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Abstract

In this paper, we consider the problem of minimizing quantum free energies
under the constraint that the density of particles is fixed at each point of R

d,
for any d ≥ 1. We are more particularly interested in the characterization of
the minimizer, which is a self-adjoint nonnegative trace class operator, and will
show that it is solution to a nonlinear self-consistent problem. This question of
deriving quantum statistical equilibria is at the heart of the quantum hydrody-
namical models introduced by Degond and Ringhofer in [4]. An original feature
of the problem is the local nature of constraint, i.e. it depends on position, while
more classical models consider the total number of particles in the system to be
fixed. This raises difficulties in the derivation of the Euler-Lagrange equations and
in the characterization of the minimizer, which are tackled in part by a careful
parameterization of the feasible set.

1 Introduction

This work is concerned with the minimization of quantum free energies of the form

F (̺) = Tr(H̺) + T Tr(β(̺)), (1)

∗Romain.Duboscq@math.univ-tlse.fr
†pinaud@math.colostate.edu
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where ̺ is a density operator, i.e. a self-adjoint, trace class, and nonnegative operator
on some Hilbert space, H is a given Hamiltonian, T the temperature, Tr(·) denotes the
operator trace, and β is an entropy function, for instance the Boltzmann or the Fermi-
Dirac entropy. The free energy F (̺) is minimized under a constraint of local density,
namely the density of particles is prescribed at each point of space: if ρ(x, y) is the
integral kernel associated with the operator ̺, then the local density, defined as ρ(x, x),
is fixed and equal to a given function.

The problem considered here is the building block of the quantum hydrodynami-
cal models introduced by Degond et al in [4]. Their strategy consists in adapting to
the quantum setting the moments closure method by entropy minimization that was
developed by Levermore in the context of kinetic equations [10]. This requires the con-
struction of quantum statistical equilibra, which are obtained by minimizing F (̺) under
appropriate constraints. We focus in this work on the local density constraint (i.e. the
zero order moment of ̺) explicited above, which leads to the so-called quantum drift-
diffusion model, see [2]. Different models can be obtained by considering additional
constraints, in particular the local current and energy constraints (first and second or-
der moments), which lead to the quantum Euler or quantum Navier-Stokes equations.
We refer to [3, 1] for more details. See also e.g. [7, 9, 8] for additional references on
quantum hydrodynamics.

At the mathematical level, it is proved in [12], for H = −∆+ V defined on L2(Rd),
with d ≥ 1 and V a given potential, that F (̺), with β the Boltzmann or the Fermi-
Dirac entropy, admits a unique minimizer under the constraint ρ(x, x) = n(x), where n
is nonnegative and verifies

√
n ∈ H1(Rd),

∫

Rd

n(x)dx = 1, n log n ∈ L1(Rd). (2)

The first condition above is necessary for the energy to be finite (i.e. the first term
in the definition of F (̺)). The second condition is not crucial and can be modified.
The proof is based on compactness and convexity methods. An important ingredient
is a logarithmic Sobolev inequality for systems that yields a bound from below for the
free energy. This requires the third condition in (2), which prevents leakage of particles
at the infinity. Without this condition, the free energy is not bounded below and
the minimization problem does not admit a solution. The reference [12] addresses in
addition a local current constraint, while (local) density, current and energy constraints
are considered in [6] in a one-dimensional setting in a bounded (periodic) domain. The
energy constraint is difficult to handle in that there is no sufficient compactness on the
minimizing sequences to directly pass to the limit in the constraint, and one has to
resort to subtle monotonicity arguments inspired by thermodynamics to conclude.

Knowing from [12] that a minimizer exists and is unique, our main motivation in
this work is its characterization. This is actually a quite more difficult problem than
just establishing well-posedness. Formal calculations, performed e.g. in [3] in the case
of the Boltzmann entropy and when V = 0, yield that the minimizer ̺⋆ satisfies the
following self-consistent relation

̺⋆ = exp(−H[̺⋆]/T ), (3)
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where H[̺⋆] is an Hamiltonian of the form

H[̺⋆] = −∆+ A[̺⋆], A[̺⋆] =
∆n

2n
− Tn[̺⋆ log(̺⋆)] + k[̺⋆]

n
.

Above, n[̺⋆ log ̺⋆] and k[̺⋆] are respectively the local entropy and local kinetic energy,
defined by

n[̺⋆ log(̺⋆)](x) =
∑

p∈N

ρp log(ρp)|φp(x)|2, k[̺⋆](x) =
∑

p∈N

ρp|∇φp(x)|2, (4)

where {ρp}p∈N and {φp}p∈N are the eigenvalues and the eigenvectors of ̺⋆. Through-
out the paper, the eigenvalues are counted with multiplicity and form a nonincreasing
nonnegative sequence that accumulates at zero. At this stage, the kernel of ̺⋆ could
be zero, finite, or infinite, but we will prove that it is actually zero when the constraint
verifies n(x) > 0 almost everywhere on R

d. The solution ̺⋆ obtained in (3) is referred to
in [3] as the “quantum Maxwellian”, and A[̺⋆] is the chemical potential, the Lagrange
parameter associated with the density constraint. In [11], in a periodic one-dimensional
domain Ω, it is proved under the assumptions that n is uniformly bounded from below,
i.e. n(x) ≥ n > 0 a.e., and that n ∈ H1(Ω), that the Hamiltonian H[̺⋆] is self-adjoint
in the sense of quadratic forms. This is possible since the hypotheses (2) on n even-
tually lead to A[̺⋆] ∈ H−1(Ω), which, in one dimension only in general, allows one to
define H[̺⋆] in the sense of quadratic forms. In the case where the spatial domain is
R

d, the condition n(x) ≥ n > 0 is not compatible with n ∈ L1(Rd), and even if we
had A[̺⋆] ∈ H−1(Rd), this is in general too low a regularity to construct a self-adjoint
operator using classical results such as the KLMN theorem [14] for instance. One of
the main difficulties is therefore to give a proper meaning for (3) for the low regularity
self-consistent potential A[̺⋆]. One could consider adding regularity conditions on ∆n
for instance, but on the one hand it is unclear how this improves the regularity of the
self-consistent terms n[̺⋆ log ̺⋆] and k[̺⋆], and on the other any additional assumptions
to (2) are not natural since they are not necessary for the existence theory.

The main result of this work is to rigorously define (3) under the minimal assumptions
(2) when the constraint verifies n(x) > 0 almost everywhere on R

d. We will characterize
{ρp}p∈N and {φp}p∈N and show they are obtained by minimizing an appropriate quadratic
form whose closure is − log(̺⋆). The method of proof is based on a proper rewriting of
the chemical potential A[̺⋆] and on exploiting the obtained particular form. While a
potential with a regularity as low as that of A[̺⋆] would not in general lead to a self-
adjoint operator, it is the distinct structure of A[̺⋆] inherited from the minimization
problem that allows us to justify (3). We will also briefly address the case where n(x)
vanishes on a set of positive measure, which can be treated in a very similar fashion as
the case when n has a full support.

There are several steps in our approach. Since we expect that log ̺⋆ = −H[̺⋆]/T ,
the first one is to establish that log ̺⋆ is well-defined, which amounts to prove that the
kernel of ̺⋆ is zero; we then associate H[̺⋆] with an adequate quadratic form Q⋆, and
finally relate Q⋆ with log ̺⋆. All of this is done by deriving the Euler-Lagrange equa-
tions associated with the minimization problem, and a key difficulty is to appropriately
parametrize the feasible set in order to define variations around ̺⋆. The self-consistent
nature of the problem and the singularity of the derivative of the entropy at zero make
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the proofs somewhat involved and technical. We will in particular need to regularize
the entropy in order to derive many results.

The article is structured as follows: we present our main result in Section 2; the
proof is broken down into several parts in Section 3, and the proofs of some technical
lemmas are given in Section 4.

Acknowledgments. OP’s work is supported by NSF CAREER Grant DMS-1452349
and NSF grant DMS-2006416. The authors would to thank the referees whose sugges-
tions helped improve this manuscript.

2 Main result

We start by introducing some notation.

