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Abstract

In this paper, we consider the problem of minimizing quantum free energies
under the constraint that the density of particles is fixed at each point of R
for any d > 1. We are more particularly interested in the characterization of
the minimizer, which is a self-adjoint nonnegative trace class operator, and will
show that it is solution to a nonlinear self-consistent problem. This question of
deriving quantum statistical equilibria is at the heart of the quantum hydrody-
namical models introduced by Degond and Ringhofer in [4]. An original feature
of the problem is the local nature of constraint, i.e. it depends on position, while
more classical models consider the total number of particles in the system to be
fixed. This raises difficulties in the derivation of the Euler-Lagrange equations and
in the characterization of the minimizer, which are tackled in part by a careful
parameterization of the feasible set.

1 Introduction
This work is concerned with the minimization of quantum free energies of the form

F(o) = Tr(He) + T Tr(5(0)), (1)
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where p is a density operator, i.e. a self-adjoint, trace class, and nonnegative operator
on some Hilbert space, H is a given Hamiltonian, T" the temperature, Tr(-) denotes the
operator trace, and 3 is an entropy function, for instance the Boltzmann or the Fermi-
Dirac entropy. The free energy F'(p) is minimized under a constraint of local density,
namely the density of particles is prescribed at each point of space: if p(x,y) is the
integral kernel associated with the operator g, then the local density, defined as p(z, ),
is fixed and equal to a given function.

The problem considered here is the building block of the quantum hydrodynami-
cal models introduced by Degond et al in [4]. Their strategy consists in adapting to
the quantum setting the moments closure method by entropy minimization that was
developed by Levermore in the context of kinetic equations [10]. This requires the con-
struction of quantum statistical equilibra, which are obtained by minimizing F'(¢) under
appropriate constraints. We focus in this work on the local density constraint (i.e. the
zero order moment of p) explicited above, which leads to the so-called quantum drift-
diffusion model, see [2]. Different models can be obtained by considering additional
constraints, in particular the local current and energy constraints (first and second or-
der moments), which lead to the quantum Euler or quantum Navier-Stokes equations.
We refer to [3, 1] for more details. See also e.g. [7, 9, 8] for additional references on
quantum hydrodynamics.

At the mathematical level, it is proved in [12], for H = —A + V defined on L?(R?),
with d > 1 and V' a given potential, that F(p), with 8 the Boltzmann or the Fermi-
Dirac entropy, admits a unique minimizer under the constraint p(x,x) = n(x), where n
is nonnegative and verifies

Vvn € HY(RY), /Rd n(x)dr =1, nlogn € L'(R%). (2)

The first condition above is necessary for the energy to be finite (i.e. the first term
in the definition of F(g)). The second condition is not crucial and can be modified.
The proof is based on compactness and convexity methods. An important ingredient
is a logarithmic Sobolev inequality for systems that yields a bound from below for the
free energy. This requires the third condition in (2), which prevents leakage of particles
at the infinity. Without this condition, the free energy is not bounded below and
the minimization problem does not admit a solution. The reference [12] addresses in
addition a local current constraint, while (local) density, current and energy constraints
are considered in [6] in a one-dimensional setting in a bounded (periodic) domain. The
energy constraint is difficult to handle in that there is no sufficient compactness on the
minimizing sequences to directly pass to the limit in the constraint, and one has to
resort to subtle monotonicity arguments inspired by thermodynamics to conclude.

Knowing from [12] that a minimizer exists and is unique, our main motivation in
this work is its characterization. This is actually a quite more difficult problem than
just establishing well-posedness. Formal calculations, performed e.g. in [3] in the case
of the Boltzmann entropy and when V = 0, yield that the minimizer g, satisfies the
following self-consistent relation

0« = exp(—H|o,]/T), (3)



where H|p,] is an Hamiltonian of the form

Hlo] = -A+Alo), Ao = ?_;L _ Tnlo, 1og(f:)] + klo

Above, n[o, log o,] and k[o,] are respectively the local entropy and local kinetic energy,
defined by

nlocdog(e)](x) =Y pplog(pp)ldp(@)®,  klod(@) =D pplVep())’,  (4)
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where {p,}pen and {¢,}pen are the eigenvalues and the eigenvectors of g,. Through-
out the paper, the eigenvalues are counted with multiplicity and form a nonincreasing
nonnegative sequence that accumulates at zero. At this stage, the kernel of g, could
be zero, finite, or infinite, but we will prove that it is actually zero when the constraint
verifies n(x) > 0 almost everywhere on R%. The solution g, obtained in (3) is referred to
in [3] as the “quantum Maxwellian”, and A[g,] is the chemical potential, the Lagrange
parameter associated with the density constraint. In [11], in a periodic one-dimensional
domain (2, it is proved under the assumptions that n is uniformly bounded from below,
ie. n(z) > n >0 ae., and that n € H'(Q), that the Hamiltonian H|o,] is self-adjoint
in the sense of quadratic forms. This is possible since the hypotheses (2) on n even-
tually lead to Alo,] € H~'(£2), which, in one dimension only in general, allows one to
define H[p,] in the sense of quadratic forms. In the case where the spatial domain is
R?, the condition n(x) > n > 0 is not compatible with n € L'(R?), and even if we
had Alo,] € H™(R?), this is in general too low a regularity to construct a self-adjoint
operator using classical results such as the KLMN theorem [14] for instance. One of
the main difficulties is therefore to give a proper meaning for (3) for the low regularity
self-consistent potential A[p,]. One could consider adding regularity conditions on An
for instance, but on the one hand it is unclear how this improves the regularity of the
self-consistent terms n[o, log 0] and k[p,], and on the other any additional assumptions
to (2) are not natural since they are not necessary for the existence theory.

The main result of this work is to rigorously define (3) under the minimal assumptions
(2) when the constraint verifies n(z) > 0 almost everywhere on R?. We will characterize
{pp}pen and {¢, }pen and show they are obtained by minimizing an appropriate quadratic
form whose closure is —log(o.). The method of proof is based on a proper rewriting of
the chemical potential Alp,] and on exploiting the obtained particular form. While a
potential with a regularity as low as that of A[o.] would not in general lead to a self-
adjoint operator, it is the distinct structure of Afp,] inherited from the minimization
problem that allows us to justify (3). We will also briefly address the case where n(z)
vanishes on a set of positive measure, which can be treated in a very similar fashion as
the case when n has a full support.

There are several steps in our approach. Since we expect that log o, = —H|[p.]/T,
the first one is to establish that log o, is well-defined, which amounts to prove that the
kernel of o, is zero; we then associate H[o,] with an adequate quadratic form Q,, and
finally relate O, with log o,. All of this is done by deriving the Euler-Lagrange equa-
tions associated with the minimization problem, and a key difficulty is to appropriately
parametrize the feasible set in order to define variations around p,. The self-consistent
nature of the problem and the singularity of the derivative of the entropy at zero make



the proofs somewhat involved and technical. We will in particular need to regularize
the entropy in order to derive many results.

