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1

Introduction

Additive manufacturing (AM), the process in which a three- 
dimensional object is built by adding subsequent layers of materials, has 
the potential to revolutionize how mechanical parts are created, tested, 
and certified. AM enables novel material compositions and shapes, often 
without the need for specialized tooling. However, successful real-time 
AM design requires the integration of complex systems and often neces-
sitates expertise across domains.

The complex design and processing systems that enable AM start 
with computer models. Since AM processes can be difficult to measure 
experimentally and empirical models for AM can be expensive to cre-
ate, advanced fundamental models (including mechanistic data-driven 
reduced-order models and other validated theoretical and computational 
models) can be used to better understand underlying physical mecha-
nisms. Simulation-based design approaches, such as those applied in 
engineering product design and material design, have the potential to 
improve AM predictive modeling capabilities, particularly when com-
bined with existing knowledge of the underlying mechanics. These pre-
dictive models have the potential to reduce the cost of and time for 
concept-to-final-product development and can be used to supplement 
experimental tests. 

On October 24–26, 2018, the National Academies of Sciences, Engi-
neering, and Medicine organized a workshop of experts from various 
communities within the United States and the European Union to discuss 
the frontiers of mechanistic data-driven modeling for AM of metals. The 
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planning committee (shown on page v) helped to identify the workshop 
topics, invite speakers, and plan the agenda. The workshop was held at 
the Neue Materialien Fürth GmbH building of the Friedrich-Alexander-
Universität Erlangen-Nürnberg in Fürth, Germany. This workshop was 
sponsored by the U.S. Department of Energy, the U.S. National Institute of 
Standards and Technology, Sandia National Laboratories, and Los Alamos 
National Laboratory. 

Wing Kam Liu (Northwestern University), the chair of the planning 
committee, opened the workshop by discussing its four main topics:

• Measuring and modeling process monitoring and control;
• Developing models to represent microstructure evolution, alloy 

design, and part suitability;
• Modeling phases of process and machine design; and
• Accelerating product and process qualification and certification.

The first 2 days of the workshop focused on presentations and panel 
discussions relating to the workshop themes. The third day centered on 
breakout groups that discussed some of the short-, intermediate-, and 
long-term challenges in AM.

This proceedings summarizes the presentations and discussions 
that took place during the workshop. The viewpoints expressed in this 
proceedings are those of individual workshop participants and do not 
necessarily represent the views of all workshop participants, the plan-
ning committee, or the National Academies of Sciences, Engineering, and 
Medicine. 

ORGANIZATION OF THIS PROCEEDINGS

The following chapters in this proceedings summarize the work-
shop’s presentations and discussions. Chapter 2 describes the measure-
ments and modeling for process monitoring control in AM. Chapter 3 
provides an overview of developing models to represent microstructure 
evolution, alloy design, and part suitability. Chapter 4 focuses on model-
ing aspects of process and machine design. Chapter 5 discusses oppor-
tunities to accelerate product and process qualification and certification. 
Chapter 6 summarizes challenges raised during subgroup discussions 
and by individual participants. A list of registered workshop participants 
appears in Appendix A, and Appendix B includes the 3-day workshop 
agenda.
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2

Process Monitoring and Control

The first workshop session provided an overview of measurements 
and modeling for process monitoring and control in additive manu-
facturing (AM). Speakers described systems measured in situ and in 
real time as well as challenges of each resolution and process signature. 
Bianca Maria Colosimo (Politecnico di Milano), Jarred Heigel (National 
Institute of Standards and Technology), Marvin Siewert (University of 
 Bremen), Kilian Wasmer (Empa), Ben Dutton (Manufacturing Technol-
ogy  Centre), and Amit Surana (United Technologies Research Center) 
each discussed research, challenges, and future directions relating to the 
following questions:

• How can systems be measured in real time?
• What AM measurements enable uncertainty quantification?
• How can the precision of a measurement be certified?
• How can measured data be employed to understand the full state 

of a system?
• What mathematical and statistical methods could be applied to 

AM? How can resources from other disciplines be integrated?
• What can be measured in situ and in line? What are the main 

challenges of coaxial and off-axis sensing in terms of accuracy, 
frequency, and spatial and temporal resolution?

• What is the correlation between process signature and product 
defects? How does the probability of detecting flaws connect with 
the qualification of an additively manufactured item?
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• How can models and solutions be used to transfer knowledge 
from machine to machine and from laboratory to laboratory? 
How does this change depending on the material and geometry 
selected to make a part?

• What are the impacts of false positives and false negatives? What 
are the economic advantages of in-situ monitoring?

• What are the challenges of moving from monitoring to feedback 
control?

MEASUREMENTS AND MODELING FOR 
PROCESS MONITORING AND CONTROL

Bianca Maria Colosimo, Politecnico di Milano

Colosimo described Politecnico di Milano’s AddMe.Lab, a labora-
tory combining industrial machines and novel prototypes for AM pro-
cesses such as selective laser melting, electron beam melting, directed 
energy deposition with powder and wire feedstocks, and binder jetting. 
She explained that in-situ monitoring can help reduce major industrial 
 barriers for metal AM technologies, such as process instability, lack of 
repeatability, and defect rates (Mani et al., 2017; Tapia and Elwany, 2014; 
Everton et al., 2016; Spears and Gold, 2016; Grasso and Colosimo, 2017). 

Defects in AM products originate in a variety of ways, including the 
equipment, process, design choices, and feedstock material.  Colosimo 
shared several references for defect sources, as shown in Table 2.1. The 
process signature, which represents the manufacturing process through 
which data are collected from control systems and sensors, can give 
insights into approaches to control the quality of the final product.  Ideally, 
in-situ monitoring could identify defects in real time and correct the pro-
cess accordingly. 

Colosimo provided examples of different levels of in-situ monitoring. 

• Level 0: Using the existing signals (without additional sensors) 
to appropriately analyze all of the available information via sta-
tistical machine learning in order to predict defect onset from 
monitoring and fusing signal data (Grasso and Colosimo, 2017). 

• Level 1: Monitoring the powder bed to assess uniformity of the 
powder coverage, the geometry, and possibly the temperature 
distribution of the melted layer. These assessments can be done 
using high-resolution images in the visible and infrared bands. At 
this level, it is possible to detect delamination defects as well as 
geometrical deviation between the actual and the nominal shape 
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TABLE 2.1 Defect Sources and Categories by Publication

Sources of defects

Categories of defects

Porosity Balling
Geometric 
defects Surface defects

Residual 
stresses, 
cracks, and 
delamination

Microstructural 
inhomogeneity 
and impurity

Equipment Beam 
scanning/ 
deflection

Foster et al., 
2015

Moylan et al., 
2014; Foster et 
al., 2015

Build chamber 
environment

Ferrar et al., 
2012; Spears 
and Gold, 
2016

Li et al., 
2012

Edwards et al., 
2013; Chlebus 
et al., 2011; 
Buchbinder 
et al., 2014; 
Kempen et al., 
2013

Spears and Gold, 
2016

Powder 
handling and 
deposition

Foster et al., 
2015

Foster et 
al., 2015; 
Kleszczynski et 
al., 2012

Foster et 
al., 2015; 
Kleszczynski et 
al., 2012

Foster et al., 2015

Baseplate Prabhakar et 
al., 2015

Prabhakar  
et al., 2015

continued
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6
 TABLE 2.1 Continued

Sources of defects

Categories of defects

Porosity Balling
Geometric 
defects Surface defects

Residual 
stresses, 
cracks, and 
delamination

Microstructural 
inhomogeneity 
and impurity

Process Parameters 
and scan 
strategy

Matthews 
et al., 2016; 
Yasa et al., 
2009; Attar, 
2011; Gong 
et al., 2013; 
Read et al., 
2015; Kruth 
et al., 2004; 
Weingarten et 
al., 2015; Thijs 
et al., 2010; 
Scharowsky 
et al., 2015; 
Puebla et al., 
2012; Tammas-
Williams et al., 
2015; Biamino 
et al., 2011; 
Zeng, 2015 

Li et al., 
2012; Kruth 
et al., 2004; 
Tolochko 
et al., 2004; 
Zhou et al., 
2015; Attar, 
2011; Gong 
et al., 2013 

Yasa et 
al., 2009; 
Mousa, 2016; 
Kleszczynski 
et al., 2012; 
Thomas, 2009 

Li et al., 2012; 
Kruth et al., 
2004; Matthews 
et al., 2016; 
Attar, 2011; 
Gong et al., 
2013; Zaeh and 
Kanhert, 2009; 
Delgado et al., 
2012 

Mercelis and 
Kruth, 2006; 
Parry et al., 
2016; Cheng et 
al., 2016; Van 
Belle et al., 
2013; Casavola 
et al., 2008; Zäh 
and Lutzmann, 
2010; Zaeh and 
Branner, 2010; 
Kempen et al., 
2013; Kruth et 
al., 2004; Carter 
et al., 2014 

Carter et al., 
2014; Arisoy et 
al., 2017; Niu 
and Chang, 1999; 
Huang et al., 2016; 
Thijs et al., 2010; 
Scharowsky et al., 
2015; Puebla et al., 
2012; Biamino et 
al., 2011 

Byproducts 
and material 
ejections

Liu et 
al., 2015; 
Khairallah  
et al., 2016

Liu et al., 2015; 
Khairallah et al., 
2016



D
a
ta

-D
riv

e
n
 M

o
d
e
lin

g
 fo

r A
d
d
itiv

e
 M

a
n
u
fa

c
tu

rin
g
 o

f M
e
ta

ls
: P

ro
c
e
e
d
in

g
s
 o

f a
 W

o
rk

s
h
o
p

C
o
p
y
rig

h
t N

a
tio

n
a
l A

c
a
d
e
m

y
 o

f S
c
ie

n
c
e
s
. A

ll rig
h
ts

 re
s
e
rv

e
d
.

 
7

Design 
choices

Supports Foster et 
al., 2015; 
Kleszczynski et 
al., 2012; Zeng, 
2015 

Foster et 
al., 2015; 
Kleszczynski et 
al., 2012; Zeng, 
2015

Foster et 
al., 2015; 
Kleszczynski et 
al., 2012; Zeng, 
2015

Orientation Li et al., 
2012; 
Strano et 
al., 2013

Delgado et al., 
2012

Delgado et al., 
2012; Fox et al., 
2016; Strano et 
al., 2013 

Meier and 
Haberland, 2008

Feedstock material (powder) Liu et al., 
2015; Van 
Elsen, 2007; 
Das, 2003 

Das, 2003 Seyda et al., 
2012

Das, 2003; Niu 
and Chang, 1999; 
Huang et al., 2016

SOURCE: M. Grasso and B.M. Colosimo, 2017, Process defects and in-situ monitoring methods in metal powder-bed fusion: A review, Measurement 
Science and Technology 28(4):1–25, 10.1088/1361-6501/aa5c4f. © IOP Publishing. Reproduced with permission. All rights reserved.
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printed at each layer (Tapia and Elwany, 2014; Mani et al., 2017; 
Grasso and Colosimo, 2017; Everton et al., 2016). 

• Level 2: Monitoring the printed layer, using high-speed videos 
in the visible or infrared ranges. Hot and cold spots (i.e., areas 
that remain hot or cold for a long period of time and can cause 
geometrical or volumetric defects due to over-melting or under-
melting) can be detected in the thermal signature. Infrared video 
cameras can aid in computing the spatial gradient and temporal 
gradient, which can be used to predict the final microstructure 
(Land et al., 2015; Krauss et al., 2014; Caltanissetta et al., 2018; 
Arnold et al., 2018; Trushnikov et al., 2016; Grasso and Colosimo, 
2016; Colosimo and Grasso, 2018; Brumana et al., 2018).

• Level 3: Monitoring the AM track to assess the spatter signature, 
the plume, the shape of the track, and the cooling rate left by the 
beam behind it. The spatter signature can relate to the expected 
porosity, and an excessive plume can lead to job failure (Repossini 
et al., 2017; Ly et al., 2017).

