); Ag) denote parametrized Legendrians in the contact manifold (Y, §),
up to Legendrian isotopy, that are in some fixed Legendrian formal isotopy class Ag. Let X?"
be an almost Weinstein domain, i.e. an almost complex domain with the homotopy type of
an n-dimensional CW complex; see Section 2. Then let Qeinstein(X>") denote Weinstein
structures on X 2" up to Weinstein homotopy. There is a natural map

Herit Segenbtian((Szn_l, Estd); Munknot) — Weinstein(T*S™) (1.1)

taking a Legendrian A C (S?"71 &44) = 833& which is formally isotopic to Aunknot to the
Weinstein structure Bgfd U HY on T*S™. The statement that WCrit = 2 for any Weinstein
structure on T*S™ implies that this map is surjective, i.e. the class of connected Legendrians
is as complicated as the class of Weinstein structures.

Although our main result shows that Weinstein homotopy moves are more flexible than
they might seem, there are limits to this flexibility. For example, Theorem 1.5 shows that
any Weinstein domain can be presented as a flexible domain plus a single extra handle,
which is possibly non-flexible. As we now explain, it is crucial that the non-flexible critical
handle is attached last and in general, it is impossible to first attach non-flexible handles
and then attach flexible handles. So order of flexilibity /non-flexibility matters, which is a
sign of rigidity. As expected, this rigidity ultimately comes from J-holomorphic curves.

Example 1.9. By Theorem 1.5, T*57, ; is Weinstein homotopic to T*S}lleac UH" U HY =
(Bx, U Flex) UH n=1y H} for some Legendrian A. In this case, we attach flexible handles
first and then non-flexible handles. However, T*S7, ; cannot be presented as (Bg{fi UH™ U
HY) U HY ., where we first attach non-flexible handles and then flexible handles. This
presentation is equivalent to a Weinstein structure of the form 2" U }‘l op» fOT some exotic
ball ¥£2". We claim that T*S7,; is not symplectomorphic to n2ny H}Ll oy fOr any 27, To see
this, let C C X2 UHY,., be the Lagrangian co-core of Hy.o- Since Hy,., is attached along a
loose Legendrian in %27, the wrapped Floer homology W H(C,C; T* T ;) vanishes. But C
generates H,, (T*S™,0T*S™) = Z and so C - S™ = 1, where S™ C T*S,, is the zero-section,
a closed exact Lagrangian. But WH(C,C;T*S%, ;) = 0 implies that WH(C, S™; T*S”,;,) =0
and so C'- S" = x(WH(C,S";,T*SZ,)) = 0, a contradiction.
Since T™S7,; is not of the form ¥y H}Llex, the map

Hivose : Weinstein(B?") — Weinstein(T*S™) (1.2)

obtained by attaching a critical handle along a loose Legendrian unknot to an exotic We-
instein ball is not surjective. This map is well-defined since any contact structure 9%?" in
the almost contact structure (S?"~!, Jy4) has a unique loose Legendrian in the standard
formal class. Furthermore, it has infinite image; for example, H;o0se is injective on the exotic
structures Ei” constructed by McLean [30]. We contrast the non-surjectivity of Hjpose, a
rigidity result, to the surjectivity of the map H..;; in Equation 1.1, a flexibility result.

Now we sketch the proof of Theorem 1.5, which implies the main result Theorem 1.1. The
key idea is that certain Weinstein homotopy moves called handle-slides can be used to make
a Legendrian loose; see Section 2. More precisely, given two Legendrians and a local chart
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intersecting them, the handle-slide produces another Legendrian, which was described by
Casals and Murphy [4]. We will show that there is a special choice of local chart such that
the handle-slid Legendrian is loose (not all choices of charts result in loose Legendrians).
For an arbitrary Weinstein domain, we fix one Legendrian and handle-slide the rest of the
Legendrians over that fixed Legendrian. For appropriate choices of local charts, the resulting
Legendrians form a loose link except for the fixed Legendrian which will in general intersect
the loose charts of the other Legendrians; this is the content of Theorem 1.5.

1.3. Weinstein presentations with few gradient trajectories. As mentioned before,
our goal is to study to what extent Smale’s h-cobordism theorem holds in the symplectic
setting. This theorem has two main steps. The first step is to apply handle-slides to make
handles with consecutive indices cancel algebraically, i.e. for the belt sphere of a k£ handle
and the attaching sphere of a £ + 1 handle to have algebraic intersection number one. The
second step is to use the Whitney trick to reduce the number of intersection points between
algebraically cancelling handles to make them geometrically cancelling, i.e. have geometric
intersection number one. Since Weinstein handles can be handle-slid in the same way as
smooth handles, the first step can be done in the Weinstein setting. However the second
step necessarily fails since WCrit(W) # Crit(W) in general. By Theorem 1.5, any smoothly
trivial Weinstein cobordism W can be Weinstein homotoped to have two Weinstein handles
of index n — 1,n that cancel algebraically, i.e. W = H"~1 U HY. The Whitney trick shows
that in this case, it is possible to smoothly isotope the attaching sphere A so it intersects the
belt sphere of H"~! in exactly one point. However, if A intersects the belt sphere of H"~! in
a single point, it is loose [7] and the Weinstein cobordism is flexible. Hence, in general it is
impossible to realize this smooth isotopy by a Legendrian isotopy and to reduce the geometric
intersection number to one. The minimal possible number is therefore three; it is greater
than one and must be odd for homological reasons. Although we do not know whether the
geometric intersection number can always be reduced to three, in the following result we
reduce this number to some universal constant independent of the Weinstein structure. So
we can get uniformly close to realizing the second step of Smale’s h-cobordism proof.

Theorem 1.10. There exists a constant C,, > 3 depending only on n such that any smoothly
trivial Weinstein cobordism W?2" n > 3, can be Weinstein homotoped to a presentation with
two handles of index n — 1,n such that the belt sphere of the n — 1 handle and the attaching
sphere of the n handle intersect C, times.

This is equivalent to having a Weinstein Morse function with two critical points of index
n — 1,n such that there are C), gradient trajectories from the index n to the index n — 1
critical point. The proof of Theorem 1.10 actually shows that it is possible in principle
to compute C,, but this depends on a good understanding of a certain (local) Legendrian
isotopy which comes from an h-principle and is therefore not very explicit. As we explain
in the following example, the situation is more complicated when the Weinstein cobordism
is not smoothly trivial. Namely, in the presence of multiple n — 1 handles, the attaching
Legendrian for the n-handle might have to pass through all n — 1 handles, even when this
is topologically unnecessary. Again this rigidity comes from J-holomorphic curves.

Example 1.11. Consider a subflexible Weinstein structure W?2" on B?* U H"~! that is not
flexible. Such an example was constructed by Murphy and Siegel [32] and has zero symplectic
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homology SH (W?2") but non-zero deformed symplectic homology SH®(W?2"); here « is the
generator of H"}(B* U H" 1) = Z. So this domain is smoothly subcritical but is not
symplectically subcritical and hence by Theorem 1.1 admits a Weinstein presentation of the
form B2 U Hln_1 U Hg_l U HY. Here A has algebraic intersection number 1 with H{L_l
and 0 with Hg_l. However A has geometric intersection number at least 3 with H {‘_1 since
otherwise A would be loose. Furthermore, A must have geometric intersection number at
least 2 with HY™'; so A must interact with both H'"' and Hy~'. Otherwise, the domain
would be of the form (B2, UH "UHR)UHS ™ = %2"UH" !, for some exotic structure 2"
on B?". However 2" UH" ! has zero deformed symplectic homology as we now show. Since
H" 1 is a subcritical handle, the Viterbo transfer map SH®(X2"UH"1) — SHT*(X?") is an
isomorphism, where i* : H"~}(X2"UH""!) — H"~}(X?") is the induced map on cohomology.
Since i*a € H" 1 (X2") = 0, SH"*(X?") agrees with the undeformed symplectic homology
SH(X?"). Since X%" is a subdomain of W?", which has vanishing SH, and the Viterbo map
is unital, SH(X) also vanishes. Therefore SH®(X2" U H" 1) is also zero and so X" U H" 1
cannot be Weinstein homotopic to W?2".
Since W is not of the form %2" U H"! for any exotic Weinstein ball 32", the map

Houp : Weinstein(B?") — Weinstein(B>" U H* 1) (1.3)

obtained by attaching a subcritical handle to an exotic Weinstein ball is not surjective; see
[23] for an analog in the contact case. This rigidity result is similar to the non-surjectivity
of the map Hjopse in Equation 1.2 for flexible handle attachment and in contrast to the
surjectivity of H.r;+ in Equation 1.1 for critical handle attachment to the standard ball.

1.4. Results for the wrapped Fukaya category and the Chekanov-Eliashberg DGA.
We now give some applications of the flexibility results in Sections 1.1, 1.2 to certain J-
holomorphic curve invariants. To a Weinstein (or Liouville) domain X?" (with a choice of
grading data), one can associate the wrapped Fukaya category W(X) of X, a certain As-
category. The objects of W(X) are (graded) exact Lagrangians in X" that are closed or have
Legendrian boundary in dX?"; the morphisms are wrapped Floer cochains. In homological
mirror symmetry, one considers the derived Fukaya category D*W(X) := H(Tw(W(X)),
the cohomology category of twisted complexes over W(X). To obtain a more explicit de-
scription of the wrapped Fukaya category, it is useful to find a set of generators. The derived
Fukaya category D?WW(X) is triangulated so mapping cones exist. A set of objects G; are gen-
erators of DYW(X) if every object of the category is isomorphic to an iterated mapping cone
on them; equivalently, D*W(X) = H°(Tw(G)), where G is the A.-subcategory with objects
G;. Let gOV(X)) denote the minimum number of generators for D®WW(X). Many proofs of
homological mirror symmetry involve finding some collection of generators for D*WW(X) and
then showing that the endomorphism algebra of these generators is quasi-isomorphic to the
endomorphism algebra of some generating coherent sheaves on the mirror.

Theorem 1.1 can be used to bound the number of generators g(W (X)) for D*W(X). The
unstable manifold of an index n critical point of a Weinstein Morse function, or co-core, is
a Lagrangian disk with Legendrian boundary and hence defines an object in D*W(X). As
proven in [6, 21], the co-cores of the index n critical points of any Weinstein Morse function
on X generate D'W(X), i.e. gOWV(X?")) < WC'rit,(X?"). Theorem 1.1 shows that there



8 OLEG LAZAREV

is a topological bound on WCrit,(X?") and hence on the number of generators needed. In
the following, let g(A) denote the minimum number of generators of an abelian group A.

