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Abstract. We prove an existence h-principle for regular Lagrangians with Leg-

endrian boundary in arbitrary Weinstein domains of dimension at least six; this

extends a previous result of Eliashberg, Ganatra, and the author for Lagrangians

in flexible domains. Furthermore, we show that all regular Lagrangians come from

our construction and describe some related decomposition results. We also prove

a regular version of Eliashberg and Murphy’s h-principle for Lagrangian caps with

loose negative end. As an application, we give a new construction of infinitely many

regular Lagrangian disks in the standard Weinstein ball.

1. Introduction

1.1. Existence h-principle for Lagrangians. In [8], Eliashberg, Ganatra, and the

author introduced the class of regular Lagrangians in Weinstein domains. These are

exact Lagrangians whose complementary Liouville cobordism is actually a Weinstein

cobordism. Alternatively, L ⊂ W is regular if the Liouville vector field for the Wein-

stein structure on W is tangent to L. Since they have Weinstein complement, regular

Lagrangians have the advantage that they can be manipulated via Weinstein homotopy

moves and studied via Legendrian handlebody theory. In fact, all regular Lagrangians

can be constructed by coupled Weinstein handle attachment; so a regular Lagrangian

can be thought of as a relative Weinstein structure. Their importance also stems from

the fact that all currently known exact Lagrangians in Weinstein domains are regular.

It is an open problem whether all exact Lagrangians in Weinstein domains are regular;

see Problem 2.5 of [8].

The special class of flexible Lagrangians, which have flexible Weinstein complement,

was also defined in [8]. It was shown that flexible Lagrangians with non-empty bound-

ary satisfy an existence and uniqueness h-principle, demonstrating that flexible Wein-

stein domains have many Lagrangians with Legendrian boundary. The slightly more

general class of semi-flexible Lagrangians was also introduced; these are constructed

by considering a flexible Lagrangian in a flexible Weinstein domain and taking the

boundary connected sum with an arbitrary Weinstein domain. However as shown in

[8], semi-flexible Lagrangians have vanishing wrapped Floer homology and hence there

is no general existence h-principle for semi-flexible Lagrangians in arbitrary Weinstein

domains. For example, there is no semi-flexible representative of the cotangent fiber
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T ∗Mx ⊂ T ∗M ; see Corollary 6.4 of [8]. In this paper, we will give a general existence h-

principle for Lagrangians with Legendrian boundary in an arbitrary Weinstein domain.

Although the resulting Lagrangians cannot be flexible (or semi-flexible) in general, it

is interesting to note that their construction uses flexible Lagrangians in a crucial way

and in some sense generalizes the construction of semi-flexible Lagrangians.

We first recall the necessary differential-topological condition for a manifold to admit

a Lagrangian embedding into a Weinstein domain. As in [8], a formal Lagrangian

embedding of L into a Weinstein domain W is a pair (f,Φt), where f : (L, ∂L) →

(W,∂W ) is a smooth embedding and Φt : TL → TW , t ∈ [0, 1], is a homotopy

of injective homomorphisms covering f such that Φ0 = df and Φ1 is a Lagrangian

homomorphism, i.e. Φ1(TxL) ⊂ TxW is a Lagrangian subspace for all x ∈ L. Note

that we do not impose any conditions on Φt restricted to ∂L and that this definition

makes sense even if L does not have boundary. We say that two formal Lagrangians

are formally Lagrangian isotopic if they are isotopic through formal Lagrangians. The

following result says that this necessary condition for the existence of a Lagrangian

embedding is in fact sufficient.

Theorem 1.1. Suppose that Ln, n ≥ 3, has non-empty boundary and admits a for-

mal Lagrangian embedding into a Weinstein domain W 2n. Then Ln admits a regular

Lagrangian embedding into W 2n in the same formal Lagrangian isotopy class.

In particular, Theorem 1.1 constructs many regular Lagrangians in arbitrary Wein-

stein domains. As explained before, these Lagrangians are in general not flexible (if

W is not flexible) nor semi-flexible. For example, if L · L′ 6= 0 for some closed exact

Lagrangian L′ ⊂ W , then L has non-vanishing wrapped Floer homology and hence

cannot be semi-flexible [8]. Unlike flexible Lagrangians, these Lagrangians will not be

unique in their formal class; see Theorem 1.2 and Corollary 1.7 below.

We also note that the restriction n ≥ 3 in Theorem 1.1 cannot be removed. For

example, there is a formal Lagrangian embedding of the punctured torus T 2\D2 ↪→ B4

such that S1 = ∂(T 2\D2) ↪→ S3 is the smooth unknot. However, it is known that any

exact 2-dimensional Lagrangian whose Legendrian boundary is the smooth unknot

must be a disk [7]. A 4-dimensional construction similar to the one in Theorem 1.1

was considered by Yasui [20], who produced many Lagrangian disks in B4. However,

these disks necessarily have different formal classes, and even smooth isotopy classes.

1.2. Decomposition of regular Lagrangians. The proof of Theorem 1.1 involves

first using the existence h-principle from [8] to realize the formal Lagrangian as a

flexible Lagrangian in the flexible domain W 2n
flex and then applying the following re-

sult from previous work [14]: any Weinstein domain W 2n, n ≥ 3, can be Weinstein

homotoped to W 2n
flex plus a smoothly trivial Weinstein cobordism C2n. Here W 2n

flex is

the unique flexible Weinstein structure almost symplectomorphic toW 2n; a diffeomor-

phism ϕ : (W,ωW ) → (X,ωX) of two symplectic manifolds is an almost symplectomor-

phism if ϕ∗ωX can be deformed through non-degenerate (but not necessarily closed)
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two-forms to ωW . Therefore the Lagrangians produced by Theorem 1.1 can be decom-

posed as flexible Lagrangians inW 2n
flex that are extended trivially in C2n. The following

result shows that in fact all regular Lagrangians with boundary are of this form. Here

a Weinstein homotopy of (W,W0) for a Weinstein subdomain W0 ⊂ W will mean a

Weinstein homotopy of the Weinstein cobordism W\W0 fixed on ∂−(W\W0) = ∂+W0.

If ∂W0∩∂W 6= ∅, then we consider W\W0 as a Weinstein cobordism with corners and

require the homotopy to be fixed on these corners as well. For example, if L ⊂ W 2n is a

regular Lagrangian with Legendrian boundary, thenW\T ∗L is a Weinstein cobordism

with corners ∂ST ∗L, the boundary of the unit cotangent bundle ST ∗L of L.