• Level 4: Monitoring the melt-pool size, shape, and temperature. 
Since the laser directly impacts the melt pool, feedback control 
could be implemented to keep the melt-pool signature stable by 
varying the laser power and/or speed (Doubenskaia et al., 2012; 
Berumen et al., 2010; Kruth et al., 2007).

Levels 1 through 3 are considered “off-axis monitoring” because they 
need sensors that are not placed coaxially with the laser beam. 

Colosimo emphasized that in-situ sensing can improve understanding 
of the AM process, allow for calibration of the AM process simulations, 
increase part quality (e.g., by detecting, preventing, or even compensat-
ing for defects), and support process qualification. Some pending issues, 
however, include correlating the process signature with product quality 
and modeling defects appropriately. She also outlined key sensing ques-
tions: How should the appropriate sensors and their spatial and temporal 
resolutions be chosen? How could in-situ sensing accuracy be certified? 
What methods and tools should be used for multisensor data fusion? 

A goal is to move from “sensorized” machines that collect data to 
“intelligent” AM systems that use data to make decisions. This transi-
tion requires a combination of statistical methods to visualize effective-
ness and efficiency. Colosimo stressed that multidisciplinary research is 
needed to enable new ideas in in-situ sensing, monitoring, and control. 
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MEASUREMENT SCIENCE FOR PROCESS 
MONITORING AND CONTROL

Jarred Heigel, National Institute of Standards and Technology

Heigel described the eight project areas of the Measurement Science 
for Additive Manufacturing program within the Engineering Laboratory 
at the National Institute of Standards and Technology (NIST):

1. Precursor material qualification,
2. AM machine and process qualification, 
3. AM part qualification, 
4. Metrology for multiphysics AM model validation, 
5. Metrology for real-time monitoring of AM, 
6. Machine and process control methods for AM, 
7. Data-driven decision support for AM, and 
8. Data integration and management for AM. 

The primary objective of this program is to “develop and deploy mea-
surement science that will enable rapid design-to-product transformation 
through advances in material characterization; in-process process sensing, 
monitoring, and model-based optimal control; performance qualifica-
tion of materials, machines, processes, and parts; and end-to-end digital 
implementation and integration of AM processes and systems” (NIST, 
2019). Heigel’s presentation focused on measurements and sensors used 
for real-time monitoring, challenges of real-time monitoring and control, 
and the path forward.

Real-time monitoring, Heigel stated, includes any sensor measure-
ments that are continuously recorded during the AM process and used 
to ensure that the machine and process are performing as expected.1 
Common optical sensors include high-speed cameras, pyrometers, in-line 
cameras, and in-line photodetectors. These optical sensors can provide 
great insight into each layer but are limited to observing only the surfaces. 
Ultrasonic sensors can be used to detect subsurface defects by sending 
ultrasonic waves through the part, and acoustic sensors can detect melt-
pool quality and part failure by monitoring the acoustic emissions from 
the melt pool and cracks. 

Heigel explained that real-time monitoring enables both statistical 
process control and feedback control. Statistical process control involves 
comparing the data from a new build with historical data of other builds 

1 In the context of this presentation, layer-wise imaging or intermittent measurements are 
not considered real-time monitoring.
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to determine whether the process is performing within an acceptable 
range. It also involves collecting data from process signatures and com-
paring them with control limits, which are calculated for the expected 
measurements of the process output. In contrast, feedback control relies 
on real-time monitoring and high-rate continuous measurement analysis 
that can then be used to modify the process. 

The industry is striving for rapid processes and rapid certification, 
with the help of real-time monitoring and associated control. However, 
Heigel explained that the largest current barriers for industry are high 
capital costs, a lack of robust correlations, and difficulty interpreting what 
is being measured. Different monitoring approaches are being deployed 
to balance cost and speed constraints. Some AM machines are enabling 
layer-wise imaging and melt-pool monitoring. Coaxial photodetectors 
enable low-cost monitoring at sufficiently high speeds (compared to 
high-speed imaging) but lack fidelity to interpret processing quality. For 
directed energy deposition systems, coaxial melt-pool imaging is cur-
rently being used for real-time monitoring and control and feedback 
control because the process dynamics are comparatively slower. 

Heigel elaborated on some challenges for real-time monitoring. The 
first challenge mentioned was measurement fidelity, which involves the 
trade-off between high spatial resolution and high temporal resolution. 
Thermal cameras can provide high spatial resolution but are temporally 
limited to 103 Hz. Photodetectors can provide higher temporal resolu-
tion but cannot directly determine dynamic size variations in the melt 
pool. Another challenge for real-time monitoring is correlating the sensor 
data with the physics underlying the AM process. Better understand-
ing the physics helps to inform decisions about what types of sensors to 
use, how to interpret the measurements, how to calibrate those measure-
ments, what control algorithms to use, and how to prioritize research and 
development. 

However, real-time monitoring and feedback control cannot cor-
rect flawed designs or processes. Heigel explained that the process must 
be improved to minimize variability, and the build strategies must be 
designed to optimize the process. The importance of modeling and vali-
dation efforts toward achieving this goal cannot be overstated. In addi-
tion, an improved understanding of the relationship between defects and 
real-time monitoring signals must be developed. This requires improve-
ments to the post-process detection of defects and consideration of how 
the real-time data are processed and stored. Finally, metrology improve-
ments, such as better calibration of the sensors, will play an important role 
in allowing data acquired across machines to be compared.

During the question and answer portion of this presentation, a partici-
pant asked Heigel what to do if a defect is detected during the monitoring 
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process. Should the part be discarded or is there a way to fix it? Heigel 
responded that, first, one has to identify the type of defect accurately and 
determine whether it is fixable. For example, it may be possible to re-scan 
a pore relatively close to the surface and to release the associated void, 
but a part with a crack may have to be discarded. Real-time monitoring 
can help determine whether a defective part should be discarded, cor-
rected, or ignored. 

Workshop co-chair Wing Kam Liu (Northwestern University) asked 
about the challenges of powder-bed technologies versus multiple-head 
machines. Heigel said that NIST focuses on powder-bed systems due to 
limited resources. While both are being used in industry, the focus tends 
to be on powder-bed technologies. Heigel emphasized that both meth-
ods have important considerations and would benefit from additional 
research. He noted that there are some challenges in powder-bed versus 
directed energy deposition. For example, ultrasonic measurements tend to 
be transferrable, but differences in process speed can create different sized 
melt pools and cause a different formation. Also, differences in the plumes 
and powder delivery result in different types of problems in powder-bed 
and multiple-head technologies. Lessons learned from measurement sci-
ence about different optimal sensors, ultrasonics, and acoustics could be 
applied to both technologies.  

SIMULATIONS: A CHANCE FOR KNOWLEDGE-BASED 
IMPROVEMENT OF ADDITIVE MANUFACTURING

Marvin Siewert, University of Bremen

Siewert began by explaining four competences in AM: (1) part design 
(e.g., topology optimization, residual stress and distortion, compensation 
of distortion), (2) pre-processing (e.g., part orientation, support structures, 
nesting of parts), (3) process (e.g., scan strategies, thermal management, 
microstructure properties), and (4) post treatment (e.g., hot isostatic press-
ing, milling, heat treatment). He provided several examples of how these 
competences work together in practice.

The first example was a simulation of residual stress and distor-
tion. The classical thermomechanical approach calculates the temperature 
field using the initial condition and suitable boundary conditions. Next, 
 thermal strains and force equilibrium are calculated at several time steps. 
Siewert noted that while this approach can be informative, it can also be 
difficult to calibrate and validate as well as time-consuming and cost-
intensive to run. In contrast, the mechanical process equivalent method 
requires inserting the inherent strains of the union of multiple layers as 
loads into a mechanical calculation. This approach can be calibrated more 
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easily, even for large parts, and is implemented within software at the 
Integrated Status and Effectiveness Monitoring Program (ISEMP). The 
Additive Works GmbH is a spin-off company of ISEMP and provides 
(among other things) simulations based on the mechanical process equiv-
alent method in its software Amphyon.2 Some goals and applications for 
this simulation are fast computation of residual stress and distortion, 
fast estimation, identification of critical areas, adaptation of the design, 
and simulation-based adaptation of support structures. Ade Makinde 
( General Electric Global Research Center) wondered about the accuracy 
of the mechanical process equivalent method. Siewert noted that shrink-
age from every new layer calibrates well and does not require data to be 
uploaded, which enables faster computations.   

Siewert’s second example described mesoscopic and macroscopic 
simulations of a temperature field. On the mesoscopic scale, a Goldak 
heat source was used to analyze the melt-pool size and shape. This type 
of analysis can be used to calibrate heat sources by comparing micro-
sections with simulated melt-pool shapes, to explore the influence of 
local  geometry on the melt-pool size (e.g., overhanging regions with dif-
ferent angles), and to estimate cooling rates. On the macroscopic scale, 
energy input is realized by element activation at a certain temperature. 
This type of analysis can be used, for example, to understand the influ-
ence of different hatch orders (i.e., the order in which material is filled 
within the boundaries of AM parts) and to identify critical areas (e.g., hot 
spots). The models on both scales use fast finite-difference method/finite-
element method calculations and are currently undergoing experimental 
validation. 

Siewert explained that the vision of predicting and controlling all 
parameters in the entire AM process requires broad and deep thinking. 
Since the quality and reliability of the produced part is influenced by the 
whole process chain, every step needs to be understood as well as pos-
sible. Simulation methods and algorithms are needed to understand the 
process and measured data, to predict critical situations, to adapt to and 
overcome these situations, and to optimize the process. He emphasized 
that data to validate and calibrate methods as well as improved mecha-
nisms to get adapted parameters into the process are critical to realize 
this vision.

In response to a question about employing measured data to under-
stand the full state of a system, Siewert said that one could use measured 
data to calibrate and validate a simulation model. A reliable simula-
tion can give a deeper understanding of the process within the system. 

2 To learn more about Amphyon, see https://web.altair.com/2017-introduction-to- additive-
works, accessed October 26, 2018.
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Another participant asked how the accuracy and precision of a measure-
ment can be certified. Siewert explained that although applications vary, 
different measurement techniques and the calibrated simulations can be 
combined to improve the reliability of measurements.

DISCUSSION

Heigel, Wasmer, Siewert, Dutton, and Surana participated in a panel 
discussion moderated by Colosimo. Colosimo asked each panelist to com-
ment on sensor issues. Wasmer said that the cost of sensors will always 
be a consideration as sensors may be too expensive for some low-cost 
applications. He also noted the value of a central resource for results from 
various types of sensors. Researchers have to understand as much as they 
can about both the process and the limits of the sensors in order to mini-
mize error; often this can be done by measuring the piece directly, inde-
pendent from the process parameters. A participant from industry asked 
which sensor data are most helpful. Surana responded that sensing could 
be used in many different ways, including off-line model validation and 
in-line detection of failure. However, the sensing process also depends on 
the scale being modeled and the techniques being used. 

A participant asked the panelists to comment on the repeatability of 
sensor data, how consistent the sensors are across machines and manu-
facturers, and standards for these sensors. Heigel mentioned that NIST 
has been working toward understanding both sensor variability and 
machine/process variability and that a lack of standards or best practices 
for calibration is a barrier. NIST has been conducting an interlaboratory 
study for the past few years to investigate powder-bed fusion variability, 
and some irregularities have been observed. NIST is also researching the 
physics behind sensor measurement and developing calibration proce-
dures. Dutton added that it is important to develop these tools to enable 
the sensors to scale up into other ranges. He added that a structural model 
of the part capabilities as well as the type(s) of defects and sizes that the 
part can handle would be helpful in establishing quality requirements 
for a part. 