Corollary 1.12. If X", n > 3, is a Weinstein domain, then gOW(X)) < max{1, g(H"(X;Z))}.

A related notion is that of split-generation: a set of objects are split-generators if every ob-
jects is a summand of a twisted complex on these objects. This is a useful notion since there
are closed symplectic manifolds whose Fukaya categories have finitely many split-generators
but no finite collection of generators, e.g. the 2-torus. We emphasize that Corollary 1.12
concerns generation, not split-generation. Whenever there is a finite collection of generators
(or split-generators), there is a single split-generator, namely the sum of all these objects.
So the number of split-generators is not an interesting invariant.

The number of generators, on the other hand, is a meaningful invariant and in certain
cases, the inequality in Corollary 1.12 is sharp. For example, if X?" is a Weinstein ball, then
Corollary 1.12 shows that at most one generator is needed and if the Fukaya category of
this ball is non-trivial (as is the case for the exotic structures constructed by McLean [30]),
then at least one generator is needed. In certain cases, the number of generators needed
for W(X) is greater than one. Since D*W(X) is a triangulated category, we can consider
its Grothendieck group Ko(W(X)) := Ko(D*W(X)). For any triangulated category, the
minimum number of generators for the Grothendieck group gives a lower bound on the
number of generators of the category. In particular, Corollary 1.12 implies that for any
Weinstein domain X2, n > 3, we have

9(KoW(X))) < gOW(X)) < max{1, g(H"(X*";Z))} (1.4)

There are Weinstein domains for which g(Ko(W(X))) is bigger than one. For example, con-
sider the boundary connected sum §*7*S™ of k copies of T *ST4- As explained to the author
by Abouzaid, Ko(W(5*T*S™)) has rank at least k. Namely, let ¢; : Ko(W(FFT*S™)) — Z
be x(HW (-, SI")), the Euler characteristic of morphisms from the ith-zero section S]'. Then
(01, -+ ,01) : KoOV(EFT*S™)) — ZF is surjective and so g(Ko(W(H*T*S™))) > k. On the
other hand, g(H™(4*T*S™; Z)) = k and so all the inequalities in Equation 1.4 are all actually
equalities. The following result shows that Equation 1.4 can actually be improved.

Corollary 1.13. If X?" n > 3 is a Weinstein domain, then g(Ko(W(X))) < g(H"(X;Z)).
In particular, if H*(X;Z) =0, then Ko(W(X)) = 0.

If H"(X;Z) # 0, then the result follows from Equation 1.4. If H"(X;Z) = 0, we use
an additional boundary connected sum argument, which was explained to the author by
Ivan Smith in the case when X?" is a ball. In particular, any Weinstein ball 2" must
have Ko(W(X)) = 0. There are many exotic Weinstein balls X2 with non-zero symplectic
homology [30]. So their wrapped Fukaya categories are examples of triangulated categories
with non-zero Hochschild cohomology but zero Grothendieck group; such phantom categories
have been studied in algebraic geometry [24, 19] and are possibly related to our wrapped
Fukaya categories via mirror symmetry. The vanishing of Ko(W(X)) implies that any object
@ that has finite-dimensional morphism spaces with all other objects K has x(HW (Q, K)) =
0, generalizing the geometric result that any closed exact Lagrangian L C 2" has L- K =0
for any other Lagrangian K; however the object @) need not be a twisted complex of closed
exact Lagrangians. We also note that the inequality in Corollary 1.13 is sharp, e.g. §*T™* o
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Conversely, for any integer j < k = g(H™(§*T*S™;Z)), there is a Weinstein structure X?“
on gFT*S™ so that g(Ko(W(X;))) = j, e.g. X3 = WT*SL, 4TS},

One natural question is what triangulated categories can arise as the wrapped Fukaya
category of Weinstein domains. For example, the wrapped Fukaya category of a Weinstein
domain is a smooth category with a non-compact Calabi-Yau structure [6, 20]. Corollary 1.13
further restricts which categories can arise as the Fukaya categories of Weinstein domains
and shows that in general the answer depends on the smooth topology of the domain.

Corollary 1.14. There is no Weinstein ball ¥*" such that D*(W(X?")) is exact equivalent
DP(W(T*S™,)). There is no Weinstein structure X on T*S™ such that D"W(X?") is
eract equivalent to DYW(T*S% 4T*S™ ).

Proof. As noted above, g(Ko(W(T*S?%,,))) = 1 and g(Ko(W(T*S%, 4T*S%,.))) = 2. How-
ever if X" is a ball, g(Ko(W(X?"))) = 0; if H"(X;Z) 2 Z, g(Ko(W(X))) < 1. O

On the other hand, for any Weinstein ball 2", the Weinstein structure T*S}Ll ethQ" on
T*S™ has the same Fukaya category as ¥?". So the class of categories arising as Fukaya
categories of Weinstein structures on 7%S™ is genuinely larger than that for a ball B?".

Since Weinstein domains are constructed by attaching handles along Legendrians, Corol-
lary 1.13 has implications for J-holomorphic curve invariants of Legendrians. Given a Leg-
endrian sphere A"~! in a contact manifold (Y2771, ¢) with a Weinstein filling W?2", there are
(at least) two associated Legendrian isotopy invariants: the Chekanov-Eliashberg algebra
CE(A) of A (augmented by the filling W?") and the wrapped Floer cochains CW (C, C) of
the co-core C™ of the Weinstein n-handle H} in the Weinstein domain w2y HY. For both
invariants, we work over a common ground field K. The former invariant is only rigorously
defined when (Y271 ¢) is P?"~2 x R for some exact symplectic manifold P [10]; the latter
is always defined. A proof was sketched in [3] that these two invariants are quasi-isomorphic
and for the results in the rest of this section, we will assume this.

Remark 1.15. Alternatively, let CF(D"™, D"; (W, A)) denote the Floer cochains of the linking
disk D™ of A in the partially wrapped Fukaya category of W?" stopped at A; a proof was
sketched in [12] that this is quasi-isomorphic to the version of CE(A) with coefficients in
C(£25™71), chains on the based loop space of S"~!. Without any reference to CE(A), it was
proven in [21] that CF(D", D™; (W, A))®¢, (sn-1)Cx(Q2D") = CF (D", D"; (W, A))®¢, (sn—1)
K is quasi-isomorphic to CW(C,C) and so this invariant can be considered as a rigorous
replacement for C' E(A); using this alternative invariant, all our results have complete proofs.

Certain geometric properties of a Legendrian have algebraic consequences for its Chekanov-
Eliashberg DGA. For example, an exact Lagrangian filling of A induces an augmentation of
CE(A), i.e. a differential graded algebra (DGA) map CE(A) — K, where the latter has
the zero differential and is concentrated in degree zero [11]. However, not all augmentations
come from exact Lagrangian fillings [18] and furthermore, there are examples of Legendrians
such that CE(A) is not acyclic but admits no augmentations. More generally, we can con-
sider n-dimensional representations of CE(A), i.e. DGA maps CE(A) — Mat(n,K). There
are examples [8, 38| of Legendrians for which C E(A) has a 2-dimensional representation but
no augmentations. This is a useful notion since Dimitroglou-Rizell and Golovko [8] showed
that Legendrians with finite-dimensional representations have an Arnold-type lower bound
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on the number of Reeb chords. On the other hand, they showed that for each n > 1, there is
a Legendrian A C (R?"~1, £,4) such that CE(A) is not acyclic but has no finite-dimensional
representations (although any non-acyclic DGA has an infinite-dimensional “representation”
to its characteristic algebra [33] ). These examples are obtained by spinning a particular
1-dimensional Legendrian studied by Sivek [38], who proved that it has no finite-dimensional
representations by explicit calculation. We now show that such Legendrians occur generally.

Consider a Legendrian A in (S"™1 x S", &xq) = (B2 U H" 1), n > 3 that has algebraic
intersection number one with {p} x S™ for some p € S ! ie. [A] = £1 € H,_1(S"! x
Sm;7) = Z is primitive in homology. This implies that [A] =1 € H,_(B¥, UH"" 1 Z) 27
and hence A has no exact Lagrangian fillings in B2, UH"~! for purely topological reasons. So
there are no augmentations of CE(A) that come from fillings. Using Corollary 1.13, we show
that CE(A) has no augmentations at all and in fact, no finite-dimensional representations.

Corollary 1.16. If a Legendrian A"~ C (S"~! x S™ &4q),n > 3, is primitive in homology,
CE(A) has no finite-dimensional representations and no DGA maps to a commutative ring.

If A intersects {p} x S™ geometrically once, then A is a loose Legendrian [4]; see Sec-
tion 1.3. In this case, CE(A) is acyclic and hence has no finite-representations for trivial
reasons. Corollary 1.16 generalizes this to the case of algebraic intersection one, a topo-
logical condition. Although our proof of Corollary 1.16 holds only for n > 3, the n = 2
case for augmentations was proven in [29] using a different approach. We also note that a
homological condition is necessary since the Chekanov-Eliashberg DGA of Legendrians in
(8771 x S™ £44) that have Lagrangian fillings in B?gj U H™! have augmentations.

Corollary 1.16 has applications to the C°-topology of the space of Legendrians. Murphy
[31] proved that any Legendrian can be C%-approximated by a loose Legendrian. On the
other hand, Dimitroglou-Rizell and Sullivan [35] recently used persistent homology to show
that loose Legendrians cannot be CY-approximated by certain non-loose Legendrians: if
A C (R2"*1,§Std) is in a contact neighborhood N (Ajyese) of a loose Legendrian Ajpse and
the map iy : Hy—1(A;Z2/2) — Hp—1(N(Njpose); Z/2) = 7/2 is non-zero, then CE(A) has no
augmentations. Using Corollary 1.16, we give a different proof of a slightly different result.

Corollary 1.17. If A C (8?1 €£44),n > 3, is in a contact neighborhood of a loose Leg-
endrian Njpose and is primitive in Hyp—1(Ajpose; Z), then CE(A) has no finite-dimensional
representations or DGA maps to a commutative ring.

So the size of contact neighborhoods depends on Legendrian isotopy class. In the proof of
Corollary 1.17, the condition that A is in N (Ajpese) is used to show that a related Legendrian
is disjoint from the loose chart of another loose Legendrian; the homological condition is
needed to apply Corollary 1.16. Some homology condition is necessary since otherwise any
Legendrian in (S$2771, £,4) can be isotoped into a neighborhood of any other Legendrian.

