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Introduction

Additive manufacturing (AM), the process in which a three-
dimensional object is built by adding subsequent layers of materials, has
the potential to revolutionize how mechanical parts are created, tested,
and certified. AM enables novel material compositions and shapes, often
without the need for specialized tooling. However, successful real-time
AM design requires the integration of complex systems and often neces-
sitates expertise across domains.

The complex design and processing systems that enable AM start
with computer models. Since AM processes can be difficult to measure
experimentally and empirical models for AM can be expensive to cre-
ate, advanced fundamental models (including mechanistic data-driven
reduced-order models and other validated theoretical and computational
models) can be used to better understand underlying physical mecha-
nisms. Simulation-based design approaches, such as those applied in
engineering product design and material design, have the potential to
improve AM predictive modeling capabilities, particularly when com-
bined with existing knowledge of the underlying mechanics. These pre-
dictive models have the potential to reduce the cost of and time for
concept-to-final-product development and can be used to supplement
experimental tests.

On October 24-26, 2018, the National Academies of Sciences, Engi-
neering, and Medicine organized a workshop of experts from various
communities within the United States and the European Union to discuss
the frontiers of mechanistic data-driven modeling for AM of metals. The

Copyright National Academy of Sciences. All rights reserved.
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planning committee (shown on page v) helped to identify the workshop
topics, invite speakers, and plan the agenda. The workshop was held at
the Neue Materialien Fiirth GmbH building of the Friedrich-Alexander-
Universitdt Erlangen-Niirnberg in Fiirth, Germany. This workshop was
sponsored by the U.S. Department of Energy, the U.S. National Institute of
Standards and Technology, Sandia National Laboratories, and Los Alamos
National Laboratory.

Wing Kam Liu (Northwestern University), the chair of the planning
committee, opened the workshop by discussing its four main topics:

e Measuring and modeling process monitoring and control;

e Developing models to represent microstructure evolution, alloy
design, and part suitability;

e Modeling phases of process and machine design; and

e Accelerating product and process qualification and certification.

The first 2 days of the workshop focused on presentations and panel
discussions relating to the workshop themes. The third day centered on
breakout groups that discussed some of the short-, intermediate-, and
long-term challenges in AM.

This proceedings summarizes the presentations and discussions
that took place during the workshop. The viewpoints expressed in this
proceedings are those of individual workshop participants and do not
necessarily represent the views of all workshop participants, the plan-
ning committee, or the National Academies of Sciences, Engineering, and
Medicine.

ORGANIZATION OF THIS PROCEEDINGS

The following chapters in this proceedings summarize the work-
shop’s presentations and discussions. Chapter 2 describes the measure-
ments and modeling for process monitoring control in AM. Chapter 3
provides an overview of developing models to represent microstructure
evolution, alloy design, and part suitability. Chapter 4 focuses on model-
ing aspects of process and machine design. Chapter 5 discusses oppor-
tunities to accelerate product and process qualification and certification.
Chapter 6 summarizes challenges raised during subgroup discussions
and by individual participants. A list of registered workshop participants
appears in Appendix A, and Appendix B includes the 3-day workshop
agenda.

Copyright National Academy of Sciences. All rights reserved.
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Process Monitoring and Control

The first workshop session provided an overview of measurements
and modeling for process monitoring and control in additive manu-
facturing (AM). Speakers described systems measured in situ and in
real time as well as challenges of each resolution and process signature.
Bianca Maria Colosimo (Politecnico di Milano), Jarred Heigel (National
Institute of Standards and Technology), Marvin Siewert (University of
Bremen), Kilian Wasmer (Empa), Ben Dutton (Manufacturing Technol-
ogy Centre), and Amit Surana (United Technologies Research Center)
each discussed research, challenges, and future directions relating to the
following questions:

How can systems be measured in real time?

What AM measurements enable uncertainty quantification?
How can the precision of a measurement be certified?

How can measured data be employed to understand the full state
of a system?

What mathematical and statistical methods could be applied to
AM? How can resources from other disciplines be integrated?
What can be measured in situ and in line? What are the main
challenges of coaxial and off-axis sensing in terms of accuracy,
frequency, and spatial and temporal resolution?

What is the correlation between process signature and product
defects? How does the probability of detecting flaws connect with
the qualification of an additively manufactured item?

Copyright National Academy of Sciences. All rights reserved.
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e How can models and solutions be used to transfer knowledge
from machine to machine and from laboratory to laboratory?
How does this change depending on the material and geometry
selected to make a part?

e What are the impacts of false positives and false negatives? What
are the economic advantages of in-situ monitoring?

e What are the challenges of moving from monitoring to feedback
control?

MEASUREMENTS AND MODELING FOR
PROCESS MONITORING AND CONTROL

Bianca Maria Colosimo, Politecnico di Milano

Colosimo described Politecnico di Milano’s AddMe.Lab, a labora-
tory combining industrial machines and novel prototypes for AM pro-
cesses such as selective laser melting, electron beam melting, directed
energy deposition with powder and wire feedstocks, and binder jetting.
She explained that in-situ monitoring can help reduce major industrial
barriers for metal AM technologies, such as process instability, lack of
repeatability, and defect rates (Mani et al., 2017; Tapia and Elwany, 2014;
Everton et al., 2016; Spears and Gold, 2016; Grasso and Colosimo, 2017).

Defects in AM products originate in a variety of ways, including the
equipment, process, design choices, and feedstock material. Colosimo
shared several references for defect sources, as shown in Table 2.1. The
process signature, which represents the manufacturing process through
which data are collected from control systems and sensors, can give
insights into approaches to control the quality of the final product. Ideally,
in-situ monitoring could identify defects in real time and correct the pro-
cess accordingly.

Colosimo provided examples of different levels of in-situ monitoring.

e Level 0: Using the existing signals (without additional sensors)
to appropriately analyze all of the available information via sta-
tistical machine learning in order to predict defect onset from
monitoring and fusing signal data (Grasso and Colosimo, 2017).

e Level 1: Monitoring the powder bed to assess uniformity of the
powder coverage, the geometry, and possibly the temperature
distribution of the melted layer. These assessments can be done
using high-resolution images in the visible and infrared bands. At
this level, it is possible to detect delamination defects as well as
geometrical deviation between the actual and the nominal shape

Copyright National Academy of Sciences. All rights reserved.
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TABLE 2.1 Defect Sources and Categories by Publication

Categories of defects

Residual
stresses, Microstructural
Geometric cracks, and inhomogeneity
Sources of defects Porosity Balling defects Surface defects | delamination and impurity
Equipment | Beam Foster et al., Moylan et al.,
scanning/ 2015 2014; Foster et
deflection al., 2015
Build chamber | Ferrar et al., Li et al., Edwards et al., | Spears and Gold,
environment 2012; Spears 2012 2013; Chlebus 2016
and Gold, et al., 2011;
2016 Buchbinder
et al., 2014;
Kempen et al.,
2013
Powder Foster et al., Foster et Foster et Foster et al., 2015
handling and 2015 al., 2015; al., 2015;
deposition Kleszczynski et | Kleszczynski et
al., 2012 al., 2012
Baseplate Prabhakar et Prabhakar
al., 2015 et al., 2015

continued
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TABLE 2.1 Continued

Categories of defects

et al., 2016

Residual
stresses, Microstructural
Geometric cracks, and inhomogeneity
Sources of defects Porosity Balling defects Surface defects | delamination and impurity
Process Parameters Matthews Li et al., Yasa et Li et al., 2012; Mercelis and Carter et al.,
and scan et al., 2016; 2012; Kruth | al., 2009; Kruth et al., Kruth, 2006; 2014; Arisoy et
strategy Yasa et al., et al., 2004; | Mousa, 2016; 2004; Matthews | Parry et al., al., 2017; Niu
2009; Attar, Tolochko Kleszczynski et al., 2016; 2016; Cheng et | and Chang, 1999;
2011; Gong et al., 2004; | et al., 2012; Attar, 2011; al., 2016; Van Huang et al., 2016;
et al., 2013; Zhou et al., | Thomas, 2009 Gong et al.,, Belle et al., Thijs et al., 2010;
Read et al., 2015; Attar, 2013; Zaeh and | 2013; Casavola | Scharowsky et al.,
2015; Kruth 2011; Gong Kanhert, 2009; et al., 2008; Zah | 2015; Puebla et al.,
et al., 2004; et al., 2013 Delgado et al., and Lutzmann, | 2012; Biamino et
Weingarten et 2012 2010; Zaeh and | al., 2011
al., 2015; Thijs Branner, 2010;
et al., 2010; Kempen et al.,,
Scharowsky 2013; Kruth et
et al., 2015; al., 2004; Carter
Puebla et al., et al., 2014
2012; Tammas-
Williams et al.,
2015; Biamino
et al., 2011;
Zeng, 2015
Byproducts Liu et Liu et al., 2015;
and material al., 2015; Khairallah et al.,
ejections Khairallah 2016
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Design Supports Foster et Foster et Foster et
choices al., 2015; al., 2015; al., 2015;
Kleszczynski et | Kleszczynski et | Kleszczynski et
al., 2012; Zeng, | al., 2012; Zeng, | al., 2012; Zeng,
2015 2015 2015
Orientation Li et al., Delgado et al., Delgado et al.,, Meier and
2012; 2012 2012; Fox et al., Haberland, 2008
Strano et 2016; Strano et
al., 2013 al., 2013
Feedstock material (powder) | Liu et al., Das, 2003 Seyda et al., Das, 2003; Niu
2015; Van 2012 and Chang, 1999;
Elsen, 2007; Huang et al., 2016
Das, 2003

