H-PRINCIPLES FOR REGULAR LAGRANGIANS

OLEG LAZAREV

ABSTRACT. We prove an existence h-principle for regular Lagrangians with Leg-
endrian boundary in arbitrary Weinstein domains of dimension at least six; this
extends a previous result of Eliashberg, Ganatra, and the author for Lagrangians
in flexible domains. Furthermore, we show that all regular Lagrangians come from
our construction and describe some related decomposition results. We also prove
a regular version of Eliashberg and Murphy’s h-principle for Lagrangian caps with
loose negative end. As an application, we give a new construction of infinitely many
regular Lagrangian disks in the standard Weinstein ball.

1. INTRODUCTION

1.1. Existence h-principle for Lagrangians. In [8], Eliashberg, Ganatra, and the
author introduced the class of reqular Lagrangians in Weinstein domains. These are
exact Lagrangians whose complementary Liouville cobordism is actually a Weinstein
cobordism. Alternatively, L C W is regular if the Liouville vector field for the Wein-
stein structure on W is tangent to L. Since they have Weinstein complement, regular
Lagrangians have the advantage that they can be manipulated via Weinstein homotopy
moves and studied via Legendrian handlebody theory. In fact, all regular Lagrangians
can be constructed by coupled Weinstein handle attachment; so a regular Lagrangian
can be thought of as a relative Weinstein structure. Their importance also stems from
the fact that all currently known exact Lagrangians in Weinstein domains are regular.
It is an open problem whether all exact Lagrangians in Weinstein domains are regular;
see Problem 2.5 of [8].

The special class of flexible Lagrangians, which have flexible Weinstein complement,
was also defined in [8]. It was shown that flexible Lagrangians with non-empty bound-
ary satisfy an existence and uniqueness h-principle, demonstrating that flexible Wein-
stein domains have many Lagrangians with Legendrian boundary. The slightly more
general class of semi-flerible Lagrangians was also introduced; these are constructed
by considering a flexible Lagrangian in a flexible Weinstein domain and taking the
boundary connected sum with an arbitrary Weinstein domain. However as shown in
8], semi-flexible Lagrangians have vanishing wrapped Floer homology and hence there
is no general existence h-principle for semi-flexible Lagrangians in arbitrary Weinstein
domains. For example, there is no semi-flexible representative of the cotangent fiber
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T*M, C T*M; see Corollary 6.4 of [8]. In this paper, we will give a general existence h-
principle for Lagrangians with Legendrian boundary in an arbitrary Weinstein domain.
Although the resulting Lagrangians cannot be flexible (or semi-flexible) in general, it
is interesting to note that their construction uses flexible Lagrangians in a crucial way
and in some sense generalizes the construction of semi-flexible Lagrangians.

We first recall the necessary differential-topological condition for a manifold to admit
a Lagrangian embedding into a Weinstein domain. As in [8], a formal Lagrangian
embedding of L into a Weinstein domain W is a pair (f, ®;), where f : (L,0L) —
(W,0W) is a smooth embedding and &, : TL — TW, t € [0,1], is a homotopy
of injective homomorphisms covering f such that ®; = df and &, is a Lagrangian
homomorphism, i.e. ®1(7T,L) C T,W is a Lagrangian subspace for all x € L. Note
that we do not impose any conditions on ®; restricted to JL and that this definition
makes sense even if L does not have boundary. We say that two formal Lagrangians
are formally Lagrangian isotopic if they are isotopic through formal Lagrangians. The
following result says that this necessary condition for the existence of a Lagrangian
embedding is in fact sufficient.

Theorem 1.1. Suppose that L™, n > 3, has non-empty boundary and admits a for-
mal Lagrangian embedding into a Weinstein domain W**. Then L™ admits a reqular
Lagrangian embedding into W?" in the same formal Lagrangian isotopy class.

In particular, Theorem 1.1 constructs many regular Lagrangians in arbitrary Wein-
stein domains. As explained before, these Lagrangians are in general not flexible (if
W is not flexible) nor semi-flexible. For example, if L - L' # 0 for some closed exact
Lagrangian L' C W, then L has non-vanishing wrapped Floer homology and hence
cannot be semi-flexible [8]. Unlike flexible Lagrangians, these Lagrangians will not be
unique in their formal class; see Theorem 1.2 and Corollary 1.7 below.

We also note that the restriction n > 3 in Theorem 1.1 cannot be removed. For
example, there is a formal Lagrangian embedding of the punctured torus 72\ D? — B*
such that S' = 9(T?\D?) < S? is the smooth unknot. However, it is known that any
exact 2-dimensional Lagrangian whose Legendrian boundary is the smooth unknot
must be a disk [7]. A 4-dimensional construction similar to the one in Theorem 1.1
was considered by Yasui [20], who produced many Lagrangian disks in B*. However,
these disks necessarily have different formal classes, and even smooth isotopy classes.

1.2. Decomposition of regular Lagrangians. The proof of Theorem 1.1 involves
first using the existence h-principle from [8] to realize the formal Lagrangian as a
flexible Lagrangian in the flexible domain Wfﬁew and then applying the following re-
sult from previous work [14]: any Weinstein domain W?" n > 3, can be Weinstein
homotoped to W7, plus a smoothly trivial Weinstein cobordism C*". Here W, is
the unique flexible Weinstein structure almost symplectomorphic to W?"; a diffeomor-
phism ¢ : (W, ww ) — (X, wx) of two symplectic manifolds is an almost symplectomor-

phism if p*wx can be deformed through non-degenerate (but not necessarily closed)
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two-forms to wyy. Therefore the Lagrangians produced by Theorem 1.1 can be decom-
posed as flexible Lagrangians in W7, that are extended trivially in C*". The following
result shows that in fact all regular Lagrangians with boundary are of this form. Here
a Weinstein homotopy of (W, W) for a Weinstein subdomain Wy C W will mean a
Weinstein homotopy of the Weinstein cobordism W\Wj fixed on 0_(W\W,) = 9, W,
If OWoNOW = (), then we consider W\Wj as a Weinstein cobordism with corners and
require the homotopy to be fixed on these corners as well. For example, if L C W?" is a
regular Lagrangian with Legendrian boundary, then W\T*L is a Weinstein cobordism
with corners ST*L, the boundary of the unit cotangent bundle ST*L of L.