Corollaries 1.16, 1.17 place strong restrictions on the Chekanov-Eliashberg DGA’s of cer-
tain Legendrians. Furthermore, if these Legendrians satisfy stronger conditions, e.g. have
geometric intersection one with {p} x S™ instead of algebraic intersection one, then they are
loose, showing that there is not much room for interesting Legendrians. Nonetheless, we
show that there are many examples of such Legendrians with non-trivial DGA’s, essentially
one for each exotic Weinstein ball; this shows that Corollaries 1.16, 1.17 are sharp.
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Corollary 1.18. For n > 4, there exist infinitely many different Legendrian spheres Ay, C
(8771 x 8™ €44) for which CE(Ay) is not acyclic but has no finite-dimensional representa-
tions. The same holds for (S*"~1,&yq),n > 4. Furthermore, these Legendrians are C°-close
to loose Legendrians Njpose and are primitive in Hy—1(Njpose; Z).

The restriction n > 4 is because we currently have examples of exotic Weinstein balls only
in such dimensions [30]. The Legendrians A, are distinguished by the Hochschild homology
of CE(Ay), which is isomorphic to the symplectic cohomology of these Weinstein balls.

Now we give an outline of the rest of the paper. In Section 2, we provide some background
material on Weinstein domains, loose Legendrians, and handle-slides. In Section 3, we give
proofs of the results stated in the Introduction.
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2. BACKGROUND

In this section, we present some background material, including necessary definitions and
theorems that were assumed in the Introduction.

2.1. Liouville and Weinstein domains.

2.1.1. Definitions. A Liouville domain is a pair (W?", \) such that

e W?" is a compact manifold with boundary
e d\ is a symplectic form on W
e the Liouville field X, defined by ixdA = A, is outward transverse along OW .

A Weinstein domain is a triple (W27, \, ¢) such that

e (W, ) is a Liouville domain
e o : W — R is a Morse function with maximal level set OW
e X, is a gradient-like vector field for ¢.

Liouville and Weinstein cobordisms are defined similarly.

Since W is compact and ¢ is a Morse function with maximal level set OW, ¢ has finitely
many critical points. We will call ¢ a Weinstein Morse function. Note that for any regular
value ¢, W¢ = {¢p < ¢} is also a Weinstein domain and is called a Weinstein subdomain.

If ¥2n=1  (W?" )) is a hypersurface such that X is transverse to X, then ker()\|y) is a
contact structure on 3. In the Weinstein case, a regular level set Y¢ = ¢~1(¢) of ¢ is such
a hypersurface and so (Y, Alye) is a contact manifold. In particular, the boundary W of
Liouville or Weinstein domain W has a natural contact structure given by & = ker(\|aw ).
The completion W of W is the non-compact, exact symplectic manifold obtained by attaching
the symplecticization (W x [0, 00), d(e!Maw)) of (OW,€) to W. Whenever we speak of the
symplectomorphism type of a Weinstein domain, we will mean the symplectomorphism type
of its completion.
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2.1.2. Weinstein handle attachment. A Weinstein structure yields a special handle-body
decomposition for W. First, recall that A vanishes on the X)-stable disc D, of a critical
point p; see [7]. In particular, D, is isotropic with respect to dA and so all critical points of
© have index less than or equal to n. If all critical points of ¢ have index strictly less than
n, then the Weinstein domain is subcritical.

Since A vanishes on D, then A, := D, NY¢ C (Y Alye) is an isotropic sphere, where
¢ = ¢(p) — ¢ for sufficiently small e. Furthermore, A, comes with a parametrization and
framing, i.e. a trivialization of its normal bundle. Note that a framing of A, is equivalent to
the framing of the conformal symplectic normal bundle of A,; see [22]. Hence parametrized
Legendrians come with a canonical framing.

Suppose that ¢; < ¢y are regular values of ¢ and W\ W€ contains a unique critical point
p of p. Then W2\W* is an elementary Weinstein cobordism between Y and Y2 and
the symplectomorphism type of W is determined by the symplectomorphism type of W
along with the framed isotopy class of the isotropic sphere A, C Y“'. If ¢ is an arbitrary
Weinstein Morse function on W with distinct critical values, then W can be viewed as the
concatenation of such elementary Weinstein cobordisms.

On the other hand, one can explicitly construct such elementary cobordisms and use them
to modify Liouville domains. Given a Liouville domain X and a framed isotropic sphere A
in its contact boundary Y = 0X, we can attach an elementary Weinstein cobordism with
critical point p and A, = A to X and obtain a new Liouville domain that we denote by X or
XUH /’i, where k = ind p = dim A+ 1. This operation is called Weinstein handle attachment
and A is called the attaching sphere of the Weinstein handle. If X is Weinstein, then so is
Xa. If the dimension of A C Y2771 is less than n — 1, the handle attachment operation and
A itself are all called subcritical. So any (subcritical) Weinstein domain can be obtained by
attaching (subcritical) Weinstein handles to the standard Weinstein structure on B?".

The corresponding modification of contact manifolds by Weinstein handle attachment
is called contact surgery. If A C (Y,€) is a framed isotropic sphere, then there exists an
elementary Weinstein cobordism W with 0_W = (Y,¢{) and attaching sphere A. Then
we say 01 W is the result of contact surgery on A and denote this by YA or Y U H k In
particular, the contact boundary of any (subcritical) Weinstein domain can be obtained by
doing (subcritical) contact surgery to (S2"71, &yq) = OB?".

2.1.3. Weinstein homotopies. The natural notion of equivalence between Weinstein struc-
tures (W, X, o), (W, A1,1) on a fixed manifold W is a Weinstein homotopy, i.e. a 1-
parameter family of Weinstein structures (W, A, ¢¢), t € [0,1], connecting them, where ¢,
is allowed to have birth-death critical points. Weinstein homotopic domains have exact
symplectomorphic completions [7].

We will prove our main result Theorem 3.1 by starting with an arbitrary Weinstein domain
and then applying a special Weinstein homotopy. As in the smooth setting, Weinstein
homotopies consist of three elementary moves: doing an isotopy of the attaching spheres
through isotropic submanifolds, moving critical points that are not connected by gradient
trajectories past each other, and sliding handles of the same index over each other. The only
difference between the Weinstein and smooth setting is the first move: in the Weinstein case,
the isotopies of attaching spheres must be through isotropics instead of arbitrary embedded
spheres. Since subcritical handles satisfy an h-principle [7], Weinstein domains are essentially
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FIGURE 1. Front projection of handle-slide hy(X) of ¥ over A.

characterized by their index n handles, in particular the Legendrian attaching spheres of
these critical handles. Therefore, it suffices to see how these moves affect Legendrians.

The first move implies that if Ay, A9 are isotopic Legendrians in OW, then W U Hy  and
W U Hj, are Weinstein homotopic. The second move implies that if Ay, Ay are disjoint
Legendrians in OW (which is true by dimension reasons if they are in general position), then
(WUH) JUHR and (WUHY )UHY are Weinstein homotopic. In particular, we can write
the resulting Weinstein domain as W U HY U Hy without any parentheses and it will be
well-defined up to Weinstein-homotopy.

We now discuss the last move, the handle-slide, which will be the most important for us.
We will study Legendrians via their front projection. If A € (R £,4) = R” x R™ x R!,
the front projection of A is the image of A in R"*! under the projection to the first R” and
R! components. Handles-slides were described in terms of front projections by Casals and
Murphy [4].

Proposition 2.1. [Proposition 2.4 of [4]] Let (Y, &) be a contact manifold and A,¥ C (Y, §)
be two disjoint Legendrian submanifolds such that A is a sphere. Suppose there erists a
Darboux chart U where the front projections of %, A look as in the left-hand-side of Figure
1. Then for sufficiently small € > 0, the Legendrians ¥ and hp o(X) presented in Figure 1
are Legendrian isotopic in the surgered contact manifold Yy .

Here R_.(A) is the image of A under the negative time ¢ Reeb flow. We also note that the
Legendrians in Figure 1 are extended by spherical symmetry out of the page. Furthermore,
we note that the Darboux chart must have sufficient size so that front projections depicted
in Figure 1 make sense; in particular, the size of the chart in the y; direction must be at
least as big as the slope of the front projection of hp.(A). For us, the key implication of
Proposition 2.1 is that WU H' U Hy: is Weinstein homotopic to WU Hy U Hy' ) (and also
to WU H ) U HE by the above discussion).

Remark 2.2. Proposition 2.1 also holds if ¥ = X1 [] - - - || Xk is a Legendrian link with several
components. We inductively construct the new handle-slid link and show that it is isotopic to
¥ in Ya. We first take sufficiently small €1 > 0 so that ¥ is disjoint from an £{-neighborhood
of Ain J1(A) C Y. We also take U; so that ¥1NU;, ANU7 look as in the left-hand-side of Fig-
ure 1 and X;NU; = () for i > 2. Then we can handle-slide X1 over A via U; and the resulting
Legendrian hy ., (£1) is isotopic to X1 in Y by Proposition 2.1. In fact, something stronger
holds. The isotopy in Proposition 2.1 is local since it is obtained by pushing a small disk of



14 OLEG LAZAREV

Y1 (starting from the chart Uy) past the belt sphere of A in Y. Therefore since 3o, -+ , ¥
are disjoint from an e1-neighborhood of A in Y and the chart Uy, the handle-slid Legendrian
ha e (1) is isotopic to Xy in YA\(Z2 [+ [ 2k), where we view Yo, - - - , 3 as Legendrians
of YA. Hence the link hp ¢, (31) [[32]]- - [[ Xk is isotopic to i [[3Xo ]+ [[ Xk in Ya.
Now we build the rest of the handle-slid link by induction and show that it is isotopic to the
original link ¥ at each stage. Namely, suppose we have constructed the ith link h;(X) :=
hae (Z1) [ TThae (2:) [T 241 1 - - 11 Xk and proved that it is isotopic to h;—1(X) in Ya.
Next we construct hiy1(X) 1= hae, (21) [T TThae, (36) [T haei Cig1) L Zig2 [T+ T X%
by taking sufficiently small ;41 < ¢; for all j <4 and a chart U;4; disjoint from h;(3)\X; 1
such that ;11, A appear in U;41 as in Figure 1. As explained above, the new link h;;1(X)
is Legendrian isotopic to the previous link h;(X) in Yy since h;(X)\X;41 is disjoint from
Ui+1 and h;(X) is disjoint from an &;1-neighborhood of A (since the Legendrians in h;(X)
are at most e;-close to A), which proves the inductive i + 1 case. For i = k, we get the
desired Legendrian hg(3) which is isotopic to ¥ in Yj by induction. This implies that
WUHyUHg U---U Hgk is Weinstein homotopic to W U H} U H,’LLA(EI) U---u H}?A(Ek)’ a
fact that we will use repeatedly later.