Notation. We write (·, ·) for the inner product on L2(Rd), with the convention (f, g) =
∫

Rd fgdx, and ‖ · ‖ for the corresponding norm. The free Hamiltonian −∆ is denoted by
H0, equipped with the domain H2(Rd). L(L2(Rd)) is the space of bounded operators
on L2(Rd), J1 ≡ J1(L

2(Rd)) is the space of trace class operators and J2 the space of
Hilbert-Schmidt operators, both on L2(Rd). In the sequel, we will refer to a density
operator as a self-adjoint, trace class, nonnegative operator on L2(Rd). For |̺| = √

̺∗̺,
we introduce the following space:

E =
{

̺ ∈ J1 :
√

H0|̺|
√

H0 ∈ J1

}

,

where
√
H0|̺|

√
H0 denotes the extension of the operator

√
H0|̺|

√
H0 to L2(Rd). We

will drop the extension sign in the sequel to ease notation. The space E is a Banach
space when endowed with the norm

‖̺‖E = Tr
(

|̺|
)

+ Tr
(

√

H0|̺|
√

H0

)

,

where Tr(·) denotes the operator trace. Finally, the energy space is the following closed
convex subspace of E :

E+ = {̺ ∈ E : ̺ ≥ 0} .
Operators in E+ are automatically self-adjoint since they are nonnegative. The local
kinetic energy of ̺ ∈ E+ is defined by

k[̺](x) =
∑

p∈N

λp|∇ψp(x)|2, with ‖k[̺]‖L1 = Tr
(

√

H0̺
√

H0

)

,

where the series converges in L1(Rd) and {λp}p∈N and {ψp}p∈N are the eigenvalues and
eigenvectors of ̺.
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Setting of the problem. The local density constraint is defined in a different, more
convenient form than the one given in the introduction as follows: let ̺ be a density
operator; for any function ϕ ∈ L∞(Rd), and identifying a function with its associated
multiplication operator, the density n[̺] is uniquely defined by duality by

∫

Rd

n[̺]ϕdx = Tr
(

̺ϕ
)

. (5)

A familiar equivalent expression is

n[̺] =
∑

p∈N

λp|ψp|2, (6)

where the series converges in L1(Rd). Given a nonnegative function n satisfying (2), the
admissible set is then

A = {̺ ∈ E+ : n[̺] = n} .

The kinetic energy and the entropy of ̺ ∈ E+ are denoted by

E(̺) = Tr
(

√

H0̺
√

H0

)

, S(̺) = Tr (β(̺)) ,

where β is the Boltzmann entropy β(x) = x log(x) − x. We will state and prove our
main result for such a β, and explain why it directly extends to the Fermi-Dirac entropy
for instance. Setting T = 1 to simplify notation, we write F (̺) = E(̺) + S(̺) and
consider the minimization problem

min
̺∈A

F (̺). (7)

It is proven in [12] that there exists a unique solution ̺⋆ to (7), that we characterize in
our main result further. Before stating it, we need to introduce a few more notations.
For n(x) > 0 a.e., consider the nonnegative potential

V⋆ =
|∇√

n|2 − n[̺⋆ log(̺⋆)]

n
,

where a series expression of n[̺⋆ log(̺⋆)] is given in (4). Note that −n[̺⋆ log(̺⋆)] is
nonnegative since the eigenvalues of ̺⋆ are less than one since Tr(̺⋆) = ‖n‖L1 = 1.
Since

√
n ∈ H1(Rd), and we will see later that n[̺⋆ log(̺⋆)] ∈ L1(Rd), the potential V⋆ is

only in L1(Rd;ndx). The introduction of V⋆ is motivated by the following observation:
the first term in the definition of A[̺⋆] can actually be written as

∆n

2n
=

∆
√
n√
n

+
|∇√

n|2
n

,

so that

A[̺⋆] =
∆
√
n√
n

+
|∇√

n|2 − n[̺⋆ log(̺⋆)]− k[̺⋆]

n
.
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The first term on the right-hand-side above is called the Bohm potential, and can be
absorbed into the Laplacian leading to

H[̺⋆] = − 1√
n
∇ ·
(

n∇
( ·√

n

))

+ V⋆ −
k[̺⋆]

n
. (8)

We then define the following weighted Sobolev space

H1
⋆ (R

d) = {u ∈ L2(Rd; (1 + V⋆)dx) : ∇u ∈ (L2(Rd))d},

which is complete as a closed subspace of H1(Rd). Furthermore, based on (8), let Q⋆

be the quadratic form

Q⋆(u, v) =

∫

Rd

n∇
(

u∗√
n

)

· ∇
(

v√
n

)

dx+

∫

Rd

(

V⋆ −
k[̺⋆]

n

)

u∗vdx, u, v ∈ H1
⋆ (R

d),

where k[̺⋆] is the local kinetic energy defined in (4). It is not clear at this point that
Q⋆ is indeed well defined on H1

⋆ (R
d). For this, we will see on the one hand that, and

this is a consequence of the fact that ̺⋆ is the minimizer of F ,

∫

Rd

k[̺⋆]

n
|u|2dx ≤

∫

Rd

n

∣

∣

∣

∣

∇
(

u√
n

)∣

∣

∣

∣

2

dx+

∫

Rd

V⋆|u|2dx,

and on the other, after a short calculation, that

∫

Rd

n

∣

∣

∣

∣

∇
(

u√
n

)∣

∣

∣

∣

2

dx =

∫

Rd

|∇u|2 dx−
∫

Rd

∇√
n · ∇|u|2√
n

dx+

∫

Rd

|∇√
n|2
n

|u|2dx,

which explains why Q⋆ is well-defined on H1
⋆ (R

d) using the Cauchy-Schwarz inequality.
We will write Q⋆(u) for Q⋆(u, u). Let finally H be defined by

H =

{

ϕ ∈ L2(Rd) : −
∑

p∈N

log(ρp)|(φp, ϕ)|2 <∞
}

,

where we recall that {ρp}p∈N is the nonnegative and nonincreasing sequence of eigenval-
ues of ̺⋆ and {φp}p∈N its eigenvectors, which form an orthonormal basis of L2(Rd). The
space H is a Hilbert space when equipped with the inner product

(u, v)H = −
∑

p∈N

log(ρp)(φp, u)
∗(φp, v).

Note that H is well-defined since we will see that ρp > 0 for all p ∈ N, and that H is the

domain of self-adjointness of
√

− log(̺⋆).

We state now our main result.

Theorem 2.1 Let ̺⋆ be the unique solution to the minimization problem (7) with the
constraint n satisfying (2) and n > 0 a.e. in R

d, and denote by {ρp}p∈N and {φp}p∈N
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the eigenvalues and eigenfunctions of ̺⋆. Then ̺⋆ is full rank, i.e. ρp > 0 for all p ∈ N,
and

− log(ρp) = min
ϕ∈Kp

Q⋆(ϕ) = Q⋆(φp), p ∈ N, (9)

where
Kp = {ϕ ∈ H1

⋆ (R
d) : ‖ϕ‖ = 1, (φq, ϕ) = 0, q = 0, · · · , p− 1},

with the convention that K0 = {ϕ ∈ H1
⋆ (R

d) : ‖ϕ‖ = 1}. Moreover, denoting by Q⋆,S

the restriction of Q⋆ to S =span{φp, p ∈ N}, we have that Q⋆,S is densely defined and
closable, and that − log(̺⋆) is the unique self-adjoint operator associated with the closure
Q⋆,S. Finally, H

1
⋆ (R

d) ⊂ H.

Let us make a few remarks. The self-consistent eigenvalue problem (9) is the rigorous
formulation of (3). Also, while the form Q0 obtained by setting k[̺⋆] = 0 in Q⋆ can be
shown to be closed in H1

⋆ (R
d), and is therefore associated to a self-adjoint operator, we

do not know if Q⋆ is closed in H1
⋆ (R

d). This is because −k[̺⋆] is negative and is only
in L1(Rd), and there does not seem to be a way to consider the term involving k[̺⋆] as
a perturbation of Q0 with such a low regularity. We obtain though that Q⋆ is positive,
and that it is closable when defined on a dense, smaller set than H1

⋆ (R
d). Note that

since {φp}p∈N ⊂ H1
⋆ (R

d), and that {φp}p∈N is an orthonormal basis of L2(Rd), the set
H1

⋆ (R
d) is dense in L2(Rd).

Theorem 2.1 can be directly generalized to the Fermi-Dirac entropy x log(x) + (1−
x) log(1 − x), x ∈ [0, 1]. The Boltzmann and Fermi-Dirac entropies share indeed the
same technical difficulties, in particular the fact that the eigenvalues of ̺⋆ accumulate
at zero. The Fermi-Dirac entropy has another singularity at x = 1, which is not an issue
since there is only a finite number of eigenvalues arbitrarily close to one.

Remark on the condition n > 0 almost everywhere. When n(x) vanishes on a
set of positive measure, the statement of Theorem 2.1 has to be modified as follows.
We only address the case where the support of n is not too “wild”, which is what we
expect in the applications we have in mind: one can imagine nanostructures where
particles are free to move in all of Rd except in some open disjoint bounded domains Ωi,
i = 1, · · · , N (with smooth boundaries ∂Ωi) where the particle density is then zero. Let
Ω = R

d\∪N
i=1Ωi. We could treat as well the case where n vanishes outside of a bounded

domain Ω0, and define instead Ω = Ω0\ ∪N
i=1 Ωi.