SOURCE: M. Grasso and B.M. Colosimo, 2017, Process defects and in-situ monitoring methods in metal powder-bed fusion: A review, Measurement

Science and Technology 28(4):1-25, 10.1088/1361-6501/aa5c4f. © IOP Publishing. Reproduced with permission. All rights reserved.
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printed at each layer (Tapia and Elwany, 2014; Mani et al., 2017;
Grasso and Colosimo, 2017; Everton et al., 2016).

e Level 2: Monitoring the printed layer, using high-speed videos
in the visible or infrared ranges. Hot and cold spots (i.e., areas
that remain hot or cold for a long period of time and can cause
geometrical or volumetric defects due to over-melting or under-
melting) can be detected in the thermal signature. Infrared video
cameras can aid in computing the spatial gradient and temporal
gradient, which can be used to predict the final microstructure
(Land et al., 2015; Krauss et al., 2014; Caltanissetta et al., 2018;
Arnold et al., 2018; Trushnikov et al., 2016; Grasso and Colosimo,
2016; Colosimo and Grasso, 2018; Brumana et al., 2018).

e Level 3: Monitoring the AM track to assess the spatter signature,
the plume, the shape of the track, and the cooling rate left by the
beam behind it. The spatter signature can relate to the expected
porosity, and an excessive plume can lead to job failure (Repossini
etal., 2017; Ly et al., 2017).

e Level 4: Monitoring the melt-pool size, shape, and temperature.
Since the laser directly impacts the melt pool, feedback control
could be implemented to keep the melt-pool signature stable by
varying the laser power and/or speed (Doubenskaia et al., 2012;
Berumen et al., 2010; Kruth et al., 2007).

Levels 1 through 3 are considered “off-axis monitoring” because they
need sensors that are not placed coaxially with the laser beam.

Colosimo emphasized that in-situ sensing can improve understanding
of the AM process, allow for calibration of the AM process simulations,
increase part quality (e.g., by detecting, preventing, or even compensat-
ing for defects), and support process qualification. Some pending issues,
however, include correlating the process signature with product quality
and modeling defects appropriately. She also outlined key sensing ques-
tions: How should the appropriate sensors and their spatial and temporal
resolutions be chosen? How could in-situ sensing accuracy be certified?
What methods and tools should be used for multisensor data fusion?

A goal is to move from “sensorized” machines that collect data to
“intelligent” AM systems that use data to make decisions. This transi-
tion requires a combination of statistical methods to visualize effective-
ness and efficiency. Colosimo stressed that multidisciplinary research is
needed to enable new ideas in in-situ sensing, monitoring, and control.

Copyright National Academy of Sciences. All rights reserved.
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PROCESS MONITORING AND CONTROL 9

MEASUREMENT SCIENCE FOR PROCESS
MONITORING AND CONTROL

Jarred Heigel, National Institute of Standards and Technology

Heigel described the eight project areas of the Measurement Science
for Additive Manufacturing program within the Engineering Laboratory
at the National Institute of Standards and Technology (NIST):

Precursor material qualification,

AM machine and process qualification,

AM part qualification,

Metrology for multiphysics AM model validation,
Metrology for real-time monitoring of AM,
Machine and process control methods for AM,
Data-driven decision support for AM, and

Data integration and management for AM.

PN U RN

The primary objective of this program is to “develop and deploy mea-
surement science that will enable rapid design-to-product transformation
through advances in material characterization; in-process process sensing,
monitoring, and model-based optimal control; performance qualifica-
tion of materials, machines, processes, and parts; and end-to-end digital
implementation and integration of AM processes and systems” (NIST,
2019). Heigel’s presentation focused on measurements and sensors used
for real-time monitoring, challenges of real-time monitoring and control,
and the path forward.

Real-time monitoring, Heigel stated, includes any sensor measure-
ments that are continuously recorded during the AM process and used
to ensure that the machine and process are performing as expected.!
Common optical sensors include high-speed cameras, pyrometers, in-line
cameras, and in-line photodetectors. These optical sensors can provide
great insight into each layer but are limited to observing only the surfaces.
Ultrasonic sensors can be used to detect subsurface defects by sending
ultrasonic waves through the part, and acoustic sensors can detect melt-
pool quality and part failure by monitoring the acoustic emissions from
the melt pool and cracks.

Heigel explained that real-time monitoring enables both statistical
process control and feedback control. Statistical process control involves
comparing the data from a new build with historical data of other builds

1In the context of this presentation, layer-wise imaging or intermittent measurements are
not considered real-time monitoring.

Copyright National Academy of Sciences. All rights reserved.
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to determine whether the process is performing within an acceptable
range. It also involves collecting data from process signatures and com-
paring them with control limits, which are calculated for the expected
measurements of the process output. In contrast, feedback control relies
on real-time monitoring and high-rate continuous measurement analysis
that can then be used to modify the process.

The industry is striving for rapid processes and rapid certification,
with the help of real-time monitoring and associated control. However,
Heigel explained that the largest current barriers for industry are high
capital costs, a lack of robust correlations, and difficulty interpreting what
is being measured. Different monitoring approaches are being deployed
to balance cost and speed constraints. Some AM machines are enabling
layer-wise imaging and melt-pool monitoring. Coaxial photodetectors
enable low-cost monitoring at sufficiently high speeds (compared to
high-speed imaging) but lack fidelity to interpret processing quality. For
directed energy deposition systems, coaxial melt-pool imaging is cur-
rently being used for real-time monitoring and control and feedback
control because the process dynamics are comparatively slower.

Heigel elaborated on some challenges for real-time monitoring. The
first challenge mentioned was measurement fidelity, which involves the
trade-off between high spatial resolution and high temporal resolution.
Thermal cameras can provide high spatial resolution but are temporally
limited to 10° Hz. Photodetectors can provide higher temporal resolu-
tion but cannot directly determine dynamic size variations in the melt
pool. Another challenge for real-time monitoring is correlating the sensor
data with the physics underlying the AM process. Better understand-
ing the physics helps to inform decisions about what types of sensors to
use, how to interpret the measurements, how to calibrate those measure-
ments, what control algorithms to use, and how to prioritize research and
development.

However, real-time monitoring and feedback control cannot cor-
rect flawed designs or processes. Heigel explained that the process must
be improved to minimize variability, and the build strategies must be
designed to optimize the process. The importance of modeling and vali-
dation efforts toward achieving this goal cannot be overstated. In addi-
tion, an improved understanding of the relationship between defects and
real-time monitoring signals must be developed. This requires improve-
ments to the post-process detection of defects and consideration of how
the real-time data are processed and stored. Finally, metrology improve-
ments, such as better calibration of the sensors, will play an important role
in allowing data acquired across machines to be compared.

During the question and answer portion of this presentation, a partici-
pant asked Heigel what to do if a defect is detected during the monitoring
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process. Should the part be discarded or is there a way to fix it? Heigel
responded that, first, one has to identify the type of defect accurately and
determine whether it is fixable. For example, it may be possible to re-scan
a pore relatively close to the surface and to release the associated void,
but a part with a crack may have to be discarded. Real-time monitoring
can help determine whether a defective part should be discarded, cor-
rected, or ignored.