In response to a question about the effect of sensor distribution,  Dutton 
mentioned that most current sensing methods are only looking at the top 
surface and can miss deeper defects. Other methods not yet applied, 
such as laser ultrasound, could cover both surfaces and material within 
about 2 mm of the surface. Improved sensing during the layer-by-layer 
AM build process may enable more thorough defect detection. Colosimo 
added that it is difficult to learn across machines because sensor integra-
tion tends to be manufacturer-specific. She also mentioned that multiple 
sensors could be used to increase the robustness of results and detect 
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when problems with a specific sensor occur. Another audience member 
asked whether NIST is considering any compression or filtering tech-
niques to reduce storage demands for large data sets. Heigel responded 
that although NIST is not specifically looking into this, data storage is an 
important consideration. Colosimo encouraged widespread data  sharing 
to enable faster progress. Heigel commented that although data sharing 
can help identify mistakes, open communication is essential; data can be 
easily misinterpreted, and challenges exist with repurposing data to new 
applications. Surana suggested that some data may be prioritized for 
storage along with summaries of where the supplemental information 
can be found. 

In response to a question about the importance of process param-
eters, Wasmer emphasized the value of determining the exact moment 
something happens so that that moment can be explored using other tech-
niques, such as machine learning. Surana agreed that this is an important 
opportunity. Another participant asked the panelists to comment on the 
challenges associated with part inspection. Colosimo responded that in-
situ monitoring allows some visibility into the process during the build 
but is not as helpful when defects depend on the post-processing steps 
(e.g., thermal treatment and finishing). 

Liu asked the panelists for their thoughts on short-term, intermediate, 
and long-term goals in AM. The panelists suggested the following areas 
for improvement:  

• Short-term goals 
— Improving imaging capabilities (Colosimo);
— Clarifying what to monitor and when (Dutton);
— Setting expectations for assessing what can and cannot be 

done (Heigel); and
— Establishing calibration procedures (Heigel).

• Intermediate-term goals 
— Facilitating real-time feedback control (Colosimo);
— Improving the use of models and statistical analyses to deter-

mine the optimal level of feedback, taking into consideration 
the design and purpose of the AM part (Dutton);

— Improving modeling capabilities to predict and design the 
process (Heigel); and

— Advancing fast computations (Surana).
• Long-term goals 

— Improving the fundamental understanding of the processes, 
especially for varying shapes and materials (Colosimo);

— Designing processes to be consistent across machines and 
sensors (Heigel); and
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— Encouraging lifelong learning with respect to new parts, pro-
cesses, and data management (Surana).
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3

Microstructure Evolution,  
Alloy Design, and Part Suitability

The second session of the workshop focused on developing models 
to represent microstructure evolution, alloy design, and part suitability. 
Lyle Levine (National Institute of Standards and Technology [NIST]) and 
Kyle Johnson (Sandia National Laboratories) gave opening presentations 
and were joined by Annett Seide (MTU Aero Engines), Eric Jägle (Max 
Planck Institute), Deniece Korzekwa (Los Alamos National Laboratory), 
 Christian Leinenbach (Empa), and John Turner (Oak Ridge National Lab-
oratory) for a panel discussion relating to the following questions:

• How does the additive manufacturing (AM) community develop 
and validate computer models that use measured material prop-
erty data and build parameters to predict the location-dependent 
state of as-built and post-processed components?

• How does the AM community develop and validate computer 
models that connect the location-dependent state of a part to its 
performance?

MEASUREMENTS FOR ADDITIVE 
MANUFACTURING OF METALS

Lyle Levine, National Institute of Standards and Technology

Levine began his presentation with a discussion of how the pro-
cessing, structure, property, and performance stages in AM interact. He 
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explained that feedstock material and other environmental considerations 
can combine with the complex build process to create a complex compo-
sition and thermal stress history. This information can inform models of 
residual stresses and microstructure, which can then provide estimates 
of mechanical properties and life-cycle behavior. 

Levine provided measurements for laser powder-bed fusion, each 
categorized by model inputs, model guidance, and model validation (see 
Table 3.1). He noted that a previous AM workshop (see NASEM, 2016) 
stressed the importance of benchmark measurements for comparison test-
ing. In response, NIST began the AM Benchmark Test Series (AM-Bench) 
and now has a scientific committee that includes 60 organizations and 83 
members.1 

Several issues arose as this committee first attempted benchmark 
measurements, Levine explained. First, there was a tremendous range of 
additive processes and materials as well as unexplained build variability 
between machines and processes. Time-intensive metrological-level mea-
surements were needed, and the systems were still being built. To stream-
line the process, two general sets of benchmarks were made for metals. 
The first set of benchmarks involved 21 scientists from 6 organizations 
and focused on part deflection, residual elastic strains, micro structure, 
phase fractions, and phase evolution. The second set of benchmarks 
involved 14 scientists from 2 organizations and focused on low-level phe-
nomena, including melt-pool geometry, cooling rate,  topography, grain 
structure, dendritic microstructure, and three-dimensional structure. For 
a blind benchmark challenge, there were 46 submissions (almost all with 
 metals). Levine noted that the groups that used more physics for their 
sub missions ended up being closer to actual measurements. During a later 
discussion period, a participant asked Levine why there were so few valid 
submissions. Levine responded that the relationship between residual 
stress measurements and part distortion models posed challenges. There 
were two submissions tied for first place for predicting residual stress 
measurements accurately and no winner for predicting part distortions. 
The groups also struggled with predicting surface topography, such as 
chevron patterns that form on the surface of materials, and anticipating 
the liquid flow during the solidification process. He speculated that this 
could be due to surface tension issues. Microstructure evolution was also 
challenging, particularly in understanding what phases and precipitate 
sizes/shapes happen as a function of time. Few groups submitted their 
results for microstructure evolution.

1 For more information about NIST’s AM-Bench, see https://www.nist.gov/ambench, ac-
cessed October 26, 2018. 
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TABLE 3.1 Measurement List for Powder-Bed Fusion

Model inputs Model guidance Model validation

Thermophysical parameters 

• Liquidus, solidus temps
• Latent heats
• Specific heat capacity
• Surface tension
• Etc.

Build parameters

• Scan pattern, power, speed
• Power distribution function
• Local cooling rates
• Etc.

Part characterization

• Dislocation density
• Phases, precipitates
• Etc.

Melt pool (in-situ builds 
and tracks)
• Length, width
• Absorptivity (as 

function of time)
• Cooling rate
• Mode (conduction or 

keyholing)
• Etc.

Laser tracks and build 

layers

• Widths, cross sections
• Grain shapes, 

orientations 
• Texture
• Phases, precipitates
• Solidification 

microstructures
• Elemental segregation
• Etc.

Part level (as-built and 
processed)
• Dislocation density
• Phases, precipitates
• Microstructure 

evolution
• Texture
• Residual stresses/

strains
• Part geometry
• Distortion
• Mechanical properties
• Fatigue properties
• Corrosion properties
• Etc.

SOURCE: Lyle Levine, National Institute of Standards and Technology, presentation to the 
workshop, October 24, 2018.

Levine stated that good progress has been made on quantitative in-
situ monitoring, but more development is needed for in-situ technolo-
gies. However, some needed technology is not widespread, and there is 
often poor traceability to primary reference standards. While the process 
for international benchmark measurements is under way, it is limited 
in scope compared to the technological need. He said that the technol-
ogy for state characterization is largely developed, but some aspects are 
widespread and others require specialized capabilities. Lastly, he noted 
a severe lack of AM-compatible alloys and relevant thermophysical and 
related materials data. 

During the question and answer portion of this presentation, Levine 
was asked about the current state of three-dimensional microstructure 
measurement. He responded that the only place he knows that does 
three-dimensional microstructure measurements successfully is the U.S. 
Naval Research Laboratory. NIST has struggled with it in the past. He 
explained that when doing an X-ray computerized tomography scan and 
looking at the grain structures, a diffraction process is being done instead 
of a transmission process and high dislocation densities and resolution 
issues appear. The only way to do three-dimensional microstructure 



Data-Driven Modeling for Additive Manufacturing of Metals: Proceedings of a Workshop

Copyright National Academy of Sciences. All rights reserved.

22 ADDITIVE MANUFACTURING

measurement well is with a cross-sectional scanning electron microscope 
using localized geometry. Then, electron backscatter diffraction or other 
approaches can be used to examine the microstructure.

During the later panel discussion, an audience member asked about 
the next AM-Bench and whether Levine has thought about doing a con-
duction mode versus a keyhole mode. Levine stated that this was an 
excellent question, but the specifics need to be considered. For example, 
is the build conducted on one line with increasing power along that line, 
or is it done as a bare plate test where the power can be transitioned from 
conduction to keyholing? A material system also needs to be considered 
before transitioning. 

PREDICTING MATERIAL STATE AND PERFORMANCE 
OF ADDITIVELY MANUFACTURED PARTS

Kyle Johnson, Sandia National Laboratories

Johnson stated that AM is a multiscale, multilevel problem. Sandia 
National Laboratories has a vision for linking processing, structure, prop-
erty, and performance via the following six programs (listed in order from 
short term to long term). 

1. Thermal process modeling coupled with microstructure prediction. 
 Sandia is working on microstructure prediction through its 
 Stochastic Parallel PARticle Kinetic Simulator,2 which is used for 
AM single continuous build and powder-bed methods.

2. Thermal process modeling coupled with residual stress prediction. 
 Sandia has a Laser Engineered Net Shaping3 process to fabricate 
three-dimensional metallic components directly from computer-
aided design solid models and to simulate AM builds. Sandia is 
moving toward reduced-order models to compute the full stress 
states more efficiently. This process can simulate a 6-hour build 
time in 8 minutes. Neutron diffraction measurements are also 
being incorporated into performance models.

3. Fast performance prediction accounting for as-built state, properties, 
and defects for qualification. With 21 participant teams, the Third 
Sandia Fracture Challenge centered on predicting tensile failure 
of an AM part. 

2 For more information about Sandia National Laboratories’ Stochastic Parallel PARticle 
Kinetic Simulator, see https://spparks.sandia.gov, accessed October 26, 2018.

3 For more information about Sandia National Laboratories’ Laser Engineered Net Shaping 
process, see https://www.sandia.gov/mst/technologies/net-shaping.html, accessed Octo-
ber 26, 2018. 
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4. Efficient concurrent multiscale modeling and uncertainty quantifica-
tion using techniques such as multigrid and error estimation when 
material statistical homogeneity does not apply. An example would 
be generating microstructures using kinetic Monte Carlo, run-
ning a homogeneous simulation with an isotropic material model, 
recovering localized stresses using a posteriori error methods, 
and then comparing the results to direct numerical simulations 
of full kinetic Monte Carlo microstructure.

5. Advanced high-throughput testing capability coupled with machine 
learning algorithms. Full-field high-throughput testing can now 
be combined with machine learning. Sandia has been looking at 
additional volume correlation techniques to get more volumetric 
results instead of surface-level results. The volumetric results 
could then be turned into a neural network that can help deter-
mine the correlation with failure or critical defect structure.

6. Process parameter-dependent microstructure prediction leading to local 
texture control and optimization. Johnson provided an example that 
illustrated how process settings affect microstructure. Coupling 
the process-dependent microstructure and a design optimization 
code, such as Plato,4 might lead to the creation of a site-specific 
optimized microstructure (Popovich et al., 2017). Johnson said 
that this could be a “game changer” but is likely still years away.

Johnson noted that challenges remain with each of these six steps. For 
thermal process modeling coupled with microstructure prediction, better 
three-dimensional microstructure imaging capabilities are needed, and 
representation of local microstructure on full-size parts is both a computing 
power and data storage issue. For thermal process modeling coupled with 
residual stress prediction, residual stress is still difficult to measure, type-
II residual stress is difficult to predict, and an optimization for residual 
stress is needed. Fast performance prediction accounting for as-built states, 
properties, and defects for qualification still has to include uncertainty 
quantification for these materials. Concurrent multiscale modeling and 
uncertainty quantification using techniques such as multigrid and error 
estimation can be expensive and difficult. Crystal plasticity models need 
to account for as-built dislocation structures and other microstructural 
characteristics that are unique to AM. Lastly,  Johnson noted that advanced 
high-throughput testing capabilities coupled with machine learning algo-
rithms still face questions such as what to use for speckle patterns and 
which defects or defect networks matter, as well as how to find them. 

