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How reliable are individual differences in eye movements in reading?☆ 
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A B S T R A C T   

This study assessed the reliability of individual differences among fluent adult readers in the effects of four 
variables - word frequency, predictability, visual contrast, and font difficulty – on eye fixation duration measures, 
word skipping probability, and regression probability. Split-half reliability was computed in a reanalysis of data 
from two large, previously published experiments (Staub, 2020) by correlating simple effects in two halves of 
each experiment (e.g., Hedge, Powell, & Sumner, 2018) and by estimating, in the context of mixed-effects 
models, a correlation parameter between by-subject slopes for each half (Rouder & Haaf, 2019). The reli
ability of the effects was generally low, though the second of these methods revealed a few notable exceptions. 
First, the effects of visual contrast were quite reliable, as expected based on presumed individual differences in 
contrast sensitivity. Second, the frequency effect on gaze duration was also reliable, but only when raw (as 
opposed to log) gaze duration was used as the dependent measure. The effect of predictability demonstrated poor 
reliability for all dependent measures. Model comparison confirmed that model fit was improved by inclusion of 
by-subject slopes for those effects that showed substantial reliability. These results have implications for the 
feasibility of studies on individual differences in eye movements in reading, as only experimental effects that 
demonstrate substantial reliability are good candidates to be explored in individual difference studies.   

Introduction 

We have learned a great deal about the factors that influence how a 
reader’s eyes progress. The eyes spend longer on an infrequent word 
than on a frequent one (e.g., Rayner & Duffy, 1986; Staub, White, 
Drieghe, Hollway, & Rayner, 2010), and longer on a word that is not 
predictable based on its preceding context than on one that is predict
able (e.g., Ehrlich & Rayner, 1981; Staub, 2011). These two factors also 
influence the probability that a word is skipped altogether, rather than 
directly fixated. Fixations on a word are longer when text is faint (e.g., 
Reingold & Rayner, 2006; White & Staub, 2012), and when readers are 
denied parafoveal preview, i.e., when they are not able to see the word 
while fixating the previous word (e.g., Schotter, Angele, & Rayner, 
2012). In addition, the forward progress of the eyes is rapidly disrupted 
when a word is not easily integrated into a representation of the sen
tence’s syntactic structure (e.g., Frazier & Rayner, 1982) or meaning (e. 
g., Rayner, Warren, Juhasz, & Liversedge, 2004). All of these findings 
have informed theories of the perceptual, cognitive, and linguistic 

processes involved in reading. 
These findings have been established by means of the within-subject 

experimental design that dominates cognitive psychology, in which each 
subject is exposed to a number of trials at each level of a critical 
experimental variable. For example, each subject will read a number of 
sentences containing a target word that is high in frequency, as assessed 
by corpus counts, and an equal number containing a target word that is 
low in frequency, where the target words are matched on other variables 
such as word length and predictability. The frequency effect on the mean 
of fixation duration measures, or on the probability that a word is 
skipped, is established by means of a statistical model in which experi
mental subjects are treated as levels of a random factor, allowing for 
statistical generalization to a population of readers. 

Unsurprisingly, the group-level effect of a variable such as word 
frequency obscures variation in the effects shown by individual subjects. 
If, for example, the mean frequency effect on gaze duration (the sum of a 
reader’s eye fixations on a word, on first pass reading) is 30 ms in a 
particular experiment, computed from a 250 ms mean for high 
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frequency words and a 280 ms mean for low frequency words, for some 
subjects the frequency effect will be very large, perhaps greater than 60 
ms, and for some subjects the frequency effect will be rather small, or 
even nonexistent. Indeed, it is typical for a few subjects to show a 
reversed effect, with a longer average reading time on high frequency 
words. 

While interest in the sources of this individual variability is not new 
(e.g., Ashby, Rayner, & Clifton, 2005; Calvo, 2001; Chace, Rayner, & 
Well, 2005; Kennison & Clifton, 1995), the number of studies focusing 
on this issue has increased dramatically in recent years. These studies 
have examined how various effects on eye movements in reading may be 
modulated by readers’ working memory capacity (e.g., Kuperman & Van 
Dyke, 2011; Traxler, 2007; Traxler et al., 2012), their reading skill (e.g., 
Kuperman & Van Dyke, 2011; Slattery & Yates, 2018; Taylor & Perfetti, 
2016; Veldre & Andrews, 2014, 2015a, 2015b, 2016), and their lan
guage experience (e.g., Falkauskas & Kuperman, 2015; Gordon, Moore, 
Choi, Hoedemaker, & Lowder, 2019; Schmidtke, Van Dyke, & Kuper
man, 2018; Whitford & Titone, 2012). Early studies often used a two- 
group design, sometimes based on a median split of an individual dif
ference variable (e.g., Ashby et al., 2005), but many recent studies have 
used mixed-effects regression models to explore the relationship be
tween individual difference variables and experimental effects of in
terest, across the full range of the individual difference variables. 

This research requires a critical assumption that is rarely made 
explicit. It is only possible to meaningfully assess the relationship be
tween an individual difference variable, such as working memory or 
language experience, and the size of an experimental effect, such as the 
effect of word frequency, if the observed variability in the size of the 
effect reflects stable differences between individuals. In other words, 
differences between individuals in the size of the effect must be reliable, 
in the psychometric sense. The effect should demonstrate reasonably 
high split-half reliability, which is the correlation between the effects 
shown by individual subjects in two halves (divided by order or by, e.g., 
even vs. odd trials) of a testing session, or test–retest reliability, which is 
the correlation between individuals’ effects in separate testing sessions. 
Poor reliability indicates that much of the observed variability in the size 
of the effect is not due to real differences between individuals, but to 
statistical noise. Researchers have offered guidelines, though not always 
consistent ones, regarding the level of reliability that is necessary in 
order for a measure to be useful in individual differences research. 
Enkavi et al. (2019) cite a ‘common criterion’ of .75 test-retest reli
ability, while Hedge, Powell, and Sumner (2018) remark that .6 is often 
considered ‘good’. The quantitative relationship between reliability and 
the magnitude of observable correlations between measures has long 
been recognized (Nunnally, 1970; Spearman, 1904), as have the con
sequences of poor reliability for the statistical power of individual dif
ference studies (e.g., Hedge et al., 2018). 

The goal of the present study is to assess the reliability of individual 
differences in some of the most robust linguistic effects on eye move
ments in reading, the effects of word frequency and predictability, as 
well as the reliability of individual differences in the effects of visual 
contrast (e.g., White & Staub, 2012) and font difficulty (Rayner, Reichle, 
Stroud, Williams, & Pollatsek, 2006). We reanalyze data from two large- 
scale eye movement experiments in which these variables were facto
rially manipulated (Staub, 2020). 

Several recent empirical and methodological developments inform 
the present work. In a recent but already widely cited study, Hedge et al. 
(2018) suggested that many extremely robust – i.e., replicable – cogni
tive effects, such as the Stroop effect, demonstrate disappointingly poor 
reliability. Hedge et al. had participants complete a very large number of 
trials in seven tasks (e.g., 240 in each of the congruent, incongruent, and 
neutral conditions of the Stroop task), in each of two sessions. The 
Intraclass Correlation Coefficient between the sessions (a measure of 
reliability on the same scale as the Pearson correlation, which we report 
in the present article) ranged widely across the critical effects. But even 
with such a large number of trials per subject these reliabilities rarely if 

ever reached the desirable range, as the maximum reliability of any RT 
effect was .70, for the Posner cueing task (Posner, 1980), and for many 
of the tasks the reliability of RT effects was very low; in the Navon 
global-local task (Navon, 1977), for example, the reliability of the RT 
effects was near 0. 

Hedge et al. (2018) interpreted these findings as reflecting a ‘reli
ability paradox’: Effects that are large and highly replicable, at the group 
level, will often show poor test-restest or split-half reliability. This is for 
a simple mathematical reason. Part of what makes an effect replicable at 
the group level, and makes it a ‘large’ effect based on standardized 
measures of effect size such as Cohen’s d, is that subjects do not show 
much variation in their response to the experimental manipulation. As a 
result: 

[I]t should not be assumed that robust experimental paradigms will 
translate well to correlational studies. In fact, they are likely to be 
sub-optimal for correlational studies for the same reasons that they 
produce robust experimental effects. Our findings, as well as obser
vations from elsewhere in the literature, indicate that this challenge 
currently exists across most domains of cognitive psychology and 
neuroscience (p. 1177; original italics). 