We also note that the handle-slide depend on more than just the data of ¥ and A. The
resulting Legendrian depend crucially on the choice of chart U where A,Y¥ appear as in
the left-hand-side of Figure 1. We will use the notation hp . 7(¥) when we emphasize the
dependence on U. In particular, different chart choices Uy, Us can result in Legendrians
hae,t, (2), haev,(X) that are not Legendrian isotopic in Y (but are still smoothly isotopic
in Y); however hp ., (X),haeu,(X) are Legendrian isotopic in Y). We also note that
Y, hpo(X) will generally not be smoothly isotopic in Y, while they are Legendrian isotopic
in Yu.

Example 2.3. We start with a Legendrian link consisting of two linked unknots in (R?" =1, £,4),
with one Legendrian the Reeb push-off of the other Legendrian; see Figure 2. The two light-
blue boxes are the Darboux charts used in the handleslides. In the top row, the handle-slide
produces a linked pair of Legendrian unknots (which can be seen by doing a Legendrian Rei-
demeister move), i.e hf\of i (Aunknot) = Munknot- In the bottom row, the handle-slide results
in a link where one of the Legendrians is loose, i.e. hf’{’ii‘;ﬁot (Aunknot) = Mioose- The dark blue
box is the loose chart of this Legendrian; see Section 2.2 for definition. Since the Legendrian
Z/]\Ojf;:?ot (Aunk’not) are not
isotopic in the original contact manifold (R?"~1 £,;4). Of course, these Legendrians are both
isotopic in the surgered manifold Y since they are both isotopic to the push-off of the

attaching sphere there, i.e the image of Ay,kner in Ya

unknot is not loose, the handle-slid Legendrians hX’: o (Aunknot)s h

unknot

unknot *

2.2. Loose Legendrians and flexible Weinstein domains. There exist many Legen-
drians with rich symplectic topology invisible from the point of view of algebraic topology.
On the other hand, Murphy [31] showed that exists a certain class of loose Legendrians
which satisfy a h-principle and whose symplectic topology is governed by their underlying
algebraic topology. These loose Legendrians are defined using a local model. We will use
the following local model from Section 2.1 of [5]. Let B3 C (R3, &g = ker aigeg) be a unit
ball and let Ag be the 1-dimensional Legendrian whose front projection is shown in Figure 3.
Let Q" 2,n > 3, be a closed manifold and U a neighborhood of the zero-section Q C T*Q.
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FiGURE 2. Handle-slides using different charts result in non-isotopic Legendrians.

>

F1cURE 3. Front projection of Ag.

—

Then Ag x Q C (B? x U, ker(agq + Astq)) is a Legendrian submanifold. This Legendrian is
the stabilization over Q of the Legendrian {y = z = 0} x Q C (B3 x U, ker(austq + Asta))-

Definition 2.4. A Legendrian A"~! C (Y2771 &), n > 3, is loose if there is a neighborhood
V C (Y,€) of A such that (V,V N A) is contactomorphic to (B3 x U, Ag x Q).

Remark 2.5. If f: (U1 &) — (V21 &) is an equidimensional contact embedding and
A C (U, &) is loose, then f(A) C (V,&2) is also loose.

A formal Legendrian embedding is an embedding f : A — (Y, ) together with a homotopy
of bundle monomorphisms Fs : TA — TY covering f for all s such that Fy = df and F;(T'A)
is a Lagrangian subspace of £ with its conformal symplectic structure. A formal Legendrian
isotopy is an isotopy through formal Legendrian embeddings. Using these notions, we can
state the h-principle for Legendrian embeddings, which has an existence and uniqueness
part:

e any formal Legendrian of dimension at least two is formally Legendrian isotopic to
a loose Legendrian [9, 13]
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e any two loose Legendrians that are formally Legendrian isotopic are genuinely Leg-
endrian isotopic [31]

We now define a class of Weinstein domains introduced in [7] that are constructed by
iteratively attaching Weinstein handles along loose Legendrians.

Definition 2.6. A Weinstein domain (W?2" )\, ¢),n > 3, is flexible if there exist regular
values c¢1,--- ,c; of ¢ such that ¢; < ming < ¢ < -+ < ¢p_1 < maxp < ¢ and for all
i=1,---,k—1,{¢; < ¢ < ¢i11} is a Weinstein cobordism with a single critical point p
whose the attaching sphere A, is either subcritical or a loose Legendrian in (Y%, A|y-«; ).

Flexible Weinstein cobordisms are defined similarly. Also, Weinstein handle attachment
or contact surgery is called flexible if the attaching Legendrian is loose. So any flexible
Weinstein domain can be constructed by iteratively attaching subcritical or flexible handles
to (B?" wgq). A Weinstein domain that is Weinstein homotopic to a Weinstein domain
satisfying Definition 2.6 will also be called flexible. Finally, we note that subcritical domains
are automatically flexible.

Our definition of flexible Weinstein domains is a bit different from the original definition
in [7], where several critical points are allowed in {¢; < ¢ < ¢;41}. There are no gradient
trajectories between these critical points and their attaching spheres form a loose link in
(Y%, Xye:), i.e each Legendrian is loose in the complement of the others. These two defi-
nitions are the same up to Weinstein homotopy. Indeed if we have an ordered collection of
Legendrians such that each one is loose in the complement of the previous ones, then we can
use the loose Legendrian h-principle to move each Legendrian away from the loose charts of
the previous ones so that all Legendrians are loose in the complement of each other.

Since they are built using loose Legendrians, which satisfy an h-principle, flexible Wein-
stein domains also satisfy an h-principle as proven by Cieliebak and Eliashberg [7]. Again,
the h-principle has an existence and uniqueness part:

e any almost Weinstein domain of dimension at least six admits a flexible Weinstein
structure in the same almost symplectic class

e any two flexible Weinstein domains that are almost symplectomorphic are Weinstein
homotopic (and hence have exact symplectomorphic completions and contactomor-
phic boundaries).

3. PROOFS OF MAIN RESULTS

In this section, we prove the results described in the Introduction. We first prove a simpler
version of Theorem 1.5 without as much control on the topology of the flexible subdomain.

Theorem 3.1. Any Weinstein domain W?",n > 3, can be Weinstein homotoped to a We-
instein domain V]?lzx U H™ obtained by attaching a single n-handle to a flexible Weinstein
domain VleZx

Remark 3.2. Theorem 3.1 also holds for Weinstein cobordisms.

Proof of Theorem 3.1. Let W?" = (W?" X\, p),n > 3, be a Weinstein domain. By Lemma
12.20 of [7], we can Weinstein homotope W so that ¢ is self-indexing, i.e. if p is a critical
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point of index k, then ¢(p) = k. In particular, we can assume that W is the result of at-
taching k index n handles to a subcritical Weinstein domain Wy, along disjoint Legendrians
Ay, Ay

If k =0, then W = Wy, = Wy, UH" 'UH"™, where H" !, H" are two cancelling handles
of index n — 1 and n; the domain Wy, U H" ! is subcritical and hence flexible. If k = 1,
then W = Wy, UHR ; again Wy, is subcritical and hence flexible. Therefore we can assume
W = Weup U HY, U'--UH}{k for some k > 2.

The key step is to handle-slide Hy,,---, Hy, over Hy,. We will do this by induction.
More precisely, we Will prove that for every j with 2 < j <k, W is Weinstein homotopic to
W U HY, , for some Legendrian link ]_L 1 Al such that [[]_, Al is a loose link
in OWgyp. Then the case 7= k‘ completes the proof since then W is Welnsteln homotopic to
the flexible domain Wy, U H -U HX, with the single handle H ”, attached. The proof
shows that we can assume that A1 actually stays fixed throughout.

We first prove the base case j = 2. We begin by modifying A1, A2 by Legendrian isotopies
that move only a small neighbhorhood of a single point, i.e. the resulting Legendrians are
the Legendrian connected sum of Aj, Ao with certain Legendrian unknots. More precisely,
let Us be a Darboux ball in the contact manifold 0Wy,;, that is disjoint from A;U- - -UAg. Let
S9 be a Legendrian unknot in Uy and let T5 be a negative Reeb push-off of S5 also contained
in Uy so that Sy, Ty are symplectically unlinked. We apply a Legendrian “Reidemeister
move” to Sy so that it appears as in Figure 4; this move is a Legendrian isotopy which is
contained in Us and the resulting Legendrian, which we also call Sy, is still symplectically
unlinked with 7T5. For one-dimensional Legendrians, this isotopy is the first Reidemeister
move and in higher dimenions (as in our situation) it results in a spherically rotated version
of this Reidemeister move. Note that the isotopy is not obtained by spherically rotating the
one-dimensional isotopy; see [4] for details on this isotopy.

Now we choose isotropic arcs 71,2 connecting A; to T and Ay to So respectively. Since
these arcs are subcritical, we can assume that they are disjoint; furthermore, we can assume
that v, is disjoint from A;,7 # 1 and 7, is disjoint from A;,7 # 2. We can also ensure that
they intersect Uy as depicted in the left-hand-side of Figure 4. Let A} := AifT» be the
Legendrian connected sum of A; and 75 along ~y1; see [34] for details about the connected
sum operation. Similarly, let A, := A2#Ss be the Legendrian connected sum of Ag and So
along ~y2. By choice of 741,72, the Legendrians Aj N Uz, AL, N Us look as in right-hand-side of
Figure 4. Since Us is disjoint from A; and T is a Legendrian unknot in Us, A is isotopic
to A1; we pull the unknot 75 to A; using the isotropic arc ;. Similarly, A} is Legendrian
isotopic to Ag. In fact, the whole Legendrian link A [TASJTAs] - ]I Ax is Legendrian
isotopic to the link Ay [T A2 [[As]]---[[Ax because 71,2 are disjoint from As, - -, Ay and
So, T are symplectically unlinked in Us.

Now we handle-slide A over Aj. We first take sufficiently small e > 0 so that an ea-
neighborhood of A is disjoint from all other Legendrians. The ball Us contains a smaller
chart V4 where A}, A} look as in Figure 1; see the blue box in the right-hand side of Fig-
ure 4. So we can use this chart to handle-slide A5 over A} and produce hy; .,(A)); see
the Legendrian in black in the right-hand-side of Figure 5. Then hy/ .,(A3) is isotopic to
the Legendrian A} in O(Wy U H”/); in fact, the whole link hy; ., (A5) [TAs[]---[TAx
is Legendrian isotopic to A HAgH ]I Ak in (Wi U H”,1 ) as explained in Remark
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S;

FIGURE 4. Left-hand figure: front projections of S;, T}, and isotropic arcs
71,7; (in red) in Uj; right-hand figure: front projections of A;-,A’l, the con-
nected sum of A;, A1 and S;, T} along v;,v1 respectively; the blue box is the
chart we will use to handle-slide A; over A}.