Theorem 1.2. Let Ln ⊂ W 2n, n ≥ 3, be a regular Lagrangian with non-empty bound-

ary. Then (W 2n, Ln) is Weinstein homotopic to (W 2n
flex∪C

2n, Ln
flex∪ (∂Lflex× [0, 1])),

where C2n is a smoothly trivial Weinstein cobordism, Ln
flex ⊂ W 2n

flex is a flexible La-

grangian, and ∂Lflex × [0, 1] ⊂ C is a trivial extension of ∂Lflex ⊂ ∂−C = ∂Wflex to

C.

Here Ln
flex ⊂ W 2n

flex is the unique flexible Lagrangian [8] that is formally isotopic to

L ⊂ W 2n under the almost symplectomorphism between Wflex and W . So Theorem

1.2 shows that all regular Lagrangians with boundary can be decomposed into a flexible

Lagrangian and a smoothly trivial Lagrangian. However, as we noted before, it is an

open problem whether all exact Lagrangians in Weinstein domains are regular. The

condition that the Weinstein homotopy is done in the complement of T ∗Ln implies

that there is an exact symplectomorphism ϕ : W 2n → W 2n
flex ∪ C2n (or rather their

completions) such that ϕ(Ln) = Ln
flex. Of course, this does not imply that Ln ⊂ W 2n

is flexible since Ln
flex ⊂ W 2n

flex ceases to be flexible once C
2n is attached toW 2n

flex to form

W 2n. In general, flexible Lagrangians and Weinstein domains are defined only for n ≥

3. However a 4-dimensional version of Theorem 1.2 was proven by Conway, Etnyre, and

Tosun [6] for regular Lagrangian disks D2 in B4
std. We also note the similarity between

the decomposition (W 2n
flex∪C

2n, Ln
flex∪(∂Lflex×[0, 1])) of arbitrary regular Lagrangians

in Theorem 1.2 and the definition of semi-flexible Lagrangians [8], i.e. Lagrangians

Ln ⊂ W 2n such that (W 2n, Ln) is Weinstein homotopic to (W 2n
flex\W0, L

n
flex) for L

n
flex ⊂

W 2n
flex and some arbitrary Weinstein domain W0. However the former decomposition

is much more general than the latter because the attaching spheres of the Weinstein

handles of C2n can link, as Legendrian submanifolds, with the Legendrian boundary

∂Ln
flex.

A slight modification of Theorem 1.2 implies the following decomposition result for

disks in cotangent bundles of spheres.

Corollary 1.3. Suppose Ln, n ≥ 3, is a regular Lagrangian disk in T ∗Sn with any

Weinstein structure. Then (T ∗Sn, Dn) is Weinstein homotopic to (T ∗Dn ∪Hn
Λ, D

n).

Here T ∗Dn is equipped with the standard subcritical Weinstein structure, Λ is some

Legendrian in ST ∗Dn = (S2n−1, ξstd)\N(∂Dn), and Dn ⊂ T ∗Dn ∪Hn
Λ corresponds to

the zero-section of T ∗Dn. Since T ∗Dn = B2n
std, Corollary 1.3 provides a presentation
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of T ∗Sn
std, the standard cotangent bundle, using a single n-handle attached along

Λ. However it is not clear whether or not Λ is the standard Legendrian unknot

Λunknot ⊂ ∂T ∗Dn, as is the case for the standard presentation T ∗Sn
std = B2n

std∪H
n
Λunknot

.

Question 1.4. Suppose Dn is a regular Lagrangian disk in the standard cotangent

bundle T ∗Sn
std. Can we always take Λ in Corollary 1.3 to be Λunknot?

A negative answer to this question would give an exotic presentation for T ∗Sn
std with

a single n-handle. On the other hand, a positive answer to this question would imply

that the data of a regular disk Dn ⊂ T ∗Sn
std is just the data of two Legendrian unknots

Λunknot,1

∐
Λunknot,2 ⊂ (S2n−1, ξstd) that are Legendrian linked with each other. This

is equivalent to the data of a single Legendrian unknot in (S2n−1, ξstd)\N(Λunknot) =

ST ∗Dn. A positive answer would also imply that any regular Lagrangian disk in T ∗Sn
std

can be disjoined from some cotangent fiber. Corollary 1.3 already shows that for any

regular disk Dn ⊂ T ∗Sn
std, there exists another regular disk Cn, namely the co-core of

the handle Hn
Λ, which is disjoint from Dn and generates the wrapped Fukaya category

of T ∗Sn
std; see [4].

We also point out that there is another natural decomposition of regular Lagrangian

disks. As shown in [8], any regular Lagrangian disk can be presented as the co-core

of an n-handle. However carving out this co-core, i.e. removing the n-handle, can

often result in exotic Weinstein domains. For example, consider an exotic Weinstein

structure Σ2n on the ball B2n, for example the structures constructed by McLean [16],

and let Dn ⊂ Σ2n ∪ Hn
Λunknot

be the co-core of the handle Hn
Λunknot

. The result of

carving out Dn is precisely Σ2n. In general, the carved out domain does not even have

to be diffeomorphic to the ball. For example, if Dn · Sn = k in T ∗Sn, then the carved

out domain is a rational homology ball B2n
k with Hn−1(B

2n
k ;Z) ∼= Z/kZ. Hence this

co-core decomposition results in the data of a (possibly exotic) Weinstein structure

Σ2n on B2n (or some other smooth domain) and a Legendrian in ∂Σ2n. On the other

hand, our decomposition in Corollary 1.3 just depends on the data of a Legendrian in

the standard structure (S2n−1, ξstd)\N(Λunknot) = ST ∗Dn.

Of course closed Lagrangians cannot be decomposed as in Theorem 1.2 since flexible

Weinstein domains have no closed exact Lagrangians. However, a similar factorization

result does hold in the closed case: all the topology (except the top handle) of a closed

regular Lagrangian can be put in a flexible domain. For example, in [8], Theorem 4.7, it

was shown that for any closed smooth manifold Mn, n ≥ 3, satisfying the appropriate

formal conditions, there is a Weinstein structure T ∗Sn
M on T ∗Sn that contains M as a

regular Lagrangian. These examples are constructed by using the flexible Lagrangian

existence h-principle [8] to produce a flexible embedding Mn\Dn ⊂ B2n
std and then

attaching a handle to ∂(Mn\Dn) ⊂ (S2n−1, ξstd) = ∂B2n
std, i.e. (T

∗Sn
M ,M

n) is Weinstein

homotopic to (B2n
std ∪H

n
∂(M\Dn), (M

n\Dn) ∪Hn
∂(M\Dn)). So the interesting topology of

Mn is contained in the flexible domain B2n
std. In fact, all regular Lagrangians in T ∗Sn

can be constructed this way. More generally, we have the following result.
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Theorem 1.5. Suppose that Ln is a closed regular Lagrangian in W 2n, n ≥ 3. Then

there exists a regular Lagrangian Ln\Dn in a flexible domain V 2n
flex such that (W 2n, Ln)

is Weinstein homotopic to (V 2n
flex ∪H

n
∂(L\Dn), (L

n\Dn) ∪Hn
∂(L\Dn)).