But as Hedge et al. also point out, it is not impossible for an effect that 
is highly replicable, at the group level, to show reliable between-subject 
variation; it is an empirical question, for any effect of interest, whether 
this situation does obtain. 

Recently, however, Rouder and Haaf (2019; see also Kliegl, Wei, 
Dambacher, Yan, & Zhou, 2011; Rouder, Kumar, & Haaf, 2019) have 
suggested that this picture is unnecessarily pessimistic. Rouder and Haaf 
critique the method used to assess reliability by Hedge et al. (2018) and 
many others, suggesting that this method systematically underestimates 
the true reliability of experimental effects. They argue that an alterna
tive statistical approach is both theoretically justified and likely to result 
in higher reliability estimates. 

Hedge et al. (2018) deployed a standard method in which the data 
for each subject are aggregated into a single value for each session. For 
example, each subject’s Stroop effect is measured as a single difference 
score: mean incongruent RT – mean congruent RT. The correlation be
tween subjects’ difference scores in the two sessions is the measure of 
reliability. It is important to note that with this method, the observed 
reliability of an experimental effect is strongly related to the number of 
trials that each subject completed in each condition, with reliability 
increasing as the number of trials increases. This is because of the 
relationship between sample size and the variability of sample means. As 
sample size (i.e. number of trials per condition) increases, the subject’s 
mean RT in each of the two critical conditions will vary less around the 
subject’s ‘true’ mean, and the difference score that measures the Stroop 
effect will vary less around the subject’s ‘true’ difference score. Even if 
an effect would be highly reliable in the limit - when each subject is 
exposed to a very large number of trials in each condition - reliability 
may be quite poor with a smaller number of trials, as the measure of the 
effect in each session, or in each half of a session, will vary substantially 
around the subject’s true effect. See Miller and Ulrich (2013) for 
extensive discussion and modeling of how the reliability of a response 
time effect depends on trial numbers, under varying assumptions about 
the mechanisms underlying the effect. 

Rouder and Haaf (2019) propose, instead, to estimate individual 
subject effects using hierarchical models such as the linear or logistic 
mixed-effects models that are familiar to many psycholinguists (Baayen, 
Davidson, & Bates, 2008). When the random effects in such a model 
include by-subject slopes for an experimental effect, each slope reflects 
the model’s estimate of how the effect for an individual subject differs 
from the overall effect across subjects, i.e., the fixed effect. Critically, the 
model simultaneously estimates trial noise: trial-to-trial variability that 
is not related to the subject differences themselves. As a result, the 
model’s estimates of individual subject effects will be less variable than 
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the non-model-based estimates of the same effects, as the model attri
butes some of the variability in subjects’ effects to trial noise. This is 
known as model-based shrinkage or regularization (Efron & Morris, 
1977). At the same time, because trial noise has been excluded from 
these model-based estimates, the estimates can be expected to be more 
reliable than non-model-based estimates such as a difference between 
condition means, and to be less dependent on the number of trials than 
the corresponding non-model-based estimates. Reliability of model- 
based estimates of individual subject effects can be directly estimated 
by a separate model parameter estimating the correlation between by- 
subject effects in two sessions, or two halves of a session. If the hierar
chical model is Bayesian, we will also have information about the pre
cision of this reliability estimate in the form of the full posterior 
distribution of the correlation parameter. Note that a model-based es
timate of a correlation between subject effects, as suggested by Rouder 
and Haaf (2019), is not expected to be identical to the hand-computed 
correlation between model estimates of subject effects. Kliegl, Masson, 
and Richter (2010) illustrate by means of simulation that the former 
method accurately recovers known correlations, while the latter method 
exaggerates these correlations. 

Rouder and Haaf (2019) demonstrate these points by means of a 
reanalysis of the Hedge et al. (2018) data. When Stroop effect reliability 
is estimated based on a small quantity of data - only one of the five 
blocks of trials in each session - the original non-model-based method 
deployed by Hedge et al. reveals almost no reliability at all (.10), while 
the posterior mean of the correlation parameter in a Bayesian hierar
chical model reveals modest reliability (.31). When all the data are used, 
the non-model-based method reveals reliability of .55, while the model- 
based method reveals reliability of .72. It is important to note, however, 
that the uncertainty of the critical correlation parameter in Rouder and 
Haaf’s models is substantial, especially when the quantity of data is 
limited. This point will be relevant to the present study, as well. 

Informed by this recent literature, here we assess reliability in 
several ways. First, we use the traditional method of calculating the 
correlation between subjects’ simple effects in two halves of each 
experiment, as in Hedge et al. (2018). Second, we fit Bayesian hierar
chical mixed-effects models that estimate subject effects in each half and 
explicitly estimate the correlation between the effects for the two halves 
(Rouder & Haaf, 2019). Finally, we also directly assess the evidence for 
variation between subjects in the size of each effect by determining the 
extent to which including by-subject slopes improves the fit of hierar
chical mixed-effects models, when compared to models without by- 
subject slopes. While the question of whether to include a set of 
random slopes in a mixed-effects model is usually considered in the 
context of attempts to optimize power and reduce Type I error rate in 
testing fixed effects (Barr, Levy, Scheepers, & Tily, 2013; Matuschek, 
Kliegl, Vasishth, Baayen, & Bates, 2017), assessing the improvement in 
model fit when by-subject slopes are included also addresses the sub
stantive question of whether there is meaningful variation between 
subjects in the size of an effect. 

Before presenting the details of the present study, we discuss the one 
previous study of eye movements in reading that has directly investi
gated the reliability of individual subject effects. Carter and Luke (2018) 
analyzed test-retest reliability of frequency, predictability, and word 
length effects for 39 subjects reading 40 paragraphs from the Provo 
Corpus (Luke & Christianson, 2016); 20 paragraphs were read in each of 
two sessions, separated by about one month. Eye movement data for all 
words in the corpus were included in the analysis, with the exception of 
data contaminated by blinks and return sweep saccades and fixation 
durations removed by outlier exclusion. The effects of each variable on 
individual subjects’ eye movements were assessed by means of by- 
subject slopes extracted from mixed-effects models of each eye move
ment measure, fit separately to the data from each of the two sessions. 
The correlation between by-subject slopes extracted from the separate 
models of the two sessions was the reported measure of reliability. As 
noted above, this method is not equivalent to model-based estimation of 

a correlation parameter (Kliegl et al., 2010). 
The central results were as follows. For first fixation and gaze 

duration, the effects of all three predictors showed reliability above r =
.6, with the highest reliability (r = .78) appearing for the effect of pre
dictability on first fixation duration. The reliability of the effects on 
skipping probability and regression probability were all above r = .5, 
with the effect of predictability on regression probability demonstrating 
the highest reliability (r = .64). In sum, based on these results it would 
appear that individual differences in the effects of length, frequency, and 
predictability are all at least moderately reliable, for all eye movement 
measures. 

However, the interpretation of these reliabilities should be qualified 
by an important caveat. The three variables assessed by Carter and Luke 
(2018) are strongly intercorrelated in natural texts. Shorter words are 
both more frequent and more predictable, and more frequent words are 
more predictable (e.g., Piantadosi, Tily, & Gibson, 2011; Smith & Levy, 
2011). Indeed, Luke and Christianson (2016) demonstrated that within 
the Provo Corpus itself, the predictability of a word is significantly 
related to both word frequency and word length. Moreover, in natural 
texts these variables are also correlated with other factors such as part of 
speech and position in the sentence, as also demonstrated by Luke and 
Christianson (2016). However, Carter and Luke (2018) assessed the 
reliability of each effect in a separate statistical model, e.g., one model 
included length as the only fixed effect, along with random slopes for 
length, while a second model included frequency as the only fixed effect, 
along with random slopes for frequency. Given the correlation between 
the variables, any one of these models will not uniquely identify the 
effect of one variable, but will instead identify some combination of the 
effects of all three variables. Even if more complex models were used to 
simultaneously estimate the reliability of the effects of the three critical 
variables, interpretation would be complicated by, for example, the fact 
that almost all of the fifty most frequent words in English are very short 
closed-class words such as prepositions, determiners, pronouns, and 
conjunctions. In the present study, by contrast, the frequency, predict
ability, and contrast/font difficulty variables are entirely uncorrelated, 
and are uncorrelated with other variables such as part of speech, as the 
present study reanalyzes data from experiments in which the variables 
were factorially manipulated. Specifically, the predictability manipula
tion was implemented by presenting the same word in two different 
sentence contexts, while the frequency manipulation compared high- 
and low-frequency words that were closely matched in predictability, as 
well as word length and part of speech. 