Workshop co-chair Wing Kam Liu (Northwestern University) asked
about the challenges of powder-bed technologies versus multiple-head
machines. Heigel said that NIST focuses on powder-bed systems due to
limited resources. While both are being used in industry, the focus tends
to be on powder-bed technologies. Heigel emphasized that both meth-
ods have important considerations and would benefit from additional
research. He noted that there are some challenges in powder-bed versus
directed energy deposition. For example, ultrasonic measurements tend to
be transferrable, but differences in process speed can create different sized
melt pools and cause a different formation. Also, differences in the plumes
and powder delivery result in different types of problems in powder-bed
and multiple-head technologies. Lessons learned from measurement sci-
ence about different optimal sensors, ultrasonics, and acoustics could be
applied to both technologies.

SIMULATIONS: A CHANCE FOR KNOWLEDGE-BASED
IMPROVEMENT OF ADDITIVE MANUFACTURING

Marvin Siewert, University of Bremen

Siewert began by explaining four competences in AM: (1) part design
(e.g., topology optimization, residual stress and distortion, compensation
of distortion), (2) pre-processing (e.g., part orientation, support structures,
nesting of parts), (3) process (e.g., scan strategies, thermal management,
microstructure properties), and (4) post treatment (e.g., hot isostatic press-
ing, milling, heat treatment). He provided several examples of how these
competences work together in practice.

The first example was a simulation of residual stress and distor-
tion. The classical thermomechanical approach calculates the temperature
field using the initial condition and suitable boundary conditions. Next,
thermal strains and force equilibrium are calculated at several time steps.
Siewert noted that while this approach can be informative, it can also be
difficult to calibrate and validate as well as time-consuming and cost-
intensive to run. In contrast, the mechanical process equivalent method
requires inserting the inherent strains of the union of multiple layers as
loads into a mechanical calculation. This approach can be calibrated more
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easily, even for large parts, and is implemented within software at the
Integrated Status and Effectiveness Monitoring Program (ISEMP). The
Additive Works GmbH is a spin-off company of ISEMP and provides
(among other things) simulations based on the mechanical process equiv-
alent method in its software Amphyon.? Some goals and applications for
this simulation are fast computation of residual stress and distortion,
fast estimation, identification of critical areas, adaptation of the design,
and simulation-based adaptation of support structures. Ade Makinde
(General Electric Global Research Center) wondered about the accuracy
of the mechanical process equivalent method. Siewert noted that shrink-
age from every new layer calibrates well and does not require data to be
uploaded, which enables faster computations.

Siewert’s second example described mesoscopic and macroscopic
simulations of a temperature field. On the mesoscopic scale, a Goldak
heat source was used to analyze the melt-pool size and shape. This type
of analysis can be used to calibrate heat sources by comparing micro-
sections with simulated melt-pool shapes, to explore the influence of
local geometry on the melt-pool size (e.g., overhanging regions with dif-
ferent angles), and to estimate cooling rates. On the macroscopic scale,
energy input is realized by element activation at a certain temperature.
This type of analysis can be used, for example, to understand the influ-
ence of different hatch orders (i.e., the order in which material is filled
within the boundaries of AM parts) and to identify critical areas (e.g., hot
spots). The models on both scales use fast finite-difference method/finite-
element method calculations and are currently undergoing experimental
validation.

Siewert explained that the vision of predicting and controlling all
parameters in the entire AM process requires broad and deep thinking.
Since the quality and reliability of the produced part is influenced by the
whole process chain, every step needs to be understood as well as pos-
sible. Simulation methods and algorithms are needed to understand the
process and measured data, to predict critical situations, to adapt to and
overcome these situations, and to optimize the process. He emphasized
that data to validate and calibrate methods as well as improved mecha-
nisms to get adapted parameters into the process are critical to realize
this vision.

In response to a question about employing measured data to under-
stand the full state of a system, Siewert said that one could use measured
data to calibrate and validate a simulation model. A reliable simula-
tion can give a deeper understanding of the process within the system.

2To learn more about Amphyon, see https:/ /web.altair.com /2017-introduction-to-additive-
works, accessed October 26, 2018.
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Another participant asked how the accuracy and precision of a measure-
ment can be certified. Siewert explained that although applications vary,
different measurement techniques and the calibrated simulations can be
combined to improve the reliability of measurements.

DISCUSSION

Heigel, Wasmer, Siewert, Dutton, and Surana participated in a panel
discussion moderated by Colosimo. Colosimo asked each panelist to com-
ment on sensor issues. Wasmer said that the cost of sensors will always
be a consideration as sensors may be too expensive for some low-cost
applications. He also noted the value of a central resource for results from
various types of sensors. Researchers have to understand as much as they
can about both the process and the limits of the sensors in order to mini-
mize error; often this can be done by measuring the piece directly, inde-
pendent from the process parameters. A participant from industry asked
which sensor data are most helpful. Surana responded that sensing could
be used in many different ways, including off-line model validation and
in-line detection of failure. However, the sensing process also depends on
the scale being modeled and the techniques being used.

A participant asked the panelists to comment on the repeatability of
sensor data, how consistent the sensors are across machines and manu-
facturers, and standards for these sensors. Heigel mentioned that NIST
has been working toward understanding both sensor variability and
machine/process variability and that a lack of standards or best practices
for calibration is a barrier. NIST has been conducting an interlaboratory
study for the past few years to investigate powder-bed fusion variability,
and some irregularities have been observed. NIST is also researching the
physics behind sensor measurement and developing calibration proce-
dures. Dutton added that it is important to develop these tools to enable
the sensors to scale up into other ranges. He added that a structural model
of the part capabilities as well as the type(s) of defects and sizes that the
part can handle would be helpful in establishing quality requirements
for a part.

In response to a question about the effect of sensor distribution, Dutton
mentioned that most current sensing methods are only looking at the top
surface and can miss deeper defects. Other methods not yet applied,
such as laser ultrasound, could cover both surfaces and material within
about 2 mm of the surface. Improved sensing during the layer-by-layer
AM build process may enable more thorough defect detection. Colosimo
added that it is difficult to learn across machines because sensor integra-
tion tends to be manufacturer-specific. She also mentioned that multiple
sensors could be used to increase the robustness of results and detect
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when problems with a specific sensor occur. Another audience member
asked whether NIST is considering any compression or filtering tech-
niques to reduce storage demands for large data sets. Heigel responded
that although NIST is not specifically looking into this, data storage is an
important consideration. Colosimo encouraged widespread data sharing
to enable faster progress. Heigel commented that although data sharing
can help identify mistakes, open communication is essential; data can be
easily misinterpreted, and challenges exist with repurposing data to new
applications. Surana suggested that some data may be prioritized for
storage along with summaries of where the supplemental information
can be found.

In response to a question about the importance of process param-
eters, Wasmer emphasized the value of determining the exact moment
something happens so that that moment can be explored using other tech-
niques, such as machine learning. Surana agreed that this is an important
opportunity. Another participant asked the panelists to comment on the
challenges associated with part inspection. Colosimo responded that in-
situ monitoring allows some visibility into the process during the build
but is not as helpful when defects depend on the post-processing steps
(e.g., thermal treatment and finishing).

Liu asked the panelists for their thoughts on short-term, intermediate,
and long-term goals in AM. The panelists suggested the following areas
for improvement:

e Short-term goals

— Improving imaging capabilities (Colosimo);

— Clarifying what to monitor and when (Dutton);

— Setting expectations for assessing what can and cannot be
done (Heigel); and

— Establishing calibration procedures (Heigel).

e [Intermediate-term goals

— Facilitating real-time feedback control (Colosimo);

— Improving the use of models and statistical analyses to deter-
mine the optimal level of feedback, taking into consideration
the design and purpose of the AM part (Dutton);

— Improving modeling capabilities to predict and design the
process (Heigel); and

— Advancing fast computations (Surana).

e Long-term goals

— Improving the fundamental understanding of the processes,
especially for varying shapes and materials (Colosimo);

— Designing processes to be consistent across machines and
sensors (Heigel); and
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— Encouraging lifelong learning with respect to new parts, pro-
cesses, and data management (Surana).
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Microstructure Evolution,
Alloy Design, and Part Suitability

The second session of the workshop focused on developing models
to represent microstructure evolution, alloy design, and part suitability.
Lyle Levine (National Institute of Standards and Technology [NIST]) and
Kyle Johnson (Sandia National Laboratories) gave opening presentations
and were joined by Annett Seide (MTU Aero Engines), Eric Jagle (Max
Planck Institute), Deniece Korzekwa (Los Alamos National Laboratory),
Christian Leinenbach (Empa), and John Turner (Oak Ridge National Lab-
oratory) for a panel discussion relating to the following questions:

* How does the additive manufacturing (AM) community develop
and validate computer models that use measured material prop-
erty data and build parameters to predict the location-dependent
state of as-built and post-processed components?

