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Abstract

We study in this work the concept of instantaneous time mirrors that were
recently introduced in the physics literature by M. Fink et al in [I]. They offer a
new method for time reversal with a simplified experimental setup compared to
classical techniques. At the mathematical level, these time mirrors are modeled
by singularities in the time variable in the coefficients of a wave equation, and
a prototype of such singularity is a Dirac delta. Our main goal in this work is
to obtain refocusing estimates for the wavefield that quantify the quality of time
reversal. This amounts to analyze the wave equation with Dirac-type singularities
and develop a proper regularity theory as well as derive uniform estimates.

1 Introduction

This work is concerned with the mathematical analysis of Instantaneous Time Mirrors
(ITM) that were introduced recently in [I], and which offer a new avenue for time
reversal. The latter is a technique developed by M. Fink and collaborators in the
nineties, see e.g. [5], based on the idea that if time is reversed in the wave equation
O?u = 9%u for instance, that is ¢ becomes —t, then the equation is not changed. This fact
was successfully exploited in order to focus waves: suppose that (i) a signal is emitted
from a point source at a time ¢ = 0 and propagates according to some time-reversible
equations (e.g. a linear hyperbolic system without absorption such as acoustic, elastic,
or electromagnetic wave equations), then (ii) is recorded and time-reversed at time T
(i.e. what is recorded last is sent back first), and finally (iii) is re-emitted for back-
propagation during a time 7. Then, at time 27T, the signal refocuses at the location
of the point source. The quality of refocusing depends on various factors, such as how
much of the signal was recorded during reversal and how heterogeneous is the underlying
medium of propagation.
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Time reversal has found many important applications in medical imaging, non-
destructive testing, and telecommunications for instance. Its main practical difficulty
is the measurement /reversal process: detectors (transducers) must operate both as
recorders and emitters, and must occupy a sufficiently large domain of space for sharp
focusing. This is often difficult to realize.

The groundbreaking nature of [I] is that time reversal can actually be achieved
without any measurements and without a complex experimental apparatus. The main
idea is that sudden and strong perturbations in the medium of propagation generate
back-propagating waves that refocus at the emission point. The procedure is referred to
in [1I] as creating an instantaneous time mirror, and opens interesting new perspectives
as on the one hand the experimental procedure is simplified, and on the other some
situations where time reversal was not feasible (e.g. quantum systems where phases
are difficult to measure and the state of the system is modified by measurements) are
amenable to reversal provided the background can be controlled. Note that ITM fall
into the context of time refraction and time reflection where energy is in general not
conserved, contrary to spatial refraction/reflection, see [§].

At the mathematical level, ITM are modeled by time-singular coefficients in hyper-
bolic equations. The prototype of such singularity is a delta function at a given time
T, that represents the (strong) perturbation due to the ITM at 7. In [I], this is the
sudden and strong shaking of a water tank that changes abruptly the wave velocity of
surface waves. A signal emitted at time ¢ = 0, perturbed by an I'TM at ¢t = T, will then
refocus at its source at time t = 27.

The objective of the present work is to continue the analysis of I'TM that we began in
[2]. In the latter, we analyzed the refocusing wave in the context of wave equations with
Dirac-type singularities. We proved refocusing estimates (the notion will be introduced
further in the paper) for the wave equation with spatially constant coefficients. This al-
lowed us to use the Fourier transform and pursue a fine analysis of the time-singularities
in Fourier space. We generalize in this work the refocusing estimates to wave equations
with smooth variable coefficients. Naturally, the use of Fourier techniques is not possible
and we need to resort to different methods. A feature of ITM is that the refocusing
wave is the time derivative of the original wave. This will be reflected in the estimates
where there is a loss of a derivative.

The article is organized as follows: in Section [2 we introduce some background on
ITM and state our main results. The latter consists of two theorems: in the first one,
we obtain refocusing estimates for the wave equation with varying coefficients when the
ITM is modeled by an approximation of a Dirac delta; in the second theorem, we show
that the system obtained by removing the approximation is well-posed. The proofs of
these theorems are given in Sections [3] and [l We provide in the Appendix derivations
of wave equations with time-dependent coefficients in the context of electromagnetics,
elasticity (with negligible shear modulus), and fluids.
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2 Main results

We start by introducing some background on ITM.