Suppose that n > 0 a.e. on Ω and that n = 0 a.e. on ∪N
i=1Ωi. With the assumption

that
√
n ∈ H1(Rd), it follows that

√
n admits a trace on ∂Ωi, and therefore that

√
n|∂Ωi

=
0, i = 1 · · · , N . The main difference with the full support case is that the minimizer ̺⋆
is not full rank any longer. Indeed, the eigenfunctions associated with strictly positive
eigenvalues (denoted {φp}p∈I) have the same support as n, and it is clear that functions
supported in ∪N

i=1Ωi are in the kernel of ̺⋆. Now, if we restrict ̺⋆ to L2(Ω) by defining
̺⋆,Ω = ✶Ω̺⋆✶Ω, the analysis that we pursue in the case n(x) > 0 a.e. on R

d carries over
to the operator ̺⋆,Ω with the following modifications: the potential V⋆ has the same
expression as before and is restricted to Ω, the set H1

⋆ (R
d) is replaced by

H1
⋆ (Ω) = {u ∈ L2(Ω; (1 + V⋆)dx) : ∇u ∈ (L2(Ω))d, u|Ωi

= 0, i = 1, · · · , N},

7



and the domain of integration of the form Q⋆ is set to Ω. Note that ̺⋆,Ω has a finite
kinetic energy since the {φp}p∈I have a zero trace on ∂Ωi, and therefore

∫

Rd

|∇φp|2dx =

∫

Ω

|∇φp|2dx, p ∈ I.

One can then show with almost identical proofs as those given further that the operator
̺⋆,Ω is full rank and that its eigenvalues/eigenfunctions satisfy a modified version of (9).
In particular, the kernel of ̺⋆ consists of L2(Rd) functions that vanish a.e. on Ω.

Strategy of proof. One of the main difficulties is to construct admissible directions in
order to derive the Euler-Lagrange equations. For ϕ ∈ L2(Rd), we will choose operators
of the form (with the Dirac bra-ket notation)

̺(t) =

√

n

n(t)

(

̺⋆ + t|ϕ〉〈ϕ|
)

√

n

n(t)
,

where n(t) = n[̺⋆+ t|ϕ〉〈ϕ|]. An issue here is to make sure that ̺⋆+ t|ϕ〉〈ϕ| is nonnega-
tive. This is true for any ϕ ∈ L2(Rd) when t ≥ 0, but is false if t < 0, leading only to an
inequality when t ≥ 0 in the Euler-Lagrange equations and not to an equality. We will
use this inequality to prove an important estimate in the derivation of (9) and to obtain
that ̺⋆ is full rank. We will then replace |ϕ〉〈ϕ| by |φp〉〈φq|+ |φq〉〈φp|, which will allow
us to work with negative and sufficiently small t to obtain the Euler-Lagrange equations
as an equality. Note that it is tempting to use operators of the form C(t)̺⋆C

∗(t) for
appropriate C(t) since positivity is ensured, but this does not eventually bring more
information.

Note that because of the particular expression ofH[̺⋆] given in (8), it is not necessary
to make hypotheses on the regularity of ∆

√
n and those in (2) are sufficient.

3 Proof of Theorem 2.1

The proof is divided into four parts. In the first one, we obtain important results about
the differentiability (in appropriate directions) of the functional F (̺). In the second
part, we prove that the minimizer is full rank. In the third part, we derive the crucial
relation Q⋆(φp, φq) = − log(ρp)δpq, while we conclude the proof in the fourth part.

Throughout this section, we will use the following notations. For ϕ ∈ L2(Rd), Pϕ

denotes the rank-one projector Pϕ = |ϕ〉〈ϕ|. For t ≥ 0, we consider perturbations of
the minimizer of the form ̺⋆ + tPϕ, and introduce the local density

n(t) = n[̺⋆ + tPϕ], a(t) =

√

n

n(t)
,

as well as
̺(t) = a(t) (̺⋆ + tPϕ) a(t).

The operator ̺(t) is designed to belong to the admissible set A. Consider finally the
weight

ω(x) = 1 + V⋆(x) +
k[̺⋆]

n
,
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and introduce the space

H1
ω(R

d) = {u ∈ L2(Rd;ωdx) : ∇u ∈ (L2(Rd))d}.

Note that we actually have H1
ω(R

d) = H1
⋆ (R

d), but this fact is unknown at this stage.
We will need the following logarithmic Sobolev for systems proved in [5, Corollary 18],
which holds for any ̺ ∈ E+ such that n[̺] log n[̺] ∈ L1(Rd):

∫

Rd

n[̺] log(n[̺])dx ≤
∑

p∈N

ρp log(ρp) +
d

2
log

(

e

2πd

E(̺)

Tr(̺)

)

Tr(̺). (10)

Above, {ρp}p∈N denotes the set of eigenvalues of ̺ and E(̺) its kinetic energy. Since
E(̺) < ∞ for any admissible ̺ and x log(x) ≤ 0 for x ∈ [0, 1], this inequality shows
that the entropy of an admissible density operator is indeed well-defined as

0 ≤ −
∑

p∈N

ρp log(ρp) = −Tr(β(̺)) ≤ d

2
log
( e

2πd
E(̺)

)

−
∫

Rd

n log(n)dx <∞. (11)

Above, we used that Tr(̺) = 1 = ‖n‖L1 and n log(n) ∈ L1(Rd).

3.1 Preliminary results

For u, v ∈ H1
ω(R

d), consider the quadratic form

Qe(u, v) =

∫

Rd

(

−∇√
n · ∇(u∗v)√

n
+

2|∇√
n|2u∗v
n

)

dx

+

∫

Rd

∇u∗ · ∇vdx−
∫

Rd

k[̺⋆]u
∗v

n
dx, (12)

with the notation Qe(ϕ) ≡ Qe(ϕ, ϕ). Note that it follows from the Cauchy-Schwarz
inequality for the first term on the right above that Qe is indeed well defined on H1

ω(R
d).

The first lemma below pertains to the kinetic energy E(̺(t)), and is proven in section
4.1.

Lemma 3.1 Suppose ϕ ∈ H1
ω(R

d). Then, for all t ≥ 0, ̺(t) belongs to the admissible
set A. Moreover, E(̺(t)) ∈ C1(R+) with

dE(̺(t))

dt

∣

∣

∣

∣

t=0+
= Qe(ϕ). (13)

We then consider the entropy S(̺) for which we will need the next lemma.

Lemma 3.2 Let ϕ ∈ H1(Rd) with |ϕ| ≤ M
√
n a.e. for some M > 0. Then, ̺(t) ∈

C1(R+,J1).

Because of the singularity of β′(x) at x = 0 and of the particular form of ̺(t), it is
difficult to justify some calculations that directly involve S(̺(t)). We therefore need to
regularize and introduce, for x ∈ [0, 1] and η > 0,

βη(x) = (x+ η) log(x+ η)− x− η log(η),
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and define
Sη(̺) = Tr(βη(̺)), Fη(̺) = E(̺) + Sη(̺).

Note that

βη(x)− β(x) =

∫ η

0

(log(u+ x)− log(u))du ≥ 0, (14)

since log is an increasing function. We then obtain the following lemma.

Lemma 3.3 Let ϕ ∈ L2(Rd) with |ϕ| ≤ M
√
n a.e. for some constant M > 0. Then

Sη(̺(t)) ∈ C1(R+), and for all t ≥ 0,

h(η) + Sη(̺(t))− Sη(̺(0)) ≥ S(̺(t))− S(̺(0)), (15)

where h(η) is a nonnegative function independent of t and ϕ that goes to zero as η → 0.
Moreover,

dSη(̺(t))

dt

∣

∣

∣

∣

t=s

= Tr
(

log(η + ̺(s))Pϕa(s)

)

− Tr

(

̺(s) log(η + ̺(s))
|ϕ|2
n(s)

)

. (16)

Proof. That Sη(̺(t)) ∈ C1(R+) is a direct consequence of Lemma 3.2 and that,
according to [11, Lemma 5.3], Sη(̺) is differentiable at any nonnegative density operator
̺ in any direction δρ ∈ J1, with DSη[̺](δρ) = Tr(log(η + ̺)δρ). Regarding (15), we
have first, thanks to (14), Sη(̺(t)) ≥ S(̺(t)). We now show that Sη(̺⋆) → S(̺⋆) as
η → 0. Set η ∈ (0, 1/2), then βη(x) ≤ 0 for x ∈ [0, 1]. Then, by Fatou’s lemma for series
and (14),

−
∑

p∈N

β(ρp) =
∑

p∈N

lim inf
η→0

−βη(ρp)

≤ lim inf
η→0

−
∑

p∈N

βη(ρp) ≤ lim sup
η→0

−
∑

p∈N

βη(ρp) ≤ −
∑

p∈N

β(ρp),

which yields the desired result. Then, with h(η) = Sη(̺(0)) − S(̺(0)) and Sη(̺(t)) ≥
S(̺(t)), we have

h(η)+Sη(̺(t))−Sη(̺(0)) = Sη(̺(0))−S(̺(0))+Sη(̺(t))−Sη(̺(0)) ≥ S(̺(t))−S(̺(0)),

which proves (15). Finally,

dSη(̺(t))

dt

∣

∣

∣

∣

t=s

= Tr
(

log(η + ̺(s))∂t̺(s)
)

= Tr
(

log(η + ̺(s))Pϕa(s)

)

+ Tr
(

log(η + ̺(s))̺(s)b(s)
)

,

where b(s) = −|ϕ|2/n(s). Above, we used the cyclicity of the trace and |b(s)| ≤ |ϕ|2/n ∈
L∞(Rd), which proves (16).