Theorem 1.2. Let L™ C W?",n > 3, be a reqular Lagrangian with non-empty bound-
ary. Then (W?*", L") is Weinstein homotopic to (W, UC?", L', U (OLfiex % [0,1])),
where C*" is a smoothly trivial Weinstein cobordism, LY}, C Wi, is a flexible La-
grangian, and OLfie, % [0,1] C C is a trivial extension of OLfje; C 0-C = OWyiey to
C.

Here L'}, C Wi, is the unique flexible Lagrangian [8] that is formally isotopic to
L C W?" under the almost symplectomorphism between Wiiew and W. So Theorem
1.2 shows that all regular Lagrangians with boundary can be decomposed into a flexible
Lagrangian and a smoothly trivial Lagrangian. However, as we noted before, it is an
open problem whether all exact Lagrangians in Weinstein domains are regular. The
condition that the Weinstein homotopy is done in the complement of T*L"™ implies
that there is an exact symplectomorphism ¢ : W?** — W U C*" (or rather their
completions) such that (L") = L,.,. Of course, this does not imply that L" C w2
is flexible since L}, C Wi, ceases to be flexible once C*" is attached to W72, to form
W?2", In general, flexible Lagrangians and Weinstein domains are defined only for n >
3. However a 4-dimensional version of Theorem 1.2 was proven by Conway, Etnyre, and
Tosun [6] for regular Lagrangian disks D? in BZ;,. We also note the similarity between
the decomposition (W7, UC?", L U(OL fiex % [0, 1])) of arbitrary regular Lagrangians
in Theorem 1.2 and the definition of semi-flexible Lagrangians [8], i.e. Lagrangians
L™ € W?" such that (W?", L") is Weinstein homotopic to (W72 8Wo, L,.,) for L, C
Wi, and some arbitrary Weinstein domain Wy. However the former decomposition
is much more general than the latter because the attaching spheres of the Weinstein
handles of C?" can link, as Legendrian submanifolds, with the Legendrian boundary
L.

A slight modification of Theorem 1.2 implies the following decomposition result for
disks in cotangent bundles of spheres.

Corollary 1.3. Suppose L™, n > 3, is a regular Lagrangian disk in T*S™ with any
Weinstein structure. Then (T*S™, D™) is Weinstein homotopic to (T*D™ U H}, D).

Here T D™ is equipped with the standard subcritical Weinstein structure, A is some
Legendrian in ST*D" = (S £44)\N(OD™), and D™ C T*D™ U H} corresponds to
the zero-section of T*D™. Since T*D™ = B2, Corollary 1.3 provides a presentation
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of T*S7,,, the standard cotangent bundle, using a single n-handle attached along
A. However it is not clear whether or not A is the standard Legendrian unknot
Aunknot C OT* D™, as is the case for the standard presentation T*S™, = B2" U H?Y

unknot

Question 1.4. Suppose D™ is a reqular Lagrangian disk in the standard cotangent
bundle T*S7,,. Can we always take A in Corollary 1.3 to be Aypgnot ¢

A negative answer to this question would give an exotic presentation for 7*S7,; with
a single n-handle. On the other hand, a positive answer to this question would imply
that the data of a regular disk D™ C T*S7,, is just the data of two Legendrian unknots
Nunknot1 [T Aunknotz C (S*"71 Eqa) that are Legendrian linked with each other. This
is equivalent to the data of a single Legendrian unknot in (5?7, &)\ N (Aunknot) =
ST*D". A positive answer would also imply that any regular Lagrangian disk in 757,
can be disjoined from some cotangent fiber. Corollary 1.3 already shows that for any
regular disk D" C T*S7,,, there exists another regular disk C", namely the co-core of
the handle HY, which is disjoint from D" and generates the wrapped Fukaya category
of T*S%, .; see [4].

We also point out that there is another natural decomposition of regular Lagrangian
disks. As shown in [8], any regular Lagrangian disk can be presented as the co-core
of an n-handle. However carving out this co-core, i.e. removing the n-handle, can
often result in exotic Weinstein domains. For example, consider an exotic Weinstein
structure $2" on the ball B?", for example the structures constructed by McLean [16],
and let D" C ¥** U Hy  be the co-core of the handle H} . The result of
carving out D" is precisely X2, In general, the carved out domain does not even have
to be diffeomorphic to the ball. For example, if D™ - S™ = k in T*S", then the carved
out domain is a rational homology ball Bf" with H,,_;(Bi";Z) = Z/kZ. Hence this
co-core decomposition results in the data of a (possibly exotic) Weinstein structure
32" on B*" (or some other smooth domain) and a Legendrian in dX2". On the other
hand, our decomposition in Corollary 1.3 just depends on the data of a Legendrian in
the standard structure (5?71 £,q)\N (Aunknot) = ST*D™.