2.1 Preliminaries

Notations. For d > 1, p € [1,00] and s € R, we denote by LP(R?) and H*(R?) the
usual Lebesgue and Sobolev spaces. BV({2) is the space of functions with bounded
variations in a domain €2, with BVj,. and L? _the local versions of BV and LF. C*(R%)

is the space of infinitely differentiable functions, and C>°(R9) the space of C°°(R?)
functions with compact support. For two real-valued functions f and g, we define

(fa g) - fRd f(l‘)g(x)dx

The wave equation. We consider the following wave equation (we suppose here all
variables have been non-dimensionalized):

O*u, = a(x)V - (b(m)(l + X(:U)na(t))V%), (t,2) on R4 xRY, (1)

where a and b are two functions modeling a smooth, unperturbed background, and
the term x(x)n.(t) models the action of the I'TM. For simplicity of the analysis, we
suppose that is posed over the entire R?, d > 1. Our results can be generalized to
bounded domains with appropriate boundary conditions without difficulty. For 7" > 0
and 0 < ¢ < T given, the function 7. has the form

nme ' when |t—T|<¢e/2
ne(t) = .
0 otherwise.

The ITM acts therefore at time ¢ = T over a window e and with amplitude nye~!. The
function 7. is an approximation of a delta function at ¢ = T with weight 7y, and x
is a regularized version of the characteristic function of the spatial domain where the
ITM acts (we can have x = 1 if the ITM acts on the whole R?). Our analysis can be
straightforwardly generalized to multiple I'TM perturbations of the form

> @),

where néi) has the same form as 7. and is centered at 7.
We will suppose that a and b are in C*(R%) with bounded derivatives and positive
constants a, a, b, b such that

a<a(x)<a, b<b(z)<b. (2)

We assume as well that y € C(R?) with bounded derivatives, and that  is positive
to ensure that the velocity ¢?(t,z) = a(x)b(z)(1 + x(z)n.(t)) remains positive. All the
C* regularity assumptions are not crucial and can be relaxed to a control of just a few
derivatives.



The wave equation equation ([1)) is complemented with the initial conditions
u(t =0,7) = up(x) € H*(R?), ou(t =0,2) = uy(z) € H*(RY). (3)

As will be proved further, such a regularity is needed in order to obtain optimal re-
focusing estimates. We suppose that uy and u; are real-valued, and as a consequence
the solution w is real-valued as well since the coefficients in (1) are real. The case of
complex-valued initial conditions is simply obtained by separating real and imaginary
parts.

Physical derivations of wave equations with time-dependent coefficients of the form
are given in the Appendix in the context of electromagnetics, elasticity, and surface
waves. The solution u. is then the surface height for the latter, or related to the
magnetic, electric, displacement field for the former.

Time reversal and refocusing. We introduce in this paragraph some necessary
background on ITM and some results from [2]. In order to investigate the refocusing
induced by the ITM, it is convenient to recast as a first-order system: let v, € R?
such that

_10v ou
b 1 € ' i e — ! 2 * Ve — Ul 4
b+ xn)] 57+ Vue =0, o' o4 Vv =0 (4)
The system can itself be stated as
ou .ou
A S+ D= =
(@) G5 + DG = Vit )8, 9

where V.(t,z) = b(x)(1 + x(z)n:(t)), and u. = (v, u.), Su.] = —(Vu,,0) (which are
both considered as column vectors), A = Diag(b™!,--- ;b7 a ') (b~! repeated d times),
and (D?)ymn = Om,(a+1)0nj +0n,(d+1)0m,j, With j = 1,--- . d, and m,n =1,--- ,d+1. Here
and below, we use the summation convention over repeated indices. Equation ({5]) is
equipped with the initial condition uy = (v, ug), where vy is such that a'u; +V-vg = 0.
We will need the Green’s function of the unperturbed equation , ie. with V =0,
defined by

aG}(t7 Z, y) 4 Dj aG(tv Z, y)
ot al'j
where [ is the (d + 1) x (d + 1) identity matrix and ¢ the Dirac delta. We extend the

Green’s function G, to negative values of ¢ by solving @ fort < 0, and find G_;,I' = I'Gy,
for I' = Diag(—1,---,—1,1) the time reversal matrix. We will use the notation

A(x) =0,  G(0,z,y) =Id(z —y), (6)

Gi(w)(x) = [ G(t z,y)u(y)dy.

R4

The unperturbed solution to (f]), i.e. with V = 0, is denoted by U = (V,U). The
following decomposition of u., obtained in [2], is key to understanding the refocusing
effects of an I'TM: the wavefield u, can be written as

uc(t) = U(t) + ug(t) + up(t) + Re(1), (7)



where up is a backward (time-reversed) propagating wave, up a forward propagating
wave, and R, a correction term. The precise expression of these terms can be found
in [2], and R, will be our main focus. The decomposition holds for any solution to
the wave equation, and in general R, has no reason to be small at all and can actually
dominate. The latter reads

R.(t) = /0 ‘e (VE(s)A_l(S[ug](s) _ S[U](s)))ds.

In the ITM context, the term R. becomes negligible for small ¢, and this is the
mathematical explanation for the observation of a time-reversed focusing wave. The
time-reversed field ug at the refocusing time ¢ = 27" is then the dominating term and
reads

uR<2T7 .T) = 4 Ks(xay)atU(y)dy
R
with
7o 2
Ka(xay) = _2_5 FG(?S,QL’,y)dS.