Remark 3.4 Note that both terms in (16) are finite since ̺(s) and Pϕa(s) are trace
class, log(η + ̺(s)) is bounded, and |ϕ|2/n(s) ≤ |ϕ|2/n ∈ L∞(Rd) by assumption.
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3.2 The minimizer is full rank

We have the following proposition.

Proposition 3.5 The minimizer ̺⋆ is full rank, that is ρp > 0 for all p ∈ N.

Proof. We prove the result by contradiction, in the spirit of [11], section 5, by differ-
entiating in a direction related to a nonzero eigenfunction in the kernel of ̺⋆. Compared
to [11], there are complications though since on the one hand, there is the additional
term h(η) in (15) that needs to be handled carefully, and on the other admissible direc-
tions do not admit as simple expressions as in [11].
Step 1: Assume first that the kernel of ̺⋆ is not {0}, and consider an orthonormal basis
{ψp}p∈I of Ker ̺⋆ (I may be empty, finite or infinite, and we write |I| for its cardinal).
Then, we denote by (ρp)1≤p≤N the nonincreasing sequence of nonzero eigenvalues of
̺⋆ (here N is finite or not), associated to the orthonormal family of eigenfunctions
(φp)1≤p≤N . We thus obtain a Hilbert basis {(ψp)1≤p≤|I|, (φp)1≤p≤N} of L2(Rd). Pick then
for instance ψ1, that we denote for simplicity by φ. Having little information about
its regularity (we only know it is in L2(Rd)), we need to regularize it in order to apply
Lemmas 3.1 and 3.3. Let then ϕε = φε(

n
n+ε|φε|2

)1/2, where φε ∈ C∞
c (Rd) and φε → φ in

L2(Rd). We verify that ϕε ∈ H1
ω(R

d). First of all,
∫

Rd

|ϕε(x)|2ω(x)dx =

∫

Rd

|φε(x)|2
n(x)

n(x) + ε|φε(x)|2
dx

+

∫

Rd

|φε(x)|2
|∇
√

n(x)|2 − n[̺⋆ log(̺⋆)] + k[̺⋆]

n(x) + ε|φε(x)|2
dx

≤‖φε‖2 + ε−1
(

‖∇
√
n‖2 − Tr(̺⋆ log(̺⋆)) + ‖k[̺⋆]‖L1

)

,

which is finite thanks to (11) and the fact that ‖k[̺⋆]‖L1 = E(̺⋆) < ∞. Moreover, we
have

∇ϕε =

(

n

n+ ε|φε|2
)1/2

∇φε + φε∇
√
n

(

1

(n+ ε|φε|2)1/2
− n

(n+ ε|φε|2)3/2
)

− ε
φε

√
nℜ(φ∗

ε∇φε)

(n+ ε|φε|2)3/2
, (17)

leading to the estimate

|∇ϕε| ≤ 2(|∇φε|+ ε−1/2|∇
√
n|).

This yields ϕε ∈ H1
ω(R

d). Note that we also have |ϕε| ≤ ε−1/2
√
n. Consider now

̺ε(t) = aε(t) (̺⋆ + tPϕε
) aε(t),

where

nε(t) = n[̺⋆ + tPϕε
], aε(t) =

√

n

nε(t)
.

According to Lemma 3.1, ̺ε is admissible and ̺ε ∈ C1(R+,J1). As a consequence,
̺ε(t) → ̺ε(0) = ̺⋆ in J1 as t → 0+. We will use the following Lemma, taken from [11,
Lemma A.2].
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Lemma 3.6 Let a sequence (̺k)k∈N converging to ̺ in J1 as k → +∞. Then the cor-
responding nonincreasing sequence of eigenvalues (ρkp)p∈N, (ρp)p∈N converge as follows:

∀p ∈ N, lim
k→+∞

ρkp → ρp.

Moreover, there exist a sequence of orthonormal eigenbasis (φk
p)p∈N of ̺k and an or-

thonormal eigenbasis (φp)p∈N of ̺ such that

∀p ∈ N, lim
k→+∞

‖φk
p − φp‖L2 = 0.

According to Lemma 3.6, we can choose the eigenbasis of ̺ε(t) and that of ̺⋆ in such
a way that the eigenvectors converge to one another in L2(Rd) as t→ 0+. We then pick
{(ψp)1≤p≤|I|, (φp)1≤p≤N} to be this very basis for ̺⋆, and we denote by {(ψp(t))1≤p≤N(t)}
that of ̺ε(t) (N(t) can be finite or not). Let {ρp(t)}1≤p≤N(t) be the eigenvalues associated
with {ψp(t)}1≤p≤N(t). We suppose that ψ1(t) is the eigenvector of ̺ε(t) converging to
φ, and we denote for simplicity ψ1(t) ≡ φ(t). As a consequence, Lemma 3.6 yields
ρ1(t) → 0 as t→ 0+, which we will use below.
Step 2: According to (16), we find

dSη(̺ε(t))

dt

∣

∣

∣

∣

t=s

= Tr
(

log(η + ̺ε(s))Pϕεaε(s)

)

−
∫

Rd

n[̺ε(s) log(η + ̺ε(s))]

n(s)
|ϕε|2dx.

Let P0(t) the set of indices such that ρp(t) ≥ 1−η for p ∈ P0(t). Then, since log(η+x) ≥
0 for x ≥ 1− η, and since log(η + x) ≤ 0 for 0 ≤ x ≤ 1− η,

Tr
(

log(η + ̺ε(s))Pϕεaε(s)

)

≤|(ϕεaε(s), φ(s))|2 log(η + ρ1(s))

+
∑

p∈P0(t)

|(aε(s)ϕε, ψp(s))|2 log(ρp(s) + η).

Moreover, since |ϕε|2 ≤ ε−1n , since n(s) ≥ n for all s ≥ 0, and x log(x) ≤ 0 on [0, 1],
and − log(η + x) is decreasing on [0, 1], we find

−
∫

Rd

n[̺ε(s) log(η + ̺ε(s))]

n(s)
|ϕε|2dx ≤ −ε−1 Tr

(

̺ε(s) log(̺ε(s))
)

.

Choosing η ∈ (0, 1), we then obtain, since ρp(t) ≤ 1,

dSη(̺ε(t))

dt

∣

∣

∣

∣

t=s

≤ |(ϕεaε(s), φ(s))|2 log(η + ρ1(s)) + log(2)
∑

p∈P0(t)

|(aε(s)ϕε, ψp(s))|2

−ε−1 Tr
(

̺ε(s) log(̺ε(s))
)

.

The bound aε(s) ≤ 1 for s ≥ 0 shows that the second term on the right can be bounded
by ε−1 log(2)‖ϕε‖2. Regarding the third term, the logarithmic Sobolev inequality (10)
yields, since E(̺ε(t)) ∈ C1(R+) according to Lemma 3.1,

0 ≤ −Tr
(

̺ε(s) log(̺ε(s))
)

≤ −
∫

Rd

n log(n)dx+
d

2
log
( e

2πd
E(̺ε(s))

)

≤ C +
d

2
log

(

e

2πd
max
s∈[0,1]

E(̺ε(s))

)

= C1,ε.
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For any t ∈ [0, 1], we have therefore arrived at

Sη(̺ε(t))− Sη(̺ε(0)) ≤
∫ t

0

|(ϕεaε(s), φ(s))|2 log(η + ρ1(s))ds+ tC2,ε.

for another constant C2,ε. Furthermore, since E(̺ε(t)) ∈ C1(R+), there exists a constant
C3,ε such that

E(̺ε(t))− E(̺ε(0)) ≤ C3,εt, ∀t ∈ [0, 1].

Gathering the previous estimates, we find, for t ∈ [0, 1],

Fη(̺ε(t))− Fη(̺ε(0)) + h(η) ≤
∫ t

0

|(ϕεaε(s), φ(s))|2 log(η + ρ1(s))ds+ tC4,ε + h(η),

for a new constant C4,ε.
Step 3: We will show that we can choose t and η such that the right hand side is
negative. First, write

(ϕε, φ) = (φε, φ) +

((

(

n

n+ ε|φε|2
)1/2

− 1

)

φε, φ

)

.

Since φε → φ in L2(Rd) as ε → 0, the first term on the right above converges to one
and the second to zero. Indeed, we write

((

(

n

n+ ε|φε|2
)1/2

− 1

)

φε, φ

)

=

((

(

n

n+ ε|φε|2
)1/2

− 1

)

φ, φ

)

+

((

(

n

n+ ε|φε|2
)1/2

− 1

)

(φε − φ), φ

)

,

and realize that the second term on the right converges to zero since φε → φ in L2(Rd).
The first term converges to zero by dominated convergence and the fact that n > 0
a.e. on R

d (if n were to vanish on a set of positive measure, then taking a function φ
supported on the complementary of that set would yield that this first term is actually
−(φ, φ) and not zero).