Of course closed Lagrangians cannot be decomposed as in Theorem 1.2 since flexible
Weinstein domains have no closed exact Lagrangians. However, a similar factorization
result does hold in the closed case: all the topology (except the top handle) of a closed
regular Lagrangian can be put in a flexible domain. For example, in [8], Theorem 4.7, it
was shown that for any closed smooth manifold M™ n > 3, satisfying the appropriate
formal conditions, there is a Weinstein structure 7S}, on T*S™ that contains M as a
regular Lagrangian. These examples are constructed by using the flexible Lagrangian
existence h-principle [8] to produce a flexible embedding M™\ D™ C B and then
attaching a handle to O(M™\D") C (S*" 1, £qa) = OB, i.e. (T*S%,, M™) is Weinstein
homotopic to (B4 U Hy v prys (M™\D"™) U H \p\ pny). So the interesting topology of
M™ is contained in the flexible domain B2Y. In fact, all regular Lagrangians in 7*S"
can be constructed this way. More generally, we have the following result.
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Theorem 1.5. Suppose that L™ is a closed reqular Lagrangian in W?" . n > 3. Then
there exists a regular Lagrangian L"™\D" in a flexible domain V7, such that (W?", L")
is Weinstein homotopic to (V2 U Hy p\pry, (L"\D™) U Hp 1 pny)-

The point of Theorem 1.5 is that the Lagrangian L™\ D" is in the flexible struc-
ture V72,. Namely, the claim that (W?", L") is Weinstein homotopic to (V" U
Hp i\ prys (L"\D") U Hp 1\ pny) with an arbitrary Weinstein structure V2 follows im-
mediately from the definition of regularity. By Theorem 1.2, the regular Lagrangian
L™\D" C V2, can be further decomposed into the flexible Lagrangian (L™\D") sie, C
VleZa; plus a trivial extension in the Weinstein cobordism Vyie,\i(Vier), where i :
Vitez = Viier 15 some Weinstein embedding.

In general the topology of Ve, in Theorem 1.5 will depend on the formal class of
L™ C W?". Except for this, we can essentially control the topology of fo;x. For ex-
ample, a slight modification of Theorem 1.5 shows that for any regular M™\ D" C W?",
(W2UHG o pry MM\D"UH gy pon pn) i Weinstein homotopic to (W7, UHZ, i pn, M™\D"U
HgMn\ pn)- In particular, there is an exact symplectomorphism ¢ : W2" U HgMn\ pn —
Wﬁﬁ% U Hg( M\ D) such that @(M™) = M™. However, this symplectomorphism does
not induce a symplectomorphism between W?2" and WfQ'lZm (as it shouldn’t). This is
because even though ¢ maps M" to M™, it does not map the co-core of Hg( M\ D) in
W2 U H ypo pny to the co-core of Hp ypu pny in WEE U H oy pny, which would be
needed to conclude that W?" and W72, are symplectomorphic. In particular, the two
co-cores are two regular Lagrangian disks D}, Dy C W2 U Hg( M\ Dn) both intersect-
ing M™ in exactly one point such that carving out D7 results in W?" but carving out
Dy results in Wf[gm In particular, these disks can be smoothly isotopic but are not
Lagrangian isotopic.

We can rephrase the above discussion as follows. Let Lagrangian(WW?" L") denote
all regular embeddings of a closed manifold L™ into some fixed Weinstein domain
W?2*. Then Theorem 1.5 shows that the following map induced by simultaneous
handle-attachment is surjective:

Lagrangian(W7L,, M™\D") — Lagrangian(W?" U H", (M™\D") U Hyyp pny). (1.1)

On the right-hand-side, M™\ D" is considered as a Lagrangian in W?2" which is allowed
to have an arbitrary Weinstein structure. In particular, the map is surjective even if we
consider all Weinstein structures on the right-hand-side since the Weinstein structure
on the left-hand-side is always flexible. A similar map just on the level of Weinstein
domains is considered in [14] and is also shown to be surjective. Theorem 1.5 shows
that surjectivity holds even when we consider Weinstein domains and Lagrangians
simultaneously.
Now we consider an application of Theorem 1.5.

Corollary 1.6. Let S™ be a reqular Lagrangian sphere in T*S™, with any Weinstein
structure. Then there exists a reqular disk D™ C B%Y such that (T*S", S™) is Weinstein
homotopic to (B4 U Hfp, D™ U HSpn ).
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For example, the zero-section S§ C T*S”,, can be obtained by attaching a handle to
the boundary of the Lagrangian unknot D C B2%%. It is unknown whether there are
exotic Lagrangian spheres in 7*S7,, (or whether all Lagrangian spheres in 7*S”,, are
regular). However Corollary 1.6 shows that all such hypothetical spheres come from
Lagrangian disks in B2%7. In particular, the following map is surjective.

Lagrangian(B2,, D) — Lagrangian(T*S™, S™). (1.2)

Hence there are at least as many regular Lagrangians disks in B as regular La-
grangian spheres in 7*5", with some Weinstein structure. The latter set is infinite,
e.g. T*SL, b3 where ¥ is an exotic Weinstein structure on the ball constructed by
McLean [15]. Therefore, the former set is also infinite.

Corollary 1.7. If n > 4, there are infinitely many different regular Lagrangian disks
in the standard Weinstein ball B

These Lagrangian disks have different Legendrian boundaries since attaching an
n-handle to them results in different symplectic structures 7%S7,,6% on 7%S™. In
particular, these disks are not isotopic through exact Lagrangians with Legendrian
boundary. In fact, there is no symplectomorphism of B2 taking the (completed)
disks to each other. Hence these are non-flexible disks in a flexible Weinstein domain.
The first such examples were found by Eliashberg, Ganatra, and the author [8] using
a different construction based on work of Murphy and Siegel [19]. The disks in [§]
were shown to be exotic because the complement Weinstein subdomains obtained
by carving them out are also exotic [19]. Since it is not known how to carve out
Lagrangians other than disks to produce Weinstein subdomains, it is not clear how to
extend the method in [8] to Lagrangians with more general topology. On the other
hand, the construction in Corollary 1.7 can be easily modified to create many exotic
Lagrangians in B?% with non-trivial topology, i.e. there is no topological restriction
on the Lagrangian L" in Theorem 1.5 (besides the necessary formal conditions).