¢ How does the AM community develop and validate computer
models that connect the location-dependent state of a part to its
performance?

MEASUREMENTS FOR ADDITIVE
MANUFACTURING OF METALS

Lyle Levine, National Institute of Standards and Technology

Levine began his presentation with a discussion of how the pro-
cessing, structure, property, and performance stages in AM interact. He
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explained that feedstock material and other environmental considerations
can combine with the complex build process to create a complex compo-
sition and thermal stress history. This information can inform models of
residual stresses and microstructure, which can then provide estimates
of mechanical properties and life-cycle behavior.

Levine provided measurements for laser powder-bed fusion, each
categorized by model inputs, model guidance, and model validation (see
Table 3.1). He noted that a previous AM workshop (see NASEM, 2016)
stressed the importance of benchmark measurements for comparison test-
ing. In response, NIST began the AM Benchmark Test Series (AM-Bench)
and now has a scientific committee that includes 60 organizations and 83
members.!

Several issues arose as this committee first attempted benchmark
measurements, Levine explained. First, there was a tremendous range of
additive processes and materials as well as unexplained build variability
between machines and processes. Time-intensive metrological-level mea-
surements were needed, and the systems were still being built. To stream-
line the process, two general sets of benchmarks were made for metals.
The first set of benchmarks involved 21 scientists from 6 organizations
and focused on part deflection, residual elastic strains, microstructure,
phase fractions, and phase evolution. The second set of benchmarks
involved 14 scientists from 2 organizations and focused on low-level phe-
nomena, including melt-pool geometry, cooling rate, topography, grain
structure, dendritic microstructure, and three-dimensional structure. For
a blind benchmark challenge, there were 46 submissions (almost all with
metals). Levine noted that the groups that used more physics for their
submissions ended up being closer to actual measurements. During a later
discussion period, a participant asked Levine why there were so few valid
submissions. Levine responded that the relationship between residual
stress measurements and part distortion models posed challenges. There
were two submissions tied for first place for predicting residual stress
measurements accurately and no winner for predicting part distortions.
The groups also struggled with predicting surface topography, such as
chevron patterns that form on the surface of materials, and anticipating
the liquid flow during the solidification process. He speculated that this
could be due to surface tension issues. Microstructure evolution was also
challenging, particularly in understanding what phases and precipitate
sizes/shapes happen as a function of time. Few groups submitted their
results for microstructure evolution.

1 For more information about NIST’s AM-Bench, see https:/ /www.nist.gov/ambench, ac-
cessed October 26, 2018.
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TABLE 3.1 Measurement List for Powder-Bed Fusion

Model inputs

Model guidance

Model validation

Thermophysical parameters

Liquidus, solidus temps
Latent heats

Specific heat capacity
Surface tension

Etc.

Build parameters

Scan pattern, power, speed
Power distribution function
Local cooling rates

Etc.

Part characterization

Melt pool (in-situ builds

and tracks)

e Length, width

e Absorptivity (as
function of time)

e Cooling rate

*  Mode (conduction or
keyholing)

e Etc.

Laser tracks and build
layers

o Widths, cross sections
e Grain shapes,

Part level (as-built and

processed)

e Dislocation density

e Phases, precipitates

e Microstructure
evolution

e Texture

Residual stresses/

strains

Part geometry

Distortion

Mechanical properties

Fatigue properties

Corrosion properties

e Dislocation density orientations Etc.
e Phases, precipitates o Texture
e Efc. ®  Phases, precipitates

e Solidification
microstructures

e Elemental segregation

e Etc.

SOURCE: Lyle Levine, National Institute of Standards and Technology, presentation to the
workshop, October 24, 2018.

Levine stated that good progress has been made on quantitative in-
situ monitoring, but more development is needed for in-situ technolo-
gies. However, some needed technology is not widespread, and there is
often poor traceability to primary reference standards. While the process
for international benchmark measurements is under way, it is limited
in scope compared to the technological need. He said that the technol-
ogy for state characterization is largely developed, but some aspects are
widespread and others require specialized capabilities. Lastly, he noted
a severe lack of AM-compatible alloys and relevant thermophysical and
related materials data.

During the question and answer portion of this presentation, Levine
was asked about the current state of three-dimensional microstructure
measurement. He responded that the only place he knows that does
three-dimensional microstructure measurements successfully is the U.S.
Naval Research Laboratory. NIST has struggled with it in the past. He
explained that when doing an X-ray computerized tomography scan and
looking at the grain structures, a diffraction process is being done instead
of a transmission process and high dislocation densities and resolution
issues appear. The only way to do three-dimensional microstructure
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measurement well is with a cross-sectional scanning electron microscope
using localized geometry. Then, electron backscatter diffraction or other
approaches can be used to examine the microstructure.

During the later panel discussion, an audience member asked about
the next AM-Bench and whether Levine has thought about doing a con-
duction mode versus a keyhole mode. Levine stated that this was an
excellent question, but the specifics need to be considered. For example,
is the build conducted on one line with increasing power along that line,
or is it done as a bare plate test where the power can be transitioned from
conduction to keyholing? A material system also needs to be considered
before transitioning.

PREDICTING MATERIAL STATE AND PERFORMANCE
OF ADDITIVELY MANUFACTURED PARTS

Kyle Johnson, Sandia National Laboratories

Johnson stated that AM is a multiscale, multilevel problem. Sandia
National Laboratories has a vision for linking processing, structure, prop-
erty, and performance via the following six programs (listed in order from
short term to long term).

1. Thermal process modeling coupled with microstructure prediction.
Sandia is working on microstructure prediction through its
Stochastic Parallel PARticle Kinetic Simulator,?2 which is used for
AM single continuous build and powder-bed methods.

2. Thermal process modeling coupled with residual stress prediction.
Sandia has a Laser Engineered Net Shaping® process to fabricate
three-dimensional metallic components directly from computer-
aided design solid models and to simulate AM builds. Sandia is
moving toward reduced-order models to compute the full stress
states more efficiently. This process can simulate a 6-hour build
time in 8 minutes. Neutron diffraction measurements are also
being incorporated into performance models.

3. Fast performance prediction accounting for as-built state, properties,
and defects for qualification. With 21 participant teams, the Third
Sandia Fracture Challenge centered on predicting tensile failure
of an AM part.

2 For more information about Sandia National Laboratories” Stochastic Parallel PARticle
Kinetic Simulator, see https:/ /spparks.sandia.gov, accessed October 26, 2018.

3For more information about Sandia National Laboratories’ Laser Engineered Net Shaping
process, see https:/ /www.sandia.gov/mst/technologies/net-shaping.html, accessed Octo-
ber 26, 2018.
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4.  Efficient concurrent multiscale modeling and uncertainty quantifica-
tion using techniques such as multigrid and error estimation when
material statistical homogeneity does not apply. An example would
be generating microstructures using kinetic Monte Carlo, run-
ning a homogeneous simulation with an isotropic material model,
recovering localized stresses using a posteriori error methods,
and then comparing the results to direct numerical simulations
of full kinetic Monte Carlo microstructure.

5. Advanced high-throughput testing capability coupled with machine
learning algorithms. Full-field high-throughput testing can now
be combined with machine learning. Sandia has been looking at
additional volume correlation techniques to get more volumetric
results instead of surface-level results. The volumetric results
could then be turned into a neural network that can help deter-
mine the correlation with failure or critical defect structure.

6. Process parameter-dependent microstructure prediction leading to local
texture control and optimization. Johnson provided an example that
illustrated how process settings affect microstructure. Coupling
the process-dependent microstructure and a design optimization
code, such as Plato,* might lead to the creation of a site-specific
optimized microstructure (Popovich et al., 2017). Johnson said
that this could be a “game changer” but is likely still years away.

Johnson noted that challenges remain with each of these six steps. For
thermal process modeling coupled with microstructure prediction, better
three-dimensional microstructure imaging capabilities are needed, and
representation of local microstructure on full-size parts is both a computing
power and data storage issue. For thermal process modeling coupled with
residual stress prediction, residual stress is still difficult to measure, type-
II residual stress is difficult to predict, and an optimization for residual
stress is needed. Fast performance prediction accounting for as-built states,
properties, and defects for qualification still has to include uncertainty
quantification for these materials. Concurrent multiscale modeling and
uncertainty quantification using techniques such as multigrid and error
estimation can be expensive and difficult. Crystal plasticity models need
to account for as-built dislocation structures and other microstructural
characteristics that are unique to AM. Lastly, Johnson noted that advanced
high-throughput testing capabilities coupled with machine learning algo-
rithms still face questions such as what to use for speckle patterns and
which defects or defect networks matter, as well as how to find them.