We then choose ε sufficiently small so that |(φε, φ)| > 1/2. Also, since

|(ϕεaε(s), φ(s))|2 → |(ϕε, φ)|2 ≥
1

4
as s→ 0,

there is an s0(ε) > 0 such that, for all s ∈ [0, s0(ε)],

|(ϕεaε(s), φ(s))|2 ≥
1

8
.

Besides, since ρ1(s) → 0 as s→ 0, there exists s1(ε, δ) > 0 such that 0 ≤ ρ1(s) ≤ δ, for
all s ∈ [0, s1(ε, δ)]. Finally, set η0 and δ sufficiently small so that

1

8
log(η0 + δ) + 1 + C4,ε < 0,
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and choose η1 such that h(η) ≤ min(s0(ε), s1(ε, δ), 1) for η ≤ η1 (we recall that such a
η1 exists since h(η) → 0 as η → 0). Then, for η ≤ min(η0, η1), since log(x) is increasing,

∫ h(η)

0

(

|(ϕεaε(s), φ(s))|2 log(η + ρ1(s)) + 1 + C3,ε

)

ds

≤
∫ h(η)

0

(

1

8
log(η + δ) + 1 + C4,ε

)

ds < 0.

As a consequence, using (15), for all t ∈ [0, h(η)],

0 > h(η) + Fη(̺ε(t))− Fη(̺ε(0)) ≥ F (̺ε(t))− F (̺ε(0)),

which contradicts the fact that ̺⋆ is the unique minimizer of F . Hence, the kernel of ̺⋆
is {0}, and the proof is complete.

3.3 Euler-Lagrange equations

We prove here the relation

Q⋆(φp, φq) = − log(ρp)δpq, p, q ∈ N.

In the previous section, we were able to use an arbitrary test function ϕ in the pertur-
bation since we only considered positive values for t. This ensured the positivity of ̺(t),
with the drawback of only yielding an inequality in Euler-Lagrange equations (see e.g.
(31)). This was enough though to prove that the minimizer is full rank. In order to
obtain an equality in the Euler-Lagrange equations, we need to consider negative values
of t as well, which limits the choice of the test functions since ̺(t) has to be positive. We
will choose below test functions related to the eigenfunctions φp, for which the positivity
of the perturbation holds.

We will need once again to regularize to justify the calculations. While we got away
in the previous section with only regularizing the entropy term (this was justified by
(15)), we need here to regularize as well the minimizer in order to obtain properly the
Euler-Lagrange equation. Consider then the problem

min
̺∈A

Fη(̺).

As (7), the above problem admits a unique solution denoted by ̺η, with eigenvalues and
eigenvectors {ρp,η}p∈N and {φp,η}p∈N. The proof of this fact is omitted since it is similar
to the one of the non-regularized problem.

Step 1: Euler-Lagrange equations for the regularized problem. For p and q
given, consider the operator

Pη = |φp,η〉〈φq,η|+ |φq,η〉〈φp,η|,

that will be used to define a new direction of perturbation. It is not difficult to see
that ̺η + tPη is positive for t > −min(ρp,η, ρq,η). It is also clear that ̺η + tPη is self-
adjoint and trace class, and that nη(t) := n[̺η + tPη] = n + 2tℜ(φp,ηφ

∗
q,η). This last
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expression is deduced from the definition of the local density given in (5) and from a
direct calculation. We define then

̺η(t) = aη(t)
(

̺η + tPη

)

aη(t), aη(t) =

√

n

nη(t)
.

The lemma below, proved in Section 4.3, shows that ̺η(t) is in fact admissible for
appropriate t.

Lemma 3.7 Let t0 = min(ρp,η, ρq,η)/2. Then ̺η(t) ∈ A for any t ∈ [−t0, t0].

We want to apply Lemma 3.3 next to obtain the Euler-Lagrange equations. For this,
we will see in Lemma 3.8 that ρj,η → ρj as η → 0, for all j ∈ N. As a consequence, since
ρj > 0 for all j ∈ N according to Proposition 3.5, there exists η0 > 0 such that ρp,η > 0
and ρq,η > 0 for all η ∈ (0, η0). Since n[̺η] = n, this leads to

|φp,η| ≤ ρ−1/2
p,η

√
n, a.e., (18)

with a similar estimate for φq,η. An easy adaptation of Lemmas 3.2 and 3.3 shows then
that ̺η ∈ C1([−t0, t0],J1), and that

dS(̺η(t))

dt

∣

∣

∣

∣

t=0

= 2 log(η + ρp,η)δpq − 2ℜ
∫

Rd

n[̺η log(η + ̺η)]

n
φp,ηφ

∗
q,ηdx.

We consider now the kinetic energy term. Since ̺η ∈ E , we have the relation

‖∇φp,η‖2 ≤ ρ−1
p,ηE(̺η) <∞, (19)

with a similar estimate for φq,η. With (18), this shows that φp,η and φq,η belong to
H1

ω(R
d). Adapting Lemma 3.1 then yields

dE(̺η(t))

dt

∣

∣

∣

∣

t=0

= 2ℜQe(φp,η, φq,η).

Finally, since ̺η is the minimizer, the derivative of Fη(̺η(t)) at t = 0 vanishes, and we
find, gathering the above results,

2ℜQη(φp,η, φq,η) = −2 log(η + ρp,η)δpq, (20)

where

Qη(ϕ) =

∫

Rd

n

∣

∣

∣

∣

∇
(

ϕ√
n

)∣

∣

∣

∣

2

dx+

∫

Rd

|∇√
n|2 − k[̺η]− n[̺η log(η + ̺η)]

n
|ϕ|2dx. (21)

Note that direct calculations show that Qη is actually equal to

Qη(ϕ) = Qe(ϕ)−
∫

Rd

n[̺η log(η + ̺η)]

n
|ϕ|2dx

=

∫

Rd

|∇ϕ|2 dx−
∫

Rd

∇√
n · ∇|ϕ|2√
n

dx

+

∫

Rd

2|∇√
n|2 − k[̺η]− n[̺η log(η + ̺η)]

n
|ϕ|2dx.

15



Replacing Pη in the definition of ̺η(t) by i|φp,η〉〈φq,η|−i|φq,η〉〈φp,η|, we find that n[̺η(t)] =
n− 2tℑ(φp,ηφ

∗
q,η). Repeating the above procedure, we find

2ℑQη(φp,η, φq,η) = 0,

which, together with (20), yields

Qη(φp,η, φq,η) = − log(η + ρp,η)δpq.

Note that we are able to obtain this equality since ̺η is the minimizer of Fη, had we
just regularized the entropy term we would have only obtained an inequality of the form
Qη(φp, φq) ≥ − log(η + ρp)δpq.

Step 2: Passing to the limit. Choose for instance for η the sequence η ≡ ηℓ = 1/ℓ
which converges to zero as ℓ→ ∞. The following lemma lists the convergence properties
of ̺η.

Lemma 3.8 Let ̺ℓ := ̺ηℓ. Then, as ℓ→ ∞:

(i) ̺ℓ converges to ̺⋆ in J1.

(ii)
√
H0̺ℓ

√
H0 converges to

√
H0̺⋆

√
H0 in J1, and

√
H0

√
̺ℓ converges to

√
H0

√
̺⋆

in J2.

(iii) ∀p ∈ N, ρp,ℓ converges to ρp, where {ρp,ℓ}p∈N are the eigenvalues of ̺ℓ and {ρp}p∈N
those of ̺⋆.

(iv) there exist a sequence of orthonormal eigenbasis {φp,ℓ}p∈N of ̺ℓ and an orthonormal
eigenbasis {φp}p∈N of ̺⋆ such that, ∀p ∈ N,

lim
ℓ→+∞

‖φp,ℓ − φp‖ = 0 and lim
ℓ→+∞

‖√ρp,ℓ ∇φp,ℓ −
√
ρp ∇φp‖ = 0.

(v) βηℓ(̺ℓ) converges to β(̺⋆) in J1.

(vi) ̺ℓ log(ηℓ + ̺ℓ) converges to ̺⋆ log(̺⋆) in J1.

Proof. The proof will use the following two ingredients: the first one is the logarith-
mic Sobolev (10), and the second is the following Lemma proved in [11, Lemma 3.1],
providing us with compactness results for sequences of density operators bounded in E .
Lemma 3.9 Let (̺k)k∈N be a bounded sequence of E+. Then, up to an extraction of a
subsequence, there exists ̺ ∈ E+ such that

̺k → ̺ in J1 as k → +∞, (22)

and
Tr(
√

H0̺
√

H0) ≤ lim inf
k→+∞

Tr(
√

H0̺k
√

H0). (23)

Furthermore, if one has

Tr(
√

H0̺
√

H0) = lim
k→+∞

Tr(
√

H0̺k
√

H0),

then one can conclude in addition that
√

H0
√
̺k →

√

H0
√
̺k in J2 and

√

H0̺k
√

H0 →
√

H0̺
√

H0 in J1 as k → +∞.
(24)
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We now begin the proof of Lemma 3.8.