The results of one other existing study might also be taken to suggest, 
albeit indirectly, that the frequency effect is highly reliable. Schilling, 
Rayner, and Chumbley (1998) addressed the question of how word 
frequency effects in the lexical decision and naming tasks compare to 
frequency effects on eye movements in reading, by having each indi
vidual subject complete a pair of tasks. Schilling et al. found correlations 
of about .54 between the size of a subject’s frequency effect on mean 
gaze duration and both the size of the frequency effect on lexical deci
sion RT and the size of the effect on naming RT. These correlations were 
obtained despite the fact that subjects read only 24 words at each level of 
word frequency, in each task. Observed correlations of this magnitude 
are only possible if individual differences in each of the two correlated 
effects (e.g., the frequency effect on gaze duration and on lexical deci
sion RT) are highly reliable; we return to this point in the General 
Discussion. 

However, there is an idiosyncratic feature of the Schilling et al. 
(1998) study that has, to our knowledge, not been noted in the litera
ture. Subjects did not merely read sets of high-frequency and low- 
frequency words in each of two tasks; they read the very same 24 
high-frequency and 24 low-frequency words in the two tasks. Thus, what 
is demonstrated to be consistent across tasks, in the Schilling et al. study, 
is not subjects’ frequency effect, in general, but rather their difference in 
responses to a specific set of high- and low-frequency words. Arguably, it 
is unsurprising that a subject who responds to a particular word quickly 
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(or slowly) in one task also responds to the same word quickly (or 
slowly) in another task. 

The remainder of this paper proceeds as follows. In the next section, 
we provide an overview of the data sets from Staub (2020) that we 
reanalyze in the present study. In the following section, we illustrate that 
individual differences in basic eye movement measures such as mean 
first fixation duration (as opposed to experimental effects on these 
measures) show very high reliability, confirming several previous 
studies. In the next three sections we carry out the three reliability an
alyses that we have outlined above. In the General Discussion, we turn to 
the implications of the results of these analyses for our understanding of 
experimental effects on eye movements in reading, and for individual 
difference studies. 

Overview of data sets 

The two data sets that we use to assess reliability of eye movement 
effects come from recent experiments published in Staub (2020). These 
experiments were designed to investigate potential interactions between 
word frequency, predictability, and visual contrast of the text (Experi
ment 1) and between word frequency, predictability, and font difficulty 
(Experiment 2). Data and experimental items are available at https:// 
doi.org/10.17605/OSF.IO/BNAVZ. 

These data sets have several desirable characteristics for present 
purposes. First, both experiments demonstrated large, statistically sig
nificant group-level effects of all of the manipulated variables, repli
cating a number of well-established effects in the literature. Below we 
discuss the details of these group-level effects. Second, each experiment 
included 80 trials at each level of each variable (e.g., 80 high-frequency 
and 80 low-frequency target words), which is many more than in most 
eye movement studies; we know of only a few studies that have used 
similar trial numbers to investigate effects of frequency (e.g., Sheridan & 
Reingold, 2013) or predictability (Staub & Benatar, 2013). Thus, the 
split-half reliabilities that we compute here may be seen as establishing 
an upper bound on the split-half reliabilities that would be obtained in a 
typical experiment. They may even be regarded as optimistic estimates 
of test-retest reliabilities, as in many eye movement studies there are 
fewer than 40 trials at each level of a manipulated variable. 

Third, the two experiments are identical with respect to their fre
quency and predictability manipulations, as they use the same experi
mental items. In effect, we are able to internally replicate reliability 
estimates for the effects of frequency and predictability. Finally, each 
experiment had a large number of participants, N = 80 in Experiment 1 
and N = 92 in Experiment 2, and the participants in these experiments 
were in many respects typical of adult participants in eye movement 
experiments. Participants were native English-speaking undergraduates 
at the University of Massachusetts Amherst, who self-reported no history 
of reading or language disorder, and normal or corrected-to-normal 
vision. UMass Amherst is a large, moderately selective public univer
sity that in 2019 admitted 64% of applicants. The first and third quar
tiles of the SAT score distribution of admitted students in 2019 were 
1220 and 1380, respectively. 

Subjects in both experiments read 160 critical sentences, which were 
adopted from Kretzschmar, Schlesewsky, and Staub (2015). In each 
sentence, a target word’s frequency and predictability were manipu
lated, such that each subject read 80 target words at each of two levels of 
frequency, 80 at each level of two levels of predictability, and 40 at each 
level defined by the interaction of these variables. In Experiment 1, half 
of the 40 sentences at each of these levels were presented in clear text 
and half in faint text; in Experiment 2, half were presented in Times New 
Roman font and half in Old English font. In Experiment 1, 4.0% of trials 
were removed due to blinks, track loss, or other error, leaving a total of 
12,285 trials for analysis. In Experiment 2, 4.5% of trials were removed, 
leaving 14,064 for analysis. 

For the purposes of the split-half analyses that we present here, we 
divide the sentences based on odd vs. even item numbers in the 

experimental script. Given the construction of these experimental 
scripts,1 this split results in two halves that are perfectly balanced for 
each subject, i.e., each half includes 80 items whose distribution 
matches that of the 160 items as a whole, with 40 items at each level of 
each variable. The even/odd item split does not reflect alternating 
presentation of trials, as items were presented in a random order to each 
subject, with the exception of blocking of the visual contrast and font 
difficulty variables. 

For the purposes of reliability analyses, we focus on four eye 
movement measures. These include two reading time measures: first 
fixation duration (the duration of a reader’s initial first-pass eye fixation 
on a word) and gaze duration (the sum of all first-pass fixations on a 
word, before leaving it). On many trials, first fixation duration and gaze 
duration are identical; they will differ only if readers made an additional 
fixation after the first, before leaving the word. We also analyze two 
binary saccadic measures: skipping probability (the probability that a 
word is skipped on first pass reading rather than directly fixated) and 
regression probability (the probability that the reader’s initial inspec
tion of a word ends with a saccade to the left, rather than to the right). 
Together, these four measures present a fairly complete description of a 
reader’s eye movements on her initial encounter with the target word. If 
a word is skipped on first pass reading, that trial is excluded from the 
computation of regression proportion as well as the fixation duration 
measures. Thus, while the skipping analysis is based on an average of 
154 trials per subject in Experiment 1 and 153 trials in Experiment 2, 
after data exclusion, the other analyses, which also exclude word skips, 
are based on an average of 120 trials per subject in Experiment 1, and 
115 trials per subject in Experiment 2. 

The group-level effects on the four eye movement measures, as 
assessed based on the mixed-effects linear or logistic regression models 
in Staub (2020), are shown in Table 1. The critical results are as follows. 
The effects of frequency and predictability replicated many previous 
studies: In both experiments, both variables had sizable and significant 
effects on word skipping probability (in the range of a 4–5% effect, for 
both variables, for both experiments; note that parameter estimates in 
Table 1 are in log odds), and on both first fixation duration (approxi
mately 20 ms effects, for both variables, in both experiments) and gaze 
duration (effects between 28 and 38 ms). Low frequency and low pre
dictability words were less likely to be skipped and induced longer 
reading times. In addition, predictability, but not frequency, signifi
cantly influenced regression probability in both experiments, with low 
predictability words inducing about 5% more regressions. As in most 
previous studies (see Staub, 2015, for review), the frequency and pre
dictability effects did not significantly interact in any measure. 

The visual contrast manipulation in Experiment 1 strongly influ
enced both of the reading time measures, by about 51 ms in first fixation 
duration, and 62 ms in gaze duration, but did not significantly affect 
either skipping probability or regression probability. There were also 
statistically significant contrast-by-frequency interactions in the skip
ping measure and the gaze duration measure. However, these were very 
small effects, in opposite directions (the frequency effect on skipping 
was smaller with faint text, but the frequency effect on gaze duration 
was slightly larger with faint text), and neither would be significant if a 
correction for multiple comparisons were applied. Thus, these in
teractions should be interpreted with caution. 