4 For more information about Sandia National Laboratories’ Plato environment, see 
https://sierradist.sandia.gov/Plato_index.html, accessed October 26, 2018. 
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DISCUSSION

Following the presentations, Jägle, Leinenbach, Korzekwa, Seide, 
Turner, and Johnson participated in a panel discussion on microstructure 
evolution, alloy design, and part suitability. In addition to the two session 
questions outlined at the beginning of this chapter, Levine, the moderator, 
posed the following questions:

• What thermophysical parameters are most needed and how can 
they be measured?

• AM-Bench can only provide a limited amount of data. What future 
benchmark measurements should have the highest priority?

• It has been suggested that transition states/instabilities are 
important to investigate—for example, the onset of keyholing 
and dimensional instabilities for thin walls. What other transition 
states merit investigation?

• How can commercial in-situ process monitoring systems be 
validated?

• What is the best role for high-performance computing in AM 
simulation?

• What are short-, intermediate-, and long-term needs and direc-
tions in AM?

An audience member asked the panelists to share their thoughts on 
microstructure evolution modeling. In particular, since the microstructure 
cannot be truly predicted, could a blind prediction be used as the next 
step? Levine responded that AM-Bench 2018 did ask what phases develop 
in Inconel 625 during a residual stress heat treatment. One AM-Bench 
group correctly predicted the phases, but the growth rate and the shape 
of the precipitates were incorrect. Seide stated that although blind predic-
tions may someday be useful, they are not possible yet.  Johnson added 
that for certain materials, such as austenitic stainless steel, predictions are 
fairly reasonable. However, more research is needed to understand the 
impact of defects. Jägle noted that blind predictions for areas such as pre-
cipitate nucleation or growth rate, where predictions are determined by 
defects, are currently unavailable. However, very few people go beyond 
classical nucleation approaches. Another question was how to better inte-
grate sensing data into models to improve predictions.  Korzekwa stated 
that sensing data could be used both as a model input and to validate 
the model output. Understanding the boundary conditions of the situa-
tion is also very important; however, this all depends on the model and 
what the data actually are. An audience member asked how data could 
be used with models to predict or estimate the full state of a system 
that cannot be measured directly. Levine responded that projects should 
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generally be joint measurement and modeling efforts because one can-
not model and measure everything. Measurements can be used to con-
strict model  parameters and help identify underlying physics. 

A participant asked whether a heat treatment could be devised to 
encourage a particular long-term microstructure evolution regardless of 
the as-built microstructure. Johnson responded that he is not sure if it is 
possible to do so. Jägle replied that there are limited options for chang-
ing the heat treatment, which is why it is important to understand the 
solidification process. Levine stated that developing a heat treatment for 
a specific AM alloy is complex. He described two cases in which NIST 
tried to develop heat treatments with unexpected complications. In one 
case, a residual stress heat treatment was needed before cutting the parts 
off of the build plate. This process resulted in significant amounts of 
 unpredicted niobium, which had to be eliminated. 

A participant asked about the roles of creep, fatigue, and tensile 
properties in microstructure evolution. Korzekwa responded that, overall, 
predicting segregation and texture is challenging. Temperature-depen-
dent mechanical properties are not understood well enough to predict 
some of the previously mentioned heat treatment effects. She noted that 
more work is needed to improve modeling capabilities and estimates 
of relevant material properties; Jägle added that these advances could 
help researchers achieve desired microstructures and better understand 
performance. Once there is a microstructure, the models used to translate 
the microstructure into thermomechanical properties are similar, with 
additional considerations such as defects that are not present in other 
materials. Levine gave an example in which his team at NIST tested about 
six different annealing treatments before the precipitation process. The 
team did mechanical testing on treated parts; although these parts were 
composed of the same material and were subjected to heat treatments in 
similar ranges, tensile tests varied by a factor of three. This difference was 
due to microstructure variations, including which precipitates formed 
(and their size and predictability). 

The same audience member asked how current knowledge of micro-
structure modeling could be applied to multicomponent alloy design. 
Jägle responded that there is no single approach to alloy design; it depends 
on the type of alloy. If he was asked to design a better aluminum alloy, 
he would need to design better precipitates or compositions that would 
work in AM. 

In response to a question about model uncertainties and validation 
tests, Turner stated that confidence in a model is needed before exploring 
factors such as surface tension at various temperatures. Teter noted that 
sensitivity analysis of certain parameters, such as recoil versus Marangoni 
in the melt-pool behavior, is a big open question in AM. 
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Levine asked the panelists about short-, intermediate-, and long-term 
goals for AM of metals, which are described below. 

• Short-term goals
— Improving microstructure modeling, particularly for the pre-

diction of grain size, phases, and defects (Johnson);
— Using machine learning on in-situ monitoring data (Johnson);
— Developing guidelines for qualification design (Johnson);
— Modifying existing alloys to work in AM (Jägle);
— Improving the understanding of the physics behind some 

materials’ behaviors (Korzekwa);
— Refining standards (Seide); and
— Obtaining temperature-dependent thermophysical proper-

ties needed for simulations—some software systems have 
temperature as a function of part-geometry and other proper-
ties, which may be a direction worthy of further exploration 
(Leinenbach).

• Intermediate-term goals
— Simulating all laser passes with computationally efficient 

approaches (Johnson);
— Improving topology optimization and location-specific pro-

cess optimization (Johnson);
— Strengthening the understanding of modeling capabilities, 

such as process-continuous models and microstructure mod-
els (Korzekwa); 

— Expanding training in computational materials engineering 
(Seide); and

— Developing a multiphysics approach for coupling capabilities 
(Seide).

• Long-term goals
— Combining digital volume correlation with machine learning 

to minimize failure (Johnson);
— Creating AM-specific alloys with specialized cooling rates 

(Jägle);
— Developing more user-friendly models (Korzekwa);
— Improving the understanding of microstructures in different 

parts and positions for localized needs (Seide);
— Strengthening model reliability to predict distortion, micro-

structure, and mechanical properties (Leinenbach);
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— Establishing a set of community models and interfaces 
between the different components, where lower- and higher-
fidelity models can be interchanged—this could be similar to 
an open source version built in a collaborative environment 
(Turner); and

— Developing community standards on the models and inter-
faces (Turner).
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Process and Machine Design

The third session of the workshop focused on modeling aspects of 
process and machine design in additive manufacturing (AM). Tahany El-
Wardany (United Technologies Research Center), Ade Makinde (General 
Electric [GE] Global Research Center), Johannes Henrich Schleifenbaum 
(Fraunhofer Institute for Laser Technology), Shoufeng Yang (KU  Leuven), 
Jian Cao (Northwestern University), Ranadip Acharya (United Tech-
nologies Research Center), Mustafa Megahed (ESI Group), and Michael 
Schmidt (Friedrich-Alexander Universität Erlangen-Nürnberg) each dis-
cussed research, challenges, and future directions relating to the following 
questions:

• How can processing and post-processing be changed to drive part 
and manufacturing performance to a predetermined goal (e.g., 
target state and production rate)?

• How can modified machine instructions bring about the desired 
process changes?

• What new methods or techniques need to be developed to run the 
AM process so that control signals can be included?

• How can part–process planning be optimized?
• What new methods or techniques for hybrid or autonomous 

machines need to be developed to enable real-time monitoring 
and control?

28



Data-Driven Modeling for Additive Manufacturing of Metals: Proceedings of a Workshop

Copyright National Academy of Sciences. All rights reserved.

PROCESS AND MACHINE DESIGN 29

MODELING PHASES OF PROCESS AND MACHINE DESIGN

Tahany El-Wardany, United Technologies Research Center

El-Wardany began her presentation with an overview of the United 
Technologies Research Center and its work in aerospace, machine design, 
and (most recently) AM. The company is currently focused on research-
ing and optimizing AM processes and exploring different modeling 
techniques. 

El-Wardany discussed AM part processing, modeling and validation 
of AM processes, current AM machines, and requirements for AM machine 
design and capabilities. She noted that there are limitations and gaps for 
existing machine design; challenges in controlling machine performance, 
reproducibility, and repeatability; needs for closed-loop monitoring and 
the ability to output controller data; needs for multifidelity modeling of 
processes to influence selection of monitoring strategy and signature; and 
needs for full part modeling and optimization of scan strategy. 

When making an AM part, she explained, there are three distinct 
phases: pre-processing, process selection, and post-processing. During 
pre-processing, the part concept is translated into a computer-aided 
design model. This model is then used to improve and, hopefully, to opti-
mize the AM processes. Pre-processing also involves the preparation of 
parameters such as support generation, orientation, build layout, nesting, 
and scan strategy. After these parameters are defined, it is time to move to 
the process selection phase, which includes processing, monitoring, and 
control. After this phase, there should be enough information for post-
processing practices such as unpacking, part cleaning, stress relief, part 
removal, support removal, heat treatment and hipping, surface finishing, 
and part inspection.

It is important to discuss the limitations and gaps within these three 
phases, El-Wardany explained. New models are needed to advance the 
design of an AM part, specifically for generative design, cost projection, 
parametric modeling, and multiphysics optimization. She also mentioned 
the increased availability of pre-processing software for parameter selec-
tion, scan strategy, and build-file generation (e.g., Magics Build Processor 
and Machine). With current modeling and validation of AM processes, the 
objectives are to (1) develop integrated physics-based simulation tools of 
AM processes to predict part-level distortion, defects, and micro structure 
as well as to establish correlation to performance (i.e., fatigue); and (2) use 
the developed tools to reduce AM process development time and cost. 
These processes include powder-bed fusion, powder-directed energy 
deposition, and wire arc AM. El-Wardany discussed important consider-
ations for validating high-fidelity physics-based models used to predict 
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properties and part life, such as heat source, melt-pool dynamics, thermal 
history, bulk distortion, and microstructure evolution. Power and speed 
are the main variables that can help map processes. There is still a need for 
more modeling activity to optimize heat treatment and predict part life. 
El-Wardany presented a chart on available AM processes and equipment 
(shown in Table 4.1), provided a few examples of current machines,1 and 
noted that new machines and applications are progressing every year. She 
also discussed the following limitations for these processes:

• Fused deposition modeling: Weak mechanical properties, limited 
materials (only thermoplastics), and inconsistent surface finish.

• Powder-bed fusion (selective laser sintering, selective laser melting, and 
electron beam melting): Slow printing and high cost.

• Inkjet printing and contour crafting: Difficulty maintaining work-
ability, coarse resolution, lack of adhesion between layers, and 
inconsistent surface finish.

• Stereolithography: Very limited materials, slow printing, and high 
cost.

• Directed energy deposition: Poor accuracy, low surface quality, need 
for a dense support structure, and limitation in printing complex 
shapes with fine details.

• Laminated object manufacturing: Poor surface quality and dimen-
sional accuracy and limitation in the manufacturing of complex 
shapes.

• Part size: Lack of novel approaches to relieve stresses and distor-
tion for large-scale parts.

• Scalability: High machine and material costs.
• Limited material and high cost: Lack of affordable AM-adapted 

materials.
• Inconsistent quality: Part quality is difficult to control, machine-to-

machine repeatability and reproducibility of parts are a challenge, 
accessing machine controller for feedback and process modifica-
tions is limited, and in-situ sensing and monitoring systems are 
rarely available. 

• AM machines: Lack of examples in multifunctional structures, 
functionally graded materials, and automated repair processes. 