2.2. In particular, Wy, U HY, U H,’;A (AL) U HXS u---u H}{k is Weinstein homotopic
1 ’1,52 2

to Wyup U HX,I U HX,2 U HXB U---u H}\‘k and hence to W. Finally, we note that the size
requirement of the Darboux chart for the handle-slide is satisfied in our situation. We can
take the bottom branch of S5 and the top branch of 75 to be arbitrarily close so that the
slope of the front projection of the handle-slid Legendrian is arbitrarily small; hence the y;
coordinate of the chart can be arbitrarily small for our handle-slide.

We observe that hA’l (A%) is loose in OWyyp. The blue box in Figure 5 is the loose chart
of hA/1 £2 (A}) in Us. Recall that we have spherical symmetry in the handle-slide region so
it is loose with Q"2 = S"~2; see Definition 2.4. However, har e (A}) is not loose in the
complement of A} since A} intersects the loose chart of hys o, (A3). This completes the case
j = 2. Note that we can extend the Legendrian isotopy of A} back to A; to an ambient
contact isotopy and hence assume that A] = A;.

Now suppose that the j — 1 case holds for some j > 3. So we have Weinstein homotoped
W to Wy U HY U ---UHJ (relabeling the Legendrians) such that Hf;% A; is a loose
link (but not loose in the complement of Aj). Again we take a Darboux ball U; that is
disjoint from all the Legendrians and unlinked Legendrian unknots S;,7; C U;. Then we
form A} := A12S;, A := A;4T} using arcs 71,7, that are disjoint from the other Legendrians.
Then we take sufficiently small ¢; (smaller than the previous €;_1) and use the chart in
Uj to handle-slide A} over A} and get a new Legendrian Ay, (A}). Then by Proposition
2.1 (and Remark 2.2), Wy, U H”,1 UHE, U---U Hinl U H}TZLA’l(A;') U HK;'H U---UHR s
Weinstein homotopic to Wy, U HX,I U HXQ U---u H/T\AL]'A U H”z U HXJ,H U---u H/’{k and
hence to W. As before, we can see explicitly that by, (A’y) is loose in OWy,;, (but not in
the complement of A} which intersects its loose chart). Most importantly the loose chart of
har (A}) is contained in Uy, which is disjoint from Ag, - -+, Aj_1. Therefore hy; (A}) is loose in
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A, h (A)

ALEs

R

FIGURE 5. Left-hand figure: front projection of A%, A}, and R—;(A}) in Uj;
right-hand figure: front projection of has e, (A;) in Uj; the blue box is a loose
chart of hyr . (A}) in Uj.

the complement of these Legendrians, which form a loose link by the induction hypothesis.
SoAa[T---TTAj—1 11 hat (A"l) is also a loose link, which proves the jth inductive case. Again
by applying an ambient contact isotopy to all the Legendrians, we can assume that A} = A;.

O

Now we give an example illustrating the entire procedure in Theorem 3.1.

Example 3.3. The following example shows that T*S™3T*S™gT*S™, the boundary con-
nected sum of three copies of 7%S", can be Weinstein homotoped to Wy, U H™ for some
flexible domain Wyj,. We begin with the “natural” presentation of 1T™S™gT™*S"gT™*S™ of
the form B?" U HR UH) UHR , where A1, As, Az are three unlinked Legendrian unknots in
(8271 €,4). In Figure 6, Ay is in red, As (and its image after handle-slides) is in black, and
A3 (and its image after handle-slides) is in blue. The top diagram in Figure 6 denotes the
setup after one iteration of the construction; the Legendrians are now Aj, ha, (A2), As. The
middle diagram in Figure 6 is the first part of the second iteration when we change A to A
and it bring it closer to Az. The bottom diagram in Figure 6 shows the three Legendrians
Ai,ha, (A2), h A, (A3) after the second iteration of the construction, i.e. handle-sliding A3 over
A}. Then ha, (A2), hyy (Az) form a loose link since ha, (A2) is a loose Legendrian and A/ (As3)
is loose in the complement of hp, (A2). We take Wiy, to be BQ"UH};AI(AQ) UH} (Ag)" So the

A
original domain 7*S™9T*S™4T*S™ is homotopic to Wije, U H”,l. Note that hy, (A2), ha; (As)
are not loose in the complement of A}, which intersects their loose charts. For simplicity’s
sake, Wyie, in this example is not actually (7*S™37*S"™) fieq; it will have the wrong inter-
section form (in some dimensions n) and so will not even be diffeomorphic to T*S™§T™*S™.
However it is possible to do the construction so that Wye, is (T*S™5T*S™) f1er U H".
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FIGURE 6. Theorem 3.1 applied to T™S7, ;41 ST, ;41" ST, ;-
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h(A)
A~ h(A)
t=0 t=1

FIGURE 7. Cerf diagram of the Weinstein homotopy for 7*S7, 47 S7, ;47 S%, ;-

Although the order in which handles are attached does not affect the ambient domain
(up to homotopy), it does affect which Weinstein subdomains are produced by a particular
Weinstein presentation. To emphasize this, in Figure 7 we have depicted the Cerf diagram
of the Weinstein homotopy for T*S"jT*S™1T*S™ discussed above, i.e. the graph of critical
values of the index n critical points of the Weinstein Morse functions ¢; over the parameter
space t € [0,1]. That is, if p;,i = 1,2,3, is the critical point with attaching sphere A; in
the regular level set (S~ &,4), then the three line-graphs depict ¢;(p;) for t € [0,1]. In
Figure 7, we have labeled the graph of ¢;(p;) by its attaching sphere. Handles are attached
in order of the critical values of the corresponding critical points, from lowest to highest.
At the beginning of the homotopy, o(p2), vo(ps) are greater than ¢o(p1) since we need
to handle-slide the As, A3 handles over A;. These handle-slide moments are depicted by
the two vertical blue lines in Figure 7. After the two handle-slides are performed, the
attaching spheres of pa, ps become hy, (Ag),hA/1 (A3) respectively, as shown on the right-
hand-side of Figure 7. Away from the handle-slide moments, the homotopy changes the
Legendrian attaching spheres just by Legendrian isotopy. Finally, the homotopy makes the
critical value of p; greater than the critical values of p1, po, which is possible by the second
Weinstein homotopy move (see Section 2.1.3). As a result, the Weinstein domain Wy, with
attaching spheres hy, (A2), hys (A3) is a sublevel set of 1 and hence a Weinstein subdomain
of T*S™yT*S™yT*S™.

Note that the Weinstein homotopy in Theorem 3.1 involved just handle-slides. If we
first create a pair of symplectically cancelling handles and then handle-slide, we can achieve
better control over the topology of the flexible subdomain. This is the approach we will
take in the following proof of Theorem 1.5, which shows that W can be homotoped to
Wiiex U C?" for some smoothly trivial Weinstein cobordism C?" with two Weinstein han-
dles. For example, this result shows that T*S™yT*S™§T*S™ can be Weinstein homotoped to
(T*S™T*S™4T*S™) f1e, U H" ™1 U HY, where the last two handles are smoothly cancelling.

Proof of Theorem 1.5. We will assume that W = I/Vsug,UHX1 U-- -UHXk for kK > 1. First, we
attach a symplectically cancelling pair of index n — 1, n handles H" 1, Hy to W in a small
Darboux chart B?" so that W = Wg(B*u H" ' U HY ) = W U (H"'u HR)UHE U
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FIGURE 8. Front projections of AJ~! (in red) and A?~! (in black) and their
subsequent images under the moves in Theorems 1.5 and 1.10 for n even; the
blue box in the fourth, fifth diagrams is the loose chart of h}_(As), p(h3,(Ai))
respectively; the green portion of the Legendrian in the fourth diagram is the
boundary of the Whitney disk between h%o (A;) and the belt sphere of H" 1.

O O

i

~-UHY, . Now we proceed as in the proof of Theorem 3.1 with slight modifications. We first
bring all the A;,7 > 1, close to Ag by taking U; in the proof of Theorem 3.1 to be contained
in 9B?". The main difference from before is that now we do two handle-slides of A;,i > 1,
over Ag, which produces the Legendrian h?\o (A;). Before doing the second handle-slide, we
perform a Reidemeister move. This move depends slightly on the parity of n. For n even,
we do the usual Reidemeister move which modifies the Legendrian in just a point; see Figure
4. As a result, h%o (A;) is loose. Note that h%o (A;) intersects the belt sphere of H"~! two
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times. We will now show that h%o (A;) has algebraic intersection number zero with this belt
sphere. Indeed, consider the orientation of the two branches of h?\o (A;) as they approach the
belt sphere. The tangent space of these branches can be decomposed into a 1-dimensional
part in the “page” (as depicted in Figure 8) and an (n — 2)-dimensional part transverse to
the page. The tangent spaces parallel to the page have opposite orientations for the two
branches; see the arrows in Figure 8. The tangent spaces transverse to the page differ by
the antipodal map on D"~ due to passage through the crossing point of the Reidemeister
move. Hence if n is even, the two branches of hf\o (A;) have opposite orientations and so
hio (A;) has algebraic intersection zero with the belt sphere of H" ! as desired. If n is
odd, the Legendrian h%o (A;) as described above has algebraic intersection two with the belt
sphere. So instead of doing the Reideimeister move as in the even case, we perform the
1-dimensional Reideimester move spun by S"2 C A" !; so this move modifies A"~ ! in a
neighborhood of $"~2. Then we form h%o (A;) by handle-sliding using a chart that intersects
the bottom branch of this Legendrian. Now there is no crossing point and so h?\O (A;) has
algebraic intersection zero with the belt sphere of H"~!; this modified procedure works for
the n even case as well but it is more complicated to depict, which is why we have explained
the n even case separately. Finally, we note that h%o (A;) is loose, even though we have
used a different Reidemeister move and so a loose chart as defined in Definition 2.4 does
not obviously appear. Namely, h?\o(Ai) has a 1-dimensional zig-zag arc and since this arc
is in a Darboux ball, it has arbitrary thickness and so defines a loose chart; see [4]. In
conclusion, h?\O (A;) is loose for all n > 3 and has algebraic intersection number zero with the
belt sphere of H"~!. We do this procedure for all the Legendrian A; and so, as in Theorem
3.1, h?\o (AD)TT---T1 h%O(Ak) form a loose link; more precisely, the ith Legendrian is loose
in the complement of the previous (i — 1) Legendrians, which implies that the link is loose.

