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Keywords: This study assessed the reliability of individual differences among fluent adult readers in the effects of four

Eye movements variables - word frequency, predictability, visual contrast, and font difficulty — on eye fixation duration measures,

Ee;a.dgl.lg. word skipping probability, and regression probability. Split-half reliability was computed in a reanalysis of data
eliability

from two large, previously published experiments (Staub, 2020) by correlating simple effects in two halves of
each experiment (e.g., Hedge, Powell, & Sumner, 2018) and by estimating, in the context of mixed-effects
models, a correlation parameter between by-subject slopes for each half (Rouder & Haaf, 2019). The reli-
ability of the effects was generally low, though the second of these methods revealed a few notable exceptions.
First, the effects of visual contrast were quite reliable, as expected based on presumed individual differences in
contrast sensitivity. Second, the frequency effect on gaze duration was also reliable, but only when raw (as
opposed to log) gaze duration was used as the dependent measure. The effect of predictability demonstrated poor
reliability for all dependent measures. Model comparison confirmed that model fit was improved by inclusion of
by-subject slopes for those effects that showed substantial reliability. These results have implications for the
feasibility of studies on individual differences in eye movements in reading, as only experimental effects that

Individual differences

demonstrate substantial reliability are good candidates to be explored in individual difference studies.

Introduction

We have learned a great deal about the factors that influence how a
reader’s eyes progress. The eyes spend longer on an infrequent word
than on a frequent one (e.g., Rayner & Duffy, 1986; Staub, White,
Drieghe, Hollway, & Rayner, 2010), and longer on a word that is not
predictable based on its preceding context than on one that is predict-
able (e.g., Ehrlich & Rayner, 1981; Staub, 2011). These two factors also
influence the probability that a word is skipped altogether, rather than
directly fixated. Fixations on a word are longer when text is faint (e.g.,
Reingold & Rayner, 2006; White & Staub, 2012), and when readers are
denied parafoveal preview, i.e., when they are not able to see the word
while fixating the previous word (e.g., Schotter, Angele, & Rayner,
2012). In addition, the forward progress of the eyes is rapidly disrupted
when a word is not easily integrated into a representation of the sen-
tence’s syntactic structure (e.g., Frazier & Rayner, 1982) or meaning (e.
g., Rayner, Warren, Juhasz, & Liversedge, 2004). All of these findings
have informed theories of the perceptual, cognitive, and linguistic

processes involved in reading.

These findings have been established by means of the within-subject
experimental design that dominates cognitive psychology, in which each
subject is exposed to a number of trials at each level of a critical
experimental variable. For example, each subject will read a number of
sentences containing a target word that is high in frequency, as assessed
by corpus counts, and an equal number containing a target word that is
low in frequency, where the target words are matched on other variables
such as word length and predictability. The frequency effect on the mean
of fixation duration measures, or on the probability that a word is
skipped, is established by means of a statistical model in which experi-
mental subjects are treated as levels of a random factor, allowing for
statistical generalization to a population of readers.

Unsurprisingly, the group-level effect of a variable such as word
frequency obscures variation in the effects shown by individual subjects.
If, for example, the mean frequency effect on gaze duration (the sum of a
reader’s eye fixations on a word, on first pass reading) is 30 ms in a
particular experiment, computed from a 250 ms mean for high

* Thanks to audiences at the Language and Cognition Brown Bag, Department of Psychological Sciences, University of Connecticut; the Language and Cognition
Colloquium, Department of Psychology, Harvard University; and the UMass Psycholinguistics Workshop. Thanks also to Chuck Clifton and Brian Dillon for helpful
discussion, and to Marc Brysbaert for exceptionally thoughtful comments on an earlier version. This work was supported by a grant from the U.S. National Science
Foundation (BCS 1732008). Materials, data, and analysis scripts are available at: https://doi.org/10.17605/0SF.10/BNAVZ.

E-mail address: astaub@umass.edu.

https://doi.org/10.1016/j.jm1.2020.104190

Received 10 February 2020; Received in revised form 5 November 2020; Accepted 7 November 2020

Available online 21 November 2020
0749-596X/© 2020 Elsevier Inc. All rights reserved.


https://doi.org/10.17605/OSF.IO/BNAVZ
mailto:astaub@umass.edu
www.sciencedirect.com/science/journal/0749596X
https://www.elsevier.com/locate/jml
https://doi.org/10.1016/j.jml.2020.104190
https://doi.org/10.1016/j.jml.2020.104190
https://doi.org/10.1016/j.jml.2020.104190
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jml.2020.104190&domain=pdf

A. Staub

frequency words and a 280 ms mean for low frequency words, for some
subjects the frequency effect will be very large, perhaps greater than 60
ms, and for some subjects the frequency effect will be rather small, or
even nonexistent. Indeed, it is typical for a few subjects to show a
reversed effect, with a longer average reading time on high frequency
words.

While interest in the sources of this individual variability is not new
(e.g., Ashby, Rayner, & Clifton, 2005; Calvo, 2001; Chace, Rayner, &
Well, 2005; Kennison & Clifton, 1995), the number of studies focusing
on this issue has increased dramatically in recent years. These studies
have examined how various effects on eye movements in reading may be
modulated by readers’ working memory capacity (e.g., Kuperman & Van
Dyke, 2011; Traxler, 2007; Traxler et al., 2012), their reading skill (e.g.,
Kuperman & Van Dyke, 2011; Slattery & Yates, 2018; Taylor & Perfetti,
2016; Veldre & Andrews, 2014, 2015a, 2015b, 2016), and their lan-
guage experience (e.g., Falkauskas & Kuperman, 2015; Gordon, Moore,
Choi, Hoedemaker, & Lowder, 2019; Schmidtke, Van Dyke, & Kuper-
man, 2018; Whitford & Titone, 2012). Early studies often used a two-
group design, sometimes based on a median split of an individual dif-
ference variable (e.g., Ashby et al., 2005), but many recent studies have
used mixed-effects regression models to explore the relationship be-
tween individual difference variables and experimental effects of in-
terest, across the full range of the individual difference variables.

This research requires a critical assumption that is rarely made
explicit. It is only possible to meaningfully assess the relationship be-
tween an individual difference variable, such as working memory or
language experience, and the size of an experimental effect, such as the
effect of word frequency, if the observed variability in the size of the
effect reflects stable differences between individuals. In other words,
differences between individuals in the size of the effect must be reliable,
in the psychometric sense. The effect should demonstrate reasonably
high split-half reliability, which is the correlation between the effects
shown by individual subjects in two halves (divided by order or by, e.g.,
even vs. odd trials) of a testing session, or test-retest reliability, which is
the correlation between individuals’ effects in separate testing sessions.
Poor reliability indicates that much of the observed variability in the size
of the effect is not due to real differences between individuals, but to
statistical noise. Researchers have offered guidelines, though not always
consistent ones, regarding the level of reliability that is necessary in
order for a measure to be useful in individual differences research.
Enkavi et al. (2019) cite a ‘common criterion’ of .75 test-retest reli-
ability, while Hedge, Powell, and Sumner (2018) remark that .6 is often
considered ‘good’. The quantitative relationship between reliability and
the magnitude of observable correlations between measures has long
been recognized (Nunnally, 1970; Spearman, 1904), as have the con-
sequences of poor reliability for the statistical power of individual dif-
ference studies (e.g., Hedge et al., 2018).

The goal of the present study is to assess the reliability of individual
differences in some of the most robust linguistic effects on eye move-
ments in reading, the effects of word frequency and predictability, as
well as the reliability of individual differences in the effects of visual
contrast (e.g., White & Staub, 2012) and font difficulty (Rayner, Reichle,
Stroud, Williams, & Pollatsek, 2006). We reanalyze data from two large-
scale eye movement experiments in which these variables were facto-
rially manipulated (Staub, 2020).

Several recent empirical and methodological developments inform
the present work. In a recent but already widely cited study, Hedge et al.
(2018) suggested that many extremely robust — i.e., replicable — cogni-
tive effects, such as the Stroop effect, demonstrate disappointingly poor
reliability. Hedge et al. had participants complete a very large number of
trials in seven tasks (e.g., 240 in each of the congruent, incongruent, and
neutral conditions of the Stroop task), in each of two sessions. The
Intraclass Correlation Coefficient between the sessions (a measure of
reliability on the same scale as the Pearson correlation, which we report
in the present article) ranged widely across the critical effects. But even
with such a large number of trials per subject these reliabilities rarely if
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ever reached the desirable range, as the maximum reliability of any RT
effect was .70, for the Posner cueing task (Posner, 1980), and for many
of the tasks the reliability of RT effects was very low; in the Navon
global-local task (Navon, 1977), for example, the reliability of the RT
effects was near 0.