Step 1: We start with (i). Let σ = |√n〉〈√n|. Since σ ∈ A, we have

Fη(̺η) ≤ Fη(σ).

Besides, (14) yields F (̺η) ≤ Fη(̺η). It follows from (10) and Tr(̺η) = ‖n‖L1 = 1 that

∫

Rd

n(x) log(n(x)) dx− d

2
log

(

eE(̺η)

2πd

)

− 1 ≤ S(̺η),

This gives the estimate

∫

Rd

n(x) log(n(x)) dx− d

2
log

(

eE(̺η)

2πd

)

−1+E(̺η) ≤ F (̺η) ≤ Fη(σ) = ‖∇
√
n‖2+βη(1),

which shows that
E(̺η) ≤M, (25)

for some M > 0 independent of η. Together with Tr(̺η) = 1, we can apply Lemma
3.9 and find a subsequence ̺k := ̺ηℓk (recall that η = ηℓ = 1/ℓ) and a ̺ satisfying the
convergence results of Lemma 3.9.
Step 2: We identify now ̺ with ̺⋆. For this, we remark first that ̺⋆ ∈ A, and therefore,

Fη(̺η) ≤ Fη(̺⋆). (26)

Furthermore, it is proven in [12, Step 6 in Section 3], that S(̺k) → S(̺) as k → ∞,
and the proof can be directly adapted to yield that

Tr
(

|βηℓk (̺ℓ)|
)

→
k→∞

Tr
(

|β(̺)|
)

and Tr
(

|βηℓk (̺⋆)|
)

→
k→∞

Tr
(

|β(̺⋆)|
)

. (27)

As a consequence, we obtain from (26) and (23) of Lemma 3.9 that

F (̺) ≤ F (̺⋆),

which, by uniqueness of the minimizer, yields ̺ = ̺⋆. This also implies that the entire
sequence {̺ηℓ}ℓ∈N∗ , denoted with an abuse of notation by {̺ℓ}ℓ∈N∗ , converges to ̺⋆.
Then, (i) and (ii) follow from Lemma 3.9 by replacing ̺ by ̺⋆. Furthermore, (iii) and
the first result of (iv) follow from Lemma 3.6.
Step 3: We address now the second result of (iv). From (25), we have

ρp,η‖∇φp,η‖2 ≤ Tr
(

√

H0̺η
√

H0

)

≤M,

which, together with (iii) and the first result of (iv), shows that
√
̺p,ℓφp,ℓ converges

weakly in H1(Rd) to
√
̺pφp. In order to obtain strong convergence, we remark that,

according to (ii),
√
H0

√
̺ℓ converges to

√
H0

√
̺⋆ strongly in J2, so that

ρp,ℓ‖∇φp,ℓ‖2 = Tr
(

√

H0
√
̺ℓPφp,ℓ

√
̺ℓ
√

H0

)

→ Tr
(

√

H0
√
̺⋆Pφp

√
̺⋆
√

H0

)

= ρp‖∇φp‖2.
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Above, we used the fact that Pφp,ℓ
→ Pφp

strongly in L(L2(Rd)) because of the first
result of (iv). Together with the weak convergence of

√
̺p,ℓ ∇φp,ℓ, this proves the second

result of (iv).
Step 4: Regarding (v), as stated in (27), we already have the convergence of |βηℓ(̺ℓ)|
in J1. With (iii) and (iv), it is then not difficult to obtain weak convergence of βηℓ(̺ℓ)
to β(̺⋆) in the sense of operators, which, according to [15, Theorem 2.21 and addendum
H], yields the convergence in J1.
Step 5: Finally, for (vi), we write

x log(η + x)− x log(x) = βη(x)− β(x)− gη(x) with gη(x) = η(log(η)− log(η + x)).

Since |gη(x)| ≤ |x| for all x ≥ 0, we have that gη(̺η) ∈ J1. Then

‖gηℓ(̺ℓ)‖J1
=
∑

p∈N

|gηℓ(ρp,ℓ)| →
ℓ→∞

0,

as an application of generalized dominated convergence for series together with (iii),
gηℓ(ρp,ℓ) → 0 and ρp > 0 for all p ∈ N. Hence, we have

‖̺ℓ log(ηℓ + ̺ℓ)− ̺⋆ log ̺⋆‖J1
≤ ‖βηℓ(̺ℓ)− β(̺⋆)‖J1

+ ‖gηℓ(̺ℓ)‖J1
,

which converges to zero as ℓ→ ∞ according to (v). This ends the proof.

Following this last lemma, we suppose that the basis of eigenvectors {φp}p∈N intro-
duced in the previous sections is the one of item (iv). We have then the

Proposition 3.10 For all p, q ∈ N,

Q⋆(φp, φq) = −δpq log(ρq).
Note that log(ρp) is well defined for all p ∈ N since ρp > 0 according to Proposition 3.5.

Proof. Set first ρp,ℓ := ρp,ηℓ and φp,ℓ := φp,ηℓ . Then, since ρp > 0 for all p ∈ N,
Lemma 3.8 (iii) shows that log(ηℓ + ρp,ℓ) → log(ρp) for all p ∈ N as ℓ → ∞. Consider
now

√
ρp,ℓρq,ℓQηℓ(φp,ℓ, φq,ℓ), that we split into five terms Qℓ

i defined below, i = 1, · · · , 5.
Then, by Lemma 3.8 (iii)-(iv), as ℓ→ ∞,

Qℓ
1 :=

√
ρp,ℓρq,ℓ

∫

Rd

∇φ∗
p,ℓ · ∇φq,ℓdx→ √

ρpρq

∫

Rd

∇φ∗
p · ∇φqdx.

Furthermore,

Qℓ
2 := −√

ρp,ℓρq,ℓ

∫

Rd

∇√
n · ∇(φ∗

p,ℓφq,ℓ)√
n

dx

= −√
ρp,ℓρq,ℓ

∫

Rd

∇√
n ·
(

∇(φ∗
p,ℓ)φq,ℓ +∇(φq,ℓ)φ

∗
p,ℓ

)

√
n

dx

:= Qℓ
2,1 +Qℓ

2,2.
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We write

Qℓ
2,1 = −√

ρpρq

∫

Rd

∇√
n · ∇φ∗

pφq√
n

dx (28)

−√
ρq,ℓ

∫

Rd

∇√
n ·
(

∇(
√
ρp,ℓφ

∗
p,ℓ −

√
ρpφ

∗
p)φq,ℓ

)

√
n

dx

−√
ρp

∫

Rd

∇√
n · ∇φ∗

p(
√
ρq,ℓφq,ℓ −√

ρqφq)√
n

dx.

The second term on the right is controlled by

‖∇
√
n‖‖∇(

√
ρp,ℓφ

∗
p,ℓ −

√
ρpφ

∗
p)‖‖

√
ρqℓφq,ℓ/

√
n‖L∞ ,

and goes to zero as ℓ→ ∞ because of Lemma 3.8 (iv) and the fact that
√
ρq,ℓ|φq,ℓ|√

n
≤ 1, a.e. (29)

since n[̺ℓ] = n. For the third term, we deduce from Lemma 3.8 (iii)-(iv) that there is a
subsequence {kℓ}ℓ∈N such that

√
ρq,kℓφq,kℓ converges to

√
ρqφq a.e.. Since ∇

√
n and ∇φp

belong to L2(Rd), and
√
ρq,kℓ |φq,kℓ |/

√
n ≤ 1 a.e. as well as

√
ρq|φq|/

√
n ≤ 1 a.e., we can

invoke dominated convergence and obtain that the limit of the third term is zero. We
have therefore obtained that Qkℓ

2,1 converges as ℓ → ∞ to the first term on the right in
(28). The term Qℓ

2,2 is handled exactly as Qℓ
2,1.

We treat now the term Qℓ
3 that reads

Qℓ
3 := −√

ρp,ℓρq,ℓ

∫

Rd

k[̺ℓ]φ
∗
p,ℓφq,ℓ

n
dx

According to Lemma 3.8 (ii), we can conclude that k[̺ℓ] converges to k[̺⋆] strongly in
L1(Rd), and we have, using (29),

lim
ℓ→∞

Qℓ
3 := − lim

ℓ→∞

√

ρp,k′
ℓ
ρq,k′

ℓ

∫

Rd

k[̺⋆]φ
∗
p,ℓφq,ℓ

n
dx.

Proceeding in the same way as Qℓ
2,1, with dominated convergence and (29), we find

lim
ℓ→∞

Qkℓ
3 = −√

ρpρq

∫

Rd

k[̺⋆]φ
∗
pφq

n
dx.