[SII0Y

The kernel K. is an approximation of —§(z — y)I'/2 when ¢ is sufficiently small since
G(0,z,y) = 6(x — y)I. Some blurring in the refocusing is introduced when ¢ is not
zero, and refocusing is perfect is the limit € — 0. An important observation is that one
reconstructs the time derivative of the initial condition 9, U(¢ = 0) and not the initial
condition U(¢t = 0). The I'TM hence acts as a time differentiator, and this will be seen
in the estimates.

The fact that R. is negligible when ¢ is small is proved in [2] when the coefficients
a, b and x are all constant. This allows for the use of the Fourier transform and is
reduced in Fourier space to

OF - (t, &) + me(t)|€* e (¢, €).

This is a one-dimensional Schrédinger equation in the variable ¢ with the singular po-
tential —n.(¢)[£]?. One can then precisely estimate . in terms of € and ¢ and obtain
sufficient regularity to treat R..

Our goal in this work is to generalize this result to the case of variable a, b and Y.
The fact that R.(t) is negligible when ¢ > T 4 ¢/2 (the time right after the end of the
perturbation) follows from the following heuristical arguments: the non-zero component
of S[U] — S[u.] in the definition of R, reads, for any s € [T'— §,T + 5,

V(us(s) = U(s)) = V(uc(s) —u:(s —¢)) + V(uc(s — ) — U(s)).

As s —e < T — 5, we are therefore before the beginning of the perturbation, and the
second term in the r.h.s. is actually equal to VU (s —¢) — VU. Since VU is smooth (i.e.
it has at least one time derivative), this second term is negligible provided ¢ is small
compared to a parameter estimating VU in some norm. The same applies to the first

term provided Vu. has some regularity in time. The essential ingredient in estimating



R. is then a uniform bound for 9, Vu. in (L (R, , L?(R%)))4, which will eventually pro-
vide us with an optimal control in terms of ¢, that is R. = O(g) in some appropriate
sense. This bound is of course more difficult to obtain than in the constant coefficients
case since the Fourier transform is not available. We refer to the relation R. = O(¢)
as an optimal refocusing estimate. It is possible to obtain non optimal estimates of the

form R. = O(g") for v < 1 assuming less regularity on the data.

We state now our main results.

2.2 Results

Using standard methods and assumptions (2)-(3), see e.g. [4], Chapter 7, it is not
difficult to establish that ([1) admits a unique solution u, such that u. € L (R, , H3(R%))

loc

and 0?u. € L2 (R,, H'(RY)). Our first result is the theorem below, that provides us
with a uniform estimate on w.. This estimate is used in the second statement of the

theorem in order to obtain the optimal refocusing estimate R. = O(e).

Theorem 2.1 Let u. be the solution to with the initial conditions given in .
Then, we have the estimate, for all T > 0,

e Loo (0,7, 12) + || Optic|| Lo 0.7,11) < Cllug|l gz + Cllur| a2, (8)

where C' = C(a,b, x,no, T) is independent of €. Moreover, write R. = (W, w.), where
W. is a vector with d components. We have then the estimate, for all T > 0,

IWellpeo,rm-1) + ||wel| oo o,m,22) < Ct, (9)
where C' = C(a, b, x, N, T, Uo, u1) is independent of €.

Note the loss of a spatial derivative in the uniform estimates (8)): one needs u.(t =
0) € H? and Qyu.(t = 0) € H? to obtain a uniform control of u.(t) and dyu.(t) in H?
and H*, respectively. This is induced by the time singularity of the coefficients created
by the I'TM. This loss is optimal in the sense it is also there in the case of constant
coefficients addressed in [2] where the Fourier transform allows for exact calculations.
Owing to the heuristics that a time derivative is equivalent to a spatial derivative for
the free the wave equation, this spatial loss can be related to the fact that the ITM acts
as a time differentiator, as mentioned earlier.

The proof of is based on three estimates obtained in six steps, and our main
goal is to get the bound on 9;Vu. in (L (R, L*(R9)))4. In the first step, we derive
a classical energy estimate for Vu, in L?; now, this estimate is only uniform in ¢ at
the location of the perturbation, modeled by x. In the second step, we extend the
estimate to the entire R? at the price of losing one derivative. At the end of these
first two steps, we have obtained uniform estimates for u. in L (R, , L?(RY)) and for
O in L (Ry, H-Y(R?)). We then differentiate the equation twice, and use the same
procedure as in steps 1 and 2 to arrive at the desired result for 9;Vu,.

Estimate @ is a direct consequence of (8) and the equations satisfied by the different
components of R,.