The font difficulty manipulation in Experiment 2 influenced the 
reading time measures, by about 16 ms in first fixation duration and 32 

1 Specifically, items 1–20 and 81–100 were low frequency, high predict
ability; 21–40 and 101–120 were low frequency, low predictability; 41–60 and 
121–140 were high frequency, high predictability; and 61–80 and 141–160 
were high frequency, low predictability. Items 1–80 were presented in a 
random order in the first block, and 81–160 in the second. The ordering of 
visual contrast and font difficulty blocks was counterbalanced across subjects, 
e.g., half of subjects read clear text first, and half read faint text first. 
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ms in gaze duration, as well as word skipping probability, by about 5%. 
In addition, this manipulation interacted significantly with both pre
dictability and frequency in the gaze duration measure, with both var
iables having a larger effect on gaze duration when the text was 
presented in Old English font. These interactions were substantial in size 
(16–20 ms), and were also present in the go-past time measure, which 
we do not analyze here. Thus, we regard these interactions as likely to 
reflect real effects. However, we do not attempt to interpret an unpre
dicted three-way interaction in the skipping measure. 

Basic eye movement measures: Distributions, reliability, and 
intercorrelations 

Figs. 1 and 2 illustrate, for Experiments 1 and 2 respectively, the 
distributions, across subjects, of skipping proportion, regression pro
portion, and mean first fixation duration and gaze duration. There is 
substantial variation in subjects’ saccadic behavior. Some subjects 

almost never skipped the target word, and some subjects skipped it over 
50% of the time; some subjects almost never regressed from the target 
word, and others regressed 40% of the time. There is also substantial 
variation in fixation durations, with the lowest and highest mean gaze 
durations differing by about a factor of two. 

Code for reliability analyses in this and subsequent sections is 
available at: https://doi.org/10.17605/OSF.IO/BNAVZ. The scatter
plots in Figs. 3 and 4 illustrate the reliability of individual subject dif
ferences in each of the four measures, in each experiment. All measures 
show high split-half reliability; the lowest value is for regression pro
portion (r = .75 in Experiment 1; r = .76 in Experiment 2), while the 
other three measures show split-half reliability of at least .83 in both 
experiments. In sum, there is substantial variability between subjects in 
their basic eye movement behavior – the duration of their eye fixations, 
the frequency with which they skip words, and the frequency with which 
the make regressions - and these individual differences are highly reli
able. These conclusions are entirely consistent with the conclusions of 

Table 1 
Mixed-effects model parameter estimates from Staub (2020). First Fixation and Gaze estimates are in ms; Skipping and Regressions estimates are in log odds; ***p <
.001; **p < .01; *p < .05.   

Experiment 1 Experiment 2  

First Fix Gaze Skipping Regressions First Fix Gaze Skipping Regressions 

Predictability 19.45*** 28.33*** −.33*** .38*** 19.25*** 30.92*** −.35*** .46*** 
Frequency 19.06*** 33.66*** −.30* −.01 20.68*** 37.91*** −.47*** .01 
Contrast/Font Difficulty 51.25*** 61.95*** −.12 −.12 16.15*** 32.34*** −.41*** −.08 
Pred × Freq −6.52 −1.45 .07 −.03 −1.32 5.56 .06 −.17 
Pred × Contrast/Font 3.76 7.19 .04 −.18 5.08 16.12** −.08 .01 
Freq × Contrast/Font 6.13 9.68* .23* −.00 7.46* 20.06** −.11 .02 
Pred × Freq × Contrast/Font −.81 −2.50 −.01 .20 −7.49 −6.13 −.45** .08  

Fig. 1. Experiment 1 distributions of subject skipping and regression proportions, and first fixation and gaze duration means.  
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several other studies, which have found reliable differences between 
individuals in parameters such as mean fixation duration and saccade 
amplitude, both across tasks (e.g., in reading and scene viewing; Hen
derson & Luke, 2014; Rayner, Li, Williams, Cave, & Well, 2007) and 
across separate sessions of a reading task (Carter & Luke, 2018; Dirix, 
Brysbaert, & Duyck, 2019). Staub and Benatar (2013) also found sub
stantial correlations between subjects’ mean fixation duration on a 
target word in each experimental sentence and their fixation durations 
on preceding and following words. 

An interesting question is whether all four measures demonstrate 
high reliability partly because of correlations among the measures 
themselves. For example, if mean first fixation duration is strongly 
correlated (either positively or negatively) with the tendency to skip 
words, then as long as one of these measures is highly reliable, the other 
will be, too. On the other hand, if fixation durations and skipping are 
only weakly correlated at the subject level, or even uncorrelated, then it 
is more notable that both measures are highly reliable, as this would 
suggest that there is meaningful variation between readers on two 
separate dimensions. To our knowledge, this issue has not been previ
ously addressed. 

Unsurprisingly, subjects’ mean first fixation duration and gaze 
duration are very highly correlated (Experiment 1 r = .92, p < .001; 
Experiment 2 r = .89, p < .001), due to their mathematical relationship, 
i.e., these measures are identical on many trials. Of more interest are the 
relationships between the fixation duration measures and the saccadic 
measures. The fixation duration measures show a modest negative cor
relation with skipping proportion (Experiment 1 r = −.20; p = .07 and r 
= −.31; p < .01 for first fixation duration and gaze duration, respec
tively; Experiment 2 r = −.27; p < .05 and r = −.41; p < .001 for first 
fixation duration and gaze duration, respectively); readers who skip 

more also have somewhat shorter fixation durations. Fixation durations 
show essentially no correlation with regression proportion, in either 
experiment, with r ranging between -.01 and .13. Finally, skipping 
proportion and regression proportion show a modest positive correla
tion (Experiment 1 r = .33; p < .01; Experiment 2 r = .17; p = .10), with 
readers who skip more often also regressing somewhat more often. 

In sum, there are weak correlations across subjects between skipping 
and fixation durations, and between skipping and regressions; though 
these relationships do not always reach significance, the trends are 
consistent. Fixation durations and regressions appear to be largely in
dependent. The fact that these relationships between measures are 
either weak or nonexistent implies that the reliable differences between 
readers on the skipping, regressions, and fixation duration measures are 
not simply a reflection of a reliable difference on a single underlying 
dimension. Readers show reliable differences on several largely inde
pendent dimensions. 

Reliability of Experimental Effects: Non-Model-Based Analysis 

We now turn to estimation of the split-half reliability of individual 
differences in the magnitude of the experimental effects: word fre
quency, predictability, and visual contrast in Experiment 1, and word 
frequency, predictability, and font difficulty in Experiment 2. In this 
section we present non-model-based analyses, as in Hedge et al. (2018). 

We begin by illustrating the distributions of the effects, across sub
jects, in the data as a whole; see Figs. 5 and 6. For the fixation duration 
measures, an effect is computed as the difference between condition 
means, e.g., mean first fixation on low frequency target words minus 
mean first fixation on high frequency target words. For the saccadic 
measures, an effect is computed as the difference in proportions between 

Fig. 2. Experiment 2 distributions of subject skipping and regression proportions, and first fixation and gaze duration means.  
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the conditions, e.g., proportion of skips of low frequency words minus 
proportion of skips of high frequency words; in this case, the effect tends 
to be negative. 

In all cases, the distribution of effects across subjects is unimodal and 
fairly symmetrical. The variance of the experimental effects is consis
tently much smaller than than the variance of the means of the fixation 
duration and saccadic measures themselves, shown in Figs. 1 and 2. 
With the exception of the visual contrast effect on reading times in 
Experiment 1 (where every single subject showed a numerical effect in 
the expected direction), in all cases there were some subjects who 
showed reversed effects, e.g., longer reading times for high-frequency 
words than low-frequency words. However, it is reasonable to assume 
that all of these effects demonstrate what Rouder and Haaf (2018) call 
dominance: For all subjects, the true effect is in the same direction. We 
assume that no reader actually reads low-frequency words faster than 
high-frequency words, or reads less predictable words faster than more 
predictable words. If dominance does hold, then the observed effects 
must overestimate the variability across subjects in the influence of the 
each of these variables. For example, the effect of word frequency on 
mean gaze duration in these experiments is about 35 ms, and if domi
nance holds, the distribution of true subject effects is constrained to have 
a lower bound of 0 ms. If we also assume that the distribution of true 
subject effects is fairly symmetrical, the largest true subject effect would 
then be about 70 ms. Thus, the range of the observed effects would 
overestimate the range of the true effects by a factor of two or more. 