The article is structured as follows: we present our main result in Section 2; the
proof is broken down into several parts in Section 3, and the proofs of some technical
lemmas are given in Section 4.
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2 Main result

We start by introducing some notation.

Notation. We write (-, -) for the inner product on L?(R%), with the convention (f, g) =
Jga fgdz, and || -|| for the corresponding norm. The free Hamiltonian —A is denoted by
Hy, equipped with the domain H?*(RY). L£(L?*(R?)) is the space of bounded operators
on L2(RY), Jy = J1(L*(RY)) is the space of trace class operators and J, the space of
Hilbert-Schmidt operators, both on L?(R%). In the sequel, we will refer to a density
operator as a self-adjoint, trace class, nonnegative operator on L*(R?). For |o| = v/0%0,
we introduce the following space:

¢={oed: VHilolVH € 7},

where /Ho|o|v/Hy denotes the extension of the operator /Hy|o|v/Hy to L?(RY). We
will drop the extension sign in the sequel to ease notation. The space £ is a Banach
space when endowed with the norm

lolle = Tr (lol) + Tr (/Holol/Ho),

where Tr(-) denotes the operator trace. Finally, the energy space is the following closed
convex subspace of &:
& ={0€&:02>0}.

Operators in &, are automatically self-adjoint since they are nonnegative. The local
kinetic energy of p € £, is defined by

Kol(z) = Y MIVep(@)P,  with ||kl = Tr (V'Hoo/Ho),

peEN

where the series converges in L'(R?) and {\,},en and {1, },en are the eigenvalues and
eigenvectors of p.



Setting of the problem. The local density constraint is defined in a different, more
convenient form than the one given in the introduction as follows: let o be a density
operator; for any function ¢ € L>®(R?), and identifying a function with its associated
multiplication operator, the density n[g| is uniquely defined by duality by

/ nlolpde = Tr (op). (5)
R
A familiar equivalent expression is

nlo] = Z/\p|¢p|27 (6)

peN

where the series converges in L'(R?). Given a nonnegative function n satisfying (2), the
admissible set is then

A={p€ & : nlg]=n}.

The kinetic energy and the entropy of o € £, are denoted by

E(o) = Tr (VHoov/Ho),  S(0) = Tr(6(0)),

where [ is the Boltzmann entropy f(x) = xlog(xz) — x. We will state and prove our
main result for such a 3, and explain why it directly extends to the Fermi-Dirac entropy
for instance. Setting 7' = 1 to simplify notation, we write F'(¢) = E(o) + S(0) and
consider the minimization problem

min F'(p). 7
in (o) )
It is proven in [12] that there exists a unique solution o, to (7), that we characterize in
our main result further. Before stating it, we need to introduce a few more notations.
For n(z) > 0 a.e., consider the nonnegative potential

V. — |V\/ﬁ|2 — TL[Q* 10g<9*)]

* Y

n

where a series expression of nfo,log(os)] is given in (4). Note that —n[p, log(o,)] is
nonnegative since the eigenvalues of p, are less than one since Tr(os) = ||n||r: = 1.
Since \/n € H'(R?), and we will see later that n[p, log(o,)] € L'(R%), the potential V, is
only in L'(R% ndz). The introduction of V, is motivated by the following observation:
the first term in the definition of Alp,] can actually be written as

An _ AV [TV

2n vn n

so that
o) = B0 19V vl o)~ ]




The first term on the right-hand-side above is called the Bohm potential, and can be
absorbed into the Laplacian leading to

Hlo,] = —%v. (nV <%>> v

We then define the following weighted Sobolev space

klod (8)

H!RY = {u € L*(R% (1 + V,)dz) : Vu € (L*(R%)%},

which is complete as a closed subspace of H*(R?). Furthermore, based on (8), let Q,
be the quadratic form

Q*(u,v):/Rng (jﬁ) .v<%> dx+/Rd (u-%) wode,  uv e H(RY),

where k[p,] is the local kinetic energy defined in (4). It is not clear at this point that
Q, is indeed well defined on H}(R?). For this, we will see on the one hand that, and
this is a consequence of the fact that o, is the minimizer of F',

/Rd@mﬁdx < /Rn v <%)

and on the other, after a short calculation, that

2 . 2 2
/n v(i) de = [ |Vu?dz— W—VMCLH/ NV, 2a,
R4 \/ﬁ R4 Rd \/ﬁ R4 n

which explains why Q, is well-defined on H}(R%) using the Cauchy-Schwarz inequality.
We will write Q,(u) for Q,(u,u). Let finally $ be defined by

2
dm—l—/ Vi|ul*dz,
Rd

H= {so € L*(RY) : = log(p,)|(¢p, 9)° < oo} :

peEN

where we recall that {p,},en is the nonnegative and nonincreasing sequence of eigenval-
ues of g, and {¢, }pen its eigenvectors, which form an orthonormal basis of L?(R¢). The
space §) is a Hilbert space when equipped with the inner product

(u,v)g = — Z log(pp>(¢p7 u)*(¢p7 v).

peN

Note that §) is well-defined since we will see that p, > 0 for all p € N, and that § is the

domain of self-adjointness of \/— log(o,).

We state now our main result.

Theorem 2.1 Let o, be the unique solution to the minimization problem (7) with the
constraint n satisfying (2) and n > 0 a.e. in R, and denote by {p,}pen and {¢p}pen



the eigenvalues and eigenfunctions of o.. Then o, is full rank, i.e. p, >0 for allp € N,
and

— log(p,) = min Qu(p) = Qu(¢p),  PEN, (9)

where
Kp={p € H R :|oll=1, (g9)=0,¢=0,---,p—1},

with the convention that Ko = {¢ € H:X(RY) : |l¢|| = 1}. Moreover, denoting by Q. s
the restriction of Q, to S =span{¢,,p € N}, we have that Q, s is densely defined and
closable, and that —log(o,) is the unique self-adjoint operator associated with the closure

Q. 5. Finally, H}(R?) C §.

Let us make a few remarks. The self-consistent eigenvalue problem (9) is the rigorous
formulation of (3). Also, while the form Q, obtained by setting k[os] = 0 in Q, can be
shown to be closed in H!(R?), and is therefore associated to a self-adjoint operator, we
do not know if Q, is closed in H!(R?). This is because —k|[p,] is negative and is only
in L'(RY), and there does not seem to be a way to consider the term involving k[o,] as
a perturbation of Qy with such a low regularity. We obtain though that Q, is positive,
and that it is closable when defined on a dense, smaller set than H}(R?). Note that
since {@, }pen C H}(R?), and that {¢,},en is an orthonormal basis of L*(R?), the set
H}(RY) is dense in L*(RY).