Our second result concerns the limit ¢ — 0, and provides us with an existence and
uniqueness theorem for the limiting wave equation with a Dirac delta at time ¢t = T'.
The I'TM is seen via a jump condition on the time derivative of the solution at ¢t =T

Theorem 2.2 Consider the wave equation, fort >0, andt # T,
Ou=a(z)V - (b(z)Vu), (10)
equipped with the initial conditions and the following jump condition att =T':
Bu(T™, z) = Bu(T~, z) + noa(z)V - <b(m)x(x)Vu(T, x)). (11)

Then, the above system admits a unique solution u in CO(R,, H3/2(RY))NLS (R, H2(RY))

loc
such that dyu € LE (R, HY(R?)) N BViee (R, H Y2(RY)). Equation is verified al-
most everywhere in (0,T) x RY and in (T, +o00) x R, and the jump condition is
satisfied in H~Y/?(RY).

Moreover, u. converges to u as € — 0 in L (R, H*(R?)) weak-*.

We expect our results to straightforwardly generalize to the case where b(x) is a
positive define matrix. More interesting is the full elasticity case which supports both
shear and compressional waves. ITMs in such a context will be investigated in a future

work.
The rest of the paper is dedicated to the proofs of Theorems [2.1] and [2.2]

3 Proof of Theorem 2.1

We will consistenly use that a,b and x are smooth functions, and that a, b are positive
and bounded below. We will not recall these facts for each estimate, and for simplicity
will not make explicit the dependency of the various constants on a,b,y. The esti-
mates will be derived for regular initial conditions uy and u; in C°(R?) to justify the
calculations, in particular the integration by parts over R? using finite speed of prop-
agation of the support of the solution. Hence, we will work with a solution u. that is
infinitely differentiable with respect to the spatial variables and with bounded spatial
support for finite times, and that has two bounded derivatives with respect to t. The
case ug € H3(R?) and u; € H?(R?) follows by a simple limiting argument.

3.1 First estimate

We derive in this section uniform bounds for u. and du. in L*(R?) and H~(R?), respec-
tively. The first step is to obtain a uniform control at the location of the perturbation.

Step 1: We begin with a classical energy estimate. Let

E.(t) = %/Rd (|0pu-(t, 2)|* + *(x)|Vue(t, 2)|?) dz,
and .
F.(t) = 5 /Rd A (x)x(2)|Vue(t, z)[*dz,

7



where we have set ¢?(z) = a(x)b(x) > 0. The term E. is the total energy over the
entire R?, while F. is the “kinetic” energy at the support of the perturbation. The
calculations in the proof are justified since u. has sufficient regularity. In particular, the
wave equation is satisfied everywhere on R, x R? and we find, by multiplying
by O,u. and integrating in x, for all ¢ > 0,

d%t(t) +na(t)d%t(t) _ /R d b(2)(1 + x(2)n. (1)) Va(z) - Vue(t, ) dyue(t, v)dz

= A.(t).

We have, using the Cauchy-Schwarz inequality, for all £ > 0,
A ()] < C(L+ (1)) Ex(2).
Let now t= =T + %s, and 7.0 = 1o/ec. Then, since 1.(t) = 1. for t € (t7,t1),

g77e

dE.(t) dF.(t)
a Ty

< C(141n.0)E-(1), te(t;,th),

g7e

which yields, for all ¢ € (¢tZ,¢1),

E-(t) + neoF(t) < (E(t7) + nepFe(t0)) e Etm), (12)

As a consequence, for all t € (t,t}),

F(t) < (emg " Eo(t2) + Fo(t2))e“Etm) = (M )2, (13)

This last estimate is uniform in e since E.(t) and F.(t) are continuous in time and
independent of € before the perturbation. Note that only provides us with a uniform
control at the location of the perturbation, and that estimate does not yield a
uniform bound over the entire R?. For this, we need to exploit the latter estimate on
F. and go back to the wave equation, at the price of losing one derivative.

Step 2. We exploit here estimate on F. to control u. and J;u. over R, We
rewrite as

O*u. = —aLou. + au, + an.Lyu,, (t,2) € Ry x RY,

where

Lou ==V - (bVu) + u, Liu= V- (bxVu).

Recalling that b € C*®(R?) with 0 < b < b(x) < b and bounded derivatives, the
operator Ly is self-adjoint when equipped with the domain H?(RY). For s € R, the
inverse operator Ly ' is an isomorphism from H*72(RY) to H*(R?), and its square root
an isomorphism from H* !(R?) to H*(R?), with in particular

e < 12

Cll/f] we < C7 f]

We will use several times the following lemma.

Hs—1.