Split-half correlations of these effects were computed based on the 
even/odd item number split described above. In this non-model-based 
analysis, the effect in each half was again computed simply as a differ
ence in condition means or proportions, and split-half reliability is 
simply the correlation between these effects in the two halves. These 

correlations are shown in the Non-model-based columns of Table 2, as 
well as on the scatterplots in Figs. 7 and 8. These split-half reliabilities 
are uniformly low, with .47 (for the contrast effect on skipping) as the 
maximum, and with several very near zero. Moreover, there is no 
particular relationship between split-half reliability and the significance 
or size of an effect at the group level. The numerically highest re
liabilities are for the contrast effects on skipping and regressions, neither 
of which reached significance at the group level. Some significant and 
extremely large group-level effects show very low non-model-based 
reliability. For example, visual contrast demonstrated a 51 ms effect 
group-level effect on mean first fixation duration, while this effect has 
split-half reliability of .22. 

Reliability of experimental effects: Model-based analysis 

To implement a model-based reliability analysis (Rouder & Haaf, 
2019), we constructed a set of Bayesian mixed-effects models using the 
brms package in R (Bürkner, 2017). The two fixed effects in each model 
were the effects of a single experimental manipulation in even items and 
in odd items. The effects in each half were coded with contrasts that 
assigned .5 to one level of the critical factor and -.5 and the other, and 
assigned 0 to the trials that were in the other half. For example, for the 
effect of frequency in the even items, the even, low-frequency trials were 
coded with .5, the even, high-frequency trials with -.5, and the odd trials 
with 0. The random effects in each model included a by-subject inter
cept, by-subject slopes for each of the two fixed effects, and parameters 
for the three correlations among the intercept and the two slopes. Thus, 
the general schema was as follows:  

Fig. 3. Relationships in Experiment 1 between subjects’ even- and odd-item skipping and regression proportions, and first fixation and gaze duration means.  
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brm(measure ~ even.effect + odd.effect + (1 + even.ef

fect + odd.effect|subject))                                                      

For the reading time measures these were linear models, and for the 
skipping and regressions measures these were logistic models, i.e., with 
a binomial link function. All models were fit with 4 chains, each with 
4000 iterations, of which 2000 were warmup. The default priors were 
used; in the case of the critical correlation parameters, this default is an 
LKJ prior (Lewandowski, Kurowicka, & Joe, 2009) with eta = 1. It is 
important to note that with this value of the eta parameter, the entire 
range of correlations between −1 and 1 has roughly uniform probability. 
With higher values of eta, values near −1 and 1 are regarded as unlikely. 
Thus, the current choice of prior does not prevent very strong posterior 
correlations, if they are justified by the data. All parameter estimates 
had R-hat values no higher than 1.01, and all of the critical correlation 
parameters had R-hat values of exactly 1, indicated good convergence. 
The fixed effects in these models were not of primary interest, but it is 
worth noting that these models confirmed all the effects reported in 
Staub (2020), and as expected, there was no indication that the effects 
differed in size in the two halves of the data. 

For the reading time measures of first fixation duration and gaze 
duration, we constructed two versions of each model, one using the raw 
measure, and the other using the log measure. We note that the log 
transformation clearly results in more nearly normal residuals, and 
posterior predictive checks confirmed that the model predictions from 
the log models were qualititatively good, while the predictions from the 
raw models were not, as the predictions do not capture the right skew in 
the raw fixation duration distributions. Nevertheless, we report both 
models, as it will become clear below that there are some interesting 
differences. 

The posterior mean of the critical correlation parameter from each 

model (i.e., the correlation between the subject-level estimates of even. 
effect and odd.effect), along with the 95% HDIs of the posterior 
distribution, are shown in Table 2, in the Model-based columns. We note, 
first of all, that though the model-based reliability estimates are gener
ally somewhat higher than the non-model-based correlations, this is not 
universally true, and in many cases the difference in reliability is quite 
small. We also note that the 95% HDIs are extremely wide, in many cases 
spanning more than half of the potential range of the parameter from −1 
to 1, and in a few cases spanning almost the entire range. Thus, the 
models are highly uncertain about the value of the critical correlation 
parameter (see Rouder et al., 2019, for discussion and analysis of this 
phenomenon). 

However, there are a few model-based estimates of reliability that 
are (a) much higher than the corresponding non-model-based estimates, 
(b) relatively high in absolute terms, and (c) have a 95% HDI that does 
not include 0. These have been bolded in Table 2. The estimates of the 
reliability of the effect of visual contrast on gaze duration were .64 in the 
raw model and .72 in the log model, and the estimate of the reliability of 
contrast on word skipping was .84. The effect of font difficulty on word 
skipping was similarly reliable (.83). Finally, the reliability of the effect 
of word frequency on raw gaze duration was relatively high in both 
experiments: .68 in Experiment 1, and .75 in Experiment 2. Notably, the 
reliabilities extracted from the models of log gaze duration are much 
lower, with HDIs that include a large region of negative values. In the 
General Discussion, we address the question of why reliability may be 
higher in models of raw gaze duration. 

In sum, computing model-based reliability does provide an indica
tion that certain effects may be more reliable than the non-model-based 
analysis would indicate. However, this is a limited set of effects. In 
particular, the effect of predictability was not shown to be very reliable, 

Fig. 4. Relationships in Experiment 2 between subjects’ even- and odd-item skipping and regression proportions, and first fixation and gaze duration means.  
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using this analysis, and the effect of word frequency demonstrated 
substantial reliability only for the gaze duration measure - and even then 
only for raw, as opposed to log, gaze duration. Visual contrast demon
strated quite reliable effects on both gaze duration and skipping, and 
font difficulty demonstrated a reliable effect on skipping. 

Do Random Slopes Improve Model Fit? 

As noted above, the question of the appropriate random effect 
structure for a mixed-effects model is usually addressed in discussions of 
Type I error rate (Barr et al., 2013) or statistical power (Matuschek et al., 
2017), when the researcher’s primary interest is in testing the model’s 

Fig. 5. Experiment 1 distributions of effects of each of the three experimental manipulations on subject skipping and regression proportions, and first fixation and 
gaze duration means. 
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fixed effects. In that context, it is of methodological but not theoretical 
interest whether a model that includes a given set of random effects 
results in an improvement in model fit over a model that does not. 
However, a comparison of the fit of nested models differing in the 
presence vs. absence of a set of by-subject slopes also addresses the 
substantive issue that is the focus of the present study: Is variability in 

the degree to which subjects show an effect attributable to genuine 
subject differences, as opposed to random sampling variability? The null 
hypothesis, exemplified in the model without by-subject slopes, is that 
all subjects show an effect to exactly the same degree, and that observed 
variability in effect size is due only to sampling variability. 

The results of the analysis presented in the last section, which tested 

Fig. 6. Experiment 2 distributions of effects of each of the three experimental manipulations on subject skipping and regression proportions, and first fixation and 
gaze duration means. 
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the reliability of individual differences in each experimental effect, 
should be related to the results from a comparison of models with and 
without by-subject slopes. If there are consistent differences between 
subjects across the two halves of an experiment in how strongly they 
show an effect, then a model that explicitly takes account of individual 
differences in effect size should fit the data better than one that does not. 
However, if the reliability analysis does not conclude that there are 
consistent differences between subjects across the two halves of an 
experiment, modeling such differences in the data as a whole might not 
improve model fit. Thus, we might expect, for example, that adding by- 
subject slopes for the frequency effect to mixed-effects models of (raw) 
gaze duration should result in an improvement in fit, as this effect 
showed fairly reliable individual differences in the model-based anal
ysis. However, by-subject slopes for the predictability effect on the same 
measure may not result in much improvement in model fit, as individual 
differences in the predictability effect did not demonstrate very 
impressive reliability. 

For each measure, we constructed a base model, using the lme4 
package (Bates, Mächler, Bolker, & Walker, 2015), with the following 
structure:  

lmer(measure ~ freq + pred + stim + (1|subject))                 

This model includes fixed effects of the three variables, with the 
levels of each variable coded as .5 and -.5, and subject intercepts. For the 
skipping and regressions measures, a logistic regression model was 
constructed. As in the model-based reliability analyses, we constructed 
models of both raw and log-transformed fixation duration measures. We 
omitted fixed effect interaction terms on the grounds that in our original 
analysis, there were no frequency-by–predictability interactions, and 
the only compelling interactions involving the contrast or font manip
ulations were for gaze duration in Experiment 2. This base model was 
then compared to three different larger models, each of which included 
by-subject slopes for one of the three variables, e.g.  

lmer(measure ~ freq + pred + stim + (1|subject) + (0 +

freq|subject))                                                                              

Each of these six-parameter models was then compared to the five- 
parameter base model by means of the anova function for model 
comparison.2 

In Table 3, we present the estimated standard deviation of the by- 
subject slopes in the larger models, and the p-value for the likelihood 
ratio test (LRT) comparing each of the larger models with corresponding 
base model. We do not use these p-values to make a binary decision as to 
whether by-subject slopes are justified, but rather to quantify the 
strength of the evidence against the smaller model; the LRT p-value 
denotes the probability, under the null hypothesis of no true subject 
variation, of an improvement in likelihood as large as the observed 
improvement with the larger model. Looking across rows, it is evident 
that the standard deviations of the slopes and the corresponding LRT p- 
values are related: The larger the estimate of the standard deviation of 
subject slopes, the smaller the LRT p-value. For example, in the analysis 
of raw first fixation duration for Experiment 1 (the top row), the esti
mate of the standard deviation of the subject slopes is smallest for fre
quency and largest for visual contrast, and the model comparison p- 
value is largest for frequency and smallest for visual contrast. Predict
ability falls in the middle for both measures. 