Since flexible domains have vanishing symplectic homology, the Lagrangians in
Corollary 1.7 all have vanishing wrapped Floer homology. However they can be dis-
tinguished by the Legendrian contact homology of their Legendrian boundaries (or
equivalently the symplectic cohomology of the Weinstein domains obtained by attach-
ing an n-handle to these Legendrians [2]). So even their Legendrian boundaries are
not isotopic. Even though the wrapped Floer homology of these disks vanishes, the
Legendrian contact homology does not vanish since the Legendrian boundaries have
exact Lagrangian fillings, namely the disks themselves.

Using the regular disks from Corollary 1.7, it is easy to construct exotic disks in
the standard cotangent bundle T*S7,; disjoint from the zero-section. Abouzaid-Seidel
[1] constructed exotic disks in 7*S7., that intersect the zero-section S”,, many times;
these were obtained by looking at the graphs of functions f : D™ — Rin T*D"™ C T*S"
and distinguished by their wrapped Floer homology with the zero-section. However,
it was unclear whether there are any exotic disks that intersects ST, C T*S”,, exactly
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once. Any such disk is equivalent to 757 in the wrapped Fukaya category of 7%S"
and hence cannot be distinguished via its wrapped Floer homology. Here we show that
such exotic disks do in fact exist in abundance, distinguished again by the Legendrian
contact homologies of their boundaries.

Corollary 1.8. Ifn > 4, there are infinitely many different reqular Lagrangian disks
in the standard cotangent bundle T™*S7,; that intersect the zero-section Sy C T*Sh,
exactly once.

Hence S C T*S7”,, is a flexible Lagrangian (since its complement is a trivial We-
instein cobordism) but S U D™ is a non-flexible (singular) Lagrangian (or Weinstein
subdomain). To prove this corollary, we follow the same approach as for Corollary 1.7
and show that a related handle-attachment map

Lagrangian(T*S%,,, Sy vV D") — Lagrangian(7*S"4,T*S", S" v .S") (1.3)

is surjective. The left-hand-side consists of singular regular Lagrangians S V D" in
T*S%,,, where Si is the zero-section as before; equivalently, we can think of these as
regular Lagrangian disks which intersect the zero-section exactly once. On the right-
hand-side, we consider arbitrary Weinstein structures on the plumbing 7*S5"t,T*S"
that contain the standard plumbing (7*S™4,7%S™)sq as a subdomain, i.e. a singular
Lagrangian S™V S™. The surjectivity of Equation 1.3 is a decomposition result for two
plumbed spheres, similar to how the surjectivity of Equation 1.2 was a decomposition
of a single sphere.

We can summarize the approach in Corollaries 1.7, 1.8 as follows. Once we know
that a certain class of structures have many distinct objects, i.e. display rigidity, we
can conclude via a flexibility argument that related classes also have many distinct
objects without using rigid techniques separately on this second class. In practice, the
only method we currently have to show rigidity in the symplectic setting is through
J-holomorphic curve invariants (Legendrian contact homology in the examples above).
But the flexibility argument above shows that whatever method can be used to prove
rigidity in the first class can also be used to prove rigidity in the second class.

1.3. Regular Lagrangian caps. As noted before, it is an open question whether all
exact Lagrangians in Weinstein domains are regular. However this is known to be
false for Weinstein cobordisms W with non-empty negative end 0_W . Eliashberg and
Murphy [10] showed that there is an existence h-principle for Lagrangians caps whose
negative end in d_W is a loose Legendrian. Hence it is possible to construct exact
non-regular Lagrangians in W by applying the h-principle to a formal Lagrangian
embedding whose complement cobordism has homology above the middle-dimension
(and therefore cannot be a Weinstein cobordism for topological reasons). In fact, Mur-
phy [18] used the caps h-principle to construct non-regular closed, exact Lagrangians
in the symplectization of overtwisted contact manifolds.



8 OLEG LAZAREV

The proof of the Lagrangian caps h-principle involves Gromov’s h-principle for La-
grangian immersions [13| and a version of the Whitney trick (which relies on the
looseness of the negative end) to remove the double-points of the immersion. These
operations do not take the ambient Weinstein structure into account and hence do
not produce regular Lagrangians in general, as noted above. In particular, it was not
known whether there is an existence h-principle for reqular Lagrangian caps with loose
negative end. Here we show that such an h-principle does hold, assuming the neces-
sary formal conditions. We say that a smooth cobordism W?2" is an almost Weinstein
cobordism if 2" has an almost complex structure and admits a Morse function all
of whose critical points have index at most n (and is increasing, decreasing near the
positive, negative boundaries of W?" respectively).

Theorem 1.9. Let W?",n > 3, be a Weinstein cobordism and L™ C W?" a formal
Lagrangian cobordism such that 0_L is formally isotopic to a loose Legendrian A_ C
O_W, 8, L is formally isotopic to a Legendrian Ay C 0, W, and W2\ L™ is an almost
Weinstein cobordism. Then there is a reqular Lagrangian cobordism in W?*" from A_
to A formally isotopic to L. The same holds if 0. L is empty.

Using the Lagrangian caps h-principle, Eliashberg and Murphy [10] also proved an h-
principle for Liouville embeddings of flexible Weinstein domains. More precisely, they
showed that if a flexible Weinstein domain admits an almost symplectic embedding
into some Liouville domain, then it admits a Liouville embedding into that Liouville
domain, i.e. is a Liouville subdomain. Since this construction was based on their
Lagrangian caps h-principle, which produces non-regular Lagrangians, the resulting
Weinstein domains are not necessarily Weinstein subdomains and it was unknown
when this is possible. We will use Theorem 1.9 to show that there is an h-principle
for Weinstein embeddings of flexible domains, again assuming the necessary formal
conditions.

Corollary 1.10. Suppose that X?* n > 3, is a Weinstein domain and Wf[}n 1S a

flexible domain that has an almost symplectic embedding i : ngr — X2 such that
X?M\W3p, is an almost Weinstein cobordism. Then i is smoothly isotopic to a Wein-
stein embedding j : WL, — X", i.e. j(W3i,) is a Weinstein subdomain of X*".