4 For more information about Sandia National Laboratories’ Plato environment, see
https:/ /sierradist.sandia.gov /Plato_index.html, accessed October 26, 2018.
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DISCUSSION

Following the presentations, Jagle, Leinenbach, Korzekwa, Seide,
Turner, and Johnson participated in a panel discussion on microstructure
evolution, alloy design, and part suitability. In addition to the two session
questions outlined at the beginning of this chapter, Levine, the moderator,
posed the following questions:

¢ What thermophysical parameters are most needed and how can
they be measured?

¢ AM-Bench can only provide a limited amount of data. What future
benchmark measurements should have the highest priority?

e It has been suggested that transition states/instabilities are
important to investigate—for example, the onset of keyholing
and dimensional instabilities for thin walls. What other transition
states merit investigation?

e How can commercial in-situ process monitoring systems be
validated?

e  What is the best role for high-performance computing in AM
simulation?

* What are short-, intermediate-, and long-term needs and direc-
tions in AM?

An audience member asked the panelists to share their thoughts on
microstructure evolution modeling. In particular, since the microstructure
cannot be truly predicted, could a blind prediction be used as the next
step? Levine responded that AM-Bench 2018 did ask what phases develop
in Inconel 625 during a residual stress heat treatment. One AM-Bench
group correctly predicted the phases, but the growth rate and the shape
of the precipitates were incorrect. Seide stated that although blind predic-
tions may someday be useful, they are not possible yet. Johnson added
that for certain materials, such as austenitic stainless steel, predictions are
fairly reasonable. However, more research is needed to understand the
impact of defects. Jagle noted that blind predictions for areas such as pre-
cipitate nucleation or growth rate, where predictions are determined by
defects, are currently unavailable. However, very few people go beyond
classical nucleation approaches. Another question was how to better inte-
grate sensing data into models to improve predictions. Korzekwa stated
that sensing data could be used both as a model input and to validate
the model output. Understanding the boundary conditions of the situa-
tion is also very important; however, this all depends on the model and
what the data actually are. An audience member asked how data could
be used with models to predict or estimate the full state of a system
that cannot be measured directly. Levine responded that projects should
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generally be joint measurement and modeling efforts because one can-
not model and measure everything. Measurements can be used to con-
strict model parameters and help identify underlying physics.

A participant asked whether a heat treatment could be devised to
encourage a particular long-term microstructure evolution regardless of
the as-built microstructure. Johnson responded that he is not sure if it is
possible to do so. Jagle replied that there are limited options for chang-
ing the heat treatment, which is why it is important to understand the
solidification process. Levine stated that developing a heat treatment for
a specific AM alloy is complex. He described two cases in which NIST
tried to develop heat treatments with unexpected complications. In one
case, a residual stress heat treatment was needed before cutting the parts
off of the build plate. This process resulted in significant amounts of
unpredicted niobium, which had to be eliminated.

A participant asked about the roles of creep, fatigue, and tensile
properties in microstructure evolution. Korzekwa responded that, overall,
predicting segregation and texture is challenging. Temperature-depen-
dent mechanical properties are not understood well enough to predict
some of the previously mentioned heat treatment effects. She noted that
more work is needed to improve modeling capabilities and estimates
of relevant material properties; Jagle added that these advances could
help researchers achieve desired microstructures and better understand
performance. Once there is a microstructure, the models used to translate
the microstructure into thermomechanical properties are similar, with
additional considerations such as defects that are not present in other
materials. Levine gave an example in which his team at NIST tested about
six different annealing treatments before the precipitation process. The
team did mechanical testing on treated parts; although these parts were
composed of the same material and were subjected to heat treatments in
similar ranges, tensile tests varied by a factor of three. This difference was
due to microstructure variations, including which precipitates formed
(and their size and predictability).

The same audience member asked how current knowledge of micro-
structure modeling could be applied to multicomponent alloy design.
Jagle responded that there is no single approach to alloy design; it depends
on the type of alloy. If he was asked to design a better aluminum alloy,
he would need to design better precipitates or compositions that would
work in AM.

In response to a question about model uncertainties and validation
tests, Turner stated that confidence in a model is needed before exploring
factors such as surface tension at various temperatures. Teter noted that
sensitivity analysis of certain parameters, such as recoil versus Marangoni
in the melt-pool behavior, is a big open question in AM.
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Levine asked the panelists about short-, intermediate-, and long-term
goals for AM of metals, which are described below.

e Short-term goals

Improving microstructure modeling, particularly for the pre-
diction of grain size, phases, and defects (Johnson);

Using machine learning on in-situ monitoring data (Johnson);
Developing guidelines for qualification design (Johnson);
Modifying existing alloys to work in AM (Jagle);

Improving the understanding of the physics behind some
materials” behaviors (Korzekwa);

Refining standards (Seide); and

Obtaining temperature-dependent thermophysical proper-
ties needed for simulations—some software systems have
temperature as a function of part-geometry and other proper-
ties, which may be a direction worthy of further exploration
(Leinenbach).

e Intermediate-term goals

Simulating all laser passes with computationally efficient
approaches (Johnson);

Improving topology optimization and location-specific pro-
cess optimization (Johnson);

Strengthening the understanding of modeling capabilities,
such as process-continuous models and microstructure mod-
els (Korzekwa);

Expanding training in computational materials engineering
(Seide); and

Developing a multiphysics approach for coupling capabilities
(Seide).

e Long-term goals

Combining digital volume correlation with machine learning
to minimize failure (Johnson);

Creating AM-specific alloys with specialized cooling rates
(Jagle);

Developing more user-friendly models (Korzekwa);
Improving the understanding of microstructures in different
parts and positions for localized needs (Seide);
Strengthening model reliability to predict distortion, micro-
structure, and mechanical properties (Leinenbach);

Copyright National Academy of Sciences. All rights reserved.



Data-Driven Modeling for Additive Manufacturing of Metals: Proceedings of a Workshop

MICROSTRUCTURE EVOLUTION, ALLOY DESIGN, AND PART SUITABILITY 27

— Establishing a set of community models and interfaces
between the different components, where lower- and higher-
fidelity models can be interchanged—this could be similar to
an open source version built in a collaborative environment
(Turner); and

— Developing community standards on the models and inter-
faces (Turner).
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Process and Machine Design

The third session of the workshop focused on modeling aspects of
process and machine design in additive manufacturing (AM). Tahany El-
Wardany (United Technologies Research Center), Ade Makinde (General
Electric [GE] Global Research Center), Johannes Henrich Schleifenbaum
(Fraunhofer Institute for Laser Technology), Shoufeng Yang (KU Leuven),
Jian Cao (Northwestern University), Ranadip Acharya (United Tech-
nologies Research Center), Mustafa Megahed (ESI Group), and Michael
Schmidt (Friedrich-Alexander Universitdt Erlangen-Niirnberg) each dis-
cussed research, challenges, and future directions relating to the following
questions:

¢ How can processing and post-processing be changed to drive part
and manufacturing performance to a predetermined goal (e.g.,
target state and production rate)?

¢ How can modified machine instructions bring about the desired
process changes?

¢ What new methods or techniques need to be developed to run the
AM process so that control signals can be included?

¢ How can part—process planning be optimized?

¢  What new methods or techniques for hybrid or autonomous
machines need to be developed to enable real-time monitoring
and control?

28
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MODELING PHASES OF PROCESS AND MACHINE DESIGN
Tahany El-Wardany, United Technologies Research Center

El-Wardany began her presentation with an overview of the United
Technologies Research Center and its work in aerospace, machine design,
and (most recently) AM. The company is currently focused on research-
ing and optimizing AM processes and exploring different modeling
techniques.

El-Wardany discussed AM part processing, modeling and validation
of AM processes, current AM machines, and requirements for AM machine
design and capabilities. She noted that there are limitations and gaps for
existing machine design; challenges in controlling machine performance,
reproducibility, and repeatability; needs for closed-loop monitoring and
the ability to output controller data; needs for multifidelity modeling of
processes to influence selection of monitoring strategy and signature; and
needs for full part modeling and optimization of scan strategy.

When making an AM part, she explained, there are three distinct
phases: pre-processing, process selection, and post-processing. During
pre-processing, the part concept is translated into a computer-aided
design model. This model is then used to improve and, hopefully, to opti-
mize the AM processes. Pre-processing also involves the preparation of
parameters such as support generation, orientation, build layout, nesting,
and scan strategy. After these parameters are defined, it is time to move to
the process selection phase, which includes processing, monitoring, and
control. After this phase, there should be enough information for post-
processing practices such as unpacking, part cleaning, stress relief, part
removal, support removal, heat treatment and hipping, surface finishing,
and part inspection.