1 Example machines include the Selective Laser Melting Machine 280, Matsuura LUMEX, 
DMG Mori LASERTEC 65, Friction surface AM Aeroprobe, BeAM Modulo 400, FDM Fortus 
450mc, and Polyjet Stratasys j750.
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TABLE 4.1 Available AM Processes and Equipment

Process 
category

Process or 
technology Material Manufacturer Machine

Vat photo-
polymerization

Stereolithography Ultraviolet 
curable resins

Asiga Freeform Pico

3D Systems iPro, 
Projet6000/7000

EnvisionTEC Perfactory

Rapidshape S Series

Waxes DWS DigitalWax

Ceramics Lithoz CeraFab 7500

Material  
jetting

Multijet 
modeling

Ultraviolet 
curable resins

3D Systems Projet 3500 
HD/3510/ 
5000/5500

Stratasys Objet

Waxes Solidscape 3Z

Binder jetting 3D printing Composites 3D Systems Z Printer

Polymers, 
ceramics

Voxeljet VX Series

Metals ExOne M-Flex

Material 
extrusion

Fused deposition 
modeling

Thermoplastics Stratasys Dimension, Fortus, 
Mojo uPrint

MakerBot Replicator

RepRap RepRap

Bits from Bytes 3D Touch

Fabbster Fabbster Kit

Delta Micro 
Factory Corp.

UP

Beijing Tiertime Inspire A450

Waxes Choc Edge Choc Creator V1

Essential 
Dynamics

Imagine

Fab@Home Model

Metal nScrypt 3DnþnMill Three-
axis CNC machine

Hyrel 3D Hydra 340, 640, 
645 3-axis CNC 
machining and 
laser cutting

continued
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Process 
category

Process or 
technology Material Manufacturer Machine

Powder-bed 
fusion

Selective laser 
sintering 

Thermoplastics EOS EOS P

Blueprinter Selective heat 
sintering

3D Systems sPro

Metals 3Geometry DSM

Matsuura Lumex Avance-25 
and 60 3-axis 
CNC machining 
controlled 
atmosphere

Selective laser 
melting

Metals 3D Systems/
Phenix

PXL, PXM, PXS

EOS EOSINT M

SLM Solutions SLM

Concept Laser LaserCusing

3D Systems ProX

Electron beam 
melting

Metals Realizer SLM

Renishaw AM250

Arcam Arcam A2

Sciaky DM

Sheet 
lamination

Laminated object 
manufacturing

Paper 
polymers

Mcor Technologies 
Matrix 300þ

Metals Fabrisonic SonicLayer

Thermoplas-
tics

Solido SD300Pro

TABLE 4.1 Continued
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Process 
category

Process or 
technology Material Manufacturer Machine

Directed 
energy 
deposition

Laser metal 
deposition or 
laser engineered 
net shaping

Metal Optomec LENS 450, LENS 
3D (hybrid 
system—5 axis  
CNC machine-
controlled 
atmosphere)

DM3D

Irepa Laser

Electron beam 
AM

Metal Sciaky Directed Metal 
Deposition, 
EasyCLAD, VX-110

Robotic-based 
applications

Wire arc AM Metal DMG MORI LASERTEC 65 3D,  
LASERTEC 
powder nozzle 
and powder bed

NOTE: 3D, three dimensional; CNC, computer numerical control; DM, digital metal; SLM, 
selective laser melting. 
SOURCE: Tahany El-Wardany, United Technologies Research Center, presentation to the 
workshop, October 25, 2018.

CURRENT STATE OF COMMERCIAL POWDER-BED ADDITIVE 
MACHINES—AM MACHINE DESIGN ISSUES IMPACTING 

BUILD-TO-BUILD AND PART-TO-PART VARIABILITY

Ade Makinde, General Electric Global Research Center,  
with support from Johannes Henrich Schleifenbaum,  

Fraunhofer Institute for Laser Technology,  
and Shoufeng Yang, KU Leuven

Makinde described GE Additive, which was launched in 2016 and 
includes divisions such as AddWorks™ consultancy, machine  modalities, 
advanced powders and coating materials, software, and customer experi-
ence centers. Efforts are under way to develop the world’s largest addi-
tive machine with its Additive Technology Large Area System ( Project 
A.T.L.A.S.). He noted that GE is examining how to use AM across indus-
tries and is committed to having 25 percent of its portfolio touched by 
AM by 2025. 

Within GE, Makinde focuses on multiphysics modeling of AM pro-
cesses and different tools that can be used to understand part-build qual-
ity. This involves understanding process parameters and their impacts as 

TABLE 4.1 Continued
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well as where multiphysics particle models, laser-scanning models, lattice 
Boltzmann methods for laser-powder interactions, and part-level models 
could play important roles. However, challenges include analyzing across 
different length scales (such as going from microns to meters), validating 
models, and getting codes to work together. By combining physics-based 
models and data-driven models, uncertainty can be quantified for part 
performance.

Makinde’s presentation focused on AM machine design characteris-
tics (e.g., powder-bed delivery system, laser system, chamber design, and 
in-situ sensors for monitoring and control) that directly impact part-build 
quality. The main objectives of design are to increase production rate, 
decrease cost, reduce defects, and meet quality requirements. 

For powder-bed delivery systems, storage and environmental con-
trol of the powder are critical. He noted that moisture is an important 
factor that needs to be controlled when producing the powder-bed 
delivery system. The second aspect is the delivery of the powder and 
avoidance of flow separation. Makinde described the following as “low 
hanging fruit”:

• Moving the powder throughout the machine without breaking up 
the powder material;

• Filtering powder without clogging;
• Finding the best technique to spread the powder;
• Examining the re-coating to see how it affects the wear, contami-

nation, etc.; and
• Re-using powder (e.g., breaking up and mixing clumped powder). 

Makinde explained that most laser systems operate on black-box control 
systems, but there is a need for open-source control (e.g., a G-code type). 
He highlighted the following important characteristics:

• Power;
• Speed;
• Response time;
• The time at which a machine is coded or reprogrammed (the 

build can sometimes take 4 to 6 weeks);
• Galvo, the laser power and scanning mirror speed control; 
• Inclination of the scan angles (as build chamber size increases);
• Thermal lensing, especially for long duration builds;
• Fumes, which can be detrimental to the laser systems;
• Laser wavelength, which typically needs to be suitable for differ-

ent materials; and
• Hatch pattern.
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He added that most machines are using a continuous wave laser, but 
it is vital to understand the impact between a pulsed wave laser and a 
continuous wave laser. 

Chamber design and oxygen levels are important characteristics for 
AM machines, he explained. The environmental conditions inside the 
chamber could affect the quality of the part. Powder-bed uniformity (i.e., 
particle distribution), gas flow, and soot prevention are also important. 
Preheating at both the build-plate and layer level can help minimize 
defects. Lastly, he explained that a modular chamber design for produc-
tivity, cool down, and de-powdering can help increase productivity rates. 
The industrial control capabilities depend on sensors (e.g., pyrometer, 
charge-coupled device camera, height scanner), measurements (e.g., melt-
pool temperature, melt-pool size, build height), stable characteristics (e.g., 
build height, melt-pool temperature, solidification rate, cooling rate), and 
outputs (e.g., laser power, powder mass, machine feed, active cooling). 

For in-situ sensors for monitoring and control, Makinde said that 
there needs to be an integrated process and controlled environment for 
sensing, monitoring, and controlling thermal behavior as well as for using 
optical sensing for layer spread, powder spreading, melt-pool monitoring, 
and infrared detection.

MODELING CHALLENGES AND 
OPPORTUNITIES AT THE PART LEVEL

Jian Cao, Northwestern University,
with support from Ranadip Acharya,  
United Technologies Research Center, 

and Mustafa Megahed, ESI Group

Cao began by explaining the needs for simulations on process plan-
ning (e.g., choosing the best strategy) and material property prediction. 
Thermal simulation of the full component is needed to enable iteration 
and optimization of process planning. Thermal simulations can inform 
understanding of the microstructure and part distortion (which can impact 
the selection of laser parameters and hatch spacing), help identify hot and 
cool spots, and enable material property predictions of grain sizes, mate-
rial phases, porosity, mechanical properties, and residual stress.

Cao showed a diagram, Figure 4.1, representing the relationships 
among processing, structure, properties, and performance (PSPP) in AM. 
Cao explained that PSPP focuses on the point level, so other consider-
ations are needed to get to the part level. Some of these considerations 
include the design (e.g., product, material, and process), the machine 
(e.g., use of sensors and other intelligence), and the final qualification and 
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certification. The ultimate goal of an autonomous process starting from 
design to product would be to combine these steps. 

Cao showed the critical length scales for AM products and their cor-
respondingly normalized values for part length scales (see Table 4.2) and 
the critical time scales in building and using AM parts normalized with 
the build time scales (see Table 4.3).

There are some challenges for simulations at the part level, including 
the following:

• Speed and predictability, lack of failure criteria, and issues in 
microstructure and residual stress prediction;

• Database integration, including the extraction of useful informa-
tion to be integrated into various software packages;

• Integration of powder-level and melt-pool scale models, often 
due to a mismatch of scales;

• Integration with pre-processing (e.g., powder spread) and post-
processing (e.g., heat treatment) since the integration involves 
multiple processes that often have different simulation packages 
or different physics;

• Variability in uncertainty quantification;
• Models for in-situ process control; and
• Model validation (e.g., temperature, history, residual stress). 

FIGURE 4.1 Three-link chain model of the central paradigm of materials science 
and engineering. SOURCE: From G.B. Olson, 1997, Computational design of 
hierarchically structured materials, Science 277(5330):1237–1242. Reprinted with 
permission from the American Association for the Advancement of Science.
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TABLE 4.2 Scales for Different Simulations at Critical Length Scale 
and Normalized Length by Part Scale  

Critical length scale  
(m)

Normalized length by 
that at the part scale

Part 10–2 – 1 1

Feature size 10–5 – 10–3 ~10–3

Powder 10–5 – 10–4 10–2 ~ 10–5

Doping 10–9 ~10–8

Beam spot 10–6 – 10–3 ~10–3

Melt-pool length 10–4 – 10–2 10–4 – 10–2

Melt-pool depth 10–5 – 10–3 ~10–3

Mushy zone 10–6 – 10–4 ~10–4

Grain 10–6 – 10–2 10–6 – 10–2

Dendrite 10–7 – 10–6 ~10–5

Crack 10–6 – 10–2 10–6 – 10–2 

NOTE: Blue shading indicates desired to be simulated; green shading indicates needed at 
part level; orange shading indicates currently not simulated at the part level. 
SOURCE: Gregory J. Wagner and Jian Cao of Northwestern University.

TABLE 4.3 Scales for Different Simulations at Normalized Time by 
That at the Build Scale

Critical time scale  
(sec)

Normalized time by 
that at the build scale

Part life 107 – 109 ~104 – 107

Build time 102 – 104 1

Layer time 100 – 102 ~102 – 103

Solidification time scale 10–4 – 10–3 ~10–6

Thermal diffusion time scale 10–5 – 10–3 ~10–7

Thermal convection time scale 10–5 – 10–4 ~10–7

NOTE: Blue shading indicates desired to be simulated; green shading indicates needed at 
part level; orange shading indicates currently not simulated at the part level.
SOURCE: Gregory J. Wagner and Jian Cao of Northwestern University.
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Cao explained that there are several opportunities to address these 
challenges. AM-specific finite element method companies, software devel-
opers, and start-ups are working together to help design and construct 
parts to improve speed and predictability. With this, there is also a need 
for efficient surface representation. The use of graphics processing units 
or parallelization could lead to time improvements of several orders of 
magnitude (Mozaffar et al., 2019). In terms of the challenges for database 
and post-processing integration, there are universal file formats such as 
voxel representations (e.g., the Visualization Toolkit) that can integrate 
different models for materials thermodynamics and diffusion kinetics 
 models for phenomenological methods for solid-state phase transforma-
tion (e.g., Computer Coupling of Phase Diagrams and Thermochemistry 
with the Johnson–Mehl–Avrami–Kolmogorov equation). This informa-
tion can potentially be linked with other processes as well (i.e., machine 
operations). Surrogate models can also help with speed and predictability, 
database integration, and integration with powder-level and melt-pool 
scale models. Process maps can help with speed and predictability as 
well as database integration by using the absorbed power and velocity 
for solidification microstructure (Beuth et al., 2013). Gaussian process 
metamodeling and machine learning approaches can improve speed and 
predictability, database integration, and integration of powder-level and 
melt-pool scale models. Machine learning can also help to predict the 
thermal history using normalized temperature and time (Mozaffar et al., 
2018).