2. PrROOFS OF RESULTS

We now give proofs of the results stated in the Introduction. We will need to use
the following decomposition theorem from [14] and its variations.

Theorem 2.1 ([14]). If W?" n > 3, is a Weinstein domain, then W?" can be Wein-
stein homotoped to W3, U C*", where C*" is a smoothly trivial Weinstein cobordism
with two Weinstein handles of index n — 1,n.

We briefly recall the proof of this result. Consider two Legendrian spheres Ag, A in
(Y, &) = 0W,, the boundary of a Weinstein domain W,. Then we can handle-slide A
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over Ag and get a new Legendrian hy,(A). Although Ag [ A and Ao [] ha,(A) may
not be isotopic even as smooth links, the Weinstein structures Wo U HY U H} and
WoUHR UH {LLAO (A) are Weinstein homotopic. A handle-slide depends on the choice
of a local chart where Ag, A look like parallel Legendrians and hy,(A) is obtained by
replacing A with the cusp connected sum of Ay, A in this local chart; see [3]. To prove
Theorem 2.1, we first Weinstein homotope W to Wy U HY U ---U Hy, , where Wy is
subcritical. Then we choose local charts in Ag [TA; [[--- ][ Ax so that the handle-
slid link Ax (A1) I T1Rao(Ak) is loose (but not loose in the complement of Ay).
Therefore Wy U H;ZAO( ap YU H }’ZAO (Ap) 18 flexible and W is Weinstein homotopic to
WoUH ’7/&0( Ap YU H[LLAO( Ay Y HY ~as desired. To be more precise, we actually need
to do two handle-slides of opposite signs over Ay to ensure that the cobordism C?" is
smoothly trivial; see [14].
Now we use Theorem 2.1 to prove Theorem 1.1.

Proof of Theorem 1.1. We first describe the almost symplectomorphism between Wy,
and W in more detail. By Theorem 2.1, Wy, C W is a Weinstein subdomain and the
Weinstein cobordism C?" = W\Wj,, consists of two handles, i.e. C?" = HXJ1 U HY.
Here Ay C OWye, is an n — 2-dimensional isotropic attaching sphere for HXO_I and
A COWypep U Hf\‘o_l) is a Legendrian attaching sphere for HY. Since C*" is smoothly
trivial, A is smoothly isotopic in O(Wiye, U HX;l) to a cancelling Legendrian that
intersects the belt sphere of HX;I in a single point. We can assume that this smooth
isotopy is supported in a neighborhood of some collection of Whitney 2-disks with
boundary on A and the belt sphere of HXO’I. Let ¢; be the extension of this smooth
isotopy to an ambient diffeotopy of O(Wye, U HXO_I), which is also supported in a
neighborhood of these disks, and let A C W/, be the subset where ¢, is the identity.
Now we will show that there is a diffeomorphism v between Wy, and W which is
the identity on A. Here we view A C OWe, \Op(Ao [[A) as a subset of OW, where
Op(Ao [T A) is a neighborhood Ay, A in Wy, along which the handles are attached,;
note that A intersects Wy, in a punctured Legendrian sphere whose boundary lies
in Ag. To produce the diffeomorphism ), we use the isotopy ¢; to homotope the
gradient-like vector field in W\W e, rel OW e, to a vector field with no zeroes and
flow along that vector field. Since ¢, is the identity on A, this vector field is fixed over
A and so 1 is the identity on A. We note that 1 is an almost symplectomorphism
since W\W e, is smoothly trivial and any almost symplectic structure on a smoothly
trivial cobordism is homotopic to the product structure.

Let I : L™ — W?" be the given formal Lagrangian embedding which we seek to
realize by a genuine Lagrangian embedding. Then ¢~! o F is a formal Lagrangian in
Wﬁﬁ% By the existence h-principle for Lagrangians in flexible Weinstein domains [8],
¢~' o F admits a flexible Lagrangian embedding L, into W7, We can Legendrian
isotope the Legendrian boundary OLY},, C OWf, so that it is disjoint from the
isotropic attaching spheres Ag, A of the two handles in C?". This is because a small
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neighborhood of dL ., is contactomorphic to J*(9L s..) and nearby Legendrians are
given by graphs of 1-jets of functions. Thom’s jet transversality theorem shows that
for any submanifold X* of J "(0L'h,,) such that k < n, there exists a C%-small function
on 9L, whose 1-jet in J'(L%,,) is disjoint from X*; see Theorem 2.3.2 of [9]. The
isotropic attaching spheres A5~ A"~! of C*" have dimension less than n and hence
we can find such a Legendrian isotopy of OLy,. In particular, we can assume that
L 1er C Wiieg is a flexible Lagrangian such that aLym is disjoint from these attaching
spheres. Also, since n > 3, we can assume that dL7%,., is disjoint from the Whitney
2-disks inducing ¢; and hence contained in A C OW7,. Now we attach handles to
Wi, along Ag, A to form W?". Since 9L}, is disjoint from these attaching spheres,
it extends trivially to a Lagrangian with Legendrian boundary in W?2" which we also
call L"™. Since the cobordism C?" is Weinstein, L™ is regular in W2,

Finally, we note that L™ C W?" is in the original Lagrangian formal class F'. Since
dL},, is contained in A and the almost symplectomorphism ¢ between W7 and W?"
is the identity on A, ¥(L%,,) agrees with its trivial extension L™ C W2 described
previously. Since LY, C W, is in the formal class ¢)~! o F' by construction and the
almost symplectomorphism 1) preserves Lagrangian formal classes, L™ = w(L;}lm) will
be in the desired formal class F'. OJ

Remark 2.2. Even when W = Wy, the almost symplectomorphism 1) produced
via the procedure above will not be a symplectomorphism. This is because the
new vector field obtained by modifying the original Liouville vector field by ¢, is
no longer Liouville for the symplectic structure on W\Wj,, and so ¢ will not be a
symplectomorphism. Indeed if ¢ were a symplectomorphism (of completions), then
L =9Y(Liex) C V(Wiiew) = Wiiep, would be a flexible Lagrangian. However as we will
see later in Theorem 1.2 and Corollary 1.7, all regular Lagrangians are of the form
(L fie:) but there are non-flexible Lagrangians even in flexible Weinstein domains.