It is important to discuss the limitations and gaps within these three
phases, El-Wardany explained. New models are needed to advance the
design of an AM part, specifically for generative design, cost projection,
parametric modeling, and multiphysics optimization. She also mentioned
the increased availability of pre-processing software for parameter selec-
tion, scan strategy, and build-file generation (e.g., Magics Build Processor
and Machine). With current modeling and validation of AM processes, the
objectives are to (1) develop integrated physics-based simulation tools of
AM processes to predict part-level distortion, defects, and microstructure
as well as to establish correlation to performance (i.e., fatigue); and (2) use
the developed tools to reduce AM process development time and cost.
These processes include powder-bed fusion, powder-directed energy
deposition, and wire arc AM. El-Wardany discussed important consider-
ations for validating high-fidelity physics-based models used to predict
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properties and part life, such as heat source, melt-pool dynamics, thermal
history, bulk distortion, and microstructure evolution. Power and speed
are the main variables that can help map processes. There is still a need for
more modeling activity to optimize heat treatment and predict part life.
El-Wardany presented a chart on available AM processes and equipment
(shown in Table 4.1), provided a few examples of current machines,! and
noted that new machines and applications are progressing every year. She
also discussed the following limitations for these processes:

e Fused deposition modeling: Weak mechanical properties, limited
materials (only thermoplastics), and inconsistent surface finish.

e Powder-bed fusion (selective laser sintering, selective laser melting, and
electron beam melting): Slow printing and high cost.

e Inkjet printing and contour crafting: Difficulty maintaining work-
ability, coarse resolution, lack of adhesion between layers, and
inconsistent surface finish.

e Stereolithography: Very limited materials, slow printing, and high
cost.

e Directed energy deposition: Poor accuracy, low surface quality, need
for a dense support structure, and limitation in printing complex
shapes with fine details.

e Laminated object manufacturing: Poor surface quality and dimen-
sional accuracy and limitation in the manufacturing of complex
shapes.

e Part size: Lack of novel approaches to relieve stresses and distor-
tion for large-scale parts.

e Scalability: High machine and material costs.

e Limited material and high cost: Lack of affordable AM-adapted
materials.

e Inconsistent quality: Part quality is difficult to control, machine-to-
machine repeatability and reproducibility of parts are a challenge,
accessing machine controller for feedback and process modifica-
tions is limited, and in-situ sensing and monitoring systems are
rarely available.

e AM machines: Lack of examples in multifunctional structures,
functionally graded materials, and automated repair processes.

1 Example machines include the Selective Laser Melting Machine 280, Matsuura LUMEX,
DMG Mori LASERTEC 65, Friction surface AM Aeroprobe, BeAM Modulo 400, FDM Fortus
450mc, and Polyjet Stratasys j750.
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TABLE 4.1 Available AM Processes and Equipment

31

Process Process or
category technology Material Manufacturer Machine
Vat photo- Stereolithography Ultraviolet Asiga Freeform Pico
polymerization curable resins 5 Systems iPro
Projet6000/7000
EnvisionTEC  Perfactory
Rapidshape S Series
Waxes DWS DigitalWax
Ceramics Lithoz CeraFab 7500
Material Multijet Ultraviolet 3D Systems Projet 3500
jetting modeling curable resins HD/3510/
5000/5500
Stratasys Objet
Waxes Solidscape 3Z
Binder jetting 3D printing Composites 3D Systems Z Printer
Polymers, Voxeljet VX Series
ceramics
Metals ExOne M-Flex
Material Fused deposition Thermoplastics Stratasys Dimension, Fortus,
extrusion modeling Mojo uPrint
MakerBot Replicator
RepRap RepRap
Bits from Bytes 3D Touch
Fabbster Fabbster Kit
Delta Micro UP
Factory Corp.
Beijing Tiertime Inspire A450
Waxes Choc Edge Choc Creator V1
Essential Imagine
Dynamics
Fab@Home Model
Metal nScrypt 3DnpnMill Three-
axis CNC machine
Hyrel 3D Hydra 340, 640,

645 3-axis CNC
machining and
laser cutting

continued
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TABLE 4.1 Continued

Process Process or
category technology Material Manufacturer Machine
Powder-bed Selective laser Thermoplastics EOS EOS P
fusion sintering Blueprinter Selective heat
sintering
3D Systems sPro
Metals 3Geometry DSM
Matsuura Lumex Avance-25
and 60 3-axis
CNC machining
controlled
atmosphere
Selective laser Metals 3D Systems/  PXL, PXM, PXS
melting Phenix
EOS EOSINT M
SLM Solutions SLM
Concept Laser LaserCusing
3D Systems ProX
Electron beam Metals Realizer SLM
melting Renishaw AM250
Arcam Arcam A2
Sciaky DM
Sheet Laminated object Paper Mcor Technologies
lamination manufacturing  polymers Matrix 300p
Metals Fabrisonic SonicLayer
Thermoplas-  Solido SD300Pro

tics
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TABLE 4.1 Continued

Process Process or
category technology Material Manufacturer Machine
Directed Laser metal Metal Optomec LENS 450, LENS
energy deposition or DM3D 3D (hybrid
deposition laser engineered system—>5 axis
net shaping Irepa Laser CNC machine-
controlled
atmosphere)
Electron beam Metal Sciaky Directed Metal
AM Deposition,
EasyCLAD, VX-110
Robotic-based
applications
Wire arc AM Metal DMG MORI  LASERTEC 65 3D,
LASERTEC

powder nozzle
and powder bed

NOTE: 3D, three dimensional; CNC, computer numerical control; DM, digital metal; SLM,
selective laser melting.

SOURCE: Tahany El-Wardany, United Technologies Research Center, presentation to the
workshop, October 25, 2018.

CURRENT STATE OF COMMERCIAL POWDER-BED ADDITIVE
MACHINES—AM MACHINE DESIGN ISSUES IMPACTING
BUILD-TO-BUILD AND PART-TO-PART VARIABILITY

Ade Makinde, General Electric Global Research Center,
with support from Johannes Henrich Schleifenbaum,
Fraunhofer Institute for Laser Technology,
and Shoufeng Yang, KU Leuven

Makinde described GE Additive, which was launched in 2016 and
includes divisions such as AddWorks™ consultancy, machine modalities,
advanced powders and coating materials, software, and customer experi-
ence centers. Efforts are under way to develop the world’s largest addi-
tive machine with its Additive Technology Large Area System (Project
A.T.L.A.S.). He noted that GE is examining how to use AM across indus-
tries and is committed to having 25 percent of its portfolio touched by
AM by 2025.

Within GE, Makinde focuses on multiphysics modeling of AM pro-
cesses and different tools that can be used to understand part-build qual-
ity. This involves understanding process parameters and their impacts as

Copyright National Academy of Sciences. All rights reserved.



Data-Driven Modeling for Additive Manufacturing of Metals: Proceedings of a Workshop

34 ADDITIVE MANUFACTURING

well as where multiphysics particle models, laser-scanning models, lattice
Boltzmann methods for laser-powder interactions, and part-level models
could play important roles. However, challenges include analyzing across
different length scales (such as going from microns to meters), validating
models, and getting codes to work together. By combining physics-based
models and data-driven models, uncertainty can be quantified for part
performance.

Makinde’s presentation focused on AM machine design characteris-
tics (e.g., powder-bed delivery system, laser system, chamber design, and
in-situ sensors for monitoring and control) that directly impact part-build
quality. The main objectives of design are to increase production rate,
decrease cost, reduce defects, and meet quality requirements.

For powder-bed delivery systems, storage and environmental con-
trol of the powder are critical. He noted that moisture is an important
factor that needs to be controlled when producing the powder-bed
delivery system. The second aspect is the delivery of the powder and
avoidance of flow separation. Makinde described the following as “low
hanging fruit”:

e Moving the powder throughout the machine without breaking up
the powder material;

e Filtering powder without clogging;

e Finding the best technique to spread the powder;

e Examining the re-coating to see how it affects the wear, contami-
nation, etc.; and

® Re-using powder (e.g., breaking up and mixing clumped powder).