After the presentation, an audience member asked Cao for her pri-
ority challenges. She stated that speed and predictability are the top 
 priorities. In response to another audience member’s question, Cao stated 
that understanding physics is fundamental for these simulations and 
helps improve predictability. Multiscale simulation tools can be devel-
oped to fully integrate or pass the critical and equivalent data from the 
fine scale model that incorporates detailed physics to the course scale. An 
audience member wondered how the graphics processing units available 
in many current machines would affect the types of simulations that could 
be done. Cao responded that these simulations could help prevent prob-
lems. Currently, in most cases, it might not be possible to fix local defects 
after they happen (e.g., fixing a porosity left in the previous layer); how-
ever, with more research and more data, it is possible to adjust process 
 parameters to fix these local defects within specified limits. More impor-
tantly, it is now possible to correct some global defects, such as distortion.
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DISCUSSION

Following the presentations, Acharya, Cao, Makinde, Megahed, 
Schleifenbaum, Schmidt, and Yang participated in a panel discussion 
moderated by El-Wardany. An audience member mentioned problems 
with the keyhole phenomenon and asked whether it is possible to change 
the scale of the systems. Yang responded that it is possible to change 
the scale of the systems in AM but not in the design itself. And in some 
cases, the design needs to be modified in order to have control of the 
system. El-Wardany asked each panelist to comment on how to best 
select machines to create a desired product. Yang mentioned that concerns 
remain, such as how the AM process ultimately impacts the part quality 
and how to fix process parameters. Better monitoring and choosing the 
correct signals and sensors for these systems could help elucidate the 
relationship between the process and part quality. 

Makinde asked Schmidt if there are experimental studies to guide 
designers on which processes to consider when making these machines. 
Schmidt responded that companies are working on experimental stud-
ies that change the intensity profile of certain parameters to account 
for factors such as energy saving and melt-pool flow, but these factors 
also depend on the material properties (e.g., viscosity) and temperature 
changes. Therefore, the intensity profiles for parameters vary in different 
materials. Schleifenbaum added that different approaches to preheating 
are beneficial. Cao mentioned that blue laser research being conducted by 
some U.S. companies has the potential to increase the processing speed 
in AM. Some cases have shown that blue lasers can increase productivity 
tenfold in welding. Yang stated that green laser technology still needs to 
be improved to enable selective laser melting. He explained that green 
lasers still have poor beam quality compared to 1064 nm fiber lasers, and, 
although the absorption rate is better for some materials like pure copper 
and silver, the poor beam quality gives a large focus point. Acharya stated 
that in order to avoid any defects, reduced-order modeling and process 
mapping are needed. In-line monitoring and feedback control can help 
better address the process map, and reduced-order models can include 
distortion compensation to obtain accurate geometry.
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Product and Process Qualification 
and Certification

The fourth session of the workshop included presentations on accelerat-
ing product and process qualification and certification in additive manufac-
turing (AM). Paolo Gennaro (GF Precicast Additive SA), Adhish Majmudar 
on behalf of Michel Delanaye (GeonX), Vincent Paquit (Oak Ridge National 
Laboratory), Jens Telgkamp (Airbus Operations GmbH), David Teter (Los 
Alamos National Laboratory), and Richard Ricker (National Institute of 
Standards and Technology [NIST]) each discussed research, challenges, and 
future directions relating to the following questions:

• How can each part be built to be identical and conformant, within 
standard tolerances and without individual inspections?

• What new standards, methods, or techniques need to be devel-
oped to certify a part built with AM?

PROCESS QUALIFICATION AND TECHNOLOGICAL 
VALIDATION, FROM CASTING TO ADDITIVE

Paolo Gennaro, GF Precicast Additive SA

Gennaro introduced GF Precicast Additive SA, including its three 
large divisions: GF Piping Systems, GF Casting Solutions, and GF Machin-
ing Solutions. GF Precicast Additive SA was founded in November 2016 
and focuses on electron beam melting AM methods for titanium alumi-
nide and titanium Ti-6Al-4V; direct metal laser sintering for nickel, cobalt, 
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or other superalloys; and cladding for industrial materials (which is still 
in development). GF Precicast Additive SA has a fully certified supply 
chain, including the AM build, heat treatment and hot isostatic pressing, 
and finishing quality inspection. Gennaro discussed important steps for 
system qualification, process qualification, and part validation, as high-
lighted in Table 5.1. 

One of the main advantages for improved qualification and validation 
would be the reduction of cost, he explained. He speculated that powders 
might cost less if there were only one stock for one material. An audience 
member noted that having a single stock might be a good short-term 
goal, but specific applications might need a larger suite of materials in 
the future. Another participant added that it depends on the company as 
well, since each company has a different philosophy on how it designs 
pieces. Gennaro responded by saying that since the final products will be 
similar, the standards should also be somewhat similar.

The Asset Management Standards from the International Organization 
for Standardization (AMS-ISO) could help establish customer standards 

TABLE 5.1 Key Milestones, Standards, and Advantages for System 
Qualification, Process Qualification, and Part Validation  

Task Milestones
Customer standards 
referring to AMS-ISO Advantages

System 
qualification

• Materials (powders)
•  Equipment (electron 

beam melting, direct 
metal laser melting, 
laser metal deposition) 
calibration

• Personnel training

•  Related to AMS-ISO
•  ISO 9100-9001 + 

machine training

•  One stock for 
one material 
(lower cost on 
powders)

•  A single 
machine 
qualification 
is valid for all 
customers

Process 
qualification 

• Machine
• Materials
• Process parameters

Related to AMS-ISO A single machine 
qualification 
is valid for all 
customers

Part 
validation

•  Geometry on 
components and 
specimens

Acceptance criteria 
(X-ray, fluorescent 
penetrant inspection, 
microstructure) 
referring to AMS-ISO

No discussion on 
quality escapes

NOTE: AMS, Asset Management Standards; ISO, International Organization for 
 Standardization.
SOURCE: Paolo Gennaro, GF Precicast Additive SA, presentation to the workshop, Octo-
ber 25, 2018.
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for machine qualifications. Although the milestones described in Table 5.1 
are difficult to implement, doing so could help deliver a cost-effective 
AM process qualification and technological validation. In response to a 
question on in-situ monitoring, Gennaro emphasized that the goal is to 
complete products correctly the first time. In-situ monitoring reduces the 
time to fix problems that can affect the quality of a product. Makinde also 
mentioned that modeling and sensing could help with calibration.

MODELING AND SIMULATION

Adhish Majmudar, GeonX (presenting on behalf of Michel Delanaye)

Majmudar began by referring back to Ade Makinde’s presentation 
describing GE Additive. All of the departments focus on a vision of cre-
ating a part correctly the first time. He gave an example of a part that 
had problems with manufacturing, including collision, shrinkage lines, 
and surface defects such as small cracks. Time is lost if a part fails, and it 
ended up taking 24 hours to make the part from the powder. Simulations 
of powder-bed fusion AM are needed to address these problems, but 
modeling challenges remain. 

Majmudar discussed how GE goes from micron-scale to part-level 
simulations to help design a part. GE provides a workflow to its clients 
where they start from a particle-bed or single-track simulation in order to 
look at the melt pool. Then, that information is fed into a model at a track 
level, which feeds into the macro-level simulation in order to predict any 
distortions and residual stress. 

Majmudar showed a demonstration of NIST’s AM Bench Challenge. 
Different process parameters were changed in three cases, resulting in 
different shapes of the melt pool. He also showed a demonstration of a 
mesoscale model of a track-level simulation. Nonlinear thermomechani-
cal feeds can be determined by inputting data on the laser power, laser 
efficiency, laser speed, stripe angle, stripe angle increment, hatch distance, 
and powder material. This model matched well with experimental tem-
peratures. Majmudar explained that thermal simulations help identify 
these defects or potential problems in parts. He also showed solidification 
models where thermomechanical properties can be used to estimate scan-
level outputs, which helps to predict dendrite shapes and segregation. 

Majmudar emphasized that more material properties are needed for 
modeling, but these can be expensive and time-consuming to obtain. 
Another challenge is failure prediction, specifically estimating cracking 
during a build. Failure during the development of a part results in signifi-
cant delays in the development process, and it is difficult to understand 
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whether a new alloy is buildable or will crack. There are also ongoing 
challenges related to predicting the microstructures of AM parts.

An audience member asked how to couple length scales from 
microscale to mesoscale. Majmudar responded that the mesoscale simu-
lations track the laser as it moves through the melt pool. This can also be 
characterized by using a microscale model. Another participant asked if 
Majmudar performed any validation of the microstructure model. He con-
firmed that his team regularly does quantitative validations for thermal 
and mechanical distortions of the parts and discussed how a spatial grain 
structure model compared to experimental results. Another audience 
member commented on the distortion model and the quantitative valida-
tion: if the support structure were too complex to model, finding trends 
in the model data could help avoid the problem. In response to a ques-
tion about how long simulations for the industrial part took,  Majmudar 
explained that the turnaround time was about 24 hours, including 3 to 
4 hours for the melt-pool simulation, less than 1 hour for the thermal 
simulation, and several hours for the full mechanical simulation. 

DISCUSSION

Following the presentations, Paquit, Telgkamp, Majumdar, Teter, 
and Ricker participated in a panel discussion led by Gennaro. An audi-
ence member noted that the other side of verification is making sure the 
machine is reliable and cannot be corrupted. She asked the panelists 
whether any of them are also considering approaches toward improving 
assurance, trust, and security. Teter mentioned that Los Alamos National 
Laboratory is considering these approaches in its work. While assurance 
typically means that all of the parts meet the requirements to be certified, 
not enough may be known about the process, structure, and property 
requirements to reach this goal. Gennaro discussed doing a risk assess-
ment to help with mass production of parts. Ricker mentioned that there 
was a workshop (see Williams, 2015) at NIST about cybersecurity for print 
digital manufacturing in which a speaker had students build sample parts 
while he hacked their codes and put in defects without their knowledge. 
Ricker stated that machine hacking is a vulnerability for AM, as it is in 
all types of cyber-physical systems. He suggested that one could use a 
separate monitoring system that is independent from the computer and 
facilities that are doing the build to prevent both systems from being 
affected by the same hack. 

John Turner (Oak Ridge National Laboratory) noted that conventional 
manufacturing has vulnerabilities as well, particularly when only one 
domestic supplier exists. He asked the panelists whether there are oppor-
tunities for AM to increase overall trust in the supply chain. Telgkamp 
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stated that a long-term vision is to go from a classical supply chain with 
specialized suppliers to a system where one of many possible suppliers 
could be identified to produce a part using AM. Makinde mentioned that 
GE’s software includes a blockchain feature to ensure the stability of a 
frozen process. Paquit commented that blockchain is not going to address 
cybersecurity challenges inside the machine, but sensors may be able to 
help with that. Telgkamp said that blockchain could be helpful in the 
future to attach the digital proof of quality to an individual part. 

An audience member mentioned the lack of standards for safety 
of parameters, especially for powders, and asked whether qualification 
standards exist. Telgkamp said that his group has safety documents in 
place for mandatory requirements from suppliers. Gennaro stated that the 
suppliers need to provide a safety data sheet since they best understand 
the powder and how to use it safely. Teter mentioned that standards for 
testing the flammability of powders exist, but it can be difficult to find 
the facilities and resources to perform the tests. Another audience mem-
ber asked about the possibility of reusing powder. Telgkamp replied that 
there needs to be a verified process and systematic investigation in place. 
Ricker and Teter added that water vapor, nitrogen levels, and corrosion 
are important considerations for powder reuse. 

A participant asked whether standards exist to address defects that 
are rare but catastrophic. Paquit answered that sensing may be a short-
term solution to avoid issues that result from defects. Teter mentioned 
that he thinks about the critical flaw size and location of common defects 
since some areas are more sensitive to defects than other areas within 
the part.  