The term

Qℓ
4 := −√

ρp,ℓρq,ℓ

∫

Rd

n[̺ℓ log(ηℓ + ̺ℓ)]φ
∗
p,ℓφq,ℓ

n
dx

is treated exactly as Qℓ
3 since n[̺ℓ log(ηℓ + ̺ℓ)] → n[̺⋆ log(̺⋆)] in L

1(Rd) according to
Lemma 3.8 (vi). Finally,

lim
ℓ→∞

Qkℓ
5 := 2 lim

ℓ→∞

√
ρp,kℓρq,kℓ

∫

Rd

|∇√
n|2φ∗

p,kℓ
φq,kℓ

n
dx

= 2
√
ρpρq

∫

Rd

|∇√
n|2φ∗

pφq

n
dx,
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as an application, as earlier, of dominated convergence and (29). Gathering the different
limits, we find √

ρp
√
ρq (Q⋆(φp, φq) + δpq log(ρp)) = 0,

which ends the proof since ρp and ρq are strictly positive according to Proposition 3.5.

An important estimate. The next result is central in proving the eigenvalue relation
(9).

Proposition 3.11 Let ϕ ∈ H1
ω(R

d). Then,

‖ϕ‖2H ≤ Q⋆(ϕ).

Proof. For t ≥ 0 and ϕ ∈ H1
ω(R

d), consider the operator

̺η(t) = aη(t) (̺η + tPϕ) aη(t),

where

nη(t) = n[̺η + tPϕ], aη(t) =

√

n

nη(t)
.

We need to regularize ϕ in order to have the estimate |ϕ| ≤ M
√
n and use Lemma

3.3. Let then ϕε = ϕ
(

n
n+ε|ϕ|2

)1/2

. We can see that |ϕε| ≤ ε−1/2
√
n and it follows from

similar computations as in (17) that

|∇ϕε| ≤ 2

(

|∇ϕ|+ |∇√
n|√
n

|ϕ|
)

, (30)

which gives ϕε ∈ H1
ω(R

d). Denoting by ̺ε(t) (and dropping the dependency on ηℓ to
ease notation) the operator ̺ηℓ(t) for ϕ ≡ ϕε, Lemma 3.1 and (16) then yield, since ̺ηℓ
is the minimizer,

dFηℓ(̺ε(t))

dt

∣

∣

∣

∣

t=0+
= Qηℓ(ϕε) + Tr

(

log(ηℓ + ̺ηℓ)Pϕε

)

≥ 0. (31)

We will pass to the limit in the above relation. We have first

Tr
(

log(ηℓ + ̺ηℓ)Pϕε

)

=
∑

p∈N

|(ϕε, φp,ℓ)|2 log(ρp,ℓ + ηℓ).

Choose ηℓ ∈ (0, 1/2] and p0 such that ρp ≤ 1/2 for p ≥ p0. Since ρp,ℓ → ρp by Lemma
(3.8) (iii), we can choose ℓ sufficiently large that ρp,ℓ ≤ 1/2 for p ≥ p0. Since ϕε → ϕ
in L2(Rd) (note that we use here the fact that n > 0 a.e.), it follows that, with Lemma
3.8 (iii)-(iv),

lim
ε→0

lim
ℓ→∞

∑

p<p0

|(ϕε, φp,ℓ)|2 log(ρp,ℓ + ηℓ) =
∑

p<p0

|(ϕ, φp)|2 log(ρp).
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Note that log(ρp) is well defined according to Proposition 3.5. Then, since − log(ηℓ +
ρp,ℓ) ≥ 0 for p ≥ p0, it follows from Fatou’s lemma for series that

−
∑

p≥p0

|(ϕ, φp)|2 log(ρp) ≤ − lim inf
ε→0,ℓ→∞

∑

p≥p0

|(ϕε, φp,ℓ)|2 log(ρp,ℓ + ηℓ).

It remains now to pass to the limit in Qηℓ(ϕε). The limit in ηℓ is done in the exact
same way as in the proof of Proposition 3.10, we simply use |ϕε| ≤ ε−1/2

√
n instead of

(29) in order to apply dominated convergence. We then replace all terms in ηℓ by their
limit and treat now the term in Q⋆(ϕε) involving ∇ϕε. We have that ∇ϕε is given by
(17) and converges to ∇ϕ a.e. as ε → 0. With the estimate (30) and the fact that the
r.h.s is in L2(Rd) because ϕ ∈ H1

ω(R
d), we can invoke dominated convergence and pass

to the limit and obtain

lim
ε→0

∫

Rd

|∇ϕε|2dx =

∫

Rd

|∇ϕ|2dx.

It remains to treat
∫

Rd

(

−∇√
n · ∇|ϕε|2√

n
+

2|∇√
n|2 − k[̺⋆]

n
|ϕε|2

)

dx.

Using that ∇ϕε → ∇ϕ and ϕε → ϕ both a.e., together with (30) and |ϕε| ≤ |ϕ|, we
can use dominated convergence to pass to the limit above and obtain the desired result.
This ends the proof.

3.4 Conclusion and proof of the main theorem

We have already obtained in Proposition 3.5 that ̺⋆ is full rank. We prove now relation
(9). According to Proposition 3.11, we have, since ρp < 1 for all p ∈ N,

− log(ρ0)‖ϕ‖2 ≤ ‖ϕ‖2H ≤ Q⋆(ϕ), ∀ϕ ∈ H1
ω(R

d). (32)

This shows in particular that Q⋆ is nonnegative and as a consequence

∫

Rd

k[̺⋆]

n
|ϕ|2dx ≤

∫

Rd

n

∣

∣

∣

∣

∇
(

ϕ√
n

)∣

∣

∣

∣

2

dx+

∫

Rd

V⋆|ϕ|2dx,

which yields that H1
ω(R

d) = H1
⋆ (R

d). Besides, we deduce from (32) that

− log(ρ0) ≤ inf
ϕ∈H1

⋆ ,‖ϕ‖=1
Q⋆(ϕ).

According to Proposition 3.10, we have Q⋆(φ0) = − log(ρ0), and therefore the above
infimum is attained at φ0. At any order p > 1, we have, for any ϕ ∈ Kp,

− log(ρp)‖ϕ‖2 ≤ ‖ϕ‖2H ≤ Q⋆(ϕ) so that − log(ρp) ≤ inf
ϕ∈Kp

Q⋆(ϕ),

and, according to Proposition 3.10, the infimum is attained at φp. This proves (9).
Consider now Q⋆,S, which is densely defined since {φp}p∈N is an orthonormal basis of
L2(Rd). Following Proposition 3.10, we have

Q⋆,S(u, v) = (u, v)H, ∀u, v ∈ S.
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Since H is complete, this shows that Q⋆,S is closable and that

Q⋆,S(u, v) = (u, v)H = (u,− log(̺⋆)v), ∀u ∈ H, ∀v ∈ D(− log(̺⋆)),

where

D(− log(̺⋆)) =

{

ϕ ∈ L2(Rd) :
∑

p∈N

(log(ρp))
2|(φp, ϕ)|2 <∞

}

.

Finally, the fact that H1
⋆ (R

d) ⊂ H is a consequence of Proposition 3.11. This ends the
proof of the theorem.

4 Proofs of some lemmas

4.1 Proof of Lemma 3.1

Step 1: We show first that ̺(t) ∈ A for all t ≥ 0. It is direct to see that ̺(t) is
nonnegative since t ≥ 0, and that it is trace class as products of the trace class operator
̺⋆ + tPϕ and the bounded multiplication operator by a(t) ≤ 1. It then follows that

n[̺(t)] = a(t)2(n+ t|ϕ|2) = n,

i.e. ̺(t) satisfies the constraint n[̺(t)] = n
Step 2: We want to prove that ̺(t) ∈ E . For this, we write, by linearity of the trace,

E(̺(t)) = E(a(t)̺⋆a(t)) + tE(a(t)Pϕa(t)),

and use the following result, which is just a consequence of the definition of Hilbert-
Schmidt operators:

Lemma 4.1 Let σ be a bounded operator and A be a self-adjoint operator. Then
Aσσ∗A ∈ J1 if and only if Aσ ∈ J2.

According to [13, Theorem 6.22, item (g)], Aσ ∈ J2 holds provided there is an othonor-
mal basis {ep}p∈N of L2(Rd) such that

∑

p∈N

‖Aσep‖2 <∞.