Lemma 3.1 Let 7 > 0, f € L=(0,7,L*(R%)), and u € L>(0,7, H*(R%)) with 0?u €
L>(0, 7, L*(RY)) such that

O*u = —aLou + au + f, (t,x) a.e. (14)

For all t € (0,7), we have then the estimate, for some C' = C(a,b,T) > 0 independent
of u and f:

lu() 122 + 125" (@™ D)) 2

t
< OJu(0)z2 + ClILg (a9 (0)) |2 + C/ la™ f(s)[lzr-1ds.
0
Proof. Consider first the weighted L? norm,

Jull = [ @) o @)

which is equivalent to the usual L? norm since a > 0 is bounded below and above. The
calculations below are justified since u has the required regularity. We have

S lu®le = (e du,u)
= —(a 0w, Lyta ' 0%u) + (a 'O, Ly ) + (a0, Ly ta™t f),

where we used to express u. With

G(r) = 5 ()2 + 1L (@™ () 32

we find

d‘C;i—t) = B(t) := <L51/2(a—18tU)7L51/2(a—1f)> n (Lgl/Qa_latU,Lal/2u> '

We have, using the Cauchy-Schwarz inequality,

|B(t)] < HLEI/Q(a”@u)HLQ(\|L61/2a*1fHL2+CHUHL2)
< CG(t)+ CGY2)||la L |l -1,

where we exploited the fact that Lg'"/? is an isomorphism from H~!(R?) to L2(R).
Then,

dcjlit) < CG(t)+ CGVA()la f(0) ||, t. a.e.

which is equivalent to

% (e"'G(1)) < Ce "G 2 @) || F(t) || -1, t. a.e.

This yields the estimate, for t € (0,7),
t
G'r(t) < CGY(0) +C [ fla™(5) s,
0

9



which concludes the proof after direct algebra. O

Using the previous lemma with u(t) = u.(tZ +1), f(t) = an-(t- +t)Liu(t; +1), we
find the estimate, for ¢t € (t2,t1),

g7

[[ue (D) 22 + [|Orue (8) ]| 11—
t

< Clluc(t) ez + Cllowue () la— +C [ ne(s)1oxVue(s)]|2ds.

te
The last term is controlled by

t

| o ms) s

€

which, together with (13)), gives, for all ¢ € (7, t1),

lue @) 22 + 10w () -1 < Clluc ()l 22 + CllOruc(t) a1 + CMoe =: Mo (15)

This is our first uniform estimate over R¢. Note that in order to control u. and
Owu. in L*(R?) and H'(RY), respectively, we need one more derivative for each via the
constant M. which depends on the norms of u. and dyu. in H'(R?) and L?(R?). We
iterate now twice in order to control higher spatial derivatives of u. and Ou.. The
method is similar as above.

3.2 Second estimate

Step 1. We differentiate with respect to z;, j = 1,--- ,d, and introduce ) =
Oz;ue. We use the shorthand f; := d,, f to denote the partial derivative of a function f
with respect to x;. With the previous definitions of Ly and L, at hand, we have

8fv(j) _ —(I/Lo’U(j) + av? + C”?sLﬂ)(j) + Lou. + Lsu., (16)
where

Lou. = (¢ + c*n.x);Au.

Lsu. = aV(b+bn.x); - Vu. + a;V(b+ bn:x) - Vu,.
With ]

() = § / (1009 (1, 2)|? + ()| Vo) (¢, 2)]?) da,

R4
and 1
O =5 [ @n@ved (s o)Pds,
2 Rd

we obtain from the standard energy estimate, for ¢t > 0,

dEY (t dFY(t .

dt( ) + e (t) dt( ) = (6tv(])aL2u6 + Lsue). (17)

10



We estimate now the right-hand side. Classical interpolation yields first
[ Loue + Lue|[> < C(1 4 ne(t)) ([ uel| 2 + [ Auel| =)

Moreover, there exists a constant C' > 0 independent of u. such that

| Au(t)]32 < C’Z/ )| Vo (t, z)|2dz.
Introducing
d d
Ero(t) =Y E9(t),  F(t):=)_ F9,
j=1 j=1
we then find, together with in order to control the L? norm of u,, for ¢ € (7
1 Lauc(t) + Luc(t)l| 2 < C(1 +no(t))(Myc + (Br())'/?).
Going back to (L7)), we find for ¢ € (t7,¢1), after using the Young inequality,

dE (1) dF (1)
3’ - t )
i O
This provides us with the estimate, for t € (¢

tr),

g7

< CL+n:(t)Ere(t) + C(1+n(t)) M.

i),

E1,5<t) + ne,OFLs(t) S C(El,e< 5_) + n&,OFl,E(tg_) + M12,5)7
leading to
Fl,s( ) < 0(5770 1El 6( ) + k1 s( ) +eny 1]\4125) = (M2,s>2' (18)

Again, the uniform estimate only holds at this point at the location of the perturbation,
and it is extended below to R? by using Lemma [3.1]

Step 2. We have first the following estimate, that is a consequence of ,
L0+ < Cllox Vo ||z < CM,..
The next two estimates are straightforward:
ILsucllgr < COA+n)ucllze < COL+n.) My
[Loucllr— < C(1+4n)[[ Vel 2.