Teter asked about the use of model validation for instances when 
researchers can predict a result such as a mechanical property but can-
not change any parameters. Majmudar stated that this question leads to 
discussions of variability in the process, which could also help researchers 
better understand measurement errors and common causes for variability. 
Ricker added that many tests are currently required to assess variability 
for qualification, and models can help understand variability and build 
trust in the systems. Teter emphasized the importance of representing the 
underlying physics of the materials and mechanical properties in machine 
learning models to increase the meaningfulness of possible predictions. 

The panelists elaborated on the use of experimental data and model-
ing for calibration and qualification in response to a question from the 
audience. Gennaro stated that his team uses experimental data to help 
with calibrations. Teter emphasized that modeling is helpful in the quali-
fication process, particularly with understanding which parameters are 
most sensitive to part quality. Modeling can help guide and focus the 
experimental efforts. 
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Gennaro asked how long it would take to certify the in-situ moni-
toring approaches to generate one part of production if computerized 
tomography (CT) scans were involved. An audience member noted that 
CT measurements are not used on their own because they are not trace-
able, unlike other measurements used in certification. 

An audience member noted that more data are not always better for 
certification. Ricker agreed, particularly for data collected early in the 
process that may not be as relevant to the final part. Teter stated that data 
from a part with a known defect could be compared to data for other 
parts to help understand the impact of the defect, but this comparison 
depends on how well the sensors measure important parameters. Paquit 
added that his team stores a large amount of data to help address future 
questions and that it is important to have diversity in the data. Another 
participant commented that it is important to learn how to use these data 
to support decision making; in the future, hopefully all data will be usable 
for production. 
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Summary of Challenges from  
Subgroup Discussions and 

Participant Comments

During the third day of the workshop, participants met in subgroups 
to discuss some of the challenges in additive manufacturing (AM). These 
groups aligned with the four sessions of the workshop:

1. Measurements and modeling for process monitoring and control;
2. Developing models to represent microstructure evolution, alloy 

design, and part suitability;
3. Modeling aspects of process and machine design; and
4. Accelerating product and process qualification and certification.

Breakout groups were asked to discuss two or three principal topics and 
consider the following overarching questions:

• What are the greatest technological challenges?
• What are the most important areas for research?
• What are “nontechnical” challenges to commercialization of AM?
• How can industry and academia better interact and collaborate 

to address technical and nontechnical challenges?
• Are there concrete actions that could help address the challenges 

identified?
• What topics could be addressed in a follow-on workshop?

Workshop participants were also asked to provide individual responses 
to similar questions about top priority research needs for advancing AM, 
top “nontechnical” challenges to commercialization of AM, and actions 
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that could help address these nontechnical challenges. Descriptions of the 
subgroup discussions and individual responses are provided in the follow-
ing subsections. 

MEASUREMENTS AND MODELING FOR 
PROCESS MONITORING AND CONTROL

Subgroup Members

Jarred Heigel (National Institute of Standards and Technology),  
Carolin Körner (Friedrich-Alexander Universität Erlangen-Nürnberg),  

Amit Surana (United Technologies Research Center),  
R. Allen Roach (Sandia National Laboratories), Kilian Wasmer (Empa),  
Shoufeng Yang (KU Leuven), and Celia Merzbacher (SRI International)

Breakout Discussion

This breakout group discussion was led by Heigel, and conversations 
focused on sensor technology, algorithm development and use, knowl-
edge transfer, challenges, and priorities moving forward. The following 
three questions were proposed to start the discussion:

1. What is good enough? How much information is needed from the pro-
cess to meet the desired goals? Some subgroup members noted that 
clearly identifying what process information is needed will enable 
the development of useful sensors.

2. What information must be exchanged between real-time monitoring sen-
sors and process models? Several subgroup members commented 
that this is specific for model-based control and is an immediate 
need. 

3. How can decisions and guidelines be made for processing and saving 
measurements? Many subgroup members commented that this 
question also addresses issues of data management.

Several subgroup members highlighted the following technical challenges:

• Correlating process phenomena with structures and defects and incor-
porating real data into process models. This could help improve the 
understanding of the overall AM process and the underlying 
physics (e.g., understanding what may increase the chance of fail-
ures or unsatisfactory parts), which in turn could help improve 
the sensor design and the data analysis. 
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• Clarifying what needs to be measured to control the outcome. This may 
include defining the industrial needs for real-time monitoring. 

• Understanding the material, structure, and defect specifications. This 
is particularly important in terms of understanding areas of con-
cern within the part regarding defects and what defect density is 
acceptable. It is important to be able to define what is and is not 
acceptable for specific parts and design criteria.

• Providing better input and output definitions for models and sensors. 
This could help to improve communication throughout the sys-
tem. While each sensor represents a different aspect of the pro-
cess, they can provide a more complete picture of the process 
when they are combined.

• Assessing whether sensor systems are capable of measuring critical 
parameters and providing real-time analysis. It is important to ques-
tion what hardware and analysis are needed if current systems 
are not fast enough to enable sufficient process control. 

• Enabling the long-term goal of a feed-forward loop based on reliable 
models. This is a significant challenge that is also dependent on 
the previously mentioned challenges.

Subgroup members discussed the challenge of machine interoperabil-
ity and how to encourage machine manufacturers to be more transparent 
with their systems and processes. Currently, the high cost of develop-
ing these systems and the associated intellectual property deters manu-
facturers from making their systems more transparent. However, many 
manufacturers are small organizations that may lack the resources and 
expertise required to develop real-time monitoring and process control 
strategies required by the end user. On the other end of the spectrum, 
organizations with monitoring and control expertise often are not as 
familiar with the intricacies of the process and lack the ability to com-
municate directly with the machines. Some members of the subgroup 
speculated that case  studies and cost analysis could help to convince man-
ufacturers that increasing the transparency of their machines and enhanc-
ing collaboration will serve the greater good of the AM community and 
ultimately increase manufacturers’ customer base. The semiconductor 
industry—which has benefited from collaborations and  partnerships—
could be an exemplar of how to encourage transparency and collaboration 
among small companies. Finally, many subgroup members suggested 
that a follow-on workshop could focus on data collection and improved 
decision making. 
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DEVELOPING MODELS TO REPRESENT MICROSTRUCTURE 
EVOLUTION, ALLOY DESIGN, AND PART SUITABILITY

Subgroup Members

Annett Seide (MTU Aero Engines), Lyle Levine (National Institute of  
Standards and Technology), John Turner (Oak Ridge National Laboratory), 

Ade Makinde (General Electric Global Research Center), Kyle Johnson (Sandia 
National Laboratories), Eric Jägle (Max Planck Institute), Deniece Korzekwa 

(Los Alamos National Laboratory), and Christian Leinenbach (Empa)

Breakout Discussion

This breakout group discussion was led by Seide, who noted that 
many of the challenges in representing microstructure evolution, alloy 
design, and part suitability are encompassed by the larger material science 
research effort. However, there are unique areas of ongoing research that 
are specific to AM materials and conditions. The subgroup first discussed 
the lack of thermophysical data under AM conditions, and several mem-
bers suggested the following short-, intermediate-, and long-term goals:

• Short-term goals: Identify the data that are needed for process 
measurement and for modeling input. 

• Intermediate-term goals: Obtain data for a limited set of AM 
materials. 

• Long-term goals: Take a deep look at the quality of data and explore 
first principles and machine learning approaches. 

These members emphasized that the most important areas of research for 
the lack of thermophysical data are first principles and machine learning 
approaches. 

The subgroup next discussed microstructure evolution and the chal-
lenge of developing and validating models. In particular, several mem-
bers described high-fidelity models, coupled multiphysics models (e.g., 
to get location-specific microstructure evolution and to look through the 
solidification and intrinsic heat treatment processes as well as post-build 
processing), and reduced-order models as particularly challenging. Many 
subgroup members noted several promising short-, intermediate-, and 
long-term research areas:

• Short-term research areas: Conducting sensitivity analysis of cur-
rent model parameters, coupling physical phenomena in models, 
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temporal and spatial scale bridging, and three-dimensional micro-
structure characterization information. 

• Intermediate-term research areas: Modeling phenomena of inter-
est under nonequilibrium conditions and calibration of model 
parameters. 

• Long-term research areas: Predicting metastable phases, predicting 
models for nucleation, and predicting interfacial energies.

The third topic discussed was coupled multiphysics and multiscale 
capabilities for AM, including the laser-material interaction, the time-
dependent thermal profile (including fluid flow), microstructure evolu-
tion, micromechanics, and macroscale thermomechanics. Many subgroup 
members noted several promising short-, intermediate-, and long-term 
research areas: 

• Short-term research areas
— Analysis of coupling between relevant physics. This is chal-

lenging because it requires a fully coupled model. 
— Exploration of approaches for modeling laser-scan strate-

gies. These approaches may be done through parallel in-time 
approaches. 

— Prediction of site-specific properties. This includes proper-
ties throughout the parts and the ability to use site-specific 
properties in macroscale models. 

• Intermediate-term research areas
— Development of reduced-order models informed by both 

high-fidelity models and experimental data.
— Development of advanced design optimization tools and 

approaches. 
— Advancement of site-specific control of microstructure 

through process parameters for real parts, including complex 
shapes and complex alloys. 

• Long-term research areas: Integration of site-specific microstructure 
control into design optimization.

Several subgroup members also discussed the following nontechnical 
challenges across AM:

• The lack of stable, long-term research funding;
• A lack of willingness to fund testing and measurement;
• The use of proprietary alloys;
• The lack of a community standard file and standardized formats 

for experimental and simulation data;
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• The need for increased collaboration between domain scientists 
and computational scientists; and 

• The lack of students and staff with necessary expertise such as 
computational material science, manufacturing, model-based engi-
neering, computer-aided-design-based topology optimized design, 
and software development for modern computer architecture. 

To increase collaboration and better address technical and nontechni-
cal challenges, several subgroup members suggested that industry and 
academia support efforts that provide foundations for collaboration (e.g., 
AM-Bench). Industry might consider funding defined challenges in which 
academia and laboratory teams could compete. Programs could be created 
for targeted collaborative industry–academia–laboratory research to tackle 
specific application challenges. These subgroup members emphasized the 
importance of having adequate, stable funding available over extended 
time periods and suggested that the U.S. Department of Energy Hubs1 
concept could be applicable for AM. Many subgroup members suggested 
specific actions that could help address these challenges, including a call 
for proposals in the industry–academia–laboratory research areas and the 
expansion of educational programs that are domain specific and multidis-
ciplinary. Some members of this breakout group suggested that a follow-
on workshop could address topics such as challenges and opportunities in 
topology and shape optimization with site-specific microstructure control 
as well as multidisciplinary educational programs for AM processes.

MODELING ASPECTS OF PROCESS AND MACHINE DESIGN

Subgroup Members

Mustafa Megahed (ESI Group), Wing Kam Liu (Northwestern  
University), Jian Cao (Northwestern University), Tahany El-Wardany  
(United Technologies Research Center), and Winfried Keiper (European  

Technology Platform for Advanced Engineering Materials and Technologies)

Breakout Discussion

Megahed led this breakout group, which discussed modeling aspects 
of process and machine design. Megahed, Liu, Cao, El-Wardany, and 

1 For more information on the U.S. Department of Energy’s Hubs, see https://www.energy.
gov/science-innovation/innovation/hubs, accessed March 11, 2019.
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Keiper proposed the following challenges and research needs for this 
topic:

• Identifying the source of process variability, which can be done by 
determining the sensitivity of the process to certain parameters, 
uncertainty quantification, and process control. 

• Calibrating and validating models, even in the absence of experi-
mental data. 

• Designing the experiments needed to deliver necessary data. 
• Developing a community database for relevant data in standard-

ized forms. 
• Advancing models to capture details such as environmental 

effects, alloying elements, and doping.2 These may utilize artifi-
cial intelligence and machine learning methods. 

• Improving the use of data reduction and reduced-order modeling 
to increase efficiency. 