Hence W' := Wy, U H* 1 U H’?io(f\l) u---u Hf?io(/\k) is flexible and W = W' U HY .

Since the algebraic intersection number of hio (A;) with the belt sphere of H" ! is zero,
n > 3, and 71 (O(B*UH"!)) = 0, we can use the Whitney trick to smoothly isotope h%o (A;)
away from this belt sphere. In fact, we can assume that this smooth isotopy is supported in
O(B?" U H™1). To see this, note that we can take the boundary of the Whitney disk to lie
in this region; see the green portion of Legendrian in the fourth diagram of Figure 8. This
region is simply-connected and hence the Whitney disk also lies in this region; so the isotopy
is also supported in this region. Since n > 3, the Whitney disks will be generically disjoint
for different ¢ and so we can smoothly isotope the whole link h%o (A)JT--- Hh%o (Ag) off
the belt sphere of H"~! (again via an isotopy supported in 9(B%" U H""1)).

The Legendrian link 2% (A1) I---[]h3,(Ax) is loose and so the smooth isotopy can be
approximated by a Legendrian isotopy. Since the smooth isotopy is supported in 9(B*" U
H" ') and the Legendrians are loose in this region, the Legendrian isotopy is also sup-
ported in this region. Let ¢; be the ambient contact isotopy inducing this Legendrian
isotopy and supported in a small neighborhood of the Legendrian isotopy; in particular ¢
is also supported in 9(B?* U H"1). Since h?\O(Al)H“'Hh?\O(Ak) is a loose link, so is
go(h?\o (M) TT--- ]_[cp(h?\o (Ak)), where ¢ := 1. Furthermore, we can assume that this link
is loose in the complement of H"~! and A¢ but not in the complement of ¢(Ag). See the
fifth diagram in Figure 8. The upper Legendrian in black is ap(hio (A;)) and the blue box is
its loose chart. The red Legendrian is ¢(Ag). This fifth diagram is purely schematic and is
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meant to demonstrate that ¢(Ag) intersects the belt sphere of H"~! some number of times
and is linked with @(h3 (A1)) in some way such that (Ag) intersects the loose chart of
go(hio (A;)) (since A intersected the loose chart of hio (Ay)).

Now we apply the contact isotopy ¢ to all attaching Legendrians; see the transition from
the fourth to the fifth diagram in Figure 8. As a result, we get that W = W, U H* 1 U

DY n n 1 1 1 1 n_l n ...
U---u B3, (M) U HAO is Weinstein homotopic to W, U H U Hﬁa(h?\o (A1) U---u

U HZ( Ao)’ The key point is that the latter presentation is Weinstein homotopic

B3, (M)
Hom, )

to Wyp U HZ(h?\D(Al)) U---U HZ(h?\O(Ak)) UH" U HJ 5, because we can attach the handles
Hn

B3, (M) u--- U Hz(h%O(Ak)) before H"~! since (kX (A1) [1---[Tw(h},(Ax)) is disjoint
from the belt sphere of H"~!. Let W be the domain W, U H;Z(h?xo (A1) u---u H;(h?xo (A0)
obtained by viewing gp(h?\O(Al))]_[-u]_[gp(h?\O (Ax)) as a Legendrian link in O0Wgy,. So
W is Weinstein homotopic to W” U H* 1 U H7 - We note that W" is flexible since
go(h?\o (M) T 11 cp(h?\o (Ay)) is loose in the complement of H" 1.

Finally, we show that the Weinstein cobordism W\W” = H"~1 U H7 ), is smoothly
trivial. Since ¢ is smoothly isotopic to the identity, ¢(Ag) is smoothly isotopic to Ay in
O(Wuy UH™ 1), Since Ag intersects the belt sphere of H"~! exactly once, this isotopy gives
Whitney disks that cancel out all intersection points between ¢(Ag) and the belt sphere of
H"~! (except for one). Since n > 3, the Whitney disks will be generically disjoint from the
link gp(h%o (M) TT---11 gp(h%o (Ak)). So ¢(Ap) can be smoothly isotoped in the complement
of this link to a sphere that intersects the belt sphere of H" ! exactly once. This means
that ¢(Ag) can be smoothly isotoped in O(W” U H"!) to intersect this belt sphere exactly
once, which proves that W\W” = H"~1 U HY g s smoothly trivial.

Any almost symplectic structure on a smoothly trivial cobordism can be deformed relative
to the negative end to the product almost symplectic structure. In particular, W, W” are
almost symplectomorphic. Since W” is flexible, by the uniqueness h-principle [7] it is the
flexibilization We, of W. O

Now we prove the 4-dimensional analog of Theorem 1.5.

Proof of Theorem 1.6. We take V* to be W’ from the proof of Theorem 1.5 so that W =
Vu H/%O. Note that V* is obtained by attaching a 1-handle and some 2-handles along
h%o (Ag) to W2 ,. Each attaching knot for the 2-handles is stabilized in the complement
of the previous ones; hence V* is a stabilized domain. Finally, we note that V* is simply
homotopy equivalent to W* U H'. To see this, we consider the six-dimensional domain
V4 x B?; as can be seen explicitly, the attaching knots hio (Ay) are unknotted in the BSU H*
region and hence can be smoothly isotoped to Aj. As a result, this domain is diffeomorphic
to (W*U H') x B2, Here we do not use the Whitney trick directly since the region BSU H*
is not simply-connected. O

Using Theorem 1.5, we can prove Theorem 1.1, our result relating WCrit and Crit.

Proof of Theorem 1.1. By Theorem 1.5, we can Weinstein homotope any Weinstein domain
W?2n n > 3, to its flexiblization plus two smoothly cancelling handles of index n—1,7n, i.e. to
Wiiex ug™ ! UHX1 where A can be smoothly isotoped to intersect the belt sphere of H"~!
exactly once. For any smooth Morse function f with critical points of index at most n on W,
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there is a Weinstein homotopy of Wy, to a Weinstein presentation with Weinstein Morse
function f; see Theorem 14.1 of [7]. Furthermore, if f has OWy., as a regular level set,
then this Weinstein homotopy is fixed on OWye, up to scaling. By Smale’s handle-trading
trick, there exists such a smooth function on W that minimizes the number of critical points,
i.e. with Crit(W) critical points, and so we can Weinstein homotope Wy, to a Weinstein
presentation with Crit(WW) critical points. Since this homotopy is fixed up to scaling on
OW tier, it extends to a Weinstein homotopy of Wy, U H n=ly HY , which is fixed up to
scaling in W\Wflea:- In particular, this homotopy on Wy, U H =1y HXI does not alter the
number of critical points in W\Wje,. Combining the homotopy of W to We, UH™ ! UHR
and this second homotopy of Wy, UH n=ly HY to a presentation with few critical points,
we get a Weinstein homotopy of W to a Weinstein presentation with Crit(W) + 2 critical
points: Crit(W) critical points in Wier and 2 critical points in W\Wﬂm due to the handles
H 1 Hy . This proves the first claim in Theorem 1.1.

Now we prove the third claim in Theorem 1.1 about smoothly subcritical domains W?2".
If W?" is Weinstein subcritical, then W?2" is flexible and so by the above discussion can
be homotoped to a Weinstein presentation with Crit(W) critical points, i.e. WCrit(W) =
Crit(W). Conversely, suppose that WCrit(W) = Crit(W) and = (W) = 0. If m (W) =
0, the proof of Smale’s h-cobordism theorem shows that Crit(W) equals the number of
generators and relations for integral homology; see Theorem 6.1 of [39]. Then any minimizing
smooth Morse function on W cannot have any critical points of index greater than n — 1
since these critical points are algebraically unnecessarily; we can remove them and still
have generators for integral homology since H,(W;Z) = 0 and H,_1(W;Z) is torsion-
free for smoothly subcritical W. Hence if 71 (W) = 0 and WCrit(W) = Crit(W), then
the minimal Weinstein presentation gives a minimal smooth presentation and so cannot
have any critical points of index greater than n — 1. Therefore W is Weinstein subcritical.
Finally, we note that if WCrit(W?") # Crit(W?"), then WCrit(W?") = Crit(W?") + 2
since WCrit(W?") < Crit(W?") + 2 by the first claim and WCrit(W?") = Crit(W?") + 2
mod 2 by the Euler characteristic.

Now we prove the smoothly critical case. Suppose that v is a minimal smooth Morse
function on W with k = Crit(W) critical points. By assumption, one of these critical points
has index n (and the rest of the critical points have index at most n). By the previous
discussion, we can assume that 1 is a Weinstein Morse function on Wy, and two other
smoothly cancelling handles lLI"_l,HX1 are attached to Wy, to form W. The smooth
isotopy from A; to cancelling position gives some number of Whitney disks in O(W e, U
H"™"1) pairing off all intersection points of A; and the belt sphere of H"~! (except for one
intersection point).

We can suppose that the index n critical point of 1 on Wy, is attached along a loose
Legendrian Ag; so Wy, = W]/clea: UHR and W = W]’clm uH» U HY U HE . Note that
Ay is disjoint from the belt sphere of H"~! (since H"~! is attached after HY ). We view
A C O(W}lez U H" 1) by taking any Legendrian in 8(W}lex U H"1) that is isotopic to
Ay in 8(W}l o UH™ U HY ); in general, there will be many such Legendrians, which are
non-isotopic in (W, U H n=1). Since n > 3, we can assume that the Whitney disks of A
in 8(Wﬂ€xUH”_1) are disjoint from the belt sphere of H} and hence lie in 3(W}lexUH"_1).
In particular, A; can be smoothly isotoped in 8(W]’cl oz UH "=1) to intersect the belt sphere
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of H" ! in a single point. Furthermore, since the Whitney disks are disjoint from Ag (since
they are disjoint from its belt sphere), we can assume that this isotopy is supported away
from Ag. We can also assume that this smooth isotopy of A; is the identity in a neighborhood
of some point x in A;. We take an isotropic path + from x to Ag and also assume that the
isotopy is the identity in a neighborhood of this path.

Now we handle-slide Ay over Ag using the path v. More precisely, we take the Legendrian
connected sum of A; with a Legendrian unknot near Ag via the isotropic arc v and then
handle-slide using a chart near this Legendrian unknot as in Theorem 3.1. We also do
the handleslide so that the resulting Legendrian iy, (A1) is loose in O(Wy,, U H™ 1) (but
not in the complement of Ag). Now we note that hp, (A1) can also be smoothly isotoped in
8(W]’cl s UH "=1) to a cancelling sphere that intersects the belt sphere of H"~! once. Namely,
we can use exactly the same smooth isotopy that takes A; to a cancelling sphere. This is
because hp, (A1) is topologically the connected sum of Ag and A;. Since the previous isotopy
is supported away from Ag and the path « used for the connected sum, we can extend it to
the connected sum. Furthermore, Ag is disjoint from the belt sphere of H"~! and so after
the smooth isotopy, ha, (A1) intersects this belt sphere once.