The general conclusions that emerge from this analysis are as fol
lows. For the effect of predictability, while the model comparison favors 
the inclusion of by-subject slopes for some measures in Experiment 1, 
the comparisons are quite equivocal in Experiment 2. Importantly, there 
is no measure for which a model that includes by-subject slopes for 
predictability is clearly favored in both experiments. Turning to fre
quency, there is only one measure, raw gaze duration, in which the 
larger model is clearly favored in both experiments. This is precisely the 
measure that demonstrated a reliable frequency effect, in both experi
ments, in the model-based reliability analysis. Just as the reliability of 
the frequency effect was unimpressive with log gaze duration as the 
dependent measure, it is also the case that the LRT does not unequivo
cally favor the model with by-subject slopes for frequency when log gaze 
duration is the dependent measure, especially in Experiment 2. 

The effects of visual contrast (Experiment 1) on gaze duration and 
skipping, and the effect of font difficulty on skipping (Experiment 2) 
demonstrated impressive model-based reliability. We also see that for 
these measures, the model that includes by-subject slopes is clearly 
favored over the base model. In addition, by-subject slopes for visual 
contrast are clearly favored in the model of first fixation duration, and 
by-subject slopes for font difficulty are clearly favored in the model of 
gaze duration. These results, too, are broadly consistent with the reli
ability analysis; though the model-based reliability estimates for these 
effects had HDIs that spanned 0, the mean of the posterior was relatively 
high, in the neighborhood of .5. 

In sum, the present analysis and the model-based analysis of reli
ability provide converging evidence for a set of conclusions about the 
stability, or lack thereof, of individual differences in the size of the 

Table 2 
Split-half reliabilities of eye movement effects, computed based on correlations between simple effects in each half of the data, and based on correlation parameter in 
mixed-effects models, as described in the text. Model-based estimate is posterior mean and 95% HDI; bold indicates HDI that does not include 0.  

Experiment 1 Frequency Predictability Visual Contrast  

Non-model-based Model-based Non-model-based Model-based Non-model-based Model-based 

First Fixation .22 Raw: .27[−.71, .93] 
Log: .07[−86, .90] 

.37 Raw: .33[−.72, .95] 
Log: .17[−.82, .92] 

.22 Raw: .54[−.02, .94] 
Log: .44[−.22, .92] 

Gaze Duration .36 Raw: .68[.06, .97] 
Log: .39[−.68, .95] 

.31 Raw: .40[−.66, .96] 
Log: .28[−.78, .95] 

.36 Raw: .64[.15, .96] 
Log: .72[.34, .96] 

Skipping .02 .18[−.76, .91] .37 .26[−.78, .94] .47 .84[.51, .99] 
Regressions .01 .07[−.83, .89] .09 .05[−.85, .89] .40 .59[−.31, .97] 

Experiment 2 Frequency Predictability Font Difficulty  

Non-model-based Model-based Non-model-based Model-based Non-model-based Model-based 

First Fixation .23 Raw: .48[−.45, .95] 
Log: .51[−.53, .96] 

.20 Raw: .32[−.70, .94] 
Log: .13[−.83, .90] 

.11 Raw: .18[−.72, .88] 
Log: .16[−.80, .91] 

Gaze Duration .35 Raw: .75[.32, .98] 
Log: .44[−.53, .95] 

.14 Raw: .44[−.42, .95] 
Log: .19[−.79, .92] 

.18 Raw: .47[−.33, .95] 
Log: .52[−.39,.96] 

Skipping .18 .31[−.71, .94] .14 0[−.87, .87] .39 .83[.50, .99] 
Regressions .05 0[−.88, .87] −.01 −.10[−.90, .83] .03 0[−.88, .88]  

2 For comparability between the analyses presented in this section and the 
preceding sections, we omit item-level random effects. Including by-item in
tercepts in both the base model and each larger model does not result in notable 
changes to the qualitative patterns discussed in this section. 
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various effects. Individual differences in the effects of predictability 
showed unimpressive reliability, and by-subject slopes for predictability 
do not consistently improve model fit, across the two experiments. In
dividual differences in the effect of frequency on raw gaze duration are 
quite reliable, and adding by-subject slopes for frequency to models of 
raw gaze duration does clearly improve model fit. However, effects of 
frequency on other measures were less reliable, and adding by-subject 

slopes resulted in only equivocal improvement in model fit. Both vi
sual contrast and font difficulty demonstrated reliable effects on a 
number of measures, and by-subject slopes for these effects are clearly 
warranted. 

Fig. 7. Relationships in Experiment 1 between subjects’ effects of experimental manipulations in even and odd items, based on non-model-based analysis.  
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General discussion 

The present study confirms a number of previous studies (e.g., Carter 
& Luke, 2018; Dirix et al., 2019) in finding that individual differences in 
basic eye movement measures such as mean first fixation duration and 
skipping proportion are highly reliable. However, the present study 
finds quite poor split-half reliability of the effects of word frequency, 

predictability, visual contrast, and font difficulty, as computed by the 
traditional method of correlating simple effects in each half of the data. 
Computing split-half reliability by modeling the correlations between 
effects in each half, within the context of a mixed-effects model, also 
resulted in low reliability estimates for many effects, but did uncover 
substantially higher estimates in several cases: Effects of visual contrast 
and font difficulty on several eye movement measures, and the effect of 

Fig. 8. Relationships in Experiment 2 between subjects’ effects of experimental manipulations in even and odd items, based on non-model-based analysis.  

A. Staub                                                                                                                                                                                                                                           



Journal of Memory and Language 116 (2021) 104190

14

word frequency on raw gaze duration in both experiments. Likelihood 
ratio tests comparing mixed-effects models with and without a given set 
of by-subject slopes largely confirmed the model-based reliability 
analysis: Including by-subject slopes for visual contrast and font diffi
culty improved model fit for several measures, and among the predict
ability and frequency effects, the only by-subject slopes that were clearly 
justified in both experiments were slopes for the frequency effect on raw 
gaze duration. 

Thus, we come to a quite different conclusion from the one previous 
study (Carter & Luke, 2018) that has investigated the reliability of in
dividual differences in frequency and predictability effects on eye 
movements. While that study found that these variables, as well as word 
length, had moderately to highly reliable effects on a wide range of eye 
movement measures, we find that predictability effects are not very 
reliable, regardless of the measure in question, and the frequency effect 
is reliable only for raw gaze duration. This difference may be due to the 
fact that in the present study, the frequency and predictability variables 
were uncorrelated with each other and with other variables that are 
known to influence eye movements, enabling truly independent tests of 
the reliability of each effect. Subjects in the Carter and Luke (2018) 
study read natural texts where frequency, predictability, and word 
length are correlated with each other, as well as with other variables 
such as part of speech and position in a sentence. 

We first note that our fairly high model-based estimates of the reli
ability of the visual contrast effects – as high as .84, for the effect of 
contrast on word skipping – may be seen as a successful ‘sanity check’. 
The visual contrast manipulation should have different effects on 
different readers, due to genuine individual differences in contrast 
sensitivity (e.g., Legge, Rubin, & Luebker, 1987; Rubin & Legge, 1989). 
Had we been unable to identify reliable effects of visual contrast, we 
would have been skeptical about the suitability of our methods for 
assessing reliability at all. The fact that reliable effects of contrast were 
obtained in the model-based analysis, but not in the non-model-based 
analysis, reinforces the argument for model-based analysis of reli
ability (Rouder & Haaf, 2019). 