Theorem 2.1 can be directly generalized to the Fermi-Dirac entropy x log(x) + (1 —
z)log(l — x), « € [0,1]. The Boltzmann and Fermi-Dirac entropies share indeed the
same technical difficulties, in particular the fact that the eigenvalues of p, accumulate
at zero. The Fermi-Dirac entropy has another singularity at = 1, which is not an issue
since there is only a finite number of eigenvalues arbitrarily close to one.

Remark on the condition n > 0 almost everywhere. When n(z) vanishes on a
set of positive measure, the statement of Theorem 2.1 has to be modified as follows.
We only address the case where the support of n is not too “wild”, which is what we
expect in the applications we have in mind: one can imagine nanostructures where
particles are free to move in all of R? except in some open disjoint bounded domains €2,
i=1,---, N (with smooth boundaries 0f;) where the particle density is then zero. Let
Q = RN\ UL, Q;. We could treat as well the case where n vanishes outside of a bounded
domain g, and define instead = Qg\ UY, Q.

Suppose that n > 0 a.e. on Q and that n = 0 a.e. on UY,Q,;. With the assumption
that \/n € H'(R?), it follows that /n admits a trace on 0€;, and therefore that v/njq, =
0,72=1---,N. The main difference with the full support case is that the minimizer o,
is not full rank any longer. Indeed, the eigenfunctions associated with strictly positive
eigenvalues (denoted {¢,},er) have the same support as n, and it is clear that functions
supported in UN,Q; are in the kernel of p,. Now, if we restrict o, to L?(Q2) by defining
0x.0 = 1go,1g, the analysis that we pursue in the case n(z) > 0 a.e. on R? carries over
to the operator p, o with the following modifications: the potential V, has the same
expression as before and is restricted to Q, the set H}(R?) is replaced by

HY(Q) ={ue L*((1+ V,)dz): Vue (L*(Q)%, wq, =0,i=1---,N},



and the domain of integration of the form Q, is set to 2. Note that g, o has a finite
kinetic energy since the {¢,},er have a zero trace on 0€);, and therefore

/ |v¢py2dx:/|v¢p\2dx, pel
R4 Q

One can then show with almost identical proofs as those given further that the operator
0+ is full rank and that its eigenvalues/eigenfunctions satisfy a modified version of (9).
In particular, the kernel of o, consists of L?(R?) functions that vanish a.e. on €.

Strategy of proof. One of the main difficulties is to construct admissible directions in
order to derive the Euler-Lagrange equations. For ¢ € L?(R?), we will choose operators
of the form (with the Dirac bra-ket notation)

olt) = %(mtww) %

where n(t) = n[o. +t|p){p|]. An issue here is to make sure that g, +t|)(¢| is nonnega-
tive. This is true for any ¢ € L?(R?) when ¢ > 0, but is false if t < 0, leading only to an
inequality when £ > 0 in the Euler-Lagrange equations and not to an equality. We will
use this inequality to prove an important estimate in the derivation of (9) and to obtain
that o, is full rank. We will then replace |¢)(p| by |@p)(dq| + [dg)(Pp|, which will allow
us to work with negative and sufficiently small ¢ to obtain the Euler-Lagrange equations
as an equality. Note that it is tempting to use operators of the form C(t)o,C*(t) for
appropriate C(t) since positivity is ensured, but this does not eventually bring more
information.

Note that because of the particular expression of H[p,] given in (8), it is not necessary
to make hypotheses on the regularity of Ay/n and those in (2) are sufficient.

3 Proof of Theorem 2.1

The proof is divided into four parts. In the first one, we obtain important results about
the differentiability (in appropriate directions) of the functional F(p). In the second
part, we prove that the minimizer is full rank. In the third part, we derive the crucial
relation Q, (¢, ¢,) = —log(p,)dp,, while we conclude the proof in the fourth part.

Throughout this section, we will use the following notations. For ¢ € L*(R%), P,
denotes the rank-one projector P, = |¢)(p|. For t > 0, we consider perturbations of
the minimizer of the form g, + ¢tP,, and introduce the local density

n(t) =nlo. +tP,),  a(t)=,|—

as well as
o(t) = a(t) (o + tF,) a(t).
The operator o(t) is designed to belong to the admissible set A. Consider finally the
weight
k[o.]

wx) =14V (z)+ —




and introduce the space
HL{(RY = {u € L*(R% wdz) : Vu € (L*(R%))%}.

Note that we actually have HL(R?) = H!(R?), but this fact is unknown at this stage.
We will need the following logarithmic Sobolev for systems proved in [5, Corollary 18],
which holds for any ¢ € £, such that n[g]logn[g] € L'(R%):

[ ltostula)ds < 3 pytoeton) + log (5 s ) e (10

peN

Above, {p,}yen denotes the set of eigenvalues of p and E(p) its kinetic energy. Since
E(p) < oo for any admissible o and zlog(z) < 0 for € [0, 1], this inequality shows
that the entropy of an admissible density operator is indeed well-defined as

0< =3 pylog(py) =~ Te(3() < 5105 (58(0)) — [ nloglm)ds < 0. (11)

peN

Above, we used that Tr(g) = 1 = ||n|z: and nlog(n) € L'(R%).

3.1 Preliminary results

For u,v € HL(R?), consider the quadratic form

oy = [ (DT AR,

vn n
. klo.|u*v
+ [ Vu'-Vudr — dx, (12)
R4 R4

n

with the notation Q.(¢) = Q.(p,¢). Note that it follows from the Cauchy-Schwarz
inequality for the first term on the right above that Q. is indeed well defined on H?(R?).

The first lemma below pertains to the kinetic energy F(o(t)), and is proven in section
4.1.

Lemma 3.1 Suppose ¢ € HL(R?). Then, for allt > 0, o(t) belongs to the admissible
set A. Moreover, E(o(t)) € C*(RT) with

4B e()
el = e (13)

We then consider the entropy S(p) for which we will need the next lemma.

Lemma 3.2 Let ¢ € HY(R?) with |p| < M+/n a.e. for some M > 0. Then, o(t) €
CI<R+7\71)'

Because of the singularity of 5'(z) at * = 0 and of the particular form of o(t), it is
difficult to justify some calculations that directly involve S(o(t)). We therefore need to
regularize and introduce, for z € [0, 1] and 1 > 0,

By(x) = (x +n)log(x +n) — z — nlog(n),

9



and define
Sp(o) =Tr(By(0)),  Fylo) = E(0) + Sy(0)-
Note that

n
B(2) ~ 8(a) = | (log(u-+ ) ~ log(u))du 2 0, (14)
0
since log is an increasing function. We then obtain the following lemma.