Using now Lemma for , and summing from j = 1 to d, we find for ¢t € (t_,t]):
IVue(t)]| 2 + 10:Vue(t) g < Cl[Vue (i)l 2 + Cll0Vue () |-

t
e / (14 () My + Mo, + [Vaie(s)] 12)ds
te

Gronwall’s Lemma then yields the estimate, for ¢ € (¢7,t7):

IVue(®)llzz + 10 VueO)lla— < C(IVue(t)llzz + [0 Vue(t2 )1 + Mie + M)
= M3’5. (19)
We have therefore just obtained a uniform bound in H*(R?) and L?*(R?) for u. and
Oyu., respectively. We iterate one last time to control dyu. in H'(R?), which is what is

needed to prove refocusing. We do not detail some of the calculations since the method
is similar to what is done is the previous steps.

11



3.3 Third estimate
Step 1. We differentiate (16) with respect to z;, i« = 1,--- ,d, and denote v(¥) :=
02, ue. We have
P = —aLov™ +av™ +an. L1094 Lov D + Lyv® + LoV + Lo 4 Lyu+ Lyu., (20)
where
Lyu = (4 nex)iAu
Liu = aV(b+bn.x); - Vu+a;V(b+bn.x) - Vu
Lyu = (& +cnex)iyAu
Lsu = a;V(b+bn.x); - Vu+aV(b+bnx)i; - Vu+ a;;V(b+ bnex) - Vu.

With
B 1 L. ..
EW)(¢) = 5/ (|atv(w)(t7x)|2+c2(:v)|vv(l])(t,x)|2)dw
Rd
FO() = %/ A ) x(z)| Vo (¢, z)|2dz,
R4

we obtain from the energy estimate

o= A\ (t D S/ (i7) ; 21
dt +77(> dt (8tv 75)7 ( )
where ' ' . ‘
Se = Lov® 4 Lyo® + Lho' + LiwY) + Lyu, + Lyu..

We now estimate R.. Let
d
1D ulfeim 32 [ 1080
ijk=1 7R
Direct calculations yield
1Scl 22 < C(1+ ne)([luellan + [ DPue | 2).- (22)

Let moreover

d d
Bye:=Y ED(t),  F.i=Y F%.

i,j=1 tj=1
For ¢t € (t-,t), we then find, combining and , after using the Young inequality,
dEs (t) dF, .(t)

yr ne(t) === < CL4ne(t) e+ C(L4no(t)) (M, + My,).

This provides us with the estimate, for ¢ € (7, t1),
E2,€(t) + 77870F2,6(t) < C(EZE (ts_) + 776,0F2,a(ta_) + MIQ,e + M32,5)7
leading to

Foo(t) < Cemg ' Bae(t2) + Fae(t2) +emg 'M7 . +eng ' M3.)) =: (My.)?. (23)
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Step 2. We extend finally to R, and simply need for this to estimate S. in
H~1(R%). We find

[Sellzr—1+ < C(1+ ne)([Juellze + |Auel| ). (24)
Also, - -

||L11)(Z]) ||H*1 S C“Z)XV’U(M) HLZ S CM475. (25)
Combining , with Lemma , and summing over i, j, we obtain for ¢ € (¢tZ,¢1):

[Au(®)llzz + [0 Auc ()| g+ < Cl|Auc ()] 2 + CllAu(t )| a1

t
€ [ (46D O+ My o+ 80 (5) 12)ds.
t

€

Gronwall’s Lemma then yields the estimate, t € (¢t_,t2):

g7

[Au ()] 22 + (|01 Aue () ]|
< O(1Auc ()20 Auc () -1 + My + Ma). (26)

3.4 Conclusion

We have everything needed now to conclude. Collecting ——, we find, for
te(tz,t),

[ue (0|2 + [[0ue ()| < Clluc(t)][ s + CllOruc(t2)] a2 (27)

For t <t_, we have 7n.(t) = 0 and perturbation has not occured yet. Since, on the one
hand, u. and d,u. are continuous in time along with all of their spatial derivatives, and
on the other, propagates the regularity of the initial conditions, we have

Jue(t)] s + CllOwue (8[| 2 < Clluol s + Cllun|| 2. (28)
In the same way, we have after the perturbation, for any ¢ € (1, 7),
Jue (8|12 + CllOpuc ()] < Crljue(t5) [z + Crllua (E5) || a1
Together with —, this gives, for any 7 > 0,
HUaHLOO(o,T,H?) + CnatUEHLOO(O,T,Hl) < Crlluol| s + Crl|ua || 2

This proves estimate for smooth wg, uy. For ug, u; with the regularity given in (3)),
it suffices to proceed by density and a limiting argument. This concludes the proof of
. We now turn to the remainder term R.,.