It is less clear whether we should have expected reliable effects of 
font difficulty, predictability, or frequency. We focus our discussion on 
the latter two effects, which have been central to models of eye move
ment control (e.g., Reichle, Rayner, & Pollatsek, 2003) and to much 
theorizing about lexical processing in reading (e.g., Norris, 2006). We 
begin by discussing the effect of predictability. It has been argued that 
there are genuine differences between readers in how ‘predictive’ they 
are, and that these differences are related to reading skill or reading 
experience. On the one hand, some authors have suggested that the use 
of prediction in language processing increases with reading experience 

and skill (e.g., Huettig & Pickering, 2019). On the other hand, it has also 
been argued that less fluent readers rely strongly on prediction as 
opposed to bottom-up word identification (Stanovich, 1980). But the 
low reliability of individual differences in predictability effects on eye 
movements suggests that whatever the direction of the relationship, 
inter-reader differences in the use of prediction are very modest 
compared to the variability in the predictability effect from trial to trial. 
One reader may strongly predict the ‘predictable’ target word in one 
sentence, while only weakly predicting the ‘predictable’ target word in 
another sentence; these prediction strengths may be reversed for a 
different reader. Eye movement behavior when a reader encounters any 
specific target word may reflect the interaction of a specific reader’s 
language experience with the context established by the item in ques
tion, more than global differences between readers in how strongly they 
predict upcoming words. 

The low reliability estimates emerging from the present study imply 
that it should actually be quite difficult to detect any relationship be
tween the size of a reader’s predictability effect and other individual 
difference variables. (Below, we discuss in more detail the relationship 
between the reliability of an effect and the observable correlation be
tween that effect and other measures.) Several studies have assessed 
whether predictability effects on eye movements are modulated by 
either reading skill (Ashby et al., 2005; Slattery & Yates, 2018) or age 
(Choi, Lowder, Ferreira, Swaab, & Henderson, 2017; Rayner et al., 
2006). Ashby et al. (2005, Experiment 2) compared groups of skilled and 
average readers, and did not find significant group-by-predictability 
interactions. Slattery and Yates (2018) used a reading skill measure as 
a continuous predictor, and did find that less proficient readers showed a 
larger effect of predictability on gaze duration. However, no interaction 
was found in the skipping measure, and no interactions were observed 
with a spelling ability measure. Rayner et al. (2006) failed to find sig
nificant differences in predictability effects between older and younger 
readers. Choi et al. (2017), on the other hand, did report two just- 
significant (t = 1.98 and t = 2.04) interactions between predictability 
and age group, with older adults showing a larger effect of predictability 
on gaze duration and regression path duration, a measure that includes 
regressive re-reading. Interactions were not observed in other measures, 
including two other reading time measures and word skipping. Taken as 
a whole, it is questionable whether this literature supports any conclu
sion regarding the relationship between either reading skill or age and 
the predictability effect. 

By contrast, the present results indicate that there are more reliable 
differences between readers in the effect of word frequency on their eye 
movements. However, it is only the gaze duration measure – and indeed, 
only raw gaze duration – that demonstrates such reliability. Why should 

Table 3 
Standard deviation of by-subject slopes for mixed-effects models, and LRT p-values for comparison of models with and without by-subject slopes, as described in the 
text.  

Experiment 1 Frequency Predictability Visual Contrast  

Slope sd Model-comparison p Slope sd Model-comparison p Slope sd Model-comparison p 

First Fixation Raw: 6.46 
Log: .018 

Raw: .225 
Log: .516 

Raw: 9.60 
Log: .032 

Raw: .012 
Log: .055 

Raw: 14.76 
Log: .052 

Raw: <.001 
Log: <.001 

Gaze Duration Raw: 15.09 
Log: .039 

Raw: .001 
Log: .029 

Raw: 11.00 
Log: .04 

Raw: .059 
Log: .021 

Raw: 24.83 
Log: .072 

Raw: <.001 
Log: <.001 

Skipping .129 .505 .233 .074 .482 <.001 
Regressions .218 .279 .016 .995 .346 .036  

Experiment 2 Frequency Predictability Font Difficulty  

Slope sd Model-comparison p Slope sd Model-comparison p Slope sd Model-comparison p 

First Fixation Raw: 11.57 
Log: .046 

Raw: .006 
Log: .001 

Raw: 9.03 
Log: .028 

Raw: .072 
Log: .18 

Raw: 9.91 
Log: .033 

Raw: .034 
Log: .064 

Gaze Duration Raw: 16.4 
Log: .033 

Raw: .001 
Log: .172 

Raw: 9.56 
Log: .035 

Raw: .229 
Log: .124 

Raw: 17.04 
Log: .055 

Raw: <.001 
Log: <.001 

Skipping .214 .052 .049 .908 .403 <.001 
Regressions .119 .741 0 1 0 .999  

A. Staub                                                                                                                                                                                                                                           



Journal of Memory and Language 116 (2021) 104190

15

the effect of word frequency be more reliable than the effect of pre
dictability? And why should it be in raw gaze duration, as opposed to 
other eye movement measures, that individual readers show reliable 
effects of frequency? 

Evidence from a range of experimental paradigms (e.g., Chateau & 
Jared, 2000), including eye movement studies (Gordon et al., 2019; 
Kuperman & Van Dyke, 2011; Taylor & Perfetti, 2016), indicates that 
the word frequency effect diminishes as readers gain skill and experi
ence. Explanations for this relationship vary; see Kuperman and Van 
Dyke (2013) for review of evidence and discussion of theoretical issues. 
One possibility is that skilled, experienced readers have developed fully 
specified orthographic representations even for low-frequency words, 
diminishing the functional difference between low- and high-frequency 
words. What is most relevant for present purposes is that this relation
ship is much better established than any relationship between reading 
skill or experience and predictability effects. If individual differences in 
the frequency effect on eye movements in reading were not at least 
moderately reliable, relationships between reading skill or experience 
and the size of a reader’s frequency effect should have been difficult or 
impossible to detect. 

Interestingly, there is evidence that it is the gaze duration measure 
that most clearly demonstrates a relationship between reading experi
ence and the size of the frequency effect. Gordon et al. (2019) rean
alyzed data from 546 subjects in eye movement experiments that were 
initially conducted to investigate a range of psycholinguistic questions. 
All subjects completed an Author Recognition Test (ART) and a Rapid 
Automatized Naming task (RAN). Gordon et al. assessed how effects of 
both word frequency and word length on eye movements may be 
modulated by subjects’ scores on these two measures. They found sig
nificant interactions between the frequency effect on gaze duration and 
a subject’s ART score, with subjects who recognized more authors 
(indicating more extensive reading experience) showing a smaller fre
quency effect. Notably, this interaction was not evident in any of their 
other reported measures, despite the very large size of the study, and 
despite the fact that the group-level frequency effect was evident in most 
of these measures. For example, both word frequency and subjects’ ART 
scores had substantial effects on word skipping, but an interaction be
tween the two was not in evidence. Based on the results of the present 
study, this discrepancy is expected, as it may be the case that only in the 
gaze duration measure are there reasonably reliable individual differ
ences in the frequency effect. 

Why gaze duration, as opposed to other measures, and why raw as 
opposed to log gaze duration? In both Experiments 1 and 2, raw gaze 
duration was the only measure in which the model-based reliability of 
the frequency effect was clearly on one side of zero, and where the mean 
of the posterior distribution for the estimate was in the range that is 
usually considered ‘good’: .68 in Experiment 1 and .75 in Experiment 2. 
Raw gaze duration was also the only measure in which by-subject slopes 
for the frequency effect clearly improved model fit in both experiments. 
By-subject slopes for first fixation duration improved model fit (based on 
model comparison p-value < .05) in Experiment 2, but not Experiment 1, 
and by-subject slopes for log gaze duration improved model fit in 
Experiment 1, but not Experiment 2. 

In the E-Z Reader Model of eye movements in reading (Reichle et al., 
2003), gaze duration is more consistently sensitive to word frequency 
than is any other measure. Regressions are not posited to be sensitive to 
frequency at all (see Abbott & Staub, 2015, for discussion), which is 
consistent with the lack of main effect of frequency on the regression 
measure in either experiment. Word skipping is sensitive to frequency 
because on a minority of trials, an early stage of word recognition known 
as L1, the duration of which is sensitive to frequency, may complete 
while the eyes are still on word n-1, and a planned saccade into word n 
may then be cancelled, resulting in a skip of word n. However, on most 
trials L1 does not complete rapidly enough for this to happen, regardless 
of word n’s frequency, so word n receives a direct fixation. The duration 
of the first fixation on word n is then sensitive to word frequency on the 

majority of remaining trials, as this duration is a function of the duration 
of L1. However, on some proportion of trials the reader rapidly termi
nates the first fixation in order to refixate the word in a more ideal 
location, and in this case only gaze duration, not first fixation, will be 
sensitive to frequency. Thus, gaze duration is sensitive to frequency on 
every trial on which word n is fixated rather than skipped, while first 
fixation duration is sensitive to frequency on most of these trials, but not 
all. Based on this logic, it is not surprising that if one measure were to 
show reliable individual differences in the frequency effect, it would be 
gaze duration. 