Lemma 3.3 Let ¢ € L*(R?) with |o| < M+/n a.e. for some constant M > 0. Then
Sy(o(t)) € CHRT), and for all t > 0,

h(n) + Sy(e(t)) — 5y(2(0)) = S(a(t)) — S(e(0)), (15)

where h(n) is a nonnegative function independent of t and ¢ that goes to zero as n — 0.
Moreover,

dSy(e(t))
dt

t=s

Proof. That S,(o(t)) € C*(R™) is a direct consequence of Lemma 3.2 and that,
according to [11, Lemma 5.3], S, (o) is differentiable at any nonnegative density operator
o in any direction dp € Ji, with DS, [o](6p) = Tr(log(n + 0)dp). Regarding (15), we
have first, thanks to (14), S,(o(t)) > S(o(t)). We now show that S,(o.) — S(o.) as
n — 0. Set n € (0,1/2), then §,(x) <0 for x € [0,1]. Then, by Fatou’s lemma for series
and (14),

=2 Blep) = 3 _liminf =5, (p)

peN peN

< lim inf — > Bulpy) < hlnnjélp = Bulps) <= Blpy).

peEN peN pEN

which yields the desired result. Then, with h(n) = S,(0(0)) — S(0(0)) and S,(o(t)) >
S(o(t)), we have

h(n)+5y(0(t)) = 5y(0(0)) = Sy(e(0)) = 5(2(0)) +5y(e(t)) = Sy (2(0)) = S(a(t)) = S(e(0)),

which proves (15). Finally,

dSy(o(t))
dt

- Tr <log(n + Q(S))at9(3)>

t=s

= Tx (1og(n+ 0(5)) Prate) ) + Tr (log(n + o(s)a(s)b(s)).

where b(s) = —|¢|?/n(s). Above, we used the cyclicity of the trace and [b(s)| < |¢|*/n €
L>®(R%), which proves (16). O

Remark 3.4 Note that both terms in (16) are finite since o(s) and Py are trace
class, log(n + o(s)) is bounded, and |¢|?/n(s) < |p|*/n € L=(R?) by assumption.

10



3.2 The minimizer is full rank
We have the following proposition.
Proposition 3.5 The minimizer o, is full rank, that is p, > 0 for all p € N.

Proof. We prove the result by contradiction, in the spirit of [11], section 5, by differ-
entiating in a direction related to a nonzero eigenfunction in the kernel of o,. Compared
o [11], there are complications though since on the one hand, there is the additional
term h(n) in (15) that needs to be handled carefully, and on the other admissible direc-
tions do not admit as simple expressions as in [11].
Step 1: Assume first that the kernel of g, is not {0}, and consider an orthonormal basis
{Wp}per of Ker g, (I may be empty, finite or infinite, and we write |I| for its cardinal).
Then, we denote by (p,)1<p<n the nonincreasing sequence of nonzero eigenvalues of
0« (here N is finite or not), associated to the orthonormal family of eigenfunctions
(¢p)1<p<n- We thus obtain a Hilbert basis {(¥,)1<p<ir) (¢p)1<p<n } of L*(R?). Pick then
for instance 11, that we denote for simplicity by ¢. Having little information about

its regularity (we only know it is in L?(R%)), we need to regularize it in order to apply

Lemmas 3.1 and 3.3. Let then ¢, = Cba(m)lm, where ¢. € C*°(R?) and ¢. — ¢ in

L*(RY). We verify that ¢. € HL(R?Y). First of all,

[t dm‘/ 0:(z +(s|35€< e

2 |v vV ’2 -—n Q* lOg Q*)] + k[@*]
R T

SH@HQ +e (IIVVal* — Tr(e.log(e.)) + [Ik[ol|z)
which is finite thanks to (11) and the fact that ||k[o.]||z1 = FE(0x) < co. Moreover, we

have
n 1/2 1 n
S : )

REREPRE OO P
¢a\/_9?(¢*v¢a)
MCF PRI a7

leading to the estimate
[Vipe] <2(IVex| + 272V /nl).
This yields . € H!(R?). Note that we also have |p.| < e~*/2y/n. Consider now

0-(t) = ac(t) (ox + tPgoa) ac(t),

where
n

n(t)
According to Lemma 3.1, g, is admissible and o. € C*(R',J;). As a consequence,

0:(t) = 0:(0) = o, in J; as t — 0. We will use the following Lemma, taken from [11,
Lemma A.2].

ne(t) =nlo. +1P,.],  a(t)=

11



Lemma 3.6 Let a sequence (0%)ren converging to o in Jy as k — +oo. Then the cor-
responding nonincreasing sequence of eigenvalues (p’;)peN, (pp)pen converge as follows:

: k
Vp € N, kgrfoo Pp = Pp-

Moreover, there exist a sequence of orthonormal eigenbasis (qb’;)peN of o* and an or-
thonormal eigenbasis (¢p)pen of 0 such that

: k
vpeN,  lm [|¢f — 6, = 0.

According to Lemma 3.6, we can choose the eigenbasis of g.(t) and that of g, in such
a way that the eigenvectors converge to one another in L?(R%) as t — 0F. We then pick
{(Wp)1<p<ir)s (Pp)1<p<n'} to be this very basis for g,, and we denote by {(¢,(t))1<p<n)}
that of p.(t) (/N () can be finite or not). Let {p,(t) }1<p<n() be the eigenvalues associated
with {1 () }1<p<n(). We suppose that ¢ (t) is the eigenvector of o.(t) converging to
¢, and we denote for simplicity ¢ (t) = ¢(t). As a consequence, Lemma 3.6 yields
p1(t) = 0 as t — 07, which we will use below.
Step 2: According to (16), we find

D] — v (toglr-+ 0.0 Prgy) — [, LB L g

Let Py(t) the set of indices such that p,(t) > 1—n for p € Py(t). Then, since log(n+z) >
0 for > 1 — n, and since log(n + ) gOfr0<x< 1—n,

Tr (10801 + 0:(5)) Povacts)) <I(peae(s), 6(s)) P log( + p(s))
+ 3 1(ae(s)9e Gy(s)) P logy(s) + ).

pePy(t)

t=s

Moreover, since |¢.|* < e7'n , since n(s) > n for all s > 0, and xlog(x) < 0 on [0, 1],
and — log(n + x) is decreasing on [0, 1], we find

n|o:(s) log(n + o-(s _

_/ [ ( ) g(n 0 ( ))]|g05|2dx S —c lTr (Qs(s) log(gg(s))).
Rd n(s)

Choosing n € (0, 1), we then obtain, since p,(t) <1,

dSy(0-(t))
dt

< [(peac(s), 0(s))[*log(n + p(s)) +1og(2) D [(ac(s)pe, ()]

t=s peEP(t)
—e 'y (Qg(s) log(gs(s))).

The bound a.(s) <1 for s > 0 shows that the second term on the right can be bounded
by et log(2)]|¢:||*. Regarding the third term, the logarithmic Sobolev inequality (10)
yields, since E(o.(t)) € C*(RT) according to Lemma 3.1,

0< ~Tr (0.)loglon(e))) < — [ nloglmde + 5 10g (35 Ble.(9)

< O+ d1og< max E(o.(s ))) =C..

27d s€[0,1]
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For any t € [0, 1], we have therefore arrived at

S,(0:(1)) — Sy(0:(0)) < / ((peac(s), 6())? log(n + pu(s))ds + tCae.

for another constant Cy .. Furthermore, since E(o.(t)) € C'(R™"), there exists a constant
(s such that
E(0.(t)) — E(0:(0)) < Cs.t,  Vtelo,1].