Estimates on R.. Denote by w, the last component of the vector R.. From the
definition of R., we verify that it satisfies

Ow. = a(z)V - (b(z)Vw,.) + a()V - (b(z)n.(t)V (u. — U)), (t,x) on R, x R%

equipped with vanishing initial conditions. We recall that u. and U denote the perturbed
and unperturbed solutions, respectively. Given that u. and U belong to L (R, H3(R?)),

loc
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it follows that the above equation admit a unique solution in L (R, H3(R%)) with sec-
ond order time derivatives in Lp},

> (R, HY(RY)). Applying Lemma , we obtain, for
t>T+¢/2,

lwe()z2 + 15 (@™ Buawe (£) |22 < C/O Ne(s)IV (ue = U)(s)[lz2ds. (29)

This last term is equal to
€/2
— / IV (e — U)(T + )| ads,
—/2
which we now estimate. Since u.(t) = U(t) for t < T —¢/2, we have, for s € [—¢/2,¢/2],
V(ue—U)T +5s)=Vu(T+5s)—Vu(T+s—¢e)+VU(T +s—¢c)—VU(T + s).

Now, we know that 0, VU € L (R, , L*(R?)), and that 9,Vu. is uniformly bounded in

loc

L>(0, 7, L2(RY)) for all 7 > 0 according to estimate . This yields
IV(ue = U)T + 5|2 < Ce, (30)
and as a consequence, together with
lw-()]122 + [[1Lg (a7 D (1) |12 < C, (31)

for all t > 0. This gives an estimate for we.
We turn now to the remaining d components of R., denoted W.. We verify that
W, solves

W,
aat + Vuw, = Xnev(us - U)7

with W_(t = 0,2) = 0. Combining and (31), we find, for all ¢ > 0,

b—l

IW.(t)[4r < C / (IVee()lla-1 +n() V(U = w)(s)l|n 1 )ds < Cie.

This concludes the proof of Theorem [2.1]

4 Proof of Theorem 2.2

We gather first standard compactness results. Estimate leads to the existence of
u € L (Ry, H*(RY) with ,u € Li (R4, HY(R?)), and of a subsequence {ue,}jen

converging to u in LiS, (R, H?*(RY)) weak-* such that dyu., — du in L2 (Ry, H'(R?))

loc loc

weak-* as j — 0o. A consequence of such regularity for u is that u € C°(R,, H3/%(R%)).
We pass now to the limit in (I)). Let ¢ € C°(Ry x R%). Then

<ailatu€j7at90> = _<u€j7 V- [b<1 + anj)v¢]>7 (32)

(u,v) = /R + /R ult,@)o(t, @)dedr.
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Since 7., (t) — 1n00(t — T) as j — oo in the sense of measures, and estimate (8)) implies
that u., — u strongly in C°([0, 7], L*(2)) for any 7 > 0 and any open bounded set €,
we deduce from and the various convergences of {u,, }jen stated above that

(a_lf)tu, 8t90> = _<u7 V- [bVQDD - UO(U(T7 ')7 V- [bXV<P(T7 )D

Since a > 0 is smooth and bounded below and above, this shows in particular that
(0w, 8i0)| < Cllull oo, merz@apll@llcomy, mizmay, Yo € C2(Ry x RY),

and as a consequence Oy € BVioo (R4, HY/?(R%)). Above, 7 is such that the support
in time of ¢ is included in [0, 7].

The next step is to identify the jump condition at ¢ = 7. For k > 1, consider
or(t, ) = xr(t)(x), with ¢ € HY(R?) and x; the continuous function equal to one
in [T — 1/k, T + 1/k], to zero in [0,T — 2/k] U [T + 2/k,R,), and that is linear in
T —2/k,T—1/k|U[T+1/k, T +2/k]. Equation holds for ¢ = ¢y. The first term
in the r.h.s of with ¢ = ¢ goes to zero as £ — oo by dominated convergence since
Xk (t) — 0 pointwise for t # T'. The second term in the r.h.s is simply

no(Vu(T, ), bxV).

The term in the 1.h.s of reads

T—1/k T+2/k
k / Oru(s, ), D) srrv2 rsads — K / (Oru(s, ), D) 1172 p1/2dls,

T—2/k T+1/k

Since dyu € BVige(Ry, H Y/2(R%)), we can take the limit k — oo above and obtain the
expression

(a‘latu(T_, '), ¢>H*1/2,H1/2 - (a‘lﬁtu(T+, -), ¢>H*1/2,H1/2-

Collecting results, we find
(@' ou(T™, ), V)12 12 — (e Opu(T, VsV 12 g2 = no(Vu(T, ), bx Vi),
which is
(T, z) = Ou(T ™, x) + noa(z)V - [b(x)x(2)Vu(T, x)] in HY2(RY),

and we have obtained the jump condition.

We now show that the wave equation is satisfied almost everywhere. Taking a
test function ¢ in with time support in (0,7), we find from (33)), since du €
Lig.(Ry, H'(R?)),

(a0, Oyp) = (Vu, bV p).