Hedge et al. (2018) interpreted these findings as reflecting a ‘reli-
ability paradox’: Effects that are large and highly replicable, at the group
level, will often show poor test-restest or split-half reliability. This is for
a simple mathematical reason. Part of what makes an effect replicable at
the group level, and makes it a ‘large’ effect based on standardized
measures of effect size such as Cohen’s d, is that subjects do not show
much variation in their response to the experimental manipulation. As a
result:

[I]t should not be assumed that robust experimental paradigms will
translate well to correlational studies. In fact, they are likely to be
sub-optimal for correlational studies for the same reasons that they
produce robust experimental effects. Our findings, as well as obser-
vations from elsewhere in the literature, indicate that this challenge
currently exists across most domains of cognitive psychology and
neuroscience (p. 1177; original italics).

But as Hedge et al. also point out, it is not impossible for an effect that
is highly replicable, at the group level, to show reliable between-subject
variation; it is an empirical question, for any effect of interest, whether
this situation does obtain.

Recently, however, Rouder and Haaf (2019; see also Kliegl, Wei,
Dambacher, Yan, & Zhou, 2011; Rouder, Kumar, & Haaf, 2019) have
suggested that this picture is unnecessarily pessimistic. Rouder and Haaf
critique the method used to assess reliability by Hedge et al. (2018) and
many others, suggesting that this method systematically underestimates
the true reliability of experimental effects. They argue that an alterna-
tive statistical approach is both theoretically justified and likely to result
in higher reliability estimates.

Hedge et al. (2018) deployed a standard method in which the data
for each subject are aggregated into a single value for each session. For
example, each subject’s Stroop effect is measured as a single difference
score: mean incongruent RT — mean congruent RT. The correlation be-
tween subjects’ difference scores in the two sessions is the measure of
reliability. It is important to note that with this method, the observed
reliability of an experimental effect is strongly related to the number of
trials that each subject completed in each condition, with reliability
increasing as the number of trials increases. This is because of the
relationship between sample size and the variability of sample means. As
sample size (i.e. number of trials per condition) increases, the subject’s
mean RT in each of the two critical conditions will vary less around the
subject’s ‘true’ mean, and the difference score that measures the Stroop
effect will vary less around the subject’s ‘true’ difference score. Even if
an effect would be highly reliable in the limit - when each subject is
exposed to a very large number of trials in each condition - reliability
may be quite poor with a smaller number of trials, as the measure of the
effect in each session, or in each half of a session, will vary substantially
around the subject’s true effect. See Miller and Ulrich (2013) for
extensive discussion and modeling of how the reliability of a response
time effect depends on trial numbers, under varying assumptions about
the mechanisms underlying the effect.

Rouder and Haaf (2019) propose, instead, to estimate individual
subject effects using hierarchical models such as the linear or logistic
mixed-effects models that are familiar to many psycholinguists (Baayen,
Davidson, & Bates, 2008). When the random effects in such a model
include by-subject slopes for an experimental effect, each slope reflects
the model’s estimate of how the effect for an individual subject differs
from the overall effect across subjects, i.e., the fixed effect. Critically, the
model simultaneously estimates trial noise: trial-to-trial variability that
is not related to the subject differences themselves. As a result, the
model’s estimates of individual subject effects will be less variable than
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the non-model-based estimates of the same effects, as the model attri-
butes some of the variability in subjects’ effects to trial noise. This is
known as model-based shrinkage or regularization (Efron & Morris,
1977). At the same time, because trial noise has been excluded from
these model-based estimates, the estimates can be expected to be more
reliable than non-model-based estimates such as a difference between
condition means, and to be less dependent on the number of trials than
the corresponding non-model-based estimates. Reliability of model-
based estimates of individual subject effects can be directly estimated
by a separate model parameter estimating the correlation between by-
subject effects in two sessions, or two halves of a session. If the hierar-
chical model is Bayesian, we will also have information about the pre-
cision of this reliability estimate in the form of the full posterior
distribution of the correlation parameter. Note that a model-based es-
timate of a correlation between subject effects, as suggested by Rouder
and Haaf (2019), is not expected to be identical to the hand-computed
correlation between model estimates of subject effects. Kliegl, Masson,
and Richter (2010) illustrate by means of simulation that the former
method accurately recovers known correlations, while the latter method
exaggerates these correlations.

Rouder and Haaf (2019) demonstrate these points by means of a
reanalysis of the Hedge et al. (2018) data. When Stroop effect reliability
is estimated based on a small quantity of data - only one of the five
blocks of trials in each session - the original non-model-based method
deployed by Hedge et al. reveals almost no reliability at all (.10), while
the posterior mean of the correlation parameter in a Bayesian hierar-
chical model reveals modest reliability (.31). When all the data are used,
the non-model-based method reveals reliability of .55, while the model-
based method reveals reliability of .72. It is important to note, however,
that the uncertainty of the critical correlation parameter in Rouder and
Haaf’s models is substantial, especially when the quantity of data is
limited. This point will be relevant to the present study, as well.

Informed by this recent literature, here we assess reliability in
several ways. First, we use the traditional method of calculating the
correlation between subjects’ simple effects in two halves of each
experiment, as in Hedge et al. (2018). Second, we fit Bayesian hierar-
chical mixed-effects models that estimate subject effects in each half and
explicitly estimate the correlation between the effects for the two halves
(Rouder & Haaf, 2019). Finally, we also directly assess the evidence for
variation between subjects in the size of each effect by determining the
extent to which including by-subject slopes improves the fit of hierar-
chical mixed-effects models, when compared to models without by-
subject slopes. While the question of whether to include a set of
random slopes in a mixed-effects model is usually considered in the
context of attempts to optimize power and reduce Type I error rate in
testing fixed effects (Barr, Levy, Scheepers, & Tily, 2013; Matuschek,
Kliegl, Vasishth, Baayen, & Bates, 2017), assessing the improvement in
model fit when by-subject slopes are included also addresses the sub-
stantive question of whether there is meaningful variation between
subjects in the size of an effect.

Before presenting the details of the present study, we discuss the one
previous study of eye movements in reading that has directly investi-
gated the reliability of individual subject effects. Carter and Luke (2018)
analyzed test-retest reliability of frequency, predictability, and word
length effects for 39 subjects reading 40 paragraphs from the Provo
Corpus (Luke & Christianson, 2016); 20 paragraphs were read in each of
two sessions, separated by about one month. Eye movement data for all
words in the corpus were included in the analysis, with the exception of
data contaminated by blinks and return sweep saccades and fixation
durations removed by outlier exclusion. The effects of each variable on
individual subjects’ eye movements were assessed by means of by-
subject slopes extracted from mixed-effects models of each eye move-
ment measure, fit separately to the data from each of the two sessions.
The correlation between by-subject slopes extracted from the separate
models of the two sessions was the reported measure of reliability. As
noted above, this method is not equivalent to model-based estimation of
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a correlation parameter (Kliegl et al., 2010).

The central results were as follows. For first fixation and gaze
duration, the effects of all three predictors showed reliability above r =
.6, with the highest reliability (r = .78) appearing for the effect of pre-
dictability on first fixation duration. The reliability of the effects on
skipping probability and regression probability were all above r = .5,
with the effect of predictability on regression probability demonstrating
the highest reliability (r = .64). In sum, based on these results it would
appear that individual differences in the effects of length, frequency, and
predictability are all at least moderately reliable, for all eye movement
measures.