Gathering the previous estimates, we find, for t € [0, 1],

Fy(ee(t)) = Fy(e:(0)) + h(n) < /0 |(p=ac(s), ¢(s))[* log(n + pi(s))ds + tCyc + h(n),

for a new constant Cly..
Step 3: We will show that we can choose ¢ and n such that the right hand side is
negative. First, write

(e, 0) = (62, 0) + (((H%W)m - 1) ¢>E,¢> .

Since ¢. — ¢ in L?(R?) as e — 0, the first term on the right above converges to one
and the second to zero. Indeed, we write

<<(ﬁ)/_l) M)) - (<(ﬁ)// 1) w)
+<<(ﬁ> —1)<¢5—¢>,¢>,

and realize that the second term on the right converges to zero since ¢, — ¢ in L?(R?).
The first term converges to zero by dominated convergence and the fact that n > 0
a.e. on R? (if n were to vanish on a set of positive measure, then taking a function ¢
supported on the complementary of that set would yield that this first term is actually
—(¢, ¢) and not zero).

We then choose ¢ sufficiently small so that |(¢e, ¢)| > 1/2. Also, since

1

|(peac(s), d(s))]> = (e, 9)* > 1

as s — 0,

there is an so(g) > 0 such that, for all s € [0, so(¢)],

ol

|(ea=(s), o(s))[* >

Besides, since p1(s) — 0 as s — 0, there exists s1(g,0) > 0 such that 0 < py(s) < 9, for
all s € [0, s1(e,d)]. Finally, set 1y and § sufficiently small so that

1
3 log(no+6)+1+Cy. <0,

13



and choose n; such that h(n) < min(sy(e), s1(g,0),1) for n < n; (we recall that such a
m exists since h(n) — 0 as n — 0). Then, for n < min(ny, 1), since log(x) is increasing,

h(n)
/0 <|(<Peae(8)a o(s))*log(n + pi(s)) + 1 + Cg,€>ds

h(n) /4
< / (é log(n+0)+1+ 0475> ds < 0.
0
As a consequence, using (15), for all ¢ € [0, h(n)],

0> h(n) + Fy0(t)) — F,(0:(0)) = F(0(t)) — F(0:(0)),

which contradicts the fact that p, is the unique minimizer of F. Hence, the kernel of o,
is {0}, and the proof is complete. [

3.3 Euler-Lagrange equations

We prove here the relation

Qu(9p, ¢g) = —log(pp)dpg, pyq €N

In the previous section, we were able to use an arbitrary test function ¢ in the pertur-
bation since we only considered positive values for ¢. This ensured the positivity of o(t),
with the drawback of only yielding an inequality in Euler-Lagrange equations (see e.g.
(31)). This was enough though to prove that the minimizer is full rank. In order to
obtain an equality in the Euler-Lagrange equations, we need to consider negative values
of t as well, which limits the choice of the test functions since o(t) has to be positive. We
will choose below test functions related to the eigenfunctions ¢,, for which the positivity
of the perturbation holds.

We will need once again to regularize to justify the calculations. While we got away
in the previous section with only regularizing the entropy term (this was justified by
(15)), we need here to regularize as well the minimizer in order to obtain properly the
Euler-Lagrange equation. Consider then the problem

min £}, (o).

€A

As (7), the above problem admits a unique solution denoted by p,), with eigenvalues and
eigenvectors {p,  tpen and {¢,, }pen. The proof of this fact is omitted since it is similar
to the one of the non-regularized problem.

Step 1: Euler-Lagrange equations for the regularized problem. For p and ¢
given, consider the operator

Py = ‘¢p7n><¢qm| + |¢q,n><¢p,n|a

that will be used to define a new direction of perturbation. It is not difficult to see
that o, + tP, is positive for t > —min(p,,, pgn). It is also clear that g, + tP, is self-
adjoint and trace class, and that n,(t) := nlo, + tP)] = n + 2tR(¢,,¢;,). This last

14



expression is deduced from the definition of the local density given in (5) and from a
direct calculation. We define then

n,(t)

The lemma below, proved in Section 4.3, shows that g, () is in fact admissible for
appropriate .

0,(t) = ay(t) (977 + tPn)an(t), a,(t) =

Lemma 3.7 Let ty = min(p,., pgn)/2. Then o0,(t) € A for any t € [—to, to].

We want to apply Lemma 3.3 next to obtain the Euler-Lagrange equations. For this,
we will see in Lemma 3.8 that p;, — p; asn — 0, for all j € N. As a consequence, since
p; > 0 for all j € N according to Proposition 3.5, there exists ny > 0 such that p,, >0
and p,, > 0 for all n € (0,79). Since nlp,| = n, this leads to

|¢pﬂ7| S :0;,'}7/2\/57 a.e., (]‘8)

with a similar estimate for ¢,,. An easy adaptation of Lemmas 3.2 and 3.3 shows then
that g, € C'([—to, to], J1), and that

dS(oq(1))
dt

nlo, log(n + o N
=2 10g(77 + Pp,n)(qu — 2R [ ! 7(37 n)] (bmlgqudx'

t=0 R4

We consider now the kinetic energy term. Since g, € £, we have the relation

IVépull® < ppnEleq) < o0, (19)

with a similar estimate for ¢,,. With (18), this shows that ¢,, and ¢,, belong to
HL(R?). Adapting Lemma 3.1 then yields

dE(0y(1))

dt o = Q%Qe(gbp,m ¢q,n)-

Finally, since g, is the minimizer, the derivative of F, (g,(t)) at ¢ = 0 vanishes, and we
find, gathering the above results,

2%Qn(¢pm> (bq,n) = —2log(n + pp,n)épm (20)

e o2

Note that direct calculations show that Q, is actually equal to

() = Qelp) — /Rd nley log7(177+ Q")]IsOde

Q
B 2 V- Vipl?
= /Rd |V|® dx /]Rd Tn dx

2|V\/n|? — k[o,] — nfo,log(n + o
+/Rd Vvl [n]n [0, log(n n>]|90]2d

de + /Rd |V\/ﬁ|2 — k[@n] _nn[QW 10%(77 + Qn)] ‘@‘de- (21)

Z.
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Replacing P, in the definition of o, (t) by @|¢p.,) (Dg.n|—i|Pg.n) (Pp.n|, we find that n[o,(t)] =
n — 2t3(¢pn¢; ) Repeating the above procedure, we find

Q%Qn(ﬁbpmv qu,n) =0,
which, together with (20), yields

Qn(Ppms Pan) = —108(N + Pp.y)Opg-

Note that we are able to obtain this equality since g, is the minimizer of F;, had we
just regularized the entropy term we would have only obtained an inequality of the form

Qn(¢pa ¢q) 2 - IOg(n + pp)5pq'

Step 2: Passing to the limit. Choose for instance for n the sequence n =n, = 1//¢
which converges to zero as ¢ — oco. The following lemma lists the convergence properties
of o,.