As noted before, Theorem 1.1 does not hold in dimension 4 since there are La-
grangian formal classes not realized by any genuine Lagrangians. However an anal-
ogous construction in dimension four was considered by Yasui [20], who constructed
many Lagrangians disks in B2, by trivially extending the Lagrangian unknot D? C
T*D? = B2, across a trivial Weinstein cobordism (S?,&.q) X [0, 1], presented as a
Weinstein cobordism with two handles of index 1 and 2. These Lagrangian disks
(and their Legendrian boundaries) are often in different formal classes, even different
smooth isotopy classes; for example, there exist many smoothly slice knots in S® that
are not isotopic to the unknot. Theorem 1.1 is high-dimensional which gives us control
over the formal class of the Lagrangian.

It is also crucial that the cobordism C?" is Weinstein. In this case, we can make
the Legendrian boundary of L%, . disjoint from the attaching Legendrians and extend
L}, to a Lagrangian in W?". So the key idea is that a Weinstein cobordism C*"
modifies its negative contact boundary d_C?" only in a small region, of dimension
less than n. If we only knew that the cobordism had a Liouville structure, as shown
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earlier by Eliashberg and Murphy [10], then we could not necessarily conclude that
the Lagrangian extends since the Liouville cobordism could in principle modify the
negative boundary d_C?" in an arbitrarily large region. In particular, the following
question is open.

Question 2.3. Is there an existence h-principle for exact Lagrangians with Legendrian
boundary in general Liouville domains?

Of course these Lagrangians will not be regular since the ambient domain is not
Weinstein. A related question is which Liouville domains are non-degenerate in the
sense of Ganatra [11].

Now we prove Theorem 1.2 that all regular Lagrangians with Legendrian boundary
come from the construction in Theorem 1.1.

Proof of Theorem 1.2 . Since L™ is regular in W?", by definition (W?", L") is Wein-
stein homotopic to (T*L" U X?" L") for some Weinstein cobordism X?". Then by
Theorem 2.1, we can homotope X?" to X??em U C*, where C?" is smoothly trivial.
The proof of this result involves Weinstein homotoping X?" to XJ%l”ez U C?" relative
to the closed contact manifold 0T*L". However, we can also do this Weinstein ho-
motopy relative to T*L™\OL", i.e. view X*" as cobordism with corners dST*L and
require the homotopy to be fixed on the corners as well. This is because we can pick
the Darboux balls and isotropic arcs in [14] used to do the handle-slides away from
OL. As a result, the attaching spheres of X]%l’;x will be loose in the complement of
OL™ C OT*L" and hence L™ C T*L"U X3}, = Wi, will be a flexible Lagrangian. We
denote this Lagrangian by L%}, C W}i,. When we attach C*" to W7, to get W?",
the Lagrangian L', C WleTéx extends trivially to L™ (as in the proof of Theorem 1.1).
Hence (W?", L") is Weinstein homotopic to (W, U C**, LY;,,). O

We can apply a modified version of Theorem 1.2 to Lagrangian disks in 7%S™ and
prove Corollary 1.3.

Proof of Corollary 1.3. Since D™ C T*S™ is a regular Lagrangian, (T*S™, D") is Wein-
stein homotopic to (T*D"UX?2", D"). Here T* D™ has the standard Weinstein structure
and X>?" is a Weinstein cobordism with corners, which by the Whitney trick and fact
that n > 3 has a smooth handle-body decomposition with a single handle of index
n. By a slight variation on Theorem 2.1 (see Theorem 1.1 of [14]), X" can be We-
instein homotoped (relative to the corners 0ST*D"™) to a Weinstein structure with

a single Weinstein handle of index n. Hence (T*S™, D™) is Weinstein homotopic to
(T*D™U Hy, D"™) as desired. O

Now we prove Theorem 1.5, a version of Theorem 1.2 for closed Lagrangians.

Proof of Theorem 1.5. Since M™ C W?" is regular, by definition (W?2", M") is We-
instein homotopic to (T*M™ U X?" M™) for some Weinstein cobordism X?". The
n-handles of X?" are attached along a Legendrian link A in O(T*M U X?%), where

sub
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X2nis the subcritical part of X**. By attaching the single n-handle of T* M after these
n-handles of X", we can consider A as a Legendrian link in 9(T*(M™\D") U X2").
Now we handle-slide A over (M™\D™) C J(T*(M™\D") U X?%) so that the re-

sub
sulting Legendrian link hgam\pn)(A) is loose (but not loose in the complement of
I(M™\D™) C O(T*(M™\D")U Xyp)). Since T*(M™\D") is subcritical, T*(M™\D")U
X2, U Hy ) is a flexible Weinstein domain, which we denote by V. Further-
more VA2, U Hp o puy = T*(M™\D") U X2, U Hjj ) U H 3n pmy is homotopic to
T*(M™M\D")UXZUHRUH o py = T*MPUXZL UHR = T*M"UX?" = W?", the
original Weinstein structure. More precisely, this homotopy is just a Legendrian iso-
topy from A to hg(am\ pry(A) in O(T*M™U X2%). This homotopy occurs above T*M™
and so (V77,U Hy gy prys M™M\D™ U Hppun pry) is Weinstein homotopic to (W2 M™),
as desired. 0

Applying Theorem 1.5 to Lagrangian spheres in cotangent bundles, we prove Corol-
lary 1.6.