These subgroup members also highlighted three major nontechnical 
challenges:

• Data sharing. The research community would benefit from 
increased access to data. Several subgroup members speculated 
that the reticence to share data might be a cultural problem since 
most researchers are not used to sharing their data. They high-
lighted nuclear physics databases as a possible example to emu-
late, particularly the use of a centralized body to help transform 
raw data into evaluated data. Shared databases also need to be 
sustainable as well as continually maintained and updated. 

• Interpretable machines. Manufacturers have historically been reluc-
tant to share the inner workings of their machines for a variety 
of business reasons. However, these subgroup members noted 
that having more transparent machine processes would enable 
research advancements. 

• Interdisciplinary education. These subgroup members explained 
that there needs to be a more efficient way of learning about 
a wide variety of topics relating to AM, including hardware, 
underlying physics, metrology, algorithm development, optimi-
zation, numerical simulation, thermodynamics, statistics, and 
data analytics. 

2 Alloying elements are defined as metallic or nonmetallic elements that are added in speci-
fied or standard amounts to a base metal to make an alloy (Business Dictionary, 2019), and 
doping is the mixing of a small amount of an impurity into a silicon crystal (Brain, 2001).
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The subgroup members also discussed partnerships. Several mem-
bers noted successful models such as America Makes,3 Horizon 2020,4 
CleanSky,5 and other data sharing efforts that encourage community data-
bases. Other options could be for industries to enable more internships 
and fellowships for students and researchers. A number of subgroup 
members also suggested more partnerships among  researchers in the 
European Union and the United States and among small- and medium-
size enterprises; this could encourage more collaboration, data exchange, 
and international research funding. 

For a possible follow-on workshop, some of the subgroup members 
proposed themes including the definition of joint standards and toler-
ances, digital twin and threads for AM, interdisciplinary education, and 
the various intermediate-term challenges and goals that were discussed 
throughout the workshop.

ACCELERATING PRODUCT AND PROCESS 
QUALIFICATION AND CERTIFICATION

Subgroup Members

David Teter (Los Alamos National Laboratory), Jens Telgkamp (Airbus  
Operations GmbH), Vincent Paquit (Oak Ridge National Laboratory),  

Paolo Gennaro (GF Precicast Additive SA), Johannes Henrich Schleifenbaum 
(Fraunhofer Institute for Laser Technology), Richard Ricker (National Institute 

of Standards and Technology), Josh Sugar (Sandia National Laboratories),  
and Ben Dutton (Manufacturing Technology Centre)

Breakout Discussion

Teter and Telgkamp led the discussion for this subgroup, which focused 
on accelerating product and process qualification and certification. This dis-
cussion was divided into short-term (less than 5 years) and intermediate-
term (5 to 10 years) goals that could enable a long-term vision for AM. 

Teter explained that the long-term vision is the ability to design, print, 
and qualify a product correctly the first time. This includes as-built qual-
ity, in which people have very limited destructive evaluation for parts 

3 For more information on America Makes, see https://www.americamakes.us, accessed 
March 11, 2019.

4 For more information on Horizon 2020, see https://ec.europa.eu/programmes/ 
horizon2020/, accessed March 11, 2019.

5 For more information on CleanSky, see https://www.cleansky.eu, accessed March 11, 
2019.
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being generated, and built-in quality assurance, in which data are col-
lected as a part is being printed. Modeling and simulation play an impor-
tant role—a multiphysics process–structure–property–performance pre-
diction is needed. Cybersecurity is another concern, particularly in terms 
of building resiliency to the threat of fraudulent components over the 
next 10 years. Several subgroup members noted that the ability to track 
each part is needed, including attaching the license to build and proof 
of quality to each part. Lastly, some subgroup members commented on 
the need for government-to-government agreements on AM with shared 
objectives, data, and frameworks. They suggested that long-term efforts 
should focus on the need for AM to be operational and fully accepted by 
certification groups.

To advance this long-term vision, the subgroup highlighted the fol-
lowing short- and intermediate-term research goals:

• Short term: Several subgroup members suggested a short-term 
focus on AM technology and materials development, such as 
making the process less sensitive to variability and defects. Below 
are some specific open challenges that these members highlighted.
— Improving the understanding of the influence of feedstock 

parameters, taking into consideration the key material prop-
erties and process parameters. These subgroup members 
emphasized this as a high priority.

— Developing guidance on sensor technology.
— Improving the openness of control systems. 
— Refining the definition of “good” data as well as a common 

test part/object for qualification and microstructure. ASTM 
F426 may be able to help determine goals, objectives of test 
part/object, and number of object definitions needed. 

— Collecting defect catalogues for critical flaw size and type, 
frequency, distributions, and criticality of locations. Telgkamp 
noted that this is particularly important for highlighting 
research and development needs.

— Strengthening the understanding of current sensor technol-
ogy, limits, capabilities, stability, and reliability.

• Intermediate term: Several subgroup members suggested an 
 intermediate-term focus on continuous standardization activities, 
such as development and maturation. Below are some specific 
open challenges that they identified.

6 For more information on ASTM F42, see https://www.astm.org/COMMITTEE/F42.htm, 
accessed March 11, 2019.
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— Using process monitoring in decision making, such as when 
and how to repair a part or when to discard it. 

— Developing reduced-order models for decision making.
— Maturing tools for sensor data fusion and reduction.
— Exploring machine learning methods to improve microstruc-

ture and property predictions. 
— Increasing data sharing and establishing a common or global 

database. These subgroup members noted that this was men-
tioned throughout the workshop. 

— Improving machine-to-machine knowledge transfer. 
— Developing high-throughput characterization and develop-

ment for new and mature sensors, based on the sensing needs 
to be identified. 

INDIVIDUAL RESPONSE RESULTS

Participants at the workshop were also asked to provide their 
thoughts on the top priority research needs for advancing AM, top “non-
technical” challenges to commercialization of AM, and actions that could 
help address these nontechnical challenges. The individual responses 
were analyzed by a workshop subgroup and summarized by Celia 
 Merzbacher (SRI International). She explained that the technical chal-
lenges suggested by the workshop participants centered on needing more 
AM  materials, improving the understanding of microstructure prediction, 
developing standards and benchmark measurements, and improving in-
situ monitoring capability. For nontechnical challenges, she explained that 
the responses centered on encouraging data sharing, increasing funding, 
improving training and education, enabling machine transparency, and 
increasing trust in AM parts. Many participants suggested that these 
challenges could be approached by increasing coordination and commu-
nication among stakeholders, perhaps through more convening activities, 
collaborations, standards, and funding. 
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Workshop Agenda

A Workshop on the Frontiers of Mechanistic Data-Driven Modeling for 
Additive Manufacturing

October 24–26, 2018

Neue Materialien Fürth GmbH 
Dr.-Mack-Straße 81, Technikum 1, 6th Floor 

Fürth, Germany

Day 1: October 24

9:00 a.m. Welcome from the Co-Chairs 
 Carolin Körner, Co-Chair, Friedrich-Alexander Universität  

 Erlangen-Nürnberg 
 Wing Kam Liu, Co-Chair, Northwestern University 

9:20 a.m. Opening Comments from the Sponsors 
 R. Allen Roach, Sandia 
 Richard Ricker, NIST 

9:40 a.m. Opening Comments from the National Academies 
 Michelle Schwalbe, Board on Mathematical Sciences and  

 Analytics 
 Erik Svedberg, National Materials and Manufacturing Board 
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SESSION 1: MEASUREMENTS AND MODELING 
FOR PROCESS MONITORING AND CONTROL 

10:00 a.m. Introduction to Session 1 
 Bianca Colosimo, Politecnico di Milano 

10:10 a.m. Measurement Science for Process Monitoring and 
Control 

 Jarred Heigel, National Institute of Standards and Technology 

10:40 a.m. Break

11:00 a.m. Process Simulation as a Complement of Process 
Monitoring1 

 Daniel Reznik, Siemens 

11:30 a.m. Lunch 

12:30 p.m. Panel Discussion 

• Brief introductions and statements of research interests
• Open discussion, led by Bianca Colosimo

 Panelists:
 Bianca Colosimo, Politecnico di Milano
 Ben Dutton, Manufacturing Technology Centre
 Jarred Heigel, National Institute of Standards and Technology 
 Daniel Reznik, Siemens
 Kilian Wasmer, Empa
 Amit Surana, United Technologies Research Center

2:00 p.m. Break

SESSION 2: DEVELOPING MODELS TO 
REPRESENT MICROSTRUCTURE EVOLUTION, 

ALLOY DESIGN, AND PART SUITABILITY 

2:30 p.m. Introduction to Session 2 
 Lyle Levine, National Institute of Standards and Technology 

1 Unable to attend.
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2:35 p.m. Measurements for Additive Manufacturing of Metals 
 Lyle Levine, National Institute of Standards and Technology 

3:05 p.m. Break 

3:30 p.m. Predicting Material State and Performance of Additively 
Manufactured Parts 

 Kyle Johnson, Sandia National Laboratories 

4:00 p.m. Panel Discussion 
• Brief introductions and statements of research interests
• Open discussion, led by Lyle Levine

 Panelists:
 Lyle Levine, National Institute of Standards and Technology 
 Eric Jägle, Max Planck Institute
 Kyle Johnson, Sandia National Laboratories
 Christian Leinenbach, Empa
 Deniece Korzekwa, Los Alamos National Laboratory
 Annett Seide, MTU Aero Engines
 John Turner, Oak Ridge National Laboratory 

5:30 p.m.  Conclude Sessions

Day 2: October 25 

9:00 a.m. Recap of Day 1; Major Themes and Overview for the Day 
 Session 1: Bianca Colosimo 
 Session 2: Lyle Levine

SESSION 3: MODELING ASPECTS OF 
PROCESS AND MACHINE DESIGN 

9:30 a.m. Introduction to Session 3 
 Tahany El-Wardany, United Technologies Research Center 

9:40 a.m. Current State of Commercial Powder-Bed Additive 
Machines—Improvements Needed to Minimize Build-to-
Build Variability

 Ade Makinde, General Electric Global Research Center, with 
support from Johannes Henrich Schleifenbaum, Fraunhofer 
Institute for Laser Technology, and Shoufeng Yang, KU Leuven
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10:10 a.m. Break 

10:30 a.m. Modeling Challenges and Opportunities at the Part Level 
 Jian Cao, Northwestern University, with support from Ranadip 

Acharya, United Technologies Research Center, and Mustafa 
Megahed, ESI Group

 
11:00 a.m. Panel Discussion 

• Brief introductions and statements of research interests
• Open discussion, led by Tahany El-Wardany

 Panelists:
Tahany El-Wardany, United Technologies Research Center
Ranadip Acharya, United Technologies Research Center
Jian Cao, Northwestern University
Ade Makinde, General Electric Global Research Center
Mustafa Megahed, ESI Group
Johannes Henrich Schleifenbaum, Fraunhofer Institute for Laser 

Technology 
Michael Schmidt, Friedrich-Alexander Universität 

Erlangen-Nürnberg
Shoufeng Yang, KU Leuven 

12:30 p.m. Lunch

SESSION 4: ACCELERATING PRODUCT AND PROCESS 
QUALIFICATION AND CERTIFICATION 

1:30 p.m. Introduction to Session 4 
 Paolo Gennaro, GF Precicast Additive SA

1:35 p.m. Process Qualification and Technological Validation, from 
Casting to Additive 

 Paolo Gennaro, GF Precicast Additive SA

2:05 p.m. Modeling and Simulation 
 Michel Delanaye,2 GeonX 

2:35 p.m. Break 

2 Unable to attend.
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Workshop Statement of Task

A National Academies of Sciences, Engineering, and Medicine-
appointed ad hoc committee will plan and organize a 3-day workshop to 
explore the frontiers of integrated data-driven modeling for additive man-
ufacturing. This workshop will convene leading experts in online moni-
toring, science of materials and mechanics, optimization and controls, and 
qualification and certification from the United States and the European 
Union to discuss approaches to and challenges with the following:

• Measuring and modeling process monitoring and control;
• Developing models to represent microstructure evolution, alloy 

design, and part suitability;
• Modeling phases of process and machine design; and
• Accelerating product and process qualification and certification.
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