Lemma 3.8 Let o; := 0,,. Then, as { — oo:

-
(i) o0¢ converges to o, in Ji.

(i) v/ Hoopr/Ho converges to /Hyo/Hy in Jy, and /Hy\/0; converges to \/Ho,/0x
m jQ.

(111) ¥p € N, p, ¢ converges to p,, where {p,}pen are the eigenvalues of oy and {pp}pen
those of oy.

(iv) there exist a sequence of orthonormal eigenbasis {¢p¢}pen of 0o and an orthonormal
eigenbasis {¢,}pen of 0x such that, Vp € N,

EEEIOO ||¢p,€ - ¢p” =0 and ZEEFHOO H\/ Ppe NV Ppe — \/p_pvd)pH =0.

(v) Bn,(00) converges to B(ox) in Ji.

(vi) oclog(ne + or) converges to o, log(0,) in Ji.

Proof. The proof will use the following two ingredients: the first one is the logarith-
mic Sobolev (10), and the second is the following Lemma proved in [11, Lemma 3.1],
providing us with compactness results for sequences of density operators bounded in £.

Lemma 3.9 Let (ox)ren be a bounded sequence of E.. Then, up to an extraction of a
subsequence, there exists o € £, such that

ok o0 ask — 4oo, (22)
and
Tr(+/Hoo\/ Hy) < llicm inf Tr(+/ Hoorv/ Ho). (23)
——00

Furthermore, if one has
Tr(v/ Hoov/ Ho) = kglfoo Tr(v/ Hoor\/ Ho),

then one can conclude in addition that

v Hov/or = Ho/or in Jo and ~/Hoop/ Hy — / Hoo/ Hy in Jh as k — +00.
(24)
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We now begin the proof of Lemma 3.8.
Step 1: We start with (i). Let o = |\/n){(y/n|. Since o € A, we have

Ey(ey) < Fy(o).

Besides, (14) yields F(o,) < F,(0,). It follows from (10) and Tr(g,) = ||n||;1 = 1 that

/Rd n(z)log(n(z)) dz — glog (%) — 1< 5(0,),

This gives the estimate

[ o) tognt) do—G1og (1)) - L4 Bla) < Flay) < Fyfo) = [VVAIP+5,00).

which shows that
E(o,) < M, (25)

for some M > 0 independent of 7. Together with Tr(o,) = 1, we can apply Lemma
3.9 and find a subsequence gy := gy, (recall that n =n, = 1/{) and a ¢ satisfying the
convergence results of Lemma 3.9.

Step 2: We identify now p with p,. For this, we remark first that o, € A, and therefore,

F,(0,) < Fy(04). (26)

Furthermore, it is proven in [12, Step 6 in Section 3], that S(ox) — S(0) as k — oo,
and the proof can be directly adapted to yield that

T (16, (0)l) = Te(B@])  and  Te(6y, (2)) > Tr(8e)l).  (27)

As a consequence, we obtain from (26) and (23) of Lemma 3.9 that

F(o) < F(o.),

which, by uniqueness of the minimizer, yields ¢ = o,. This also implies that the entire
sequence {o,, }ren+, denoted with an abuse of notation by {o/}sen+, converges to o,.
Then, (i) and (ii) follow from Lemma 3.9 by replacing ¢ by o,. Furthermore, (iii) and
the first result of (iv) follow from Lemma 3.6.

Step 3: We address now the second result of (iv). From (25), we have

pp,nHVpr,nHz <Tr (v Hoonv Ho) < M,

which, together with (iii) and the first result of (iv), shows that ,/0,¢¢,, converges
weakly in H'(RY) to /@,6,. In order to obtain strong convergence, we remark that,

according to (ii), v/ Ho,/0¢ converges to v/Hy,/0, strongly in J5, so that

Pl Vpell* = Tr (v Ho/0ePs, ,/0rvV Ho) — Tr (v Hoy/0: Py, /00 Ho) = p,l| V|
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Above, we used the fact that Py , — Py, strongly in £(L*(R?)) because of the first
result of (iv). Together with the weak convergence of V@t V¢p e, this proves the second
result of (iv).

Step 4: Regarding (v), as stated in (27), we already have the convergence of |3,,(0¢)]
in J;. With (iii) and (iv), it is then not difficult to obtain weak convergence of f3,,(o¢)
to f(px) in the sense of operators, which, according to [15, Theorem 2.21 and addendum
H], yields the convergence in 7.

Step 5: Finally, for (vi), we write

zlog(n + z) — xlog(z) = B,(z) — B(x) — g,(x) with g,(z) = n(log(n) — log(n + x)).

Since |g,(z)| < |z| for all z > 0, we have that g,(0,) € Ji. Then

lgn (el = D lam(pn)l = 0,

peN

as an application of generalized dominated convergence for series together with (iii),
Gn,(Ppe) — 0 and p, > 0 for all p € N. Hence, we have

||Q€ log(nf + Qf) — O« 10g Q*Hjl < Hﬁne(gﬁ) - /B(Q*)“jl + ||gné(Q€)Hjl7

which converges to zero as ¢ — oo according to (v). This ends the proof. O

Following this last lemma, we suppose that the basis of eigenvectors {¢,},en intro-
duced in the previous sections is the one of item (iv). We have then the

Proposition 3.10 For all p,q € N,

Q(dp, Bg) = —dpq log(py).
Note that log(p,) is well defined for all p € N since p, > 0 according to Proposition 3.5.

Proof. Set first pp, == ppy, and ¢p, = ¢p,,. Then, since p, > 0 for all p € N,
Lemma 3.8 (iii) shows that log(n, + pp¢) — log(p,) for all p € N as ¢ — oco. Consider
NOW /Pp.Pgt L, (O, Dg,e), that we split into five terms Qf defined below, i = 1,--- 5.
Then, by Lemma 3.8 (iii)-(iv), as £ — oo,

Q= et [ V650 Voguds = o [ V65 Vo
R R
Furthermore,

‘. V\/ﬁ'v(¢;,z¢q,£>
QZ T _\/pp,épq,Z/Rd \/ﬁ dx

\Y% V(o \Y :
_ _\/W/Rd \/ﬁ ( (gbp,ﬁ)f;t%f—i_ (¢q,€)¢p7€)dx

A 14 12
= 21 T Q2,2-
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We write
Vn - V(b;%
= —4/PpPyq /Rd \/ﬁ drx
V- (V(\/Ppi®s s — /Pp®) @4,
~\/Pu /R ( T s