Proof of Corollary 1.6. By Theorem 1.5, (T*S", S™) is Weinstein homotopic to (V7 U
Hjpn, D™ U Hp) for some regular Lagrangian disk D™ in a flexible domain Vie,.
Since S™ C T*S™ is regular, we have [S"] = £1 C H,(T*S™) = Z. The co-core
C™ of the handle H},,, intersects S™ in exactly one point and hence [C"] = £1 €
H,(T*S™,0T*S™) = 7Z. Since Vy,, is obtained by carving out C™ from T*S", we see
that Vy, is a homology ball (with simply-connected boundary since n > 3). By the h-
cobordism theorem, V., must be diffeomorphic to the ball. Since V., is flexible and
the ball has a unique almost symplectic structure, V., must be Weinstein homotopic
to B2 by the h-principle for flexible Weinstein structures [5]. U

We can use Corollary 1.6 to produce many Lagrangian disks in the standard Wein-
stein ball and prove Corollary 1.7.

Proof of Corollary 1.7. McLean constructed an exotic Weinstein ball ¥2*,n > 4, and
showed that ¥2" := f¥ | 3?" are non-symplectomorphic since they have different num-
ber of idempotents in their symplectic homology. Since symplectic homology is addi-
tive under boundary connected sum and SH (7*S%,,) has only one non-zero idempo-
tent, T*S” 132" are also non-symplectomorphic. Furthermore, each T*S" 532" con-
tains a regular Lagrangian sphere, i.e. the zero-section S§ of T*S7,,. By Theorem 1.5,
there is a regular Lagrangian disk D" C B%, such that (T*S" 652", Si') is Weinstein
homotopic to (B2}, U Hgpn, D" HgDﬁ)’ Since T*S" 532" are not symplectomorphic
for different k, the Legendrian attaching spheres 0D} are not Legendrian isotopic;
more generally, there is no ambient contactomorphism of B2 taking different 9D}
to each other. In particular, the Lagrangian disks DI C B2 are not isotopic through
Lagrangian disks with boundary and are not symplectomorphic to each other. 0
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Remark 2.4. The ‘Legendrian surgery formula’ relates Floer-theoretic invariants of
the Legendrian boundary 0D} to similar invariants of 7*S7, 63, which is the do-
main B%, U HY oDy obtained by handle-attachment along 0D}'. Namely, a proof was
sketched in [2] that the Hochschild homology of Chekanov-Eliashberg DGA of 0D}
is isomorphic to the symplectic homology of T*S™ 132", A rigorous proof was given
in [12] that the wrapped Fukaya category of T*S" b¥2" is isomorphic to a certain
pushout of the partially wrapped Fukaya category of B2 stopped at dD}. By [15],
the domains 77 S7, ;63 have different symplectic homology for different k. Therefore
the attaching Legendrians 0D} can be distinguished by the Hochschild homology of
Chekanov-Eliashberg DGA of 0D} (in the formulation of the surgery formula from
2]) or by the Fukaya category stopped by 0D} (in the formulation of [12]).

Next we prove Corollary 1.8: there are many Lagrangian disks in the standard
cotangent bundle intersecting the zero-section exactly once.

Proof of Corollary 1.8. It suffices to prove that the handle-attachment map for plumb-
ings in Equation 1.3 is surjective since there are infinitely many different Weinstein
structures on T*S",T*S™ containing (T*S™4,T*S™)sq. For example (T*S™4,T*S™) saf X2"
is an infinite collection of such structures, where 33" are McLean’s exotic Weinstein
structures on the ball [16]. The surjectivity of Equation 1.3 basically follows from a
relative version of Theorem 1.5, which was used to prove the surjectivity of Equa—
tions 1.1, 1.2. Namely, we can view (T7%S"4,7*S", (T*S"4,T*S")sa) as (T*S%, U
C*, Sy v T*S™ U L™), where C?" is a Weinstein cobordism with 9_C** = 9T*S"
that admits a smooth Morse function with a single handle of index n and L™ C C??
is a regular Lagrangian disk cap with 0_L" = 9T*S}. Then a version of Theo-
rem 1.5 for cobordisms implies that (C*", L") is Weinstein homotopic to (W7, U
Hy (gn- txjo.1)y , S x (0,1 U HY (S” 1xjo))- Here Wi, is a Weinstein cobordism
with O_W7, = 0T*S™ and S~ 1 x |0, ] C Wik, is a regular Lagrangian cylinder
with 0, (S"~! x [0,1]) = oT*S} C O-Wf, and 9_(S"~" x [0,1]) € 9,W},. The
flexible cobordism W7, is smoothly trivial and hence is Weinstein homotopic to
the trivial Weinstein structure 97*S™ x [0,1]. Then (T*S7,, U W7, Sg Vv (T*Sp U
S™=1 % [0,1])) is Weinstein homotopic to (T*S%,, S; V D") for some regular La-
grangian disk D" C T*S7,. Since S"' x [0,1] € W}, the disk D" C T*S%,
intersects the zero-section S§ in precisely one point 7%S? N S§ = {z}. Furthermore,
(TS UHSpn, S5V D™UH} . ) is Weinstein homotopic to (T*S™,UC?", SpVT*STUL™)
and hence to (7*S™4,T*S™, (T*S"8,T*S™)sta)- O

Now we prove Theorem 1.9, a regular version of the Lagrangian caps h-principle
due to Eliashberg and Murphy [10].

Proof of Theorem 1.9. We will break down the proof into three cases. First, we will
prove the case when W?" is a flexible Weinstein cobordism and A_, A, are both
loose. Then we will prove the case when W?2", L™ are both smoothly trivial and
A_, A, are both loose. Finally, we will prove the case when W?2" is smoothly trivial
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with the trivial product Weinstein structure, L™ is smoothly trivial, A_ is loose but
A, is arbitrary. The general case follows by gluing the Lagrangians and Weinstein
cobordisms produced in these three cases.