The point of Theorem 1.5 is that the Lagrangian Ln\Dn is in the flexible struc-

ture V 2n
flex. Namely, the claim that (W 2n, Ln) is Weinstein homotopic to (V 2n ∪

Hn
∂(L\Dn), (L

n\Dn) ∪Hn
∂(L\Dn)) with an arbitrary Weinstein structure V 2n follows im-

mediately from the definition of regularity. By Theorem 1.2, the regular Lagrangian

Ln\Dn ⊂ V 2n
flex can be further decomposed into the flexible Lagrangian (Ln\Dn)flex ⊂

V 2n
flex plus a trivial extension in the Weinstein cobordism Vflex\i(Vflex), where i :

Vflex ↪→ Vflex is some Weinstein embedding.

In general the topology of Vflex in Theorem 1.5 will depend on the formal class of

Ln ⊂ W 2n. Except for this, we can essentially control the topology of V 2n
flex. For ex-

ample, a slight modification of Theorem 1.5 shows that for any regularMn\Dn ⊂ W 2n,

(W 2n∪Hn
∂Mn\Dn ,Mn\Dn∪Hn

∂Mn\Dn) is Weinstein homotopic to (W 2n
flex∪H

n
∂Mn\Dn ,Mn\Dn∪

Hn
∂Mn\Dn). In particular, there is an exact symplectomorphism ϕ : W 2n ∪Hn

∂Mn\Dn →

W 2n
flex ∪ H

n
∂(Mn\Dn) such that ϕ(Mn) = Mn. However, this symplectomorphism does

not induce a symplectomorphism between W 2n and W 2n
flex (as it shouldn’t). This is

because even though ϕ maps Mn to Mn, it does not map the co-core of Hn
∂(Mn\Dn) in

W 2n ∪ Hn
∂(Mn\Dn) to the co-core of Hn

∂(Mn\Dn) in W
2n
flex ∪ H

n
∂(Mn\Dn), which would be

needed to conclude that W 2n and W 2n
flex are symplectomorphic. In particular, the two

co-cores are two regular Lagrangian disks Dn
1 , D

n
2 ⊂ W 2n ∪Hn

∂(Mn\Dn) both intersect-

ing Mn in exactly one point such that carving out Dn
1 results in W 2n but carving out

Dn
2 results in W 2n

flex. In particular, these disks can be smoothly isotopic but are not

Lagrangian isotopic.

We can rephrase the above discussion as follows. Let Lagrangian(W 2n, Ln) denote

all regular embeddings of a closed manifold Ln into some fixed Weinstein domain

W 2n. Then Theorem 1.5 shows that the following map induced by simultaneous

handle-attachment is surjective:

Lagrangian(W 2n
flex,M

n\Dn) → Lagrangian(W 2n ∪Hn, (Mn\Dn) ∪Hn
∂(M\Dn)). (1.1)

On the right-hand-side,Mn\Dn is considered as a Lagrangian inW 2n, which is allowed

to have an arbitrary Weinstein structure. In particular, the map is surjective even if we

consider all Weinstein structures on the right-hand-side since the Weinstein structure

on the left-hand-side is always flexible. A similar map just on the level of Weinstein

domains is considered in [14] and is also shown to be surjective. Theorem 1.5 shows

that surjectivity holds even when we consider Weinstein domains and Lagrangians

simultaneously.

Now we consider an application of Theorem 1.5.

Corollary 1.6. Let Sn be a regular Lagrangian sphere in T ∗Sn, with any Weinstein

structure. Then there exists a regular disk Dn ⊂ B2n
std such that (T ∗Sn, Sn) is Weinstein

homotopic to (B2n
std ∪H

n
∂Dn , Dn ∪Hn

∂Dn).
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For example, the zero-section Sn
0 ⊂ T ∗Sn

std can be obtained by attaching a handle to

the boundary of the Lagrangian unknot Dn
0 ⊂ B2n

std. It is unknown whether there are

exotic Lagrangian spheres in T ∗Sn
std (or whether all Lagrangian spheres in T ∗Sn

std are

regular). However Corollary 1.6 shows that all such hypothetical spheres come from

Lagrangian disks in B2n
std. In particular, the following map is surjective.

Lagrangian(B2n
std, D

n) → Lagrangian(T ∗Sn, Sn). (1.2)

Hence there are at least as many regular Lagrangians disks in B2n
std as regular La-

grangian spheres in T ∗Sn, with some Weinstein structure. The latter set is infinite,

e.g. T ∗Sn
std\Σ where Σ is an exotic Weinstein structure on the ball constructed by

McLean [15]. Therefore, the former set is also infinite.

Corollary 1.7. If n ≥ 4, there are infinitely many different regular Lagrangian disks

in the standard Weinstein ball B2n
std.

These Lagrangian disks have different Legendrian boundaries since attaching an

n-handle to them results in different symplectic structures T ∗Sn
std\Σ on T ∗Sn. In

particular, these disks are not isotopic through exact Lagrangians with Legendrian

boundary. In fact, there is no symplectomorphism of B2n
std taking the (completed)

disks to each other. Hence these are non-flexible disks in a flexible Weinstein domain.

The first such examples were found by Eliashberg, Ganatra, and the author [8] using

a different construction based on work of Murphy and Siegel [19]. The disks in [8]

were shown to be exotic because the complement Weinstein subdomains obtained

by carving them out are also exotic [19]. Since it is not known how to carve out

Lagrangians other than disks to produce Weinstein subdomains, it is not clear how to

extend the method in [8] to Lagrangians with more general topology. On the other

hand, the construction in Corollary 1.7 can be easily modified to create many exotic

Lagrangians in B2n
std with non-trivial topology, i.e. there is no topological restriction

on the Lagrangian Ln in Theorem 1.5 (besides the necessary formal conditions).

Since flexible domains have vanishing symplectic homology, the Lagrangians in

Corollary 1.7 all have vanishing wrapped Floer homology. However they can be dis-

tinguished by the Legendrian contact homology of their Legendrian boundaries (or

equivalently the symplectic cohomology of the Weinstein domains obtained by attach-

ing an n-handle to these Legendrians [2]). So even their Legendrian boundaries are

not isotopic. Even though the wrapped Floer homology of these disks vanishes, the

Legendrian contact homology does not vanish since the Legendrian boundaries have

exact Lagrangian fillings, namely the disks themselves.