Makinde explained that most laser systems operate on black-box control
systems, but there is a need for open-source control (e.g., a G-code type).
He highlighted the following important characteristics:

Power;

Speed;

Response time;

The time at which a machine is coded or reprogrammed (the
build can sometimes take 4 to 6 weeks);

Galvo, the laser power and scanning mirror speed control;
Inclination of the scan angles (as build chamber size increases);
Thermal lensing, especially for long duration builds;

Fumes, which can be detrimental to the laser systems;

Laser wavelength, which typically needs to be suitable for differ-
ent materials; and

e Hatch pattern.
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He added that most machines are using a continuous wave laser, but
it is vital to understand the impact between a pulsed wave laser and a
continuous wave laser.

Chamber design and oxygen levels are important characteristics for
AM machines, he explained. The environmental conditions inside the
chamber could affect the quality of the part. Powder-bed uniformity (i.e.,
particle distribution), gas flow, and soot prevention are also important.
Preheating at both the build-plate and layer level can help minimize
defects. Lastly, he explained that a modular chamber design for produc-
tivity, cool down, and de-powdering can help increase productivity rates.
The industrial control capabilities depend on sensors (e.g., pyrometer,
charge-coupled device camera, height scanner), measurements (e.g., melt-
pool temperature, melt-pool size, build height), stable characteristics (e.g.,
build height, melt-pool temperature, solidification rate, cooling rate), and
outputs (e.g., laser power, powder mass, machine feed, active cooling).

For in-situ sensors for monitoring and control, Makinde said that
there needs to be an integrated process and controlled environment for
sensing, monitoring, and controlling thermal behavior as well as for using
optical sensing for layer spread, powder spreading, melt-pool monitoring,
and infrared detection.

MODELING CHALLENGES AND
OPPORTUNITIES AT THE PART LEVEL

Jian Cao, Northwestern University,

with support from Ranadip Acharya,

United Technologies Research Center,
and Mustafa Megahed, ESI Group

Cao began by explaining the needs for simulations on process plan-
ning (e.g., choosing the best strategy) and material property prediction.
Thermal simulation of the full component is needed to enable iteration
and optimization of process planning. Thermal simulations can inform
understanding of the microstructure and part distortion (which can impact
the selection of laser parameters and hatch spacing), help identify hot and
cool spots, and enable material property predictions of grain sizes, mate-
rial phases, porosity, mechanical properties, and residual stress.

Cao showed a diagram, Figure 4.1, representing the relationships
among processing, structure, properties, and performance (PSPP) in AM.
Cao explained that PSPP focuses on the point level, so other consider-
ations are needed to get to the part level. Some of these considerations
include the design (e.g., product, material, and process), the machine
(e.g., use of sensors and other intelligence), and the final qualification and
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Goal/means
Parformance

ﬂ

Cause and effect

Processing

FIGURE 4.1 Three-link chain model of the central paradigm of materials science
and engineering. SOURCE: From G.B. Olson, 1997, Computational design of
hierarchically structured materials, Science 277(5330):1237-1242. Reprinted with
permission from the American Association for the Advancement of Science.

certification. The ultimate goal of an autonomous process starting from
design to product would be to combine these steps.

Cao showed the critical length scales for AM products and their cor-
respondingly normalized values for part length scales (see Table 4.2) and
the critical time scales in building and using AM parts normalized with
the build time scales (see Table 4.3).

There are some challenges for simulations at the part level, including
the following:

e Speed and predictability, lack of failure criteria, and issues in
microstructure and residual stress prediction;

e Database integration, including the extraction of useful informa-
tion to be integrated into various software packages;

e Integration of powder-level and melt-pool scale models, often
due to a mismatch of scales;

e Integration with pre-processing (e.g., powder spread) and post-
processing (e.g., heat treatment) since the integration involves
multiple processes that often have different simulation packages
or different physics;

e Variability in uncertainty quantification;

e Models for in-situ process control; and

e Model validation (e.g., temperature, history, residual stress).
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TABLE 4.2 Scales for Different Simulations at Critical Length Scale
and Normalized Length by Part Scale

Critical length scale Normalized length by

(m) that at the part scale

Part 102 -1 1

Feature size 105 -1073 ~10-2
Powder 105 - 10 102 ~ 107
Doping 107 ~10-8
Beam spot 1076 - 103 ~10°®
Melt-pool length 104 -1072 104 -1072
Melt-pool depth 107 - 1073 ~107°
Mushy zone 1076 - 10+ ~107*
Grain 100 - 1072 100 - 1072
Dendrite 107 - 107 ~10-
Crack 106 - 1072 106 - 1072

NOTE: Blue shading indicates desired to be simulated; green shading indicates needed at
part level; orange shading indicates currently not simulated at the part level.
SOURCE: Gregory J. Wagner and Jian Cao of Northwestern University.

TABLE 4.3 Scales for Different Simulations at Normalized Time by
That at the Build Scale

Critical time scale Normalized time by
(sec) that at the build scale
Part life 107 - 10° ~10% - 107
Build time 10% - 104 1
Layer time 100 - 10? ~102 - 10°
Solidification time scale 104 -1073 ~10-°
Thermal diffusion time scale 10-° - 1073 ~1077
Thermal convection time scale 105 - 10+ ~1077

NOTE: Blue shading indicates desired to be simulated; green shading indicates needed at
part level; orange shading indicates currently not simulated at the part level.
SOURCE: Gregory ]J. Wagner and Jian Cao of Northwestern University.

Copyright National Academy of Sciences. All rights reserved.



Data-Driven Modeling for Additive Manufacturing of Metals: Proceedings of a Workshop

38 ADDITIVE MANUFACTURING

Cao explained that there are several opportunities to address these
challenges. AM-specific finite element method companies, software devel-
opers, and start-ups are working together to help design and construct
parts to improve speed and predictability. With this, there is also a need
for efficient surface representation. The use of graphics processing units
or parallelization could lead to time improvements of several orders of
magnitude (Mozaffar et al., 2019). In terms of the challenges for database
and post-processing integration, there are universal file formats such as
voxel representations (e.g., the Visualization Toolkit) that can integrate
different models for materials thermodynamics and diffusion kinetics
models for phenomenological methods for solid-state phase transforma-
tion (e.g., Computer Coupling of Phase Diagrams and Thermochemistry
with the Johnson-Mehl-Avrami-Kolmogorov equation). This informa-
tion can potentially be linked with other processes as well (i.e., machine
operations). Surrogate models can also help with speed and predictability,
database integration, and integration with powder-level and melt-pool
scale models. Process maps can help with speed and predictability as
well as database integration by using the absorbed power and velocity
for solidification microstructure (Beuth et al., 2013). Gaussian process
metamodeling and machine learning approaches can improve speed and
predictability, database integration, and integration of powder-level and
melt-pool scale models. Machine learning can also help to predict the
thermal history using normalized temperature and time (Mozaffar et al.,
2018).

After the presentation, an audience member asked Cao for her pri-
ority challenges. She stated that speed and predictability are the top
priorities. In response to another audience member’s question, Cao stated
that understanding physics is fundamental for these simulations and
helps improve predictability. Multiscale simulation tools can be devel-
oped to fully integrate or pass the critical and equivalent data from the
fine scale model that incorporates detailed physics to the course scale. An
audience member wondered how the graphics processing units available
in many current machines would affect the types of simulations that could
be done. Cao responded that these simulations could help prevent prob-
lems. Currently, in most cases, it might not be possible to fix local defects
after they happen (e.g., fixing a porosity left in the previous layer); how-
ever, with more research and more data, it is possible to adjust process
parameters to fix these local defects within specified limits. More impor-
tantly, it is now possible to correct some global defects, such as distortion.
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DISCUSSION

Following the presentations, Acharya, Cao, Makinde, Megahed,
Schleifenbaum, Schmidt, and Yang participated in a panel discussion
moderated by El-Wardany. An audience member mentioned problems
with the keyhole phenomenon and asked whether it is possible to change
the scale of the systems. Yang responded that it is possible to change
the scale of the systems in AM but not in the design itself. And in some
cases, the design needs to be modified in order to have control of the
system. El-Wardany asked each panelist to comment on how to best
select machines to create a desired product. Yang mentioned that concerns
remain, such as how the AM process ultimately impacts the part quality
and how to fix process parameters. Better monitoring and choosing the
correct signals and sensors for these systems could help elucidate the
relationship between the process and part quality.