_\/p_p/Rd Vyn- Vcﬁ;,(\/%%,e - \/p_q¢q)dx

The second term on the right is controlled by

IVVRllIV (Vepedne = VorSp) Il /Pa b/ Vil e,

and goes to zero as £ — oo because of Lemma 3.8 (iv) and the fact that

AL i ,Oqj|_¢q,z| <1, a.e. (29)
n

since nfos] = n. For the third term, we deduce from Lemma 3.8 (iii)-(iv) that there is a
subsequence {k;}sen such that |/pgr, gk, converges to \/pyd, a.e.. Since Vi/n and Vo,
belong to L*(R?), and \/Pgr,|bqk, /v < 1 ae. as well as \/pg|dq|/v/n < 1 ace., we can

invoke dominated convergence and obtain that the limit of the third term is zero. We
have therefore obtained that ngl converges as ¢ — oo to the first term on the right in
(28). The term Qj, is handled exactly as Qf |

We treat now the term Q4 that reads

(28)

—\ Pp,tPq,t /

According to Lemma 3.8 (ii), we can conclude that k[gg] converges to k[o,] strongly in
L*(R%), and we have, using (29),

Q
0.

lm Q) = — lm /Ay /
Proceeding in the same way as Q2 1» with dominated convergence and (29), we find

mecqu

: ke /—
Eh—?c;lo Q3 o /
The term

[o¢log(ne + Qé)]@b;,ﬁd)q,f
n

dx

— Pp, qué/

is treated exactly as Qf since nfoylog(ne + o)) — nlo.log(e.)] in L'(R?) according to
Lemma 3.8 (vi). Finally,

\V4 n2 *
EILIEOQ? = 2hm \/pp,kepq,ke/ vyl (bp’m(bq’kzdx

_ w_/ VTGt
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as an application, as earlier, of dominated convergence and (29). Gathering the different
limits, we find

\/p_p\/p_q(Q*(gbp, Gq) + 0pq log(pp)) = 0,

which ends the proof since p, and p, are strictly positive according to Proposition 3.5.
i

An important estimate. The next result is central in proving the eigenvalue relation

(9).

Proposition 3.11 Let p € HL(RY). Then,

lellf < Qul(w).

Proof. For t > 0 and ¢ € HL(R?), consider the operator

0y(t) = ay(t) (on +tP,) ay(t),

where
n

ny(t)
We need to regularize ¢ in order to have the estimate |¢| < My/n and use Lemma

1/2
3.3. Let then ¢, = ¢ <n+gw> . We can see that |¢.| < e ¥/2y/n and it follows from

similar computations as in (17) that

nn(t) = n[Qn + tP@], an(t) =

Vel <2 (196l + 2 pol). (30

which gives p. € HL(R?). Denoting by o.(t) (and dropping the dependency on 7, to
ease notation) the operator g,,(t) for ¢ = ¢., Lemma 3.1 and (16) then yield, since g,
is the minimizer,

dF, (0-(1))

o = Q,,(¢:) + Tr (log(ne + 04,)Pp.) > 0. (31)

t=0"*

We will pass to the limit in the above relation. We have first

Tr (log(ne + 00,) Pp.) = > (e, 6p.0)1* 108 (ppe + 10¢).

peN

Choose 7, € (0,1/2] and po such that p, < 1/2 for p > p,. Since p,; — p, by Lemma
(3.8) (iii), we can choose ¢ sufficiently large that p,, < 1/2 for p > py. Since p. — ¢
in L*(R?) (note that we use here the fact that n > 0 a.e.), it follows that, with Lemma
3.8 (iii)-(iv),

lim lim Z |(90£7 ¢p,€)|2 IOg(pp,é + 776) = Z |<‘;0> ¢p)|2 log(pp).

e—=0/l—0
p<po p<po
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Note that log(p,) is well defined according to Proposition 3.5. Then, since —log(n, +
ppe) > 0 for p > py, it follows from Fatou’s lemma for series that

= 2_ 19 6p)"log(py) < = liminf > [(i2c, 6p0)|" log(ppe + 1),

P>Po P>Po

It remains now to pass to the limit in Q,,(¢.). The limit in 7, is done in the exact
same way as in the proof of Proposition 3.10, we simply use |p.| < e~'/2,/n instead of
(29) in order to apply dominated convergence. We then replace all terms in 7, by their
limit and treat now the term in Q,(p.) involving V.. We have that V. is given by
(17) and converges to Vy a.e. as ¢ — 0. With the estimate (30) and the fact that the
r.h.s is in L*(RY) because ¢ € HL(R?), we can invoke dominated convergence and pass
to the limit and obtain

hm/ ]Vgog\zdx:/ IVp|*dx.
e—=0 Jpd R4

It remains to treat

\Y% Ve 2|V 2 — klo,

/ (_ Vi Vieel?  2AVVnl® — ko ]‘%lz) .
R4 \/ﬁ n

Using that V. — Ve and ¢. — ¢ both a.e., together with (30) and |p.| < |p|, we

can use dominated convergence to pass to the limit above and obtain the desired result.
This ends the proof. O

3.4 Conclusion and proof of the main theorem

We have already obtained in Proposition 3.5 that g, is full rank. We prove now relation
(9). According to Proposition 3.11, we have, since p, < 1 for all p € N,

—log(po)lell* < el < Quly), Vo € HL(R?). (32)

This shows in particular that @), is nonnegative and as a consequence

5= [} ()

which yields that H!(R?) = H}(R?). Besides, we deduce from (32) that

2
da+ [ Vilelda,
Rd

—log(po) < inf  Qu(¢p).

peHY |lpl=1
According to Proposition 3.10, we have Q,(¢9) = —log(pg), and therefore the above
infimum is attained at ¢o. At any order p > 1, we have, for any ¢ € KC,,
—log(p)llell” < el < Q) sothat  —log(py) < inf Qu(p),
P

and, according to Proposition 3.10, the infimum is attained at ¢,. This proves (9).
Consider now Q, g, which is densely defined since {¢,}yen is an orthonormal basis of
L*(RY). Following Proposition 3.10, we have

Q, s(u,v) = (u,v)q, Yu,v € S.
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Since $) is complete, this shows that Q, g is closable and that
@*,S(uv U) = (u7 U)S’J - (u7 - 10g(@*>v)7 Vu € 9, YORS D<_ 10g<9*))7
where

D(—log(e.)) = {90 € L*(RY) =) (log(pp))*|(¢p ) < OO} :

peN

Finally, the fact that H!(R?) C § is a consequence of Proposition 3.11. This ends the
proof of the theorem.

4 Proofs of some lemmas

4.1 Proof of Lemma 3.1

Step 1: We show first that o(t) € A for all t > 0. It is direct to see that o(t) is
nonnegative since t > 0, and that it is trace class as products of the trace class operator
0« +tP, and the bounded multiplication operator by a(t) < 1. It then follows that

nlo(t)] = a(t)*(n + tlel*) =

i.e. o(t) satisfies the constraint n[o(t)] =n
Step 2: We want to prove that o(t) € €. For this, we write, by linearity of the trace,

E(o(t)) = E(a(t)o.a(t)) + tE(a(t) Ppa(t)),

and use the following result, which is just a consequence of the definition of Hilbert-
Schmidt operators:

Lemma 4.1 Let o be a bounded operator and A be a self-adjoint operator. Then
Aco*A € Jy if and only if Ao € Js.