Using the regular disks from Corollary 1.7, it is easy to construct exotic disks in

the standard cotangent bundle T ∗Sn
std disjoint from the zero-section. Abouzaid-Seidel

[1] constructed exotic disks in T ∗Sn
std that intersect the zero-section Sn

std many times;

these were obtained by looking at the graphs of functions f : Dn → R in T ∗Dn ⊂ T ∗Sn

and distinguished by their wrapped Floer homology with the zero-section. However,

it was unclear whether there are any exotic disks that intersects Sn
std ⊂ T ∗Sn

std exactly
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once. Any such disk is equivalent to T ∗Sn
x in the wrapped Fukaya category of T ∗Sn

and hence cannot be distinguished via its wrapped Floer homology. Here we show that

such exotic disks do in fact exist in abundance, distinguished again by the Legendrian

contact homologies of their boundaries.

Corollary 1.8. If n ≥ 4, there are infinitely many different regular Lagrangian disks

in the standard cotangent bundle T ∗Sn
std that intersect the zero-section Sn

0 ⊂ T ∗Sn
std

exactly once.

Hence Sn
0 ⊂ T ∗Sn

std is a flexible Lagrangian (since its complement is a trivial We-

instein cobordism) but Sn
0 ∪Dn is a non-flexible (singular) Lagrangian (or Weinstein

subdomain). To prove this corollary, we follow the same approach as for Corollary 1.7

and show that a related handle-attachment map

Lagrangian(T ∗Sn
std, S

n
0 ∨Dn) → Lagrangian(T ∗Sn]pT

∗Sn, Sn ∨ Sn) (1.3)

is surjective. The left-hand-side consists of singular regular Lagrangians Sn
0 ∨ Dn in

T ∗Sn
std, where S

n
0 is the zero-section as before; equivalently, we can think of these as

regular Lagrangian disks which intersect the zero-section exactly once. On the right-

hand-side, we consider arbitrary Weinstein structures on the plumbing T ∗Sn]pT
∗Sn

that contain the standard plumbing (T ∗Sn]pT
∗Sn)std as a subdomain, i.e. a singular

Lagrangian Sn∨Sn. The surjectivity of Equation 1.3 is a decomposition result for two

plumbed spheres, similar to how the surjectivity of Equation 1.2 was a decomposition

of a single sphere.

We can summarize the approach in Corollaries 1.7, 1.8 as follows. Once we know

that a certain class of structures have many distinct objects, i.e. display rigidity, we

can conclude via a flexibility argument that related classes also have many distinct

objects without using rigid techniques separately on this second class. In practice, the

only method we currently have to show rigidity in the symplectic setting is through

J-holomorphic curve invariants (Legendrian contact homology in the examples above).

But the flexibility argument above shows that whatever method can be used to prove

rigidity in the first class can also be used to prove rigidity in the second class.

1.3. Regular Lagrangian caps. As noted before, it is an open question whether all

exact Lagrangians in Weinstein domains are regular. However this is known to be

false for Weinstein cobordisms W with non-empty negative end ∂−W . Eliashberg and

Murphy [10] showed that there is an existence h-principle for Lagrangians caps whose

negative end in ∂−W is a loose Legendrian. Hence it is possible to construct exact

non-regular Lagrangians in W by applying the h-principle to a formal Lagrangian

embedding whose complement cobordism has homology above the middle-dimension

(and therefore cannot be a Weinstein cobordism for topological reasons). In fact, Mur-

phy [18] used the caps h-principle to construct non-regular closed, exact Lagrangians

in the symplectization of overtwisted contact manifolds.
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The proof of the Lagrangian caps h-principle involves Gromov’s h-principle for La-

grangian immersions [13] and a version of the Whitney trick (which relies on the

looseness of the negative end) to remove the double-points of the immersion. These

operations do not take the ambient Weinstein structure into account and hence do

not produce regular Lagrangians in general, as noted above. In particular, it was not

known whether there is an existence h-principle for regular Lagrangian caps with loose

negative end. Here we show that such an h-principle does hold, assuming the neces-

sary formal conditions. We say that a smooth cobordism W 2n is an almost Weinstein

cobordism if W 2n has an almost complex structure and admits a Morse function all

of whose critical points have index at most n (and is increasing, decreasing near the

positive, negative boundaries of W 2n respectively).

Theorem 1.9. Let W 2n, n ≥ 3, be a Weinstein cobordism and Ln ⊂ W 2n a formal

Lagrangian cobordism such that ∂−L is formally isotopic to a loose Legendrian Λ− ⊂

∂−W , ∂+L is formally isotopic to a Legendrian Λ+ ⊂ ∂+W , and W 2n\Ln is an almost

Weinstein cobordism. Then there is a regular Lagrangian cobordism in W 2n from Λ−

to Λ+ formally isotopic to L. The same holds if ∂+L is empty.

Using the Lagrangian caps h-principle, Eliashberg and Murphy [10] also proved an h-

principle for Liouville embeddings of flexible Weinstein domains. More precisely, they

showed that if a flexible Weinstein domain admits an almost symplectic embedding

into some Liouville domain, then it admits a Liouville embedding into that Liouville

domain, i.e. is a Liouville subdomain. Since this construction was based on their

Lagrangian caps h-principle, which produces non-regular Lagrangians, the resulting

Weinstein domains are not necessarily Weinstein subdomains and it was unknown

when this is possible. We will use Theorem 1.9 to show that there is an h-principle

for Weinstein embeddings of flexible domains, again assuming the necessary formal

conditions.

Corollary 1.10. Suppose that X2n, n ≥ 3, is a Weinstein domain and W 2n
flex is a

flexible domain that has an almost symplectic embedding i : W 2n
flex → X2n such that

X2n\W 2n
flex is an almost Weinstein cobordism. Then i is smoothly isotopic to a Wein-

stein embedding j : W 2n
flex → X2n, i.e. j(W 2n

flex) is a Weinstein subdomain of X2n.

2. Proofs of Results

We now give proofs of the results stated in the Introduction. We will need to use

the following decomposition theorem from [14] and its variations.

Theorem 2.1 ([14]). If W 2n, n ≥ 3, is a Weinstein domain, then W 2n can be Wein-

stein homotoped to W 2n
flex ∪ C

2n, where C2n is a smoothly trivial Weinstein cobordism

with two Weinstein handles of index n− 1, n.

We briefly recall the proof of this result. Consider two Legendrian spheres Λ0,Λ in

(Y, ξ) = ∂W0, the boundary of a Weinstein domain W0. Then we can handle-slide Λ
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over Λ0 and get a new Legendrian hΛ0
(Λ). Although Λ0

∐
Λ and Λ0

∐
hΛ0

(Λ) may

not be isotopic even as smooth links, the Weinstein structures W0 ∪ Hn
Λ0

∪ Hn
Λ and

W0 ∪ H
n
Λ0

∪ Hn
hΛ0

(Λ) are Weinstein homotopic. A handle-slide depends on the choice

of a local chart where Λ0,Λ look like parallel Legendrians and hΛ0
(Λ) is obtained by

replacing Λ with the cusp connected sum of Λ0,Λ in this local chart; see [3]. To prove

Theorem 2.1, we first Weinstein homotope W to W0 ∪H
n
Λ0

∪ · · · ∪Hn
Λk
, where W0 is

subcritical. Then we choose local charts in Λ0

∐
Λ1

∐
· · ·

∐
Λk so that the handle-

slid link hΛ0
(Λ1)

∐
· · ·

∐
hΛ0

(Λk) is loose (but not loose in the complement of Λ0).