Why is substantially higher reliability observed when raw, as 
opposed to log, gaze duration is used as the dependent measure? We can 
think of two reasons why this might be the case. First, previous studies 
have shown that a substantial portion of the frequency effect resides in 
the right tail of fixation duration distributions (e.g., Staub et al., 2010). 
By eliminating the right skew of fixation duration distributions - which is 
a virtue, when it comes to satisfying the parametric assumptions of 
linear mixed-effects models - the log transformation may be reducing 
our ability to detect subtle differences between readers in the size of 
their frequency effect, precisely because that effect resides partially in 
the tail. 

The second reason that individual differences in the frequency effect 
may be more reliable for raw gaze duration than log gaze duration is that 
this reliability may derive from what is essentially a measurement- 
related artifact. Several previous studies have suggested that the fre
quency effect, and other RT effects, may be larger for subjects who are 
slower responders overall (Faust, Balota, Spieler, & Ferraro, 1999; 
Schilling et al., 1998). Faust et al. point out that this relationship may be 
understood as arising from general processing rate differences. When an 
experimental manipulation modulates the quantity of processing work 
that is required, a subject who is a slower processor will demonstrate a 
larger experimental effect on RT. If the effect of word frequency is 
constant across readers in terms of the amount of extra cognitive work 
that is required in order to recognize a low-frequency word, a partici
pant who is the slower processor will show a larger effect on RT. 

In our Bayesian mixed-effects modeling we did see evidence in both 
experiments that the frequency effect on raw gaze duration was larger 
for slower readers. The mean of the posterior for the correlation between 
the subject intercept and the by-subject slope for word frequency in each 
half was between .66 and .87; readers who were slower overall showed 
larger frequency effects in each half of the data. Thus, it is possible that 
part of the reliability of the frequency effect derives simply from its 
relationship to overall reading speed. 

On this account of the reliability of the frequency effect on raw gaze 
duration, it is expected that the log transform would reduce this reli
ability, as the log transform would suppress the relationship between the 
frequency effect and overall reading speed. The log transform tends to 
remove superadditive interactions (e.g., Lo & Andrews, 2015); a large 
raw RT difference between two relatively long times may be equivalent, 
in log space, to a smaller raw RT difference between two relatively short 
times. For example, the 50 ms difference between fixation durations of 
300 and 350 ms is almost exactly the same, after log transformation, as 
the 35 ms difference between fixation durations of 215 and 250 ms. 
Thus, the log transform of gaze duration will tend to ‘undo’ a general 
relationship between effect size and overall reading speed. As expected 
on this account, in our Bayesian mixed-effects models of log gaze 
duration, subject intercepts were less strongly related to the by-subject 
slopes for frequency in each half, with the mean of the posterior of the 
correlation parameters ranging between .37 and .53 in the two 
experiments. 

In sum, we cannot rule out the possibility that the primary reason 
that the frequency effect on raw gaze duration demonstrates relatively 
good reliability is simply that slower readers show a larger effect. The 
log transformation would suppress this relationship, diminishing the 
apparent reliability of the frequency effect itself. 

We turn now to a broader methodological point, and a practical 
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suggestion. As noted in our introduction, the quantitative relationship 
between measurement reliability and the magnitude of an observable 
correlation is well known (Nunnally, 1970; Spearman, 1904). Given a 
true correlation rAB.true between variables A and B, and known 
test–retest reliabilities for the measurements of the variables relA and 
relB, the observable correlation between the variables is given by: 

rAB.obs = rAB.true ×
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
relA × relB

√

The implications of this equation are striking. If two variables have 
true correlation r = .5, and both are measured with test–retest reliability 
of .8, the observable correlation is .4. In order to obtain statistical power 
of .8 to detect a correlation of .4, we would need 46 subjects. But if one of 
the two variables is measured with reliability of .3, the observable 
correlation is now .245. Now, we would need 128 subjects for power of 
.8. The poor reliability of one of the measures has dramatic conse
quences for statistical power; see Hedge et al. (2018) for further 
discussion. 

We are also able to estimate rAB.true, if rAB.obs is known, along with the 
two reliabilities: 

rAB.true =
rAB.obs

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
relA × relB

√

If we have an observed correlation of .5, and reliabilities of .8 for 
both measures, the true correlation between the variables is estimated to 
be .625. But an observed correlation of .5, if one measure has reliability 
of .8 and the other has reliability of .3, corresponds to an estimated true 
correlation of just over 1; this is to say that such an observed correlation 
does not plausibly correspond to a true correlation. Vul and colleagues 
(Vul & Pashler, 2012; Vul, Harris, Winkielman, & Pashler, 2009) have 
referred to observed correlations that should not be mathematically 
possible, given the reliabilities of the correlated measures, as ‘voodoo’ 
correlations. In effect, knowing the reliabilities of the two measures 
establishes an upper limit on the correlations that we should expect to 
see in the data; this upper limit will be quite low when the reliability of 
one or both measures is low. If we see correlations that are higher than 
our measures’ reliabilities should allow, we should suspect Type I error. 
Vul et al. (2009) point out that such ‘voodoo’ correlations are likely to 
arise in individual difference studies when researchers assess multiple 
correlations and do not appropriately correct for these multiple 
comparisons. 

Together with the present empirical results, these mathematical re
lationships imply that eye movement researchers should be concerned 
about the power of individual difference studies to detect relationships 
between effects of variables such as word frequency or predictability 
and other variables such as reading skill or age, and about the possibility 
that when such relationships are observed, they are actually Type I er
rors. When carrying out such studies, a reasonable first step is to assess 
the reliability of individual differences in the experimental effects. Given 
that most researchers now use mixed-effects models to analyze eye 
movement data, an easy-to-implement check is to assess whether adding 
by-subject slopes for the effect in question does clearly improve model 
fit, relative to a model without these slopes. Clearly, this method does 
not definitively establish the reliability of an effect; for some of the ef
fects that we have investigated here, this method favored a model with 
by-subject slopes, in one experiment or the other, even when the effect 
in question did not appear to be very reliable based on our model-based 
reliability analysis. However, if this model comparison fails to justify the 
assumption that observed differences in the size of an effect are attrib
utable to genuine differences between subjects – if a model with by- 
subject slopes does not clearly fit the data better than a model that as
sumes that each subject demonstrates the same effect - it is not war
ranted to then ask whether these differences are modulated by some 
other factor. If we do not have clear statistical evidence that subjects do 
indeed differ in the extent to which they are affected by some variable, it 
does not make sense to explore how differences in the size of the effect 
are modulated by reading skill, working memory capacity, or age. 

A final methodological point is that when explicit reliability calcu
lations are carried out, the model-based estimates suggested by Rouder 
and Haaf (2019) are to be preferred over correlations between simple 
effects, as in Hedge et al. (2018). The model-based estimates of reli
ability that we obtained were largely consistent with theoretical ex
pectations – e.g., visual contrast has highly reliable effects on a range of 
eye movement measures – while the simple effect correlations were low 
across the board. Moreover, the model-based estimates were largely 
consistent with the results of likelihood ratio tests establishing that in
clusion of by-subject slopes do improve the fit of certain models. As 
noted by Rouder et al. (2019), model-based estimates of reliability, or of 
correlations between two effects, will often be highly uncertain in the 
absence of truly enormous quantities of data. Nevertheless, the estimates 
for certain effects in the present experiments were at least precise 
enough to ascertain that the reliability was on one side of zero. 

Conclusions 

The main substantive conclusion of the present study is that while 
individual differences in some effects of experimental variables on eye 
movements in reading are fairly reliable - effects of visual contrast, and 
the effect of word frequency on raw gaze duration - individual differ
ences in other effects are much less reliable than might be hoped, from 
the perspective of individual difference studies. In particular, individual 
differences in the effect of a word’s predictability are not reliable, and 
frequency effects on other measures are also not very reliable. 
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