We first prove the case when W?" is a flexible Weinstein cobordism Wiier and
A_, A, are both loose. By the h-principle for flexible Lagrangians [8], there is a
flexible Lagrangian cobordism L ., C Wf{;x such that 0_Ly, = A_ in 8_W]?l’éx and
L is in the prescribed formal class. Recall that 0_L .., = A_ is loose by assumption.
We will show that 0 L e, C 01 W}, is also loose. To see this, note that Ly, C WL,
is constructed in two steps: first we attach T*L to d_W};, along A_ and then attach
Wf{;z\T *L. For the first step, suppose S¥~! C A_ is an attaching sphere for a k-
handle of 7*L. By the h-principle for loose Legendrians [17], we can assume that A_
has a loose chart U such that A_ NU is a disk D" ' € A_. Since D" ! is a disk,
we can smoothly isotope S¥~! in A_ so that S*~!, D"~! are disjoint; note that this
smooth isotopy is in fact an isotropic isotopy of S*~! in OW ., since A_ is isotropic.
Because A_NU = D" !, we see that S*~! is disjoint from the loose chart U. So when
we attach a handle along S*~!, the loose chart persists and the resulting Legendrian
will still be loose. Iterating this procedure, we see that 0, L C O_-Wf!, U OT*L is
also loose. For the second step, the attaching spheres for W]?IZI\T *L are loose in the
complement of 9y L C O_WF, UJT*L (this is what it means for L., C W7, to be
a flexible Lagrangian) and so the loose chart of 0, L C 0_ Wfl’;x U O0T™* L again extends
to a loose chart of 0, Ly, C &JV?ZZI. Because Ly, is in the correct formal class, so
is 04 Lies, i.e. formally Legendrian isotopic to Ay. Since 04 L., Ay are both loose,
they are actually Legendrian isotopic by the loose Legendrian h-principle [17].

Now we prove the second case when W?2", L™ are smoothly trivial and A_, A, are
both loose. By [14], we can assume that 72" has a Weinstein presentation with two
handles HX()_l, H} (although having precisely two handles will not really matter for
the argument here). There is a Legendrian isotopy ¢;(A_),t € [0,1], of A_ C _W?"
so that ¢1(A_) is loose in the complement of Ag, A (of course ¢;(A_) might cross Ag, A
during this isotopy). Let L™ C W?2" be the concatenation of the graph of this isotopy
in _W?" x [0,1] with the trivial extension of p;(A_) in W?*. Then L™ is in the
correct formal class and 0, L™ is loose by construction. Therefore 9, L" is Legendrian
isotopic to Aj.

Next we prove the third case when W?2" has the trivial product Weinstein struc-
ture (Y271 &) x [0,1], L™ is smoothly trivial, and A_ is loose but A is arbitrary.
First we attach two symplectically cancelling handles HX;l,HX to W?2" such that
Ao, A C O, W?" are contained in a Darboux ball. Now we handle-slide A, C 9, W?"
over A twice (with opposite orientations) so that the resulting Legendrian h?(A,) C
o (W2 U on_l) is loose and intersects the belt sphere of H/’Zo_l algebraically zero
times. Since we are working in the ball, which is simply-connected, and n > 3, we can
use the Whitney trick to smoothly isotope h*(A,) off the belt sphere. Since h*(A.)
is loose, we can actually Legendrian isotope h%(A,) off this belt sphere and view
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h*(A;) as a Legendrian in 9, W?". Let L™ C W?" U H} ' U H} = W*" be the regular
Lagrangian obtained by extending h*(A,) trivially when H"™!, H? are attached. So
O, L™ C 0, W?" is Legendrian isotopic to A, and d_L" = h?(A,) =C 0_W?" is loose.
Furthermore, L™ is formally isotopic to a product Lagrangian. Since 0, L™ is Legen-
drian isotopic to A, d_ L™ must be formally isotopic to A_. Since O_L™ and A_ are
both loose, they are Legendrian isotopic by the h-principle for loose Legendrians [17].
This finishes the proof of Theorem 1.9 when 0, L is non-empty.

Finally, we prove the case when 0, L is empty. We first realize L as a flexible
Lagrangian in Wy, with 0_L = A_. We cannot directly apply the h-principle for
flexible Lagrangians [8] since d; L = . Instead, we first Weinstein homotope W7,
to Vi, U HR, for some loose Legendrian sphere A, such that L\D" has a flexible
Lagrangian embedding into V32, with 9, (L"\D") = A C 0, V.. Then L"\D"UH} C
Vie, U Hy is a flexible Lagrangian embedding L™ C W7,. Then we attach the
Weinstein cobordism W\Wjy, from Theorem 2.1 to Wﬁ;x and obtain the desired

regular Lagrangian L C W?", O

We conclude by proving Corollary 1.10, an h-principle for Weinstein embeddings of
flexible domains.

Proof of Corollary 1.10. By Theorem 2.1, Xy, is a Weinstein subdomain of X such
that X\ Xy, is smoothly trivial. Also, we can realize the almost Weinstein cobordism
X\Wyie, by a flexible cobordism Cfye, by Eliashberg’s existence h-principle [5]. Then
W tiex U Clieq is a flexible domain that is almost symplectomorphic to Xye,. So by the
h-principle for flexible domains [5], Wyje, U Clpier is Weinstein homotopic to Xyje,. In
particular, Wy, is a Weinstein subdomain of X 4., and hence a Weinstein subdomain
of X. Since X\ Xy, is smoothly trivial, this new embedding is smoothly isotopic to
the original embedding. 0

Remark 2.5. Alternatively, we can prove Corollary 1.10 by first constructing a We-
instein embedding of Wy,, into X and then using Theorem 1.9 to find a regular em-
bedding of the cores of the n-handles of Wy, into X\Wj,,. This second proof is
more along the lines of Eliashberg and Murphy’s original proof [10] of this result for
Liouville embeddings, which directly uses their Lagrangian caps h-principle.
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