Therefore W0 ∪H
n
hΛ0

(Λ1)
∪ · · · ∪Hn

hΛ0
(Λk)

is flexible and W is Weinstein homotopic to

W0 ∪H
n
hΛ0

(Λ1)
∪ · · · ∪Hn

hΛ0
(Λk)

∪Hn
Λ0

as desired. To be more precise, we actually need

to do two handle-slides of opposite signs over Λ0 to ensure that the cobordism C2n is

smoothly trivial; see [14].

Now we use Theorem 2.1 to prove Theorem 1.1.

Proof of Theorem 1.1. We first describe the almost symplectomorphism betweenWflex

andW in more detail. By Theorem 2.1, Wflex ⊂ W is a Weinstein subdomain and the

Weinstein cobordism C2n = W\Wflex consists of two handles, i.e. C2n = Hn−1
Λ0

∪Hn
Λ.

Here Λ0 ⊂ ∂Wflex is an n − 2-dimensional isotropic attaching sphere for Hn−1
Λ0

and

Λ ⊂ ∂(Wflex ∪H
n−1
Λ0

) is a Legendrian attaching sphere for Hn
Λ. Since C

2n is smoothly

trivial, Λ is smoothly isotopic in ∂(Wflex ∪ Hn−1
Λ0

) to a cancelling Legendrian that

intersects the belt sphere of Hn−1
Λ0

in a single point. We can assume that this smooth

isotopy is supported in a neighborhood of some collection of Whitney 2-disks with

boundary on Λ and the belt sphere of Hn−1
Λ0

. Let ϕt be the extension of this smooth

isotopy to an ambient diffeotopy of ∂(Wflex ∪ Hn−1
Λ0

), which is also supported in a

neighborhood of these disks, and let A ⊂ ∂Wflex be the subset where ϕt is the identity.

Now we will show that there is a diffeomorphism ψ between Wflex and W which is

the identity on A. Here we view A ⊂ ∂Wflex\Op(Λ0

∐
Λ) as a subset of ∂W , where

Op(Λ0

∐
Λ) is a neighborhood Λ0,Λ in ∂Wflex along which the handles are attached;

note that Λ intersects ∂Wflex in a punctured Legendrian sphere whose boundary lies

in Λ0. To produce the diffeomorphism ψ, we use the isotopy ϕt to homotope the

gradient-like vector field in W\Wflex rel ∂Wflex to a vector field with no zeroes and

flow along that vector field. Since ϕt is the identity on A, this vector field is fixed over

A and so ψ is the identity on A. We note that ψ is an almost symplectomorphism

since W\Wflex is smoothly trivial and any almost symplectic structure on a smoothly

trivial cobordism is homotopic to the product structure.

Let F : Ln → W 2n be the given formal Lagrangian embedding which we seek to

realize by a genuine Lagrangian embedding. Then ψ−1 ◦ F is a formal Lagrangian in

W 2n
flex. By the existence h-principle for Lagrangians in flexible Weinstein domains [8],

ψ−1 ◦F admits a flexible Lagrangian embedding Ln
flex into W 2n

flex. We can Legendrian

isotope the Legendrian boundary ∂Ln
flex ⊂ ∂W 2n

flex so that it is disjoint from the

isotropic attaching spheres Λ0,Λ of the two handles in C2n. This is because a small
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neighborhood of ∂Lflex is contactomorphic to J1(∂Lflex) and nearby Legendrians are

given by graphs of 1-jets of functions. Thom’s jet transversality theorem shows that

for any submanifold Σk of J1(∂Ln
flex) such that k < n, there exists a C0-small function

on ∂Ln
flex whose 1-jet in J1(∂Ln

flex) is disjoint from Σk; see Theorem 2.3.2 of [9]. The

isotropic attaching spheres Λn−2
0 ,Λn−1 of C2n have dimension less than n and hence

we can find such a Legendrian isotopy of ∂Lflex. In particular, we can assume that

Lflex ⊂ Wflex is a flexible Lagrangian such that ∂Ln
flex is disjoint from these attaching

spheres. Also, since n ≥ 3, we can assume that ∂Ln
flex is disjoint from the Whitney

2-disks inducing ϕt and hence contained in A ⊂ ∂W 2n
flex. Now we attach handles to

W 2n
flex along Λ0,Λ to form W 2n. Since ∂Ln

flex is disjoint from these attaching spheres,

it extends trivially to a Lagrangian with Legendrian boundary in W 2n which we also

call Ln. Since the cobordism C2n is Weinstein, Ln is regular in W 2n.

Finally, we note that Ln ⊂ W 2n is in the original Lagrangian formal class F . Since

∂Ln
flex is contained in A and the almost symplectomorphism ψ betweenW 2n

flex andW
2n

is the identity on A, ψ(Ln
flex) agrees with its trivial extension Ln ⊂ W 2n described

previously. Since Ln
flex ⊂ W 2n

flex is in the formal class ψ−1 ◦ F by construction and the

almost symplectomorphism ψ preserves Lagrangian formal classes, Ln = ψ(Ln
flex) will

be in the desired formal class F . �

Remark 2.2. Even when W = Wflex, the almost symplectomorphism ψ produced

via the procedure above will not be a symplectomorphism. This is because the

new vector field obtained by modifying the original Liouville vector field by ϕt is

no longer Liouville for the symplectic structure on W\Wflex and so ψ will not be a

symplectomorphism. Indeed if ψ were a symplectomorphism (of completions), then

L = ψ(Lflex) ⊂ ψ(Wflex) = Wflex would be a flexible Lagrangian. However as we will

see later in Theorem 1.2 and Corollary 1.7, all regular Lagrangians are of the form

ψ(Lflex) but there are non-flexible Lagrangians even in flexible Weinstein domains.

As noted before, Theorem 1.1 does not hold in dimension 4 since there are La-

grangian formal classes not realized by any genuine Lagrangians. However an anal-

ogous construction in dimension four was considered by Yasui [20], who constructed

many Lagrangians disks in B4
std by trivially extending the Lagrangian unknot D2 ⊂

T ∗D2 = B4
std across a trivial Weinstein cobordism (S3, ξstd) × [0, 1], presented as a

Weinstein cobordism with two handles of index 1 and 2. These Lagrangian disks

(and their Legendrian boundaries) are often in different formal classes, even different

smooth isotopy classes; for example, there exist many smoothly slice knots in S3 that

are not isotopic to the unknot. Theorem 1.1 is high-dimensional which gives us control

over the formal class of the Lagrangian.