We use this result with A =
√
H0 and σ = a(t)

√
̺⋆ as follows. Noticing first that

∥

∥

∥

√

H0

(

a(t)̺1/2⋆ φp

)

∥

∥

∥
=
∥

∥∇
(

a(t)̺1/2⋆ φp

)∥

∥ ,

we have

E(a(t)̺⋆a(t)) =
∑

p∈N

∥

∥

∥

√

H0

(

a(t)̺1/2⋆ φp

)

∥

∥

∥

2

=
∑

p∈N

ρp‖∇ (a(t)φp) ‖2 (33)

=

∫

Rd

∑

p∈N

ρp
(

|∇a(t)|2|φp|2 + 2a(t)∇a(t) · ℜ(φ∗
p∇φp) + a(t)2|∇φp|2

)

dx

=

∫

Rd

(

n|∇a(t)|2 + a(t)∇a(t) · ∇n+ a(t)2k[̺⋆]
)

dx.
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Above, the exchange of the integral and the summation is justified since the integrand
is positive. We also used the fact that

n =
∑

p∈N

ρp|φp|2, ∇n = 2
∑

p∈N

ρpℜ(φ∗
p∇φp), and k[̺⋆] =

∑

p∈N

ρp|∇φp|2,

with convergence of the series in L1(Rd) and almost everywhere. Regarding E(a(t)Pϕa(t)),
we have

E(a(t)Pϕa(t)) = ‖∇(a(t)ϕ)‖2 = ‖ϕ∇a(t)‖2 + ‖a(t)∇ϕ‖2 + 2ℜ(ϕ∇a(t), a(t)∇ϕ),

which also gives
∫

Rd

(

n|∇a(t)|2 + a(t)∇a(t) · ∇n
)

dx+ tE(a(t)Pϕa(t))

=

∫

Rd

(

(n(t)∇a(t) + a(t)∇n(t)) · ∇a(t) + ta(t)2|∇ϕ|2
)

dx.

Thus, we find the expression

E(̺(t)) =

∫

Rd

(

(n(t)∇a(t) + a(t)∇n(t)) · ∇a(t) + a(t)2(k[̺⋆] + t|∇ϕ|2)
)

dx.

Note that it is crucial to express E(̺(t)) in terms of the moments of ̺⋆ in order to
exploit the fact that ϕ ∈ H1

ω(R
d). Working directly with ̺⋆ and a(t) as operators would

make it difficult to justify the calculations leading to (13). From there, with the relation

∇a(t) = ∇√
n

√

n(t)
− a(t)∇

√

n(t)
√

n(t)
,

we find

(n(t)∇a(t)+a(t)∇n(t)) · ∇a(t)
=
(

√

n(t)∇
√
n−

√

n(t)a(t)∇
√

n(t) + a(t)∇n(t)
)

· ∇a(t)

=

(

∇
√
n− a(t)∇

√

n(t) + a(t)
∇n(t)
√

n(t)

)

· (∇
√
n− a(t)∇

√

n(t))

=
(

∇
√
n+ a(t)∇

√

n(t)
)

· (∇
√
n− a(t)∇

√

n(t))

= |∇
√
n|2 − a(t)2|∇

√

n(t)|2,

leading to

E(̺(t)) =

∫

Rd

(

|∇
√
n|2 − a(t)2|∇

√

n(t)|2 + a(t)2(k[̺⋆] + t|∇ϕ|2)
)

dx. (34)

We remark that
∣

∣

∣
∇
√

n(t)
∣

∣

∣
≤
∣

∣∇
√
n
∣

∣+
√
t |∇ϕ| ,
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so that ∇
√

n(t) ∈ (L2(Rd))d for any t ≥ 0. Since a(t) bounded by one, ∇√
n and

∇ϕ are in (L2(Rd))d and k[̺⋆] is in L1(Rd), it follows that E(̺(t)) is finite and, as a
consequence, that ̺(t) ∈ E .
Step 3: We show that t → E(̺(t)) is differentiable. First of all, it is clear that a(t)
and

√

n(t) are continuously differentiable as functions of t, for almost all x. Denote by
a1(t, x) the integrand in E(̺(t)), which is then continuously differentiable as a function
of t. With the following relations

∂ta(t) = −a(t)|ϕ|
2

2n(t)
and ∂t∇

√

n(t) =
ℜ(ϕ∗∇ϕ)
√

n(t)
− |ϕ|2∇

√

n(t)

2n(t)
,

tedious but straightforward calculations show that

|∂ta1(t)| ≤ C

( |∇√
n|2
n

|ϕ|2 + |∇ϕ|2 + k[̺⋆]

n
|ϕ|2

)

.

Since ϕ ∈ H1
ω(R

d), the function of the r.h.s above is integrable, and standard results
about Lebesgue integration imply then that E(̺(t)) ∈ C1(R+).
Step 4: We consider now (13). Differentiating E(̺(t)) leads to

∂tE(̺(t)) =− 2

∫

Rd

a(t)
(

|∇
√

n(t)|2∂ta(t) + a(t)∇
√

n(t) · ∂t∇
√

n(t)
)

dx

+

∫

Rd

(

2a(t)∂ta(t)(k[̺⋆] + t|∇ϕ|2) + a(t)2|∇ϕ|2
)

dx

=

∫

Rd

a(t)2

(

2
|∇
√

n(t)|2
n(t)

|ϕ|2 − ∇
√

n(t)
√

n(t)
· ∇|ϕ|2

)

dx

+

∫

Rd

a(t)2
(

|∇ϕ|2 − |ϕ|2
n(t)

(

k[̺⋆] + t|∇ϕ|2
)

)

dx.

Since
a(0) = 1 and n(0) = n,

we directly deduce that

dE(̺(t))

dt

∣

∣

∣

∣

t=0

=

∫

Rd

(

|∇ϕ|2 + 2
|∇√

n|2
n

|ϕ|2 − ∇√
n√
n

· ∇|ϕ|2 − |ϕ|2
n
k[̺⋆]

)

dx,

which is the desired result.

4.2 Proof of Lemma 3.2.

First of all, it is clear that for any t ≥ 0 and x ∈ R
d,

a(t, x) =

√

n(x)
√

n(x) + t|ϕ(x)|2

is bounded by one. Furthermore, we have

∂ta(t) = −a(t)|ϕ|
2

2n(t)
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which is bounded by M2/2 according to the assumption on ϕ. With

∂t̺(t) = a(t)Pϕa(t) + ∂ta(t)(̺⋆ + tPϕ)a(t) + a(t)(̺⋆ + tPϕ)∂ta(t),

it follows by inspection that ̺(t) ∈ C1(R+,J1) since ̺⋆ and Pϕ are trace class and a
and ∂ta are bounded and continuous w.r.t t.

4.3 Proof of Lemma 3.7

We can see that aη is bounded a.e. since, for any t ∈ [−t0, t0],

a2η(t) ≤
∑

j 6=p,q ρj,η|φj,η|2 + ρp,η|φp,η|2 + ρq,η|φq,η|2
∑

j 6=p,q ρj,η|φj,η|2 + (ρp,η − |t|)|φp,η|2 + (ρq,η − |t|)|φq,η|2
≤ 2. (35)

This shows in particular that ̺η(t) is trace class for t ∈ [−t0, t0], and that n[̺η(t)] = n.
Furthermore, it is positive so that ̺η(t) is a density operator for t ∈ [−t0, t0]. It remains
to show that ̺η(t) ∈ E . We now follow the arguments of Step 2 of the proof of Lemma
3.1. We obtain first that

E(aη(t)̺ηaη(t)) =

∫

Rd

(

n|∇aη(t)|2 + aη(t)∇aη(t) · ∇n+ aη(t)
2k[̺η]

)

dx.

Furthermore, we have

E(aη(t)Pηaη(t)) =

∫

Rd

2ℜ
(

∇(aη(t)φp,η) · ∇(aη(t)φ
∗
q,η)
)

dx

=

∫

Rd

(

2ℜ
(

φp,ηφ
∗
q,η

)

|∇aη(t)|2 + 2aη(t)
2ℜ
(

∇φp,η · ∇φ∗
q,η

))

dx

+

∫

Rd

2aη(t)∇aη(t) · ℜ
(

φp,η∇φ∗
q,η + φ∗

q,η∇φp,η

)

dx,

leading to

E(̺η(t)) =

∫

Rd

(nη(t)∇aη(t) + aη(t)∇nη(t)) · ∇aη(t)dx

+

∫

Rd

(

aη(t)
2(k[̺η] + 2tℜ

(

∇φp,η · ∇φ∗
q,η

))

dx.

By using the fact that

∇aη(t) =
∇√

n
√

nη(t)
− aη(t)∇

√

nη(t)
√

nη(t)
,

we deduce the expression

E(̺η(t)) =

∫

Rd

(

|∇
√
n|2 − aη(t)

2

∣

∣

∣

∣

∇
√

nη(t)

∣

∣

∣

∣

2

+ aη(t)
2
(

k[̺η] + 2tℜ
(

∇φp,η · ∇φ∗
q,η

))

)

dx.

(36)
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Finally, since the following estimate holds for any t ∈ [−t0, t0]

|nη(t)| = |n+ 2tℜ(φp,ηφ
∗
q,η)| ≥ n/2,

we deduce that
∣

∣

∣

∣

∇
√

nη(t)

∣

∣

∣

∣

≤ |∇n|+ ρp,η|φp,η∇φq,η|+ ρq,η|φq,η∇φp,η|
n

≤ 1

2
|∇

√
n|+ |∇φp,η|+ |∇φq,η|,

which enables us to bound each term of (36) since φp,η and φq,η belong to H1(Rd)
according to (19). This shows that ̺η(t) ∈ E for t ∈ [−t0, t0] and concludes the proof.
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