However, the interpretation of these reliabilities should be qualified
by an important caveat. The three variables assessed by Carter and Luke
(2018) are strongly intercorrelated in natural texts. Shorter words are
both more frequent and more predictable, and more frequent words are
more predictable (e.g., Piantadosi, Tily, & Gibson, 2011; Smith & Levy,
2011). Indeed, Luke and Christianson (2016) demonstrated that within
the Provo Corpus itself, the predictability of a word is significantly
related to both word frequency and word length. Moreover, in natural
texts these variables are also correlated with other factors such as part of
speech and position in the sentence, as also demonstrated by Luke and
Christianson (2016). However, Carter and Luke (2018) assessed the
reliability of each effect in a separate statistical model, e.g., one model
included length as the only fixed effect, along with random slopes for
length, while a second model included frequency as the only fixed effect,
along with random slopes for frequency. Given the correlation between
the variables, any one of these models will not uniquely identify the
effect of one variable, but will instead identify some combination of the
effects of all three variables. Even if more complex models were used to
simultaneously estimate the reliability of the effects of the three critical
variables, interpretation would be complicated by, for example, the fact
that almost all of the fifty most frequent words in English are very short
closed-class words such as prepositions, determiners, pronouns, and
conjunctions. In the present study, by contrast, the frequency, predict-
ability, and contrast/font difficulty variables are entirely uncorrelated,
and are uncorrelated with other variables such as part of speech, as the
present study reanalyzes data from experiments in which the variables
were factorially manipulated. Specifically, the predictability manipula-
tion was implemented by presenting the same word in two different
sentence contexts, while the frequency manipulation compared high-
and low-frequency words that were closely matched in predictability, as
well as word length and part of speech.

The results of one other existing study might also be taken to suggest,
albeit indirectly, that the frequency effect is highly reliable. Schilling,
Rayner, and Chumbley (1998) addressed the question of how word
frequency effects in the lexical decision and naming tasks compare to
frequency effects on eye movements in reading, by having each indi-
vidual subject complete a pair of tasks. Schilling et al. found correlations
of about .54 between the size of a subject’s frequency effect on mean
gaze duration and both the size of the frequency effect on lexical deci-
sion RT and the size of the effect on naming RT. These correlations were
obtained despite the fact that subjects read only 24 words at each level of
word frequency, in each task. Observed correlations of this magnitude
are only possible if individual differences in each of the two correlated
effects (e.g., the frequency effect on gaze duration and on lexical deci-
sion RT) are highly reliable; we return to this point in the General
Discussion.

However, there is an idiosyncratic feature of the Schilling et al.
(1998) study that has, to our knowledge, not been noted in the litera-
ture. Subjects did not merely read sets of high-frequency and low-
frequency words in each of two tasks; they read the very same 24
high-frequency and 24 low-frequency words in the two tasks. Thus, what
is demonstrated to be consistent across tasks, in the Schilling et al. study,
is not subjects’ frequency effect, in general, but rather their difference in
responses to a specific set of high- and low-frequency words. Arguably, it
is unsurprising that a subject who responds to a particular word quickly
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(or slowly) in one task also responds to the same word quickly (or
slowly) in another task.

The remainder of this paper proceeds as follows. In the next section,
we provide an overview of the data sets from Staub (2020) that we
reanalyze in the present study. In the following section, we illustrate that
individual differences in basic eye movement measures such as mean
first fixation duration (as opposed to experimental effects on these
measures) show very high reliability, confirming several previous
studies. In the next three sections we carry out the three reliability an-
alyses that we have outlined above. In the General Discussion, we turn to
the implications of the results of these analyses for our understanding of
experimental effects on eye movements in reading, and for individual
difference studies.

Overview of data sets

The two data sets that we use to assess reliability of eye movement
effects come from recent experiments published in Staub (2020). These
experiments were designed to investigate potential interactions between
word frequency, predictability, and visual contrast of the text (Experi-
ment 1) and between word frequency, predictability, and font difficulty
(Experiment 2). Data and experimental items are available at https://
doi.org/10.17605/0SF.I0/BNAVZ.

These data sets have several desirable characteristics for present
purposes. First, both experiments demonstrated large, statistically sig-
nificant group-level effects of all of the manipulated variables, repli-
cating a number of well-established effects in the literature. Below we
discuss the details of these group-level effects. Second, each experiment
included 80 trials at each level of each variable (e.g., 80 high-frequency
and 80 low-frequency target words), which is many more than in most
eye movement studies; we know of only a few studies that have used
similar trial numbers to investigate effects of frequency (e.g., Sheridan &
Reingold, 2013) or predictability (Staub & Benatar, 2013). Thus, the
split-half reliabilities that we compute here may be seen as establishing
an upper bound on the split-half reliabilities that would be obtained in a
typical experiment. They may even be regarded as optimistic estimates
of test-retest reliabilities, as in many eye movement studies there are
fewer than 40 trials at each level of a manipulated variable.

Third, the two experiments are identical with respect to their fre-
quency and predictability manipulations, as they use the same experi-
mental items. In effect, we are able to internally replicate reliability
estimates for the effects of frequency and predictability. Finally, each
experiment had a large number of participants, N = 80 in Experiment 1
and N = 92 in Experiment 2, and the participants in these experiments
were in many respects typical of adult participants in eye movement
experiments. Participants were native English-speaking undergraduates
at the University of Massachusetts Amherst, who self-reported no history
of reading or language disorder, and normal or corrected-to-normal
vision. UMass Ambherst is a large, moderately selective public univer-
sity that in 2019 admitted 64% of applicants. The first and third quar-
tiles of the SAT score distribution of admitted students in 2019 were
1220 and 1380, respectively.

Subjects in both experiments read 160 critical sentences, which were
adopted from Kretzschmar, Schlesewsky, and Staub (2015). In each
sentence, a target word’s frequency and predictability were manipu-
lated, such that each subject read 80 target words at each of two levels of
frequency, 80 at each level of two levels of predictability, and 40 at each
level defined by the interaction of these variables. In Experiment 1, half
of the 40 sentences at each of these levels were presented in clear text
and half in faint text; in Experiment 2, half were presented in Times New
Roman font and half in Old English font. In Experiment 1, 4.0% of trials
were removed due to blinks, track loss, or other error, leaving a total of
12,285 trials for analysis. In Experiment 2, 4.5% of trials were removed,
leaving 14,064 for analysis.

For the purposes of the split-half analyses that we present here, we
divide the sentences based on odd vs. even item numbers in the

Journal of Memory and Language 116 (2021) 104190

experimental script. Given the construction of these experimental
scripts,’ this split results in two halves that are perfectly balanced for
each subject, i.e., each half includes 80 items whose distribution
matches that of the 160 items as a whole, with 40 items at each level of
each variable. The even/odd item split does not reflect alternating
presentation of trials, as items were presented in a random order to each
subject, with the exception of blocking of the visual contrast and font
difficulty variables.

For the purposes of reliability analyses, we focus on four eye
movement measures. These include two reading time measures: first
fixation duration (the duration of a reader’s initial first-pass eye fixation
on a word) and gaze duration (the sum of all first-pass fixations on a
word, before leaving it). On many trials, first fixation duration and gaze
duration are identical; they will differ only if readers made an additional
fixation after the first, before leaving the word. We also analyze two
binary saccadic measures: skipping probability (the probability that a
word is skipped on first pass reading rather than directly fixated) and
regression probability (the probability that the reader’s initial inspec-
tion of a word ends with a saccade to the left, rather than to the right).
Together, these four measures present a fairly complete description of a
reader’s eye movements on her initial encounter with the target word. If
a word is skipped on first pass reading, that trial is excluded from the
computation of regression proportion as well as the fixation duration
measures. Thus, while the skipping analysis is based on an average of
154 trials per subject in Experiment 1 and 153 trials in Experiment 2,
after data exclusion, the other analyses, which also exclude word skips,
are based on an average of 120 trials per subject in Experiment 1, and
115 trials per subject in Experiment 2.

The group-level effects on the four eye movement measures, as
assessed based on the mixed-effects linear or logistic regression models
in Staub (2020), are shown in Table 1. The critical results are as follows.
The effects of frequency and predictability replicated many previous
studies: In both experiments, both variables had sizable and significant
effects on word skipping probability (in the range of a 4-5% effect, for
both variables, for both experiments; note that parameter estimates in
Table 1 are in log odds), and on both first fixation duration (approxi-
mately 20 ms effects, for both variables, in both experiments) and gaze
duration (effects between 28 and 38 ms). Low frequency and low pre-
dictability words were less likely to be skipped and induced longer
reading times. In addition, predictability, but not frequency, signifi-
cantly influenced regression probability in both experiments, with low
predictability words inducing about 5% more regressions. As in most
previous studies (see Staub, 2015, for review), the frequency and pre-
dictability effects did not significantly interact in any measure.