It is also crucial that the cobordism C2n is Weinstein. In this case, we can make

the Legendrian boundary of Ln
flex disjoint from the attaching Legendrians and extend

Ln
flex to a Lagrangian in W 2n. So the key idea is that a Weinstein cobordism C2n

modifies its negative contact boundary ∂−C
2n only in a small region, of dimension

less than n. If we only knew that the cobordism had a Liouville structure, as shown
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earlier by Eliashberg and Murphy [10], then we could not necessarily conclude that

the Lagrangian extends since the Liouville cobordism could in principle modify the

negative boundary ∂−C
2n in an arbitrarily large region. In particular, the following

question is open.

Question 2.3. Is there an existence h-principle for exact Lagrangians with Legendrian

boundary in general Liouville domains?

Of course these Lagrangians will not be regular since the ambient domain is not

Weinstein. A related question is which Liouville domains are non-degenerate in the

sense of Ganatra [11].

Now we prove Theorem 1.2 that all regular Lagrangians with Legendrian boundary

come from the construction in Theorem 1.1.

Proof of Theorem 1.2 . Since Ln is regular in W 2n, by definition (W 2n, Ln) is Wein-

stein homotopic to (T ∗Ln ∪ X2n, Ln) for some Weinstein cobordism X2n. Then by

Theorem 2.1, we can homotope X2n to X2n
flex ∪ C2n, where C2n is smoothly trivial.

The proof of this result involves Weinstein homotoping X2n to X2n
flex ∪ C2n relative

to the closed contact manifold ∂T ∗Ln. However, we can also do this Weinstein ho-

motopy relative to ∂T ∗Ln\∂Ln, i.e. view X2n as cobordism with corners ∂ST ∗L and

require the homotopy to be fixed on the corners as well. This is because we can pick

the Darboux balls and isotropic arcs in [14] used to do the handle-slides away from

∂L. As a result, the attaching spheres of X2n
flex will be loose in the complement of

∂Ln ⊂ ∂T ∗Ln and hence Ln ⊂ T ∗Ln∪X2n
flex = W 2n

flex will be a flexible Lagrangian. We

denote this Lagrangian by Ln
flex ⊂ W 2n

flex. When we attach C2n to W 2n
flex to get W 2n,

the Lagrangian Ln
flex ⊂ W 2n

flex extends trivially to Ln (as in the proof of Theorem 1.1).

Hence (W 2n, Ln) is Weinstein homotopic to (W 2n
flex ∪ C

2n, Ln
flex). �

We can apply a modified version of Theorem 1.2 to Lagrangian disks in T ∗Sn and

prove Corollary 1.3.

Proof of Corollary 1.3. Since Dn ⊂ T ∗Sn is a regular Lagrangian, (T ∗Sn, Dn) is Wein-

stein homotopic to (T ∗Dn∪X2n
n , Dn). Here T ∗Dn has the standard Weinstein structure

and X2n
n is a Weinstein cobordism with corners, which by the Whitney trick and fact

that n ≥ 3 has a smooth handle-body decomposition with a single handle of index

n. By a slight variation on Theorem 2.1 (see Theorem 1.1 of [14]), X2n
n can be We-

instein homotoped (relative to the corners ∂ST ∗Dn) to a Weinstein structure with

a single Weinstein handle of index n. Hence (T ∗Sn, Dn) is Weinstein homotopic to

(T ∗Dn ∪Hn
Λ, D

n) as desired. �

Now we prove Theorem 1.5, a version of Theorem 1.2 for closed Lagrangians.

Proof of Theorem 1.5. Since Mn ⊂ W 2n is regular, by definition (W 2n,Mn) is We-

instein homotopic to (T ∗Mn ∪ X2n,Mn) for some Weinstein cobordism X2n. The

n-handles of X2n are attached along a Legendrian link Λ in ∂(T ∗M ∪ X2n
sub), where
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X2n
sub is the subcritical part ofX

2n. By attaching the single n-handle of T ∗M after these

n-handles of X2n, we can consider Λ as a Legendrian link in ∂(T ∗(Mn\Dn) ∪X2n
sub).

Now we handle-slide Λ over ∂(Mn\Dn) ⊂ ∂(T ∗(Mn\Dn) ∪ X2n
sub) so that the re-

sulting Legendrian link h∂(Mn\Dn)(Λ) is loose (but not loose in the complement of

∂(Mn\Dn) ⊂ ∂(T ∗(Mn\Dn)∪Xsub)). Since T
∗(Mn\Dn) is subcritical, T ∗(Mn\Dn)∪

X2n
sub ∪ Hn

h(Λ) is a flexible Weinstein domain, which we denote by V 2n
flex. Further-

more V 2n
flex ∪ Hn

∂(Mn\Dn) = T ∗(Mn\Dn) ∪ X2n
sub ∪ Hn

h(Λ) ∪ Hn
∂(Mn\Dn) is homotopic to

T ∗(Mn\Dn)∪X2n
sub∪H

n
Λ∪H

n
∂(Mn\Dn) = T ∗Mn∪X2n

sub∪H
n
Λ = T ∗Mn∪X2n = W 2n, the

original Weinstein structure. More precisely, this homotopy is just a Legendrian iso-

topy from Λ to h∂(Mn\Dn)(Λ) in ∂(T
∗Mn ∪X2n

sub). This homotopy occurs above T ∗Mn

and so (V 2n
flex∪H

n
∂(Mn\Dn),M

n\Dn∪Hn
∂(Mn\Dn)) is Weinstein homotopic to (W 2n,Mn),

as desired. �

Applying Theorem 1.5 to Lagrangian spheres in cotangent bundles, we prove Corol-

lary 1.6.

Proof of Corollary 1.6. By Theorem 1.5, (T ∗Sn, Sn) is Weinstein homotopic to (V 2n
flex∪

Hn
∂Dn , Dn ∪ Hn

∂Dn) for some regular Lagrangian disk Dn in a flexible domain Vflex.

Since Sn ⊂ T ∗Sn is regular, we have [Sn] = ±1 ⊂ Hn(T
∗Sn) ∼= Z. The co-core

Cn of the handle Hn
∂Dn intersects Sn in exactly one point and hence [Cn] = ±1 ∈

Hn(T
∗Sn, ∂T ∗Sn) ∼= Z. Since Vflex is obtained by carving out Cn from T ∗Sn, we see

that Vflex is a homology ball (with simply-connected boundary since n ≥ 3). By the h-

cobordism theorem, Vflex must be diffeomorphic to the ball. Since Vflex is flexible and

the ball has a unique almost symplectic structure, Vflex must be Weinstein homotopic

to B2n
std by the h-principle for flexible Weinstein structures [5]. �

We can use Corollary 1.6 to produce many Lagrangian disks in the standard Wein-

stein ball and prove Corollary 1.7.