Since u € LS (R, H?(R?)), this shows that 02u € L*°(0,T, H*(R?)). Proceeding in the

loc
(T, 400, H?(RY)). As a consequence, the equation

same way, we find 0*u € L®

loc

Ofu = aV - (bVu)
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is satisfied almost everywhere in (0,7') x R? and in (T,R,) x R%.

We turn finally to the uniqueness of solutions, which is straightforward: by stan-
dard uniqueness results for the wave equation, the solution = is unique up to any
time t < 7. In particular, d;u and Vu are uniquely defined up to ¢t < T. Since
O € BVige(Ry, H7Y/2(R%)), it follows that du(t,z) admits a limit in H~"/?(R%) as
t — T, and since Vu is continuous in time with values in H'/2(R?) as obtained in the
beginning of the proof, this shows that the term

Owu(T™,x) + noa(x)V - [b(x)x(z)Vu(T, x)]

is uniquely defined in H~'/?(R%). Standard uniqueness for the wave equation for times
t > T with initial conditions u(T", x) = u(T,x) and Jyu(T™", x) equal to the expression
above yield finally a unique solution for all times t € R,..

As a conclusion, the entire sequence {u.} converges to u since ([10)-(11) admits a
unique solution. This ends the proof.

5 Appendix

We describe here how the wave equation with time-dependent coefficients arises in
applications.

Electromagnetics. In absence of free charges, the three dimensional Maxwell equa-
tions read

0B =-V xE, V-B=0
0D =V x H, V-D =0,
augmented with the constitutive relations
D(t,x) = e(t,x)E(t, x), B(t,x) = p(t,x)H(t, x),

where x = (z,y, z). The coefficients €(t, x) and u(t, z), supposed to be scalars here, are
the permittivity and permeability of the underlying isotropic material of propagation,
respectively. It is assumed that the dispersive effects of the material are neglected, and
therefore that the relationship between D and E, as well as between B and H is local
in time. It is explained in [6] how time-dependent €(¢,z) and u(t,x) can be engineered
in applications.

Consider first the following transverse magnetic case where

0 B.(t,z,y)
E(t,z,y) = 0 ) B(t,z,y) = | By(t,z,y)
E.(t,z,y) 0
Maxwell’s equations then reduce to
0B, = —0,F,
0B, =0, FE,
O (eE.) = 0,(u'By) — 0, (' By).
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According to the divergence free condition on B, there exists a « such that B, = dyu,
and B, = —0yu. Setting E, = d,u, we obtain the wave equation

O (e(t,2)0pu) =V - (u~'(t, 2)Vu).

In the context of time reversal and ITM, it is shown in [2] that there is no refocusing

when both coefficients €(t, z) and u(t,x) are time singular. This is because the wave

equation does not admit smooth solutions with respect to the time variable in this

case, and the quality of refocusing can be quantified in terms of J,u as we have seen in

Theorem . Supposing therefore that €(t, z) is independent of time, we recover .
In the transverse electric case, we have,

0 D,(t,z,y)

B(t,z,y) = 0 D(t,z,y) = | Dy(t,z,y)
B.(t,x,y) 0
and we obtain the wave equation
O (pu(t, 2)0u) = V - (e7'(t, 2)Vu),
where B, = dyu, D, = —0,u, and D, = 0,u. We recover now when the permeability

it is independent of time.

Elasticity. In the case of an isotropic material with negligible shear modulus (i.e. a
non-rigid material), the Navier-Cauchy equations reduce to

O (p(t,z)0u) = V(A(t, )V - u),

where u € R? is the displacement field, p is the mass density, and A the first Lamé coef-
ficient. Again, one can find in [6] examples of mechanical systems with time-dependent
p and \.

Set w = pdyu. If w is irrotational at ¢ = 0, then w remains irrotational because of
the above equation, and we can write w(t,x) = Vo(t,x). With p = —AV - u, we obtain
the system

atW = Vp
(A 'p) ==V (p~'w).
Defining p = —0;¢, we find the wave equation
075 ()\_1675([5) = V(p_1qu>

We then recover when A~! does not depend on time.
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Fluids. In the seminal work [I], waves at the surface of a water tank are modeled by
the following wave equation, neglecting surface tension and therefore dispersive effects,

Otu = (14 ad(t — T))Au, in R%,

Above, u is the surface height, ¢y is the (constant) background velocity, and ad(t — T)
represents the action of the ITM at t = T'. This wave equation can be derived from the
Euler system, see e.g. [3].

Note that the wave equation with time singular coefficients seems more difficult
to justify physically in the context of sound waves. Indeed, while it is possible to derive
some type of wave equations with time-dependent coefficients for sound waves, see [7],
these models are justified for slowly varying (in time) coefficients, which is certainly not
the case for an ITM.
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