The visual contrast manipulation in Experiment 1 strongly influ-
enced both of the reading time measures, by about 51 ms in first fixation
duration, and 62 ms in gaze duration, but did not significantly affect
either skipping probability or regression probability. There were also
statistically significant contrast-by-frequency interactions in the skip-
ping measure and the gaze duration measure. However, these were very
small effects, in opposite directions (the frequency effect on skipping
was smaller with faint text, but the frequency effect on gaze duration
was slightly larger with faint text), and neither would be significant if a
correction for multiple comparisons were applied. Thus, these in-
teractions should be interpreted with caution.

The font difficulty manipulation in Experiment 2 influenced the
reading time measures, by about 16 ms in first fixation duration and 32

1 Specifically, items 1-20 and 81-100 were low frequency, high predict-
ability; 21-40 and 101-120 were low frequency, low predictability; 41-60 and
121-140 were high frequency, high predictability; and 61-80 and 141-160
were high frequency, low predictability. Items 1-80 were presented in a
random order in the first block, and 81-160 in the second. The ordering of
visual contrast and font difficulty blocks was counterbalanced across subjects,
e.g., half of subjects read clear text first, and half read faint text first.
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Table 1
Mixed-effects model parameter estimates from Staub (2020). First Fixation and Gaze estimates are in ms; Skipping and Regressions estimates are in log odds; ***p <
.001; **p < .01; *p < .05.
Experiment 1 Experiment 2
First Fix Gaze Skipping Regressions First Fix Gaze Skipping Regressions
Predictability —.33%** .38HE* 46%**
Frequency ¢ —.30* —.01 .01
Contrast/Font Difficulty 61.95%** —.12 —-.12 32.34%%* —.417%%* -.08
Pred x Freq —1.45 .07 -.03 5.56 .06 -.17
Pred x Contrast/Font 7.19 .04 —.18 16.12** —.08 .01
Freq x Contrast/Font 9.68* .23% —.00 20.06** -.11 .02
Pred x Freq x Contrast/Font -2.50 —-.01 .20 —6.13 —.45%* .08

ms in gaze duration, as well as word skipping probability, by about 5%.
In addition, this manipulation interacted significantly with both pre-
dictability and frequency in the gaze duration measure, with both var-
iables having a larger effect on gaze duration when the text was
presented in Old English font. These interactions were substantial in size
(16-20 ms), and were also present in the go-past time measure, which
we do not analyze here. Thus, we regard these interactions as likely to
reflect real effects. However, we do not attempt to interpret an unpre-
dicted three-way interaction in the skipping measure.

Basic eye movement measures: Distributions, reliability, and
intercorrelations

Figs. 1 and 2 illustrate, for Experiments 1 and 2 respectively, the
distributions, across subjects, of skipping proportion, regression pro-
portion, and mean first fixation duration and gaze duration. There is
substantial variation in subjects’ saccadic behavior. Some subjects
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almost never skipped the target word, and some subjects skipped it over
50% of the time; some subjects almost never regressed from the target
word, and others regressed 40% of the time. There is also substantial
variation in fixation durations, with the lowest and highest mean gaze
durations differing by about a factor of two.

Code for reliability analyses in this and subsequent sections is
available at: https://doi.org/10.17605/0SF.I0/BNAVZ. The scatter-
plots in Figs. 3 and 4 illustrate the reliability of individual subject dif-
ferences in each of the four measures, in each experiment. All measures
show high split-half reliability; the lowest value is for regression pro-
portion (r = .75 in Experiment 1; r = .76 in Experiment 2), while the
other three measures show split-half reliability of at least .83 in both
experiments. In sum, there is substantial variability between subjects in
their basic eye movement behavior — the duration of their eye fixations,
the frequency with which they skip words, and the frequency with which
the make regressions - and these individual differences are highly reli-
able. These conclusions are entirely consistent with the conclusions of
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Fig. 1. Experiment 1 distributions of subject skipping and regression proportions, and first fixation and gaze duration means.
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Fig. 2. Experiment 2 distributions of subject skipping and regression proportions, and first fixation and gaze duration means.

several other studies, which have found reliable differences between
individuals in parameters such as mean fixation duration and saccade
amplitude, both across tasks (e.g., in reading and scene viewing; Hen-
derson & Luke, 2014; Rayner, Li, Williams, Cave, & Well, 2007) and
across separate sessions of a reading task (Carter & Luke, 2018; Dirix,
Brysbaert, & Duyck, 2019). Staub and Benatar (2013) also found sub-
stantial correlations between subjects’ mean fixation duration on a
target word in each experimental sentence and their fixation durations
on preceding and following words.

An interesting question is whether all four measures demonstrate
high reliability partly because of correlations among the measures
themselves. For example, if mean first fixation duration is strongly
correlated (either positively or negatively) with the tendency to skip
words, then as long as one of these measures is highly reliable, the other
will be, too. On the other hand, if fixation durations and skipping are
only weakly correlated at the subject level, or even uncorrelated, then it
is more notable that both measures are highly reliable, as this would
suggest that there is meaningful variation between readers on two
separate dimensions. To our knowledge, this issue has not been previ-
ously addressed.

Unsurprisingly, subjects’ mean first fixation duration and gaze
duration are very highly correlated (Experiment 1 r = .92, p < .001;
Experiment 2 r = .89, p < .001), due to their mathematical relationship,
i.e., these measures are identical on many trials. Of more interest are the
relationships between the fixation duration measures and the saccadic
measures. The fixation duration measures show a modest negative cor-
relation with skipping proportion (Experiment 1 r = —.20; p = .07 and r
= —.31; p < .01 for first fixation duration and gaze duration, respec-
tively; Experiment 2 r = —.27; p < .05 and r = —.41; p < .001 for first
fixation duration and gaze duration, respectively); readers who skip

more also have somewhat shorter fixation durations. Fixation durations
show essentially no correlation with regression proportion, in either
experiment, with r ranging between -.01 and .13. Finally, skipping
proportion and regression proportion show a modest positive correla-
tion (Experiment 1 r = .33; p < .01; Experiment 2 r=.17; p = .10), with
readers who skip more often also regressing somewhat more often.

In sum, there are weak correlations across subjects between skipping
and fixation durations, and between skipping and regressions; though
these relationships do not always reach significance, the trends are
consistent. Fixation durations and regressions appear to be largely in-
dependent. The fact that these relationships between measures are
either weak or nonexistent implies that the reliable differences between
readers on the skipping, regressions, and fixation duration measures are
not simply a reflection of a reliable difference on a single underlying
dimension. Readers show reliable differences on several largely inde-
pendent dimensions.

Reliability of Experimental Effects: Non-Model-Based Analysis

We now turn to estimation of the split-half reliability of individual
differences in the magnitude of the experimental effects: word fre-
quency, predictability, and visual contrast in Experiment 1, and word
frequency, predictability, and font difficulty in Experiment 2. In this
section we present non-model-based analyses, as in Hedge et al. (2018).

We begin by illustrating the distributions of the effects, across sub-
jects, in the data as a whole; see Figs. 5 and 6. For the fixation duration
measures, an effect is computed as the difference between condition
means, e.g., mean first fixation on low frequency target words minus
mean first fixation on high frequency target words. For the saccadic
measures, an effect is computed as the difference in proportions between
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Fig. 3. Relationships in Experiment 1 between subjects’ even- and odd-item skipping and regression proportions, and first fixation and gaze duration means.

the conditions, e.g., proportion of skips of low frequency words minus
proportion of skips of high frequency words; in this case, the effect tends
to be negative.

In all cases, the distribution of effects across subjects is unimodal and
fairly symmetrical. The variance of the experimental effects is consis-
tently much smaller than than the variance of the means of the fixation
duration and saccadic measures themselves, shown in Figs. 1 and 2.
With the exception of the visual contrast effect on reading times in
Experiment 1 (where every single subject showed a numerical effect in
the expected direction), in all cases there were some subjects who
showed reversed effects, e.g., longer reading times for high-frequency
words than low-frequency words. However, it is reasonable to assume
that all of these effects demonstrate what Rouder and Haaf (2018) call
dominance: For all subjects, the true effect is in the same direction. We
assume that no reader actually reads low-frequency words faster than
high-frequency words, or reads less predictable words faster than more
predictable words. If dominance does hold, then the observed effects
must overestimate the variability across subjects in the influence of the
each of these variables. For example, the effect of word frequency on
mean gaze duration in these experiments is about 35 ms, and if domi-
nance holds, the distribution of true subject effects is constrained to have
a lower bound of 0 ms. If we also assume that the distribution of true
subject effects is fairly symmetrical, the largest true subject effect would
then be about 70 ms. Thus, the range of the observed effects would
overestimate the range of the true effects by a factor of two or more.