Since hp, (A1) is loose in O(Wy,, U H"1) and smoothly cancels H"~!, we can symplec-
tically cancel H" ! and H;LLAO(AI). Therefore W}lem uH" U Hy U H}TLLAO(AI) is Weinstein
homotopic to WJ/('Z ez U HIT\LE)' Here Aj is the Legendrian obtained by handle-sliding Ag off the

cancelling pair H"_IUH,’;AO (Ay)s -€- A is the image of Ag in W, = W}ZCxUH”—lquAO( A
Since W]’%x has a Weinstein presentation with k£ — 1 critical points, W}lex U H”6 has a
presentation with k& = Crit(W) critical points. This completes the proof since W =
Wi, UH™ U HE U HR is Weinstein homotopic to W, U H* ™' U HY U Hi' (an)y
which is homotopic to W}lex UH "6. d

The proof of Theorem 1.1 can be used to prove Corollary 1.7: all Legendrians in our
Legendrian link can be made individually loose.

Proof of Corollary 1.7. The proof of Theorem 1.1 in the smoothly critical case shows that
W = W}lew UH" U H} U H’?AO(Al) where Ag, ha, (A1) are both loose; Ag is loose by as-
sumption and ha, (A1) is loose because of the handle-slide. Combining Ag with the attaching
spheres of the n-handles of W]'%x U H"~! (which form a loose link for some presentation),
we get the desired result. For general W, we first add a pair of symplectically cancelling
handles to Wy, and then proceed as in the smoothly critical case. O

Next we prove Theorem 1.10 about the number of intersection points between the belt
and attaching spheres of smoothly cancelling handles.

Proof of Theorem 1.10. By Theorem 3.1, we can assume that the smoothly trivial Weinstein
cobordism W consists of two smoothly cancelling handles H?‘l, HY , ie. A; is smoothly
isotopic to a Legendrian that intersects the belt sphere of H {L*l in a single point. Now we
follow the proof of Theorem 1.5. We first attach two cancelling handles Hg_l, HY in asmall
Darboux ball and do two handle-slides (of opposite orientations) of A; over Ag so that the
resulting Legendrian h?\o(/h) is loose. Then we use the contact isotopy ¢ to isotope h?\o (A1)

away from the belt sphere of Hgil. The result is W = HgiluH{LflLJH"

o3, () I p(a)3 8¢
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the fifth diagram in Figure 8. The key observation is that this local diagram is independent
of A1 since all isotopies were done near Hg_l U HY . In particular, let C;, be the number of
times that ¢(Ag) intersects the belt sphere of Hgb_l; in Figure 8, this number is 5 but since
we do not compute this isotopy ¢ explicitly we do not know the exact number.

Next we note that Legendrian gp(h%o (A1)) is still smoothly isotopic to a Legendrian that
intersects the belt sphere of H]""! in a single point. This is because @(hio (A1)) is exactly
the same as A; except for a loose chart; see the blue box in the fifth diagram of Figure 8.
Furthermore, we can assume that this smooth isotopy is supported away from H" ! U Hy, .
Since go(h?\o (A1)) is loose, there is a contact isotopy 9 taking it to a Legendrian that intersects
the belt sphere of H]* in one point; since ap(hio (A1)) is loose away from H"~1uU HY  and the
smooth isotopy is supported away from this region, we can assume that this contact isotopy
is also supported away from Hj ' U HY . In particular, 1 (¢(Ag)) still intersects the belt
sphere of H'"! in C, points. Finally, we handle-slide (¢ (Ag)) over 1/1(90(h?\0 (A1)) and off
H ?71. This also does not change its geometric intersection number with the belt sphere of
H ! since P(p(h}, (A1) is disjoint from this belt sphere. We call the resulting Legendrian
Ajy. Then W = H(’f*l U HXé and A{, intersects the belt sphere of H(’f*l exactly C), times as
desired. The Legendrian A{ is depicted in the sixth diagram of Figure 8. This diagram is
also schematic and is mean to signify that Aj has an upper and lower part; the lower part
of Aj) is close to Hg_l and is independent of A; while the upper part of A{, depends on A,
(and hence on W). O

Now we give proofs of the results in Section 1.4. We first prove Corollary 1.12 concerning
the number of generators g(W(X)) of the wrapped Fukaya category W(X).

Proof of Corollary 1.12. The proof of Theorem 1.1 shows that W C'rit,(X) < max{1, Crit,(X)}
for all X?". Combining this with the result from [6, 21], we get the inequality g(W(X)) <
max{1, Crit,(X)}. If X?" is simply-connected, then Smale’s h-cobordism theorem (which
holds since n > 3) implies that Crit,(X) = g(H™(X;Z)), which proves the result in that
case. If X?" is not simply-connected, we attach some 2-handles to X?" to get a simply-
connected Weinstein domain Y2". Since n > 3, we have H™(Y?";Z) = H"(X?";Z) and so
g(H (Y?™, 7)) = g(H"(X?";Z)). Furthermore, since n > 3, the 2-handles are subcritical
and hence D*W(Y) is exact equivalent to DW(X) by [21] and so gW(X)) = gOV(Y)).
Then the result for Y?", which is simply-connected, implies the result for X?". 0

Next we prove Corollary 1.13 that g(KoOWV(X))) < g(H™(X;Z)).

Proof of Corollary 1.13. The case g(H"(X;7Z)) > 1 is proven by Equation 1.4 so it suffices
to do the case when g(H"(X;Z)) = 0. Then g(Ko(W(X))) < 1 by Equation 1.4 and if
g(Ko(W(X))) = 0, we are done. Otherwise, g(Ko(W(X))) = 1 and so Ko(W(z)) = Z/kZ
for some integer k£ > 0. Now we take the boundary connected sum and form the new We-
instein domain X{X. Since 1-handles are subcritical, D*W(X1X) = D'W(X [[ X) by [21]
and D'W(X[[X) = D'W(X)[] D*W(X). As a result, Ko(W(X1X)) = KoW(X)) @
KoW(X)) &£ Z/kZ &® Z/kZ. This implies that g(Ko(W(X1X))) = 2 since Z/kZ & Z/kZ
is not a cyclic group. On the other hand, we also have H"(X§X;Z) = H"(X;Z)/ ®
H"(X;Z) = 0 and so g(H"(X§X;Z)) = 0. Again using the previous inequality, we get
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that g(Ko(W(XtX))) < 1, which contradicts g(Ko(W(X5X))) = 2. Therefore, we must
have that g(Ko(W(X))) = 0 and so Ko(W(X)) = 0 as desired. O

Remark 3.4. A similar boundary connected sum trick was used by Smith to show that all
exact symplectic fillings of (S?"~1, £,;4) have vanishing symplectic cohomology [36]; also see
[41].

Next we prove our results about the Chekanov-Eliashberg algebra C E(A) of Legendrians.
These results depend on the surgery formula [3]; alternatively, we can use the partially
wrapped invariant CF(D, D; (W, A)) and the rigorous proof of the surgery formula given in
[21]. We first prove Corollary 1.16: the Chekanov-Eliashberg algebra of a Legendrian A"~! C
(8771 x 8™ £.4) that is primitive in homology has no finite-dimensional representations.

Proof of Corollary 1.16. We first assume that A is a sphere and prove the general case later.
Let X" := B2 UH"'UHY. Since [A] =1 € H,,_1(S" ' xS™Z) 2 Z, H"(X*";Z) = 0 and
so Ko(W(X)) = 0 by Corollary 1.13. Let C™ C X?" be the co-core of HY. Since C™ is the
only index n co-core for X2", C™ generates W(X) and so D'W(X) := HY(Tw(Fuk(X)))
is equivalent to H°(Tw(CW(C,C))), where we treat CW (C,C) is an A..-category with
one object. By [3], CW(C,C) is quasi-isomorphic to CE(A) and hence D'W(X) is exact
equivalent to HO(Tw(CE(A))).

Suppose that CE(A) has a DGA map to Mat(n,K). Then there is an As-functor
Tw(CE(A)) — Tw(Mat(n, K)) and an exact functor H(Tw(CE(A)) — H(Tw(Mat(n,K)))
taking CE(A) to Mat(n,K) (considered as twisted complexes). Let D(Mat(n,K)) de-
note the classical derived category of Mat(n,K)-modules and Dy (Mat(n,K)) its As ana-
log, i.e. the homotopy category of As.-modules over Mat(n,K). There is an embedding
D(Mat(n,K)) — Ds(Mat(n,K)); see [25]. Since H(Tw(Mat(n,K))) is equivalent to the
subcategory of Do (Mat(n,K)) generated by the free module Mat(n,K) and since the exact
subcategory DM at(n, K) contains this free module, H%(Tw(Mat(n,K))) is also equivalent to
the subcategory of DMat(n,K) generated by the free module Mat(n,K). This subcategory
is an exact subcategory of D°Proj(Mat(n,K)), the bounded derived category of projective
Mat(n, K)-modules. In summary, there is an exact functor D*W(X) — D Proj(Mat(n,K))
taking the co-core C" to the free module Mat(n,K). This functor induces a map of
Grothendieck groups Ko(W(X)) — Ko(D°Proj(Mat(n,K)), and the latter is just the usual
Grothendieck group Ko(Mat(n,K)) of projective Mat(n, K)-modules. It is well-known that
[Mat(n,K)] € Ko(Mat(n,K)) = Z is non-zero. Therefore Ky(W(X)) is also non-zero, which
contradicts Corollary 1.13. Similarly, there are no DGA maps from CE(A) to a commutative
ring R since [R] € Ko(R) is non-zero for commutative rings.