Proof of Corollary 1.7. McLean constructed an exotic Weinstein ball Σ2n, n ≥ 4, and

showed that Σ2n
k := \ki=1Σ

2n are non-symplectomorphic since they have different num-

ber of idempotents in their symplectic homology. Since symplectic homology is addi-

tive under boundary connected sum and SH(T ∗Sn
std) has only one non-zero idempo-

tent, T ∗Sn
std\Σ

2n
k are also non-symplectomorphic. Furthermore, each T ∗Sn

std\Σ
2n
k con-

tains a regular Lagrangian sphere, i.e. the zero-section Sn
0 of T ∗Sn

std. By Theorem 1.5,

there is a regular Lagrangian disk D2n
k ⊂ B2n

std such that (T ∗Sn
std\Σ

2n
k , S

n
0 ) is Weinstein

homotopic to (B2n
std ∪H

n
∂Dn

k

, D2n
k ∪Hn

∂Dn

k

). Since T ∗Sn
std\Σ

2n
k are not symplectomorphic

for different k, the Legendrian attaching spheres ∂Dn
k are not Legendrian isotopic;

more generally, there is no ambient contactomorphism of ∂B2n
std taking different ∂Dn

k

to each other. In particular, the Lagrangian disks Dn
k ⊂ B2n

std are not isotopic through

Lagrangian disks with boundary and are not symplectomorphic to each other. �
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Remark 2.4. The ‘Legendrian surgery formula’ relates Floer-theoretic invariants of

the Legendrian boundary ∂Dn
k to similar invariants of T ∗Sn

std\Σk, which is the do-

main B2n
std ∪ Hn

∂Dn

k

obtained by handle-attachment along ∂Dn
k . Namely, a proof was

sketched in [2] that the Hochschild homology of Chekanov-Eliashberg DGA of ∂Dn
k

is isomorphic to the symplectic homology of T ∗Sn
std\Σ

2n
k . A rigorous proof was given

in [12] that the wrapped Fukaya category of T ∗Sn
std\Σ

2n
k is isomorphic to a certain

pushout of the partially wrapped Fukaya category of B2n
std stopped at ∂Dn

k . By [15],

the domains T ∗Sn
std\Σk have different symplectic homology for different k. Therefore

the attaching Legendrians ∂Dn
k can be distinguished by the Hochschild homology of

Chekanov-Eliashberg DGA of ∂Dn
k (in the formulation of the surgery formula from

[2]) or by the Fukaya category stopped by ∂Dn
k (in the formulation of [12]).

Next we prove Corollary 1.8: there are many Lagrangian disks in the standard

cotangent bundle intersecting the zero-section exactly once.

Proof of Corollary 1.8. It suffices to prove that the handle-attachment map for plumb-

ings in Equation 1.3 is surjective since there are infinitely many different Weinstein

structures on T ∗Sn]pT
∗Sn containing (T ∗Sn]pT

∗Sn)std. For example (T ∗Sn]pT
∗Sn)std\Σ

2n
k

is an infinite collection of such structures, where Σ2n
k are McLean’s exotic Weinstein

structures on the ball [16]. The surjectivity of Equation 1.3 basically follows from a

relative version of Theorem 1.5, which was used to prove the surjectivity of Equa-

tions 1.1, 1.2. Namely, we can view (T ∗Sn]pT
∗Sn, (T ∗Sn]pT

∗Sn)std) as (T ∗Sn
std ∪

C2n, Sn
0 ∨ T ∗Sn

x ∪ Ln), where C2n is a Weinstein cobordism with ∂−C
2n = ∂T ∗Sn

that admits a smooth Morse function with a single handle of index n and Ln ⊂ C2n

is a regular Lagrangian disk cap with ∂−L
n = ∂T ∗Sn

x . Then a version of Theo-

rem 1.5 for cobordisms implies that (C2n, Ln) is Weinstein homotopic to (W 2n
flex ∪

Hn
∂+(Sn−1×[0,1]), S

n−1 × [0, 1] ∪ Hn
∂+(Sn−1×[0,1])). Here W 2n

flex is a Weinstein cobordism

with ∂−W
2n
flex = ∂T ∗Sn and Sn−1 × [0, 1] ⊂ W 2n

flex is a regular Lagrangian cylinder

with ∂+(S
n−1 × [0, 1]) = ∂T ∗Sn

x ⊂ ∂−W
2n
flex and ∂−(S

n−1 × [0, 1]) ⊂ ∂+W
2n
flex. The

flexible cobordism W 2n
flex is smoothly trivial and hence is Weinstein homotopic to

the trivial Weinstein structure ∂T ∗Sn × [0, 1]. Then (T ∗Sn
std ∪ W 2n

flex, S
n
0 ∨ (T ∗Sn

x ∪

Sn−1 × [0, 1])) is Weinstein homotopic to (T ∗Sn
std, S

n
0 ∨ Dn) for some regular La-

grangian disk Dn ⊂ T ∗Sn
std. Since Sn−1 × [0, 1] ⊂ W 2n

flex, the disk Dn ⊂ T ∗Sn
std

intersects the zero-section Sn
0 in precisely one point T ∗Sn

x ∩ Sn
0 = {x}. Furthermore,

(T ∗Sn
std∪H

n
∂Dn , Sn

0∨D
n∪Hn

∂Dn) is Weinstein homotopic to (T ∗Sn
std∪C

2n, Sn
0∨T

∗Sn
x∪L

n)

and hence to (T ∗Sn]pT
∗Sn, (T ∗Sn]pT

∗Sn)std). �

Now we prove Theorem 1.9, a regular version of the Lagrangian caps h-principle

due to Eliashberg and Murphy [10].

Proof of Theorem 1.9. We will break down the proof into three cases. First, we will

prove the case when W 2n is a flexible Weinstein cobordism and Λ−,Λ+ are both

loose. Then we will prove the case when W 2n, Ln are both smoothly trivial and

Λ−,Λ+ are both loose. Finally, we will prove the case when W 2n is smoothly trivial
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with the trivial product Weinstein structure, Ln is smoothly trivial, Λ− is loose but

Λ+ is arbitrary. The general case follows by gluing the Lagrangians and Weinstein

cobordisms produced in these three cases.

We first prove the case when W 2n is a flexible Weinstein cobordism Wflex and

Λ−,Λ+ are both loose. By the h-principle for flexible Lagrangians [8], there is a

flexible Lagrangian cobordism Lflex ⊂ W 2n
flex such that ∂−Lflex = Λ− in ∂−W

2n
flex and

L is in the prescribed formal class. Recall that ∂−Lflex = Λ− is loose by assumption.