Split-half correlations of these effects were computed based on the
even/odd item number split described above. In this non-model-based
analysis, the effect in each half was again computed simply as a differ-
ence in condition means or proportions, and split-half reliability is
simply the correlation between these effects in the two halves. These

correlations are shown in the Non-model-based columns of Table 2, as
well as on the scatterplots in Figs. 7 and 8. These split-half reliabilities
are uniformly low, with .47 (for the contrast effect on skipping) as the
maximum, and with several very near zero. Moreover, there is no
particular relationship between split-half reliability and the significance
or size of an effect at the group level. The numerically highest re-
liabilities are for the contrast effects on skipping and regressions, neither
of which reached significance at the group level. Some significant and
extremely large group-level effects show very low non-model-based
reliability. For example, visual contrast demonstrated a 51 ms effect
group-level effect on mean first fixation duration, while this effect has
split-half reliability of .22.

Reliability of experimental effects: Model-based analysis

To implement a model-based reliability analysis (Rouder & Haaf,
2019), we constructed a set of Bayesian mixed-effects models using the
brms package in R (Biirkner, 2017). The two fixed effects in each model
were the effects of a single experimental manipulation in even items and
in odd items. The effects in each half were coded with contrasts that
assigned .5 to one level of the critical factor and -.5 and the other, and
assigned O to the trials that were in the other half. For example, for the
effect of frequency in the even items, the even, low-frequency trials were
coded with .5, the even, high-frequency trials with -.5, and the odd trials
with 0. The random effects in each model included a by-subject inter-
cept, by-subject slopes for each of the two fixed effects, and parameters
for the three correlations among the intercept and the two slopes. Thus,
the general schema was as follows:
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Fig. 4. Relationships in Experiment 2 between subjects’ even- and odd-item skipping and regression proportions, and first fixation and gaze duration means.

brm(measure ~ even.effect 4+ odd.effect + (1 + even.ef-
fect + odd.effect|subject))

For the reading time measures these were linear models, and for the
skipping and regressions measures these were logistic models, i.e., with
a binomial link function. All models were fit with 4 chains, each with
4000 iterations, of which 2000 were warmup. The default priors were
used; in the case of the critical correlation parameters, this default is an
LKJ prior (Lewandowski, Kurowicka, & Joe, 2009) with eta = 1. It is
important to note that with this value of the eta parameter, the entire
range of correlations between —1 and 1 has roughly uniform probability.
With higher values of eta, values near —1 and 1 are regarded as unlikely.
Thus, the current choice of prior does not prevent very strong posterior
correlations, if they are justified by the data. All parameter estimates
had R-hat values no higher than 1.01, and all of the critical correlation
parameters had R-hat values of exactly 1, indicated good convergence.
The fixed effects in these models were not of primary interest, but it is
worth noting that these models confirmed all the effects reported in
Staub (2020), and as expected, there was no indication that the effects
differed in size in the two halves of the data.

For the reading time measures of first fixation duration and gaze
duration, we constructed two versions of each model, one using the raw
measure, and the other using the log measure. We note that the log
transformation clearly results in more nearly normal residuals, and
posterior predictive checks confirmed that the model predictions from
the log models were qualititatively good, while the predictions from the
raw models were not, as the predictions do not capture the right skew in
the raw fixation duration distributions. Nevertheless, we report both
models, as it will become clear below that there are some interesting
differences.

The posterior mean of the critical correlation parameter from each

model (i.e., the correlation between the subject-level estimates of even.
effect and odd.effect), along with the 95% HDIs of the posterior
distribution, are shown in Table 2, in the Model-based columns. We note,
first of all, that though the model-based reliability estimates are gener-
ally somewhat higher than the non-model-based correlations, this is not
universally true, and in many cases the difference in reliability is quite
small. We also note that the 95% HDIs are extremely wide, in many cases
spanning more than half of the potential range of the parameter from —1
to 1, and in a few cases spanning almost the entire range. Thus, the
models are highly uncertain about the value of the critical correlation
parameter (see Rouder et al., 2019, for discussion and analysis of this
phenomenon).

However, there are a few model-based estimates of reliability that
are (a) much higher than the corresponding non-model-based estimates,
(b) relatively high in absolute terms, and (c) have a 95% HDI that does
not include 0. These have been bolded in Table 2. The estimates of the
reliability of the effect of visual contrast on gaze duration were .64 in the
raw model and .72 in the log model, and the estimate of the reliability of
contrast on word skipping was .84. The effect of font difficulty on word
skipping was similarly reliable (.83). Finally, the reliability of the effect
of word frequency on raw gaze duration was relatively high in both
experiments: .68 in Experiment 1, and .75 in Experiment 2. Notably, the
reliabilities extracted from the models of log gaze duration are much
lower, with HDIs that include a large region of negative values. In the
General Discussion, we address the question of why reliability may be
higher in models of raw gaze duration.

In sum, computing model-based reliability does provide an indica-
tion that certain effects may be more reliable than the non-model-based
analysis would indicate. However, this is a limited set of effects. In
particular, the effect of predictability was not shown to be very reliable,
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Fig. 5. Experiment 1 distributions of effects of each of the three experimental manipulations on subject skipping and regression proportions, and first fixation and
gaze duration means.

using this analysis, and the effect of word frequency demonstrated Do Random Slopes Improve Model Fit?

substantial reliability only for the gaze duration measure - and even then

only for raw, as opposed to log, gaze duration. Visual contrast demon- As noted above, the question of the appropriate random effect
strated quite reliable effects on both gaze duration and skipping, and structure for a mixed-effects model is usually addressed in discussions of
font difficulty demonstrated a reliable effect on skipping. Type L error rate (Barr et al., 2013) or statistical power (Matuschek et al.,

2017), when the researcher’s primary interest is in testing the model’s
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Fig. 6. Experiment 2 distributions of effects of each of the three experimental manipulations on subject skipping and regression proportions, and first fixation and

gaze duration means.

fixed effects. In that context, it is of methodological but not theoretical
interest whether a model that includes a given set of random effects
results in an improvement in model fit over a model that does not.
However, a comparison of the fit of nested models differing in the
presence vs. absence of a set of by-subject slopes also addresses the
substantive issue that is the focus of the present study: Is variability in

the degree to which subjects show an effect attributable to genuine
subject differences, as opposed to random sampling variability? The null
hypothesis, exemplified in the model without by-subject slopes, is that
all subjects show an effect to exactly the same degree, and that observed
variability in effect size is due only to sampling variability.

The results of the analysis presented in the last section, which tested
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Split-half reliabilities of eye movement effects, computed based on correlations between simple effects in each half of the data, and based on correlation parameter in
mixed-effects models, as described in the text. Model-based estimate is posterior mean and 95% HDI; bold indicates HDI that does not include 0.