Now we prove the case when A" ! is not a sphere. In this case, we cannot attach a
standard m-handle along A but we can attach a generalized handle. Namely, let M™ be
a smooth manifold with boundary A”~!. Then we can construct the Weinstein domain
X% = B2VUH™'UAT* M, where we glue T* M to B2, UH™ ! by identifying the Legendrian
OM C 0T*M with A C 3(8?{& U H"1); more precisely, we fix parametrized Legendrian
embeddings i : A — 8(B§&UH "1y and j : A < 9T*M, which give us identifications of their
neighborhoods with J'(A) that we use to glue BZYUH""! to T*M. Then CE(A; C,(QM™)),
the Chekanov-Eliashberg algebra with coefficients in chains on the loop space of M™, is quasi-
isomorphic to CW (T M,T;M), wrapped Floer cochains of the cotangent fiber T M C
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T*M C X?"; the partially wrapped analog of this result is proven in [21]. The cotangent
fiber T M is the co-core of the only index n handle of X?" and hence generates D*W(X).
The condition that A is primitive in H,_1(S"~! x S";Z) again implies that H"(X;Z) = 0.
Hence Ko(W(X)) = 0 and so by the same argument as when A is a sphere, CE(A; C.(QM™))
has no finite-dimensional representations or DGA maps to a commutative ring. On the
other hand, there is a DGA map CE(A; C.(Q2M"™)) — CE(A) induced by the DGA map
Ci(QM) — C.(2D™) = K. Any finite-dimensional representation or map to a commutative
ring from C'E(A) pulls back to such a map from CE(A; C,(Q2M™)), which we have proved
cannot happen. So CE(A) also cannot have any finite-dimensional representations or DGA
maps to commutative rings. O

Now we prove Corollary 1.17 concerning Legendrians that can be isotoped into a neigh-
borhood of a loose Legendrian Ajgpse C (S?" 71, €ga).

Proof. 1.17 We first prove the case when Ay is the loose Legendrian unknot Aqypninot ioose
and then prove the general case. Consider a loose Legendrian sphere A C (8"~ x S™, £.4)
that is primitive in H,(S" ! x 8™ Z). Let B C (8" ! x 8" £44) be the stabilization of
A, followed by a small Reeb push-off so that A, B are disjoint and form a loose link. The
stabilization is done so that A, B are formally isotopic (and hence Legendrian isotopic). We
can also assume that exist disjoint contact neighborhoods U,V of A, B respectively so that
A, B are loose in the complement of V, U respectively.

Since A is loose, Bgﬁi uH" U H'} is Weinstein homotopic to Bsgi. By attaching the
handle H’} using a neighborhood of A contained in U, we can assume that B and its neigh-
borhood V' are disjoint from the attaching neighborhood and hence extend to a Legendrian
B' C (8%, &4q) = OB2Y and a contact neighborhood V' of B’. Since B is loose in the
complement of U, its loose chart extends to (S?"~!,£,4) and so B’ is loose. The belt sphere
of H'} is the standard Legendrian unknot and so B’ is formally isotopic to the Legendrian
unknot. Since B’ is loose, it is the loose Legendrian unknot Aypknot joose-

As in the statement of this result, consider a Legendrian A C (S?"~1, £,4) that can iso-
toped into a neighborhood of Aypnknot,icose = B’ and is primitive in Hy,—1(Aunknot,ioose; Z); We
can assume that this neighborhood is V. Using the identification between V' C (S2"71 &,4)
and V C (8" x 8™, €4q), A C V' defines a Legendrian Ag C V C (S"! x S &44). In par-
ticular, A C (8?71 &,4) is obtained by trivially extending Ag C (S™~! x S™, £4q) through
the Weinstein cobordism from Bg{& UH" ! to B?gl = Bfgl uH"U H'} given by handle
attachement along A C (8" 1 x S™, &yq). Since Ag C V, A C (™1 x S™, &yq) is loose in
the complement of Ag. Handle attachment along the loose Legendrian A does not change
the Chekanov-Eliashberg algebras of Legendrians, like Ag, that are disjoint from the loose
chart of A; see [3, 26]. Hence CE(Ag), CE(A) are quasi-isomorphic; this is the key point
where we use the fact that A is in a neighborhood of Aypknot,icose = B’, which implies that
Ap is disjoint from the loose chart of A. Without this condition, CE(Ag), CE(A) could be
completely different and in fact, CE(Ag) could be zero while CE(A) is arbitrary.

The fact that A is primitive in Hy,—1(Aunknot toose; Z) implies that Ag C (S"1 x 8™, &44q)
is primitive in H,,_1(B;Z) and hence primitive in H,,_1(S" ! x S";Z). So H*(Tw(CE(Ao))
is equivalent to D°W(X), where X 2" is the Weinstein ball B2, U H" 1 U HY . Then as in
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F1GURE 9. The black Legendrian is A with a Reidemeister twist added. The
red Legendrian is a Legendrian unknot Aynknor, which contains the black
Legendrian in its neighborhood. They can be made to agree at the upper
points of Aynknot-

Corollary 1.16, CE(Ap) has no finite-dimensional representations or DGA maps to commu-
tative rings. Since C'E(A) is quasi-isomorphic to CE(Ag) by the previous paragraph, CE(A)
also has no finite-dimensional representations or DGA maps to a commutative ring. More
precisely, this quasi-isomorphism implies that H°(Tw(CE(A))) and H°(Tw(CE(Ag)) are
equivalent and the rest of the proof is as in Corollary 1.17.

Next we prove the result when A is a neighborhood of an arbitrary loose Legendrian
Ngose C (5?71 €4q). Note that any Legendrian A C (S?"~! £,4) can be Legendrian
isotoped to a neighborhood of the Legendrian unknot A,knet SO that A and Aynknee agree
on a small disk D"~! (and hence A is primitive in H,_1(Auninot; Z)). To see this, view
A via its front projection in R” and add a Reidemeister twist move to the top-most point
of A, i.e. the one with the largest z-coordinate. Note that the smoothed out twist is the
front projection of Ayprnot. Taking this to be our copy of Aynknot, We see that A and
Aunknot agree on a disk and A is contained in a neighborhood of A,nkner; most of A is
contained in a neighborhood of the bottom-most point of Ay,knet- See Figure 9. In particular,

this construction holds for Ajyyse. We simultaneously stabilize Ay prnor and Ajgose using the

/
loose
/

loose
isotopic to Ajpse and hence Legendrian isotopic to it. Combining these results, we can

disk D"~! and get Aunknot,loose and A] By construction, A

loose*
Aunknot loose and is again primitive in homology. Furthermore, A

is in a neighborhood of
is formally Legendrian

assume that Ajyese is a neighborhood of Aypnknot,ioose and is primitive in Hy,—1(Aynknot,ioose; Z)-
Therefore, since A C (52”71, £,4) can be isotoped into a neighborhood of Ajyese and is
primitive in Hy_1(Ajpose; Z), it can also be isotoped into a neighborhood of Aypinot,icose and
is primitive in Hy,—1(Aunknot,ioose; Z) reducing this case to the previous case when Ajypse is
Aunknot Jloose+ O

Combining Corollary 1.16 with the existence of infinitely many exotic Weinstein balls, we
conclude that there are infinitely many Legendrian spheres in (S~ xS™ &yq) or (S?"71 £44)
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with no finite-dimensional representations; these Legendrians are also in a contact neighbor-
hood of loose Legendrians and are primitive in their homology.

Proof of Corollary 1.18. McLean [30] showed that there are infinitely many exotic Weinstein
balls Ei” for each n > 4, distinguished by symplectic cohomology. As explained in Example
1.3, WCrit($3") = 3 and so $3" can be presented as B2, UH" 1 UHJ, for some Legendrian
Ag C (S x S™ €a). Since X3 is a ball, Ay, is primitive in homology and so by Corollary
1.16, CE(Ay) has no finite-dimensional representations. By [3], the symplectic cohomology
of ¥2" is isomorphic to the Hochschild homology of CE(Ay) and hence CE(Ay) are not
acyclic and are different for different k, as desired.

Next we show that the Legendrians Ay can be isotoped into a contact neighborhood of a
loose Legendrian and is primitive in its homology class. Note that BSQZZIUH n—1 is a subcritical
Weinstein domain and hence Weinstein homotopic to D*S™ ! x D?, where D*S™ ! is the unit
disk cotangent bundle. So (S™7! x S, £5q) = O(B2,UH"!) can be viewed as the boundary
of the Lefschetz fibration D*S™~! x D?. By smoothing the corners of this Lefschetz fibration,
(8771 x 8™ £44) has an open book decomposition obtained by gluing (T*S™ ! x S, A+ dz)
to (ST*S" 1 x D2, A\ +zdy — ydx) by identifying ST*S" 1 x [1,00) x S C T*S"~! x S with
ST*S™1 x (D?\0) C ST*S™"! x D? via the contactomorphism (z,r,0) — (z,1/r%,6). The
pages of the open book decomposition are T7*S™ ! x §, where § € S'. Akbulut and Arikan
[2] showed that there is a Legendrian isotopy of A"~! so that it becomes disjoint from the
closure T*S™"1 x T ST*S™"! x (0,0) of the page T*S™! x . The complement of the
closure of this page is T*S"~ 1 x (S'\@), which is a standard contact neighborhood of the
Legendrian S™~! x —@. In particular, A; can be isotoped into a neighborhood of S*~1 x —#.
Since S~ x —f and Ay are both primitive in H, 1(S""! x S Z) = Z, A, is primitive in
H, 1(S" ! x —0;Z). Finally, we note that S"~! x —@ is a loose Legendrian since it passes
through the belt sphere of H" ! exactly once.

For the second part of this corollary about Legendrians in (S2"71 £,4), we essentially
reverse the procedure in the proof of Corollary 1.17. Take a loose Legendrian A C (S"~! x
S™ €stq) disjoint from Ay and loose in the complement of Ax. Then ngz UH" U HY is
flexible and hence Weinstein homotopic to ngl. Since Ay is disjoint from A, Ay defines a
Legendrian sphere A} in (S?"71, &yq) = OB27. Since A is loose in the complement of Ag,
CE(A},) is quasi-isomorphic to CE(Ay) by [3, 26], as discussed in the proof of Corollary 1.17.
Therefore, H*(Tw(CE(A))) is equivalent to HO(Tw(CE(A}))) and so A} C (5?71, &xq)
has the same properties as Ay C (S"7! x S &q4), i.e. CE(A}) has no finite-dimensional
representations or DGA maps to a commutative ring and their Hochschild homology are
different for different k. Finally, we observe that A} is in a contact neighborhood of a loose
Legendrian in (S?"71 £,4) and is primitive in its homology. By the previous paragraph,
Ag C (S"1 x 8™ €44) is in a contact neighborhood of the loose Legendrian S™~1 x —# and
is primitive in its homology. The Legendrian S™"~! x — is isotopic to the Legendrian B
obtained by stabilizing A and taking a small Reeb push-off; so we assume from the start
that Ay is in a neighborhood of B, is primitive in H,_1(B;Z), and is disjoint from A. So
the extension A}, of Ay is in a neighborhood of the extension B’ of B to (52", £44) and is
primitive in H,_1(B’;Z). Since B is loose in the complement of A, B’ C (8?71 &,4) is a
loose Legendrian, in fact the loose Legendrian unknot, which proves the claim. O
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