We will show that ∂+Lflex ⊂ ∂+W
2n
flex is also loose. To see this, note that Lflex ⊂ W 2n

flex

is constructed in two steps: first we attach T ∗L to ∂−W
2n
flex along Λ− and then attach

W 2n
flex\T

∗L. For the first step, suppose Sk−1 ⊂ Λ− is an attaching sphere for a k-

handle of T ∗L. By the h-principle for loose Legendrians [17], we can assume that Λ−

has a loose chart U such that Λ− ∩ U is a disk Dn−1 ⊂ Λ−. Since Dn−1 is a disk,

we can smoothly isotope Sk−1 in Λ− so that Sk−1, Dn−1 are disjoint; note that this

smooth isotopy is in fact an isotropic isotopy of Sk−1 in ∂Wflex since Λ− is isotropic.

Because Λ−∩U = Dn−1, we see that Sk−1 is disjoint from the loose chart U . So when

we attach a handle along Sk−1, the loose chart persists and the resulting Legendrian

will still be loose. Iterating this procedure, we see that ∂+L ⊂ ∂−W
2n
flex ∪ ∂T ∗L is

also loose. For the second step, the attaching spheres for W 2n
flex\T

∗L are loose in the

complement of ∂+L ⊂ ∂−W
2n
flex ∪ ∂T

∗L (this is what it means for Lflex ⊂ W 2n
flex to be

a flexible Lagrangian) and so the loose chart of ∂+L ⊂ ∂−W
2n
flex ∪ ∂T

∗L again extends

to a loose chart of ∂+Lflex ⊂ ∂+W
2n
flex. Because Lflex is in the correct formal class, so

is ∂+Lflex, i.e. formally Legendrian isotopic to Λ+. Since ∂+Lflex,Λ+ are both loose,

they are actually Legendrian isotopic by the loose Legendrian h-principle [17].

Now we prove the second case when W 2n, Ln are smoothly trivial and Λ−,Λ+ are

both loose. By [14], we can assume that W 2n has a Weinstein presentation with two

handles Hn−1
Λ0

, Hn
Λ (although having precisely two handles will not really matter for

the argument here). There is a Legendrian isotopy ϕt(Λ−), t ∈ [0, 1], of Λ− ⊂ ∂−W
2n

so that ϕ1(Λ−) is loose in the complement of Λ0,Λ (of course ϕt(Λ−) might cross Λ0,Λ

during this isotopy). Let Ln ⊂ W 2n be the concatenation of the graph of this isotopy

in ∂−W
2n × [0, 1] with the trivial extension of ϕ1(Λ−) in W 2n. Then Ln is in the

correct formal class and ∂+L
n is loose by construction. Therefore ∂+L

n is Legendrian

isotopic to Λ+.

Next we prove the third case when W 2n has the trivial product Weinstein struc-

ture (Y 2n−1, ξ) × [0, 1], Ln is smoothly trivial, and Λ− is loose but Λ+ is arbitrary.

First we attach two symplectically cancelling handles Hn−1
Λ0

, Hn
Λ to W 2n such that

Λ0,Λ ⊂ ∂+W
2n are contained in a Darboux ball. Now we handle-slide Λ+ ⊂ ∂+W

2n

over Λ twice (with opposite orientations) so that the resulting Legendrian h2(Λ+) ⊂

∂+(W
2n ∪ Hn−1

Λ0
) is loose and intersects the belt sphere of Hn−1

Λ0
algebraically zero

times. Since we are working in the ball, which is simply-connected, and n ≥ 3, we can

use the Whitney trick to smoothly isotope h2(Λ+) off the belt sphere. Since h2(Λ+)

is loose, we can actually Legendrian isotope h2(Λ+) off this belt sphere and view
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h2(Λ+) as a Legendrian in ∂+W
2n. Let Ln ⊂ W 2n ∪Hn−1

Λ0
∪Hn

Λ = W 2n be the regular

Lagrangian obtained by extending h2(Λ+) trivially when Hn−1, Hn
Λ are attached. So

∂+L
n ⊂ ∂+W

2n is Legendrian isotopic to Λ+ and ∂−L
n = h2(Λ+) =⊂ ∂−W

2n is loose.

Furthermore, Ln is formally isotopic to a product Lagrangian. Since ∂+L
n is Legen-

drian isotopic to Λ+, ∂−L
n must be formally isotopic to Λ−. Since ∂−L

n and Λ− are

both loose, they are Legendrian isotopic by the h-principle for loose Legendrians [17].

This finishes the proof of Theorem 1.9 when ∂+L is non-empty.

Finally, we prove the case when ∂+L is empty. We first realize L as a flexible

Lagrangian in Wflex with ∂−L = Λ−. We cannot directly apply the h-principle for

flexible Lagrangians [8] since ∂+L = ∅. Instead, we first Weinstein homotope W 2n
flex

to V 2n
flex ∪ Hn

Λ, for some loose Legendrian sphere Λ, such that L\Dn has a flexible

Lagrangian embedding into V 2n
flex with ∂+(L

n\Dn) = Λ ⊂ ∂+V
2n
flex. Then L

n\Dn∪Hn
Λ ⊂

V 2n
flex ∪ Hn

Λ is a flexible Lagrangian embedding Ln ⊂ W 2n
flex. Then we attach the

Weinstein cobordism W\Wflex from Theorem 2.1 to W 2n
flex and obtain the desired

regular Lagrangian L ⊂ W 2n. �

We conclude by proving Corollary 1.10, an h-principle for Weinstein embeddings of

flexible domains.

Proof of Corollary 1.10. By Theorem 2.1, Xflex is a Weinstein subdomain of X such

that X\Xflex is smoothly trivial. Also, we can realize the almost Weinstein cobordism

X\Wflex by a flexible cobordism Cflex by Eliashberg’s existence h-principle [5]. Then

Wflex∪Cflex is a flexible domain that is almost symplectomorphic to Xflex. So by the

h-principle for flexible domains [5], Wflex ∪ Cflex is Weinstein homotopic to Xflex. In

particular, Wflex is a Weinstein subdomain of Xflex and hence a Weinstein subdomain

of X. Since X\Xflex is smoothly trivial, this new embedding is smoothly isotopic to

the original embedding. �

Remark 2.5. Alternatively, we can prove Corollary 1.10 by first constructing a We-

instein embedding of Wsub into X and then using Theorem 1.9 to find a regular em-

bedding of the cores of the n-handles of Wflex into X\Wsub. This second proof is

more along the lines of Eliashberg and Murphy’s original proof [10] of this result for

Liouville embeddings, which directly uses their Lagrangian caps h-principle.
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