Experiment 1

Frequency

Non-model-based

Model-based

Predictability

Visual Contrast

Non-model-based

Model-based

Non-model-based

Model-based

First Fixation 22 Raw: .27[-.71, .93] .37 Raw: .33[-.72, .95] 22 Raw: .54[-.02, .94]
Log: .07[-86, .90] Log: .17[—.82, .92] Log: .44[—.22, .92]

Gaze Duration .36 Raw: .68[.06, .97] 31 Raw: .40[—.66, .96] .36 Raw: .64[.15, .96]
Log: .39[-.68, .95] Log: .28[-.78, .95] Log: .72[.34, .96]

Skipping .02 .18[-.76, .91] .37 .26[—.78, .94] .47 .84[.51, .99]

Regressions .01 .07[—.83, .89] .09 .05[-.85, .89] .40 .59[-.31, .97]

Experiment 2 Frequency Predictability Font Difficulty

Non-model-based Model-based Non-model-based Model-based Non-model-based Model-based

First Fixation .23 Raw: .48[—.45, .95] .20 Raw: .32[-.70, .94] 11 Raw: .18[-.72, .88]
Log: .51[-.53, .96] Log: .13[—.83,.90] Log: .16[—.80, .91]

Gaze Duration .35 Raw: .75[.32, .98] .14 Raw: .44[—.42, .95] .18 Raw: .47[—.33, .95]
Log: .44[-.53, .95] Log: .19[-.79, .92] Log: .52[-.39,.96]

Skipping .18 .31[-.71, .94] .14 0[-.87, .87] .39 .83[.50, .99]

Regressions .05 0[—.88, .87] —.01 —.10[—.90, .83] .03 0[—.88, .88]

the reliability of individual differences in each experimental effect,
should be related to the results from a comparison of models with and
without by-subject slopes. If there are consistent differences between
subjects across the two halves of an experiment in how strongly they
show an effect, then a model that explicitly takes account of individual
differences in effect size should fit the data better than one that does not.
However, if the reliability analysis does not conclude that there are
consistent differences between subjects across the two halves of an
experiment, modeling such differences in the data as a whole might not
improve model fit. Thus, we might expect, for example, that adding by-
subject slopes for the frequency effect to mixed-effects models of (raw)
gaze duration should result in an improvement in fit, as this effect
showed fairly reliable individual differences in the model-based anal-
ysis. However, by-subject slopes for the predictability effect on the same
measure may not result in much improvement in model fit, as individual
differences in the predictability effect did not demonstrate very
impressive reliability.

For each measure, we constructed a base model, using the Ime4
package (Bates, Machler, Bolker, & Walker, 2015), with the following
structure:

lmer (measure ~ freq + pred + stim + (1|subject))

This model includes fixed effects of the three variables, with the
levels of each variable coded as .5 and -.5, and subject intercepts. For the
skipping and regressions measures, a logistic regression model was
constructed. As in the model-based reliability analyses, we constructed
models of both raw and log-transformed fixation duration measures. We
omitted fixed effect interaction terms on the grounds that in our original
analysis, there were no frequency-by-predictability interactions, and
the only compelling interactions involving the contrast or font manip-
ulations were for gaze duration in Experiment 2. This base model was
then compared to three different larger models, each of which included
by-subject slopes for one of the three variables, e.g.

lmer (measure ~ freq + pred + stim + (1|subject) + (0 +
freqg|subject))

Each of these six-parameter models was then compared to the five-
parameter base model by means of the anova function for model
cornparison.2

2 For comparability between the analyses presented in this section and the
preceding sections, we omit item-level random effects. Including by-item in-
tercepts in both the base model and each larger model does not result in notable
changes to the qualitative patterns discussed in this section.

11

In Table 3, we present the estimated standard deviation of the by-
subject slopes in the larger models, and the p-value for the likelihood
ratio test (LRT) comparing each of the larger models with corresponding
base model. We do not use these p-values to make a binary decision as to
whether by-subject slopes are justified, but rather to quantify the
strength of the evidence against the smaller model; the LRT p-value
denotes the probability, under the null hypothesis of no true subject
variation, of an improvement in likelihood as large as the observed
improvement with the larger model. Looking across rows, it is evident
that the standard deviations of the slopes and the corresponding LRT p-
values are related: The larger the estimate of the standard deviation of
subject slopes, the smaller the LRT p-value. For example, in the analysis
of raw first fixation duration for Experiment 1 (the top row), the esti-
mate of the standard deviation of the subject slopes is smallest for fre-
quency and largest for visual contrast, and the model comparison p-
value is largest for frequency and smallest for visual contrast. Predict-
ability falls in the middle for both measures.

The general conclusions that emerge from this analysis are as fol-
lows. For the effect of predictability, while the model comparison favors
the inclusion of by-subject slopes for some measures in Experiment 1,
the comparisons are quite equivocal in Experiment 2. Importantly, there
is no measure for which a model that includes by-subject slopes for
predictability is clearly favored in both experiments. Turning to fre-
quency, there is only one measure, raw gaze duration, in which the
larger model is clearly favored in both experiments. This is precisely the
measure that demonstrated a reliable frequency effect, in both experi-
ments, in the model-based reliability analysis. Just as the reliability of
the frequency effect was unimpressive with log gaze duration as the
dependent measure, it is also the case that the LRT does not unequivo-
cally favor the model with by-subject slopes for frequency when log gaze
duration is the dependent measure, especially in Experiment 2.

The effects of visual contrast (Experiment 1) on gaze duration and
skipping, and the effect of font difficulty on skipping (Experiment 2)
demonstrated impressive model-based reliability. We also see that for
these measures, the model that includes by-subject slopes is clearly
favored over the base model. In addition, by-subject slopes for visual
contrast are clearly favored in the model of first fixation duration, and
by-subject slopes for font difficulty are clearly favored in the model of
gaze duration. These results, too, are broadly consistent with the reli-
ability analysis; though the model-based reliability estimates for these
effects had HDIs that spanned 0, the mean of the posterior was relatively
high, in the neighborhood of .5.

In sum, the present analysis and the model-based analysis of reli-
ability provide converging evidence for a set of conclusions about the
stability, or lack thereof, of individual differences in the size of the
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Fig. 7. Relationships in Experiment 1 between subjects’ effects of experimental manipulations in even and odd items, based on non-model-based analysis.

various effects. Individual differences in the effects of predictability slopes resulted in only equivocal improvement in model fit. Both vi-
showed unimpressive reliability, and by-subject slopes for predictability sual contrast and font difficulty demonstrated reliable effects on a
do not consistently improve model fit, across the two experiments. In- number of measures, and by-subject slopes for these effects are clearly
dividual differences in the effect of frequency on raw gaze duration are warranted.

quite reliable, and adding by-subject slopes for frequency to models of
raw gaze duration does clearly improve model fit. However, effects of
frequency on other measures were less reliable, and adding by-subject
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Fig. 8. Relationships in Experiment 2 between subjects’ effects of experimental manipulations in even and odd items, based on non-model-based analysis.

General discussion

The present study confirms a number of previous studies (e.g., Carter
& Luke, 2018; Dirix et al., 2019) in finding that individual differences in
basic eye movement measures such as mean first fixation duration and
skipping proportion are highly reliable. However, the present study
finds quite poor split-half reliability of the effects of word frequency,
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predictability, visual contrast, and font difficulty, as computed by the
traditional method of correlating simple effects in each half of the data.
Computing split-half reliability by modeling the correlations between
effects in each half, within the context of a mixed-effects model, also
resulted in low reliability estimates for many effects, but did uncover
substantially higher estimates in several cases: Effects of visual contrast
and font difficulty on several eye movement measures, and the effect of
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Table 3
Standard deviation of by-subject slopes for mixed-effects models, and LRT p-values for comparison of models with and without by-subject slopes, as described in the
text.
Experiment 1 Frequency Predictability Visual Contrast
Slope sd Model-comparison p Slope sd Model-comparison p Slope sd Model-comparison p
First Fixation Raw: 6.46 Raw: .225 Raw: 9.60 Raw: .012 Raw: 14.76 Raw: <.001
Log: .018 Log: .516 Log: .032 Log: .055 Log: .052 Log: <.001
Gaze Duration Raw: 15.09 Raw: .001 Raw: 11.00 Raw: .059 Raw: 24.83 Raw: <.001
Log: .039 Log: .029 Log: .04 Log: .021 Log: .072 Log: <.001
Skipping 129 .505 .233 .074 482 <.001
Regressions .218 279 .016 .995 .346 .036
Experiment 2 Frequency Predictability Font Difficulty
Slope sd Model-comparison p Slope sd Model-comparison p Slope sd Model-comparison p
First Fixation Raw: 11.57 Raw: .006 Raw: 9.03 Raw: .072 Raw: 9.91 Raw: .034
Log: .046 Log: .001 Log: .028 Log: .18 Log: .033 Log: .064
Gaze Duration Raw: 16.4 Raw: .001 Raw: 9.56 Raw: .229 Raw: 17.04 Raw: <.001
Log: .033 Log: .172 Log: .035 Log: .124 Log: .055 Log: <.001
Skipping 214 .052 .049 .908 .403 <.001
Regressions .119 741 0 1 0 .999

word frequency on raw gaze duration in both experiments. Likelihood
ratio tests comparing mixed-effects models with and without a given set
of by-subject slopes largely confirmed the model-based reliability
analysis: Including by-subject slopes for visual contrast and font diffi-
culty improved model fit for several measures, and among the predict-
ability and frequency effects, the only by-subject slopes that were clearly
justified in both experiments were slopes for the frequency effect on raw
gaze duration.