According to [13, Theorem 6.22, item (g)], Ao € J> holds provided there is an othonor-
mal basis {e,},en of L*(R?) such that

Z |Ade,||* < .

peN

We use this result with A = /Hy and 0 = a(t)/0x as follows. Noticing first that

|VHo (a(t)e26,)|| = |9 (att)el26,)]|
we have
Bla(t)o.a(t) = 3 ||VEs (at)e?0,) | = 3 IV (alt)) (33)
= [ 3 0 (Valt)F 10y + 20(0)9a(t)- R(¢;9,) + a9, ) da

peN

B / (nlVa(t)? + a(t)Va(t) - Vn + a(tk[e.]) de.
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Above, the exchange of the integral and the summation is justified since the integrand
is positive. We also used the fact that

n=> plépl>, Vn=2) pR(¢:Ve,), and ko)=Y plVe,|*

peEN peEN peN

with convergence of the series in L'(R?) and almost everywhere. Regarding F(a(t)P,a(t)),
we have

E(a(t)Pya(t)) = [V(a(t))I* = leVa®)* + a(t) Vell* + 2R(¢Va(t), a(t) V),
which also gives
/Rd (n|Va(®)]* + a(t)Va(t) - Vn) dz + tE(a(t) Pya(t))
= /]Rd (n(t)Va(t) + a(t)Vn(t)) - Va(t) + ta(t)*|Ve|?) dz

Thus, we find the expression

E(o(t)) = /Rd ((n()Va(t) + a(t)Vn(t)) - Va(t) + a(t)* (ko] + t|Vel!)) do

Note that it is crucial to express F(o(t)) in terms of the moments of g, in order to
exploit the fact that ¢ € H!(R?). Working directly with o, and a(t) as operators would
make it difficult to justify the calculations leading to (13). From there, with the relation

Va(t) = Vyn  at)Vy/n(t)
vn(t) N

we find

(n(t)Va(t)+a(t)Vn(l)) - Va(t)
(\/ (Vv — /n(t)a(t)V/n(t) + a(t)Vn(t ) -Val(t)
_ (wa ~ o)V y/nl0) + a(t %) (VA alt)VA/n(D)
(v¢’+a (H)V/n( ) (Vv/n — a(t)V/n(
= |VVn|* = a(t)*IV/n(t)P,

leading to

B(o(0) = [ (I9VAl = altP VAl +a(e?(ked + V) ) do. (34
We remark that

VA < YVl + VTl
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so that Vy/n (L2(R9))? for any t > 0. Since a(t) bounded by one, V/n and
Vi are in (LQ(Rd)) and k:[ o) is in LY(R?), it follows that E(o(t)) is finite and, as a
consequence, that o(t) € &.

Step 3: We show that t — E(p(t)) is differentiable. First of all, it is clear that a(t)
and /n(t) are continuously differentiable as functions of ¢, for almost all . Denote by
a1 (t, ) the integrand in E(o(t)), which is then continuously differentiable as a function
of t. With the following relations

8ta(t) _ _a(t)|90|2 and &gV\/_ (:0 VSO) |()0|2V vV 1

2n(t) n(t) 2n(t)

tedious but straightforward calculations show that
V/n|? klo.
a0 < € (Lo 4 1w+ H2liop).

Since ¢ € HL(RY), the function of the r.h.s above is integrable, and standard results
about Lebesgue integration imply then that E(o(t)) € C*(R™).
Step 4: We consider now (13). Differentiating E(o(t)) leads to

O E(olt)) = — 2 / at) (I93/n 0P 0ualt) + alt)V /a0 - AV Va0 d
+ /]Rd (2a(t)Bsa(t) (klos] + t|Ve|?) + a(t)’|Ve|?) do

(VDR L YV oo
/et (2 el vm>d

+ [ ot (1962 - 2 (klo) 4 490P) ) s

Since
a(0)=1 and n(0)=n,

we directly deduce that

D) [ (1wl + 2TV g - T o g )

t=0

which is the desired result.

4.2 Proof of Lemma 3.2.

First of all, it is clear that for any ¢t > 0 and = € R,

a(t,z) =

is bounded by one. Furthermore, we have

alty — —DIE
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which is bounded by M?/2 according to the assumption on . With
Oro(t) = a(t)Pya(t) + 0wa(t)(ox + tP,)a(t) + a(t)(ox + tP,)0a(t),

it follows by inspection that o(t) € C*'(R*, J;) since o, and P, are trace class and a
and 0,a are bounded and continuous w.r.t ¢.

4.3 Proof of Lemma 3.7

We can see that a,, is bounded a.e. since, for any ¢ € [—to, to],

2 2 2
o Pin|Binl? + +
Z];&p,q Pinl Pjnl Pp.|Ppnl Pa.n|Pan] <9 (35)

2
a;(t) < <2
Zj;ép,q Pinl®inl* + (opn — [EDGpnl* + (Pgm — [E])[¢gn]?

This shows in particular that g,(t) is trace class for ¢ € [—t¢, to], and that n[o,(t)] = n.
Furthermore, it is positive so that g, (t) is a density operator for ¢ € [—tg, %]. It remains
to show that g, (t) € £. We now follow the arguments of Step 2 of the proof of Lemma
3.1. We obtain first that

Eay(t)oyan(t)) = /IR (Ve (D + ay(t)Vay(t) - Y+ ay(0k0y]) da
Furthermore, we have
BlayOPan®) = [ 2R (V(at)6,0) - Vla(0)65,) da
= /R (2R (6pn07) [Vay(OF +2ay(6)R (Vo - V) da
# [ 2000 (0) R (60763, + 65, V0,) do
leading to
Blor(0) = [ (m(01,(8) + 0, ()9m,(0)) - Vo t)d
+ /R ) (an(t)*(Kloy) + 2tR (Vp, - V5,)) da.

By using the fact that

va (t) — v\/ﬁ o aﬂ(t)v\/ nﬂ(t)
RRVEN () Vgt)

we deduce the expression

2

E(Qn(t)):/Rd (!V\/ﬁP—an(t)2 Vy/n(t)

+ ay(t)? (kloy) + 2tR (Vy., - v¢>;7,7))) dz.
(36)
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Finally, since the following estimate holds for any ¢ € [—t, to]

[, ()| = [n + 2t%(¢p,n¢;,n>’ >n/2,

we deduce that

/ IVl + ppn|OpaV Pan| + PanlPanV Epal
\Vi nn(t)‘ < | Ppm Y Pan anlPan vV Ppn

n

1
< 5IVVAl+ VGl + [Vgl,

which enables us to bound each term of (36) since ¢,, and ¢,, belong to H'(R?)
according to (19). This shows that g,(t) € € for t € [—ty, o] and concludes the proof.
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