Thus, we come to a quite different conclusion from the one previous
study (Carter & Luke, 2018) that has investigated the reliability of in-
dividual differences in frequency and predictability effects on eye
movements. While that study found that these variables, as well as word
length, had moderately to highly reliable effects on a wide range of eye
movement measures, we find that predictability effects are not very
reliable, regardless of the measure in question, and the frequency effect
is reliable only for raw gaze duration. This difference may be due to the
fact that in the present study, the frequency and predictability variables
were uncorrelated with each other and with other variables that are
known to influence eye movements, enabling truly independent tests of
the reliability of each effect. Subjects in the Carter and Luke (2018)
study read natural texts where frequency, predictability, and word
length are correlated with each other, as well as with other variables
such as part of speech and position in a sentence.

We first note that our fairly high model-based estimates of the reli-
ability of the visual contrast effects — as high as .84, for the effect of
contrast on word skipping — may be seen as a successful ‘sanity check’.
The visual contrast manipulation should have different effects on
different readers, due to genuine individual differences in contrast
sensitivity (e.g., Legge, Rubin, & Luebker, 1987; Rubin & Legge, 1989).
Had we been unable to identify reliable effects of visual contrast, we
would have been skeptical about the suitability of our methods for
assessing reliability at all. The fact that reliable effects of contrast were
obtained in the model-based analysis, but not in the non-model-based
analysis, reinforces the argument for model-based analysis of reli-
ability (Rouder & Haaf, 2019).

It is less clear whether we should have expected reliable effects of
font difficulty, predictability, or frequency. We focus our discussion on
the latter two effects, which have been central to models of eye move-
ment control (e.g., Reichle, Rayner, & Pollatsek, 2003) and to much
theorizing about lexical processing in reading (e.g., Norris, 2006). We
begin by discussing the effect of predictability. It has been argued that
there are genuine differences between readers in how ‘predictive’ they
are, and that these differences are related to reading skill or reading
experience. On the one hand, some authors have suggested that the use
of prediction in language processing increases with reading experience
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and skill (e.g., Huettig & Pickering, 2019). On the other hand, it has also
been argued that less fluent readers rely strongly on prediction as
opposed to bottom-up word identification (Stanovich, 1980). But the
low reliability of individual differences in predictability effects on eye
movements suggests that whatever the direction of the relationship,
inter-reader differences in the use of prediction are very modest
compared to the variability in the predictability effect from trial to trial.
One reader may strongly predict the ‘predictable’ target word in one
sentence, while only weakly predicting the ‘predictable’ target word in
another sentence; these prediction strengths may be reversed for a
different reader. Eye movement behavior when a reader encounters any
specific target word may reflect the interaction of a specific reader’s
language experience with the context established by the item in ques-
tion, more than global differences between readers in how strongly they
predict upcoming words.

The low reliability estimates emerging from the present study imply
that it should actually be quite difficult to detect any relationship be-
tween the size of a reader’s predictability effect and other individual
difference variables. (Below, we discuss in more detail the relationship
between the reliability of an effect and the observable correlation be-
tween that effect and other measures.) Several studies have assessed
whether predictability effects on eye movements are modulated by
either reading skill (Ashby et al., 2005; Slattery & Yates, 2018) or age
(Choi, Lowder, Ferreira, Swaab, & Henderson, 2017; Rayner et al.,
2006). Ashby et al. (2005, Experiment 2) compared groups of skilled and
average readers, and did not find significant group-by-predictability
interactions. Slattery and Yates (2018) used a reading skill measure as
a continuous predictor, and did find that less proficient readers showed a
larger effect of predictability on gaze duration. However, no interaction
was found in the skipping measure, and no interactions were observed
with a spelling ability measure. Rayner et al. (2006) failed to find sig-
nificant differences in predictability effects between older and younger
readers. Choi et al. (2017), on the other hand, did report two just-
significant (t = 1.98 and t = 2.04) interactions between predictability
and age group, with older adults showing a larger effect of predictability
on gaze duration and regression path duration, a measure that includes
regressive re-reading. Interactions were not observed in other measures,
including two other reading time measures and word skipping. Taken as
a whole, it is questionable whether this literature supports any conclu-
sion regarding the relationship between either reading skill or age and
the predictability effect.

By contrast, the present results indicate that there are more reliable
differences between readers in the effect of word frequency on their eye
movements. However, it is only the gaze duration measure — and indeed,
only raw gaze duration - that demonstrates such reliability. Why should
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the effect of word frequency be more reliable than the effect of pre-
dictability? And why should it be in raw gaze duration, as opposed to
other eye movement measures, that individual readers show reliable
effects of frequency?

Evidence from a range of experimental paradigms (e.g., Chateau &
Jared, 2000), including eye movement studies (Gordon et al., 2019;
Kuperman & Van Dyke, 2011; Taylor & Perfetti, 2016), indicates that
the word frequency effect diminishes as readers gain skill and experi-
ence. Explanations for this relationship vary; see Kuperman and Van
Dyke (2013) for review of evidence and discussion of theoretical issues.
One possibility is that skilled, experienced readers have developed fully
specified orthographic representations even for low-frequency words,
diminishing the functional difference between low- and high-frequency
words. What is most relevant for present purposes is that this relation-
ship is much better established than any relationship between reading
skill or experience and predictability effects. If individual differences in
the frequency effect on eye movements in reading were not at least
moderately reliable, relationships between reading skill or experience
and the size of a reader’s frequency effect should have been difficult or
impossible to detect.

Interestingly, there is evidence that it is the gaze duration measure
that most clearly demonstrates a relationship between reading experi-
ence and the size of the frequency effect. Gordon et al. (2019) rean-
alyzed data from 546 subjects in eye movement experiments that were
initially conducted to investigate a range of psycholinguistic questions.
All subjects completed an Author Recognition Test (ART) and a Rapid
Automatized Naming task (RAN). Gordon et al. assessed how effects of
both word frequency and word length on eye movements may be
modulated by subjects’ scores on these two measures. They found sig-
nificant interactions between the frequency effect on gaze duration and
a subject’s ART score, with subjects who recognized more authors
(indicating more extensive reading experience) showing a smaller fre-
quency effect. Notably, this interaction was not evident in any of their
other reported measures, despite the very large size of the study, and
despite the fact that the group-level frequency effect was evident in most
of these measures. For example, both word frequency and subjects” ART
scores had substantial effects on word skipping, but an interaction be-
tween the two was not in evidence. Based on the results of the present
study, this discrepancy is expected, as it may be the case that only in the
gaze duration measure are there reasonably reliable individual differ-
ences in the frequency effect.

Why gaze duration, as opposed to other measures, and why raw as
opposed to log gaze duration? In both Experiments 1 and 2, raw gaze
duration was the only measure in which the model-based reliability of
the frequency effect was clearly on one side of zero, and where the mean
of the posterior distribution for the estimate was in the range that is
usually considered ‘good’: .68 in Experiment 1 and .75 in Experiment 2.
Raw gaze duration was also the only measure in which by-subject slopes
for the frequency effect clearly improved model fit in both experiments.
By-subject slopes for first fixation duration improved model fit (based on
model comparison p-value < .05) in Experiment 2, but not Experiment 1,
and by-subject slopes for log gaze duration improved model fit in
Experiment 1, but not Experiment 2.

In the E-Z Reader Model of eye movements in reading (Reichle et al.,
2003), gaze duration is more consistently sensitive to word frequency
than is any other measure. Regressions are not posited to be sensitive to
frequency at all (see Abbott & Staub, 2015, for discussion), which is
consistent with the lack of main effect of frequency on the regression
measure in either experiment. Word skipping is sensitive to frequency
because on a minority of trials, an early stage of word recognition known
as L1, the duration of which is sensitive to frequency, may complete
while the eyes are still on word n-1, and a planned saccade into word n
may then be cancelled, resulting in a skip of word n. However, on most
trials L1 does not complete rapidly enough for this to happen, regardless
of word n’s frequency, so word n receives a direct fixation. The duration
of the first fixation on word n is then sensitive to word frequency on the
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majority of remaining trials, as this duration is a function of the duration
of L1. However, on some proportion of trials the reader rapidly termi-
nates the first fixation in order to refixate the word in a more ideal
location, and in this case only gaze duration, not first fixation, will be
sensitive to frequency. Thus, gaze duration is sensitive to frequency on
every trial on which word n is fixated rather than skipped, while first
fixation duration is sensitive to frequency on most of these trials, but not
all. Based on this logic, it is not surprising that if one measure were to
show reliable individual differences in the frequency effect, it would be
gaze duration.

Why is substantially higher reliability observed when raw, as
opposed to log, gaze duration is used as the dependent measure? We can
think of two reasons why this might be the case. First, previous studies
have shown that a substantial portion of the frequency effect resides in
the right tail of fixation duration distributions (e.g., Staub et al., 2010).
By eliminating the right skew of fixation duration distributions - which is
a virtue, when it comes to satisfying the parametric assumptions of
linear mixed-effects models - the log transformation may be reducing
our ability to detect subtle differences between readers in the size of
their frequency effect, precisely because that effect resides partially in
the tail.

The second reason that individual differences in the frequency effect
may be more reliable for raw gaze duration than log gaze duration is that
this reliability may derive from what is essentially a measurement-
related artifact. Several previous studies have suggested that the fre-
quency effect, and other RT effects, may be larger for subjects who are
slower responders overall (Faust, Balota, Spieler, & Ferraro, 1999;
Schilling et al., 1998). Faust et al. point out that this relationship may be
understood as arising from general processing rate differences. When an
experimental manipulation modulates the quantity of processing work
that is required, a subject who is a slower processor will demonstrate a
larger experimental effect on RT. If the effect of word frequency is
constant across readers in terms of the amount of extra cognitive work
that is required in order to recognize a low-frequency word, a partici-
pant who is the slower processor will show a larger effect on RT.

In our Bayesian mixed-effects modeling we did see evidence in both
experiments that the frequency effect on raw gaze duration was larger
for slower readers. The mean of the posterior for the correlation between
the subject intercept and the by-subject slope for word frequency in each
half was between .66 and .87; readers who were slower overall showed
larger frequency effects in each half of the data. Thus, it is possible that
part of the reliability of the frequency effect derives simply from its
relationship to overall reading speed.

On this account of the reliability of the frequency effect on raw gaze
duration, it is expected that the log transform would reduce this reli-
ability, as the log transform would suppress the relationship between the
frequency effect and overall reading speed. The log transform tends to
remove superadditive interactions (e.g., Lo & Andrews, 2015); a large
raw RT difference between two relatively long times may be equivalent,
in log space, to a smaller raw RT difference between two relatively short
times. For example, the 50 ms difference between fixation durations of
300 and 350 ms is almost exactly the same, after log transformation, as
the 35 ms difference between fixation durations of 215 and 250 ms.
Thus, the log transform of gaze duration will tend to ‘undo’ a general
relationship between effect size and overall reading speed. As expected
on this account, in our Bayesian mixed-effects models of log gaze
duration, subject intercepts were less strongly related to the by-subject
slopes for frequency in each half, with the mean of the posterior of the
correlation parameters ranging between .37 and .53 in the two
experiments.

In sum, we cannot rule out the possibility that the primary reason
that the frequency effect on raw gaze duration demonstrates relatively
good reliability is simply that slower readers show a larger effect. The
log transformation would suppress this relationship, diminishing the
apparent reliability of the frequency effect itself.

We turn now to a broader methodological point, and a practical
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suggestion. As noted in our introduction, the quantitative relationship
between measurement reliability and the magnitude of an observable
correlation is well known (Nunnally, 1970; Spearman, 1904). Given a
true correlation rapiue between variables A and B, and known
test-retest reliabilities for the measurements of the variables relA and
relB, the observable correlation between the variables is given by:

TAB.obs = YaBarue X V1elA X relB

The implications of this equation are striking. If two variables have
true correlation r = .5, and both are measured with test-retest reliability
of .8, the observable correlation is .4. In order to obtain statistical power
of .8 to detect a correlation of .4, we would need 46 subjects. But if one of
the two variables is measured with reliability of .3, the observable
correlation is now .245. Now, we would need 128 subjects for power of
.8. The poor reliability of one of the measures has dramatic conse-
quences for statistical power; see Hedge et al. (2018) for further
discussion.

We are also able to estimate rap e, if 7'aB.obs is known, along with the
two reliabilities:

T'AB.obs

- vVrelA X relB

If we have an observed correlation of .5, and reliabilities of .8 for
both measures, the true correlation between the variables is estimated to
be .625. But an observed correlation of .5, if one measure has reliability
of .8 and the other has reliability of .3, corresponds to an estimated true
correlation of just over 1; this is to say that such an observed correlation
does not plausibly correspond to a true correlation. Vul and colleagues
(Vul & Pashler, 2012; Vul, Harris, Winkielman, & Pashler, 2009) have
referred to observed correlations that should not be mathematically
possible, given the reliabilities of the correlated measures, as ‘voodoo’
correlations. In effect, knowing the reliabilities of the two measures
establishes an upper limit on the correlations that we should expect to
see in the data; this upper limit will be quite low when the reliability of
one or both measures is low. If we see correlations that are higher than
our measures’ reliabilities should allow, we should suspect Type I error.
Vul et al. (2009) point out that such ‘voodoo’ correlations are likely to
arise in individual difference studies when researchers assess multiple
correlations and do not appropriately correct for these multiple
comparisons.

Together with the present empirical results, these mathematical re-
lationships imply that eye movement researchers should be concerned
about the power of individual difference studies to detect relationships
between effects of variables such as word frequency or predictability
and other variables such as reading skill or age, and about the possibility
that when such relationships are observed, they are actually Type I er-
rors. When carrying out such studies, a reasonable first step is to assess
the reliability of individual differences in the experimental effects. Given
that most researchers now use mixed-effects models to analyze eye
movement data, an easy-to-implement check is to assess whether adding
by-subject slopes for the effect in question does clearly improve model
fit, relative to a model without these slopes. Clearly, this method does
not definitively establish the reliability of an effect; for some of the ef-
fects that we have investigated here, this method favored a model with
by-subject slopes, in one experiment or the other, even when the effect
in question did not appear to be very reliable based on our model-based
reliability analysis. However, if this model comparison fails to justify the
assumption that observed differences in the size of an effect are attrib-
utable to genuine differences between subjects — if a model with by-
subject slopes does not clearly fit the data better than a model that as-
sumes that each subject demonstrates the same effect - it is not war-
ranted to then ask whether these differences are modulated by some
other factor. If we do not have clear statistical evidence that subjects do
indeed differ in the extent to which they are affected by some variable, it
does not make sense to explore how differences in the size of the effect
are modulated by reading skill, working memory capacity, or age.

VAB.true
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A final methodological point is that when explicit reliability calcu-
lations are carried out, the model-based estimates suggested by Rouder
and Haaf (2019) are to be preferred over correlations between simple
effects, as in Hedge et al. (2018). The model-based estimates of reli-
ability that we obtained were largely consistent with theoretical ex-
pectations — e.g., visual contrast has highly reliable effects on a range of
eye movement measures — while the simple effect correlations were low
across the board. Moreover, the model-based estimates were largely
consistent with the results of likelihood ratio tests establishing that in-
clusion of by-subject slopes do improve the fit of certain models. As
noted by Rouder et al. (2019), model-based estimates of reliability, or of
correlations between two effects, will often be highly uncertain in the
absence of truly enormous quantities of data. Nevertheless, the estimates
for certain effects in the present experiments were at least precise
enough to ascertain that the reliability was on one side of zero.

Conclusions

The main substantive conclusion of the present study is that while
individual differences in some effects of experimental variables on eye
movements in reading are fairly reliable - effects of visual contrast, and
the effect of word frequency on raw gaze duration - individual differ-
ences in other effects are much less reliable than might be hoped, from
the perspective of individual difference studies. In particular, individual
differences in the effect of a word’s predictability are not reliable, and
frequency effects on other measures are also not very reliable.
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