Makinde asked Schmidt if there are experimental studies to guide
designers on which processes to consider when making these machines.
Schmidt responded that companies are working on experimental stud-
ies that change the intensity profile of certain parameters to account
for factors such as energy saving and melt-pool flow, but these factors
also depend on the material properties (e.g., viscosity) and temperature
changes. Therefore, the intensity profiles for parameters vary in different
materials. Schleifenbaum added that different approaches to preheating
are beneficial. Cao mentioned that blue laser research being conducted by
some U.S. companies has the potential to increase the processing speed
in AM. Some cases have shown that blue lasers can increase productivity
tenfold in welding. Yang stated that green laser technology still needs to
be improved to enable selective laser melting. He explained that green
lasers still have poor beam quality compared to 1064 nm fiber lasers, and,
although the absorption rate is better for some materials like pure copper
and silver, the poor beam quality gives a large focus point. Acharya stated
that in order to avoid any defects, reduced-order modeling and process
mapping are needed. In-line monitoring and feedback control can help
better address the process map, and reduced-order models can include
distortion compensation to obtain accurate geometry.
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Product and Process Qualification
and Certification

The fourth session of the workshop included presentations on accelerat-
ing product and process qualification and certification in additive manufac-
turing (AM). Paolo Gennaro (GF Precicast Additive SA), Adhish Majmudar
on behalf of Michel Delanaye (GeonX), Vincent Paquit (Oak Ridge National
Laboratory), Jens Telgkamp (Airbus Operations GmbH), David Teter (Los
Alamos National Laboratory), and Richard Ricker (National Institute of
Standards and Technology [NIST]) each discussed research, challenges, and
future directions relating to the following questions:

¢ How can each part be built to be identical and conformant, within
standard tolerances and without individual inspections?

e What new standards, methods, or techniques need to be devel-
oped to certify a part built with AM?

PROCESS QUALIFICATION AND TECHNOLOGICAL
VALIDATION, FROM CASTING TO ADDITIVE

Paolo Gennaro, GF Precicast Additive SA

Gennaro introduced GF Precicast Additive SA, including its three
large divisions: GF Piping Systems, GF Casting Solutions, and GF Machin-
ing Solutions. GF Precicast Additive SA was founded in November 2016
and focuses on electron beam melting AM methods for titanium alumi-
nide and titanium Ti-6Al-4V; direct metal laser sintering for nickel, cobalt,
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or other superalloys; and cladding for industrial materials (which is still
in development). GF Precicast Additive SA has a fully certified supply
chain, including the AM build, heat treatment and hot isostatic pressing,
and finishing quality inspection. Gennaro discussed important steps for
system qualification, process qualification, and part validation, as high-
lighted in Table 5.1.

One of the main advantages for improved qualification and validation
would be the reduction of cost, he explained. He speculated that powders
might cost less if there were only one stock for one material. An audience
member noted that having a single stock might be a good short-term
goal, but specific applications might need a larger suite of materials in
the future. Another participant added that it depends on the company as
well, since each company has a different philosophy on how it designs
pieces. Gennaro responded by saying that since the final products will be
similar, the standards should also be somewhat similar.

The Asset Management Standards from the International Organization
for Standardization (AMS-ISO) could help establish customer standards

TABLE 5.1 Key Milestones, Standards, and Advantages for System
Qualification, Process Qualification, and Part Validation

Customer standards

Task Milestones referring to AMS-ISO  Advantages
System * Materials (powders) e Related to AMS-ISO e One stock for
qualification e Equipment (electron e ISO 9100-9001 + one material
beam melting, direct machine training (lower cost on
metal laser melting, powders)
laser metal deposition) * A single
calibration machine
® Personnel training qualification
is valid for all
customers
Process * Machine Related to AMS-ISO A single machine
qualification e Materials qualification
® Process parameters is valid for all
customers
Part * Geometry on Acceptance criteria No discussion on
validation components and (X-ray, fluorescent quality escapes
specimens penetrant inspection,
microstructure)

referring to AMS-ISO

NOTE: AMS, Asset Management Standards; ISO, International Organization for
Standardization.

SOURCE: Paolo Gennaro, GF Precicast Additive SA, presentation to the workshop, Octo-
ber 25, 2018.
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for machine qualifications. Although the milestones described in Table 5.1
are difficult to implement, doing so could help deliver a cost-effective
AM process qualification and technological validation. In response to a
question on in-situ monitoring, Gennaro emphasized that the goal is to
complete products correctly the first time. In-situ monitoring reduces the
time to fix problems that can affect the quality of a product. Makinde also
mentioned that modeling and sensing could help with calibration.

MODELING AND SIMULATION
Adhish Majmudar, GeonX (presenting on behalf of Michel Delanaye)

Majmudar began by referring back to Ade Makinde’s presentation
describing GE Additive. All of the departments focus on a vision of cre-
ating a part correctly the first time. He gave an example of a part that
had problems with manufacturing, including collision, shrinkage lines,
and surface defects such as small cracks. Time is lost if a part fails, and it
ended up taking 24 hours to make the part from the powder. Simulations
of powder-bed fusion AM are needed to address these problems, but
modeling challenges remain.

Majmudar discussed how GE goes from micron-scale to part-level
simulations to help design a part. GE provides a workflow to its clients
where they start from a particle-bed or single-track simulation in order to
look at the melt pool. Then, that information is fed into a model at a track
level, which feeds into the macro-level simulation in order to predict any
distortions and residual stress.

Majmudar showed a demonstration of NIST’s AM Bench Challenge.
Different process parameters were changed in three cases, resulting in
different shapes of the melt pool. He also showed a demonstration of a
mesoscale model of a track-level simulation. Nonlinear thermomechani-
cal feeds can be determined by inputting data on the laser power, laser
efficiency, laser speed, stripe angle, stripe angle increment, hatch distance,
and powder material. This model matched well with experimental tem-
peratures. Majmudar explained that thermal simulations help identify
these defects or potential problems in parts. He also showed solidification
models where thermomechanical properties can be used to estimate scan-
level outputs, which helps to predict dendrite shapes and segregation.

Majmudar emphasized that more material properties are needed for
modeling, but these can be expensive and time-consuming to obtain.
Another challenge is failure prediction, specifically estimating cracking
during a build. Failure during the development of a part results in signifi-
cant delays in the development process, and it is difficult to understand
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whether a new alloy is buildable or will crack. There are also ongoing
challenges related to predicting the microstructures of AM parts.

An audience member asked how to couple length scales from
microscale to mesoscale. Majmudar responded that the mesoscale simu-
lations track the laser as it moves through the melt pool. This can also be
characterized by using a microscale model. Another participant asked if
Majmudar performed any validation of the microstructure model. He con-
firmed that his team regularly does quantitative validations for thermal
and mechanical distortions of the parts and discussed how a spatial grain
structure model compared to experimental results. Another audience
member commented on the distortion model and the quantitative valida-
tion: if the support structure were too complex to model, finding trends
in the model data could help avoid the problem. In response to a ques-
tion about how long simulations for the industrial part took, Majmudar
explained that the turnaround time was about 24 hours, including 3 to
4 hours for the melt-pool simulation, less than 1 hour for the thermal
simulation, and several hours for the full mechanical simulation.

DISCUSSION

Following the presentations, Paquit, Telgkamp, Majumdar, Teter,
and Ricker participated in a panel discussion led by Gennaro. An audi-
ence member noted that the other side of verification is making sure the
machine is reliable and cannot be corrupted. She asked the panelists
whether any of them are also considering approaches toward improving
assurance, trust, and security. Teter mentioned that Los Alamos National
Laboratory is considering these approaches in its work. While assurance
typically means that all of the parts meet the requirements to be certified,
not enough may be known about the process, structure, and property
requirements to reach this goal. Gennaro discussed doing a risk assess-
ment to help with mass production of parts. Ricker mentioned that there
was a workshop (see Williams, 2015) at NIST about cybersecurity for print
digital manufacturing in which a speaker had students build sample parts
while he hacked their codes and put in defects without their knowledge.
Ricker stated that machine hacking is a vulnerability for AM, as it is in
all types of cyber-physical systems. He suggested that one could use a
separate monitoring system that is independent from the computer and
facilities that are doing the build to prevent both systems from being
affected by the same hack.

John Turner (Oak Ridge National Laboratory) noted that conventional
manufacturing has vulnerabilities as well, particularly when only one
domestic supplier exists. He asked the panelists whether there are oppor-
tunities for AM to increase overall trust in the supply chain. Telgkamp
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stated that a long-term vision is to go from a classical supply chain with
specialized suppliers to a system where one of many possible suppliers
could be identified to produce a part using AM. Makinde mentioned that
GE’s software includes a blockchain feature to ensure the stability of a
frozen process. Paquit commented that blockchain is not going to address
cybersecurity challenges inside the machine, but sensors may be able to
help with that. Telgkamp said that blockchain could be helpful in the
future to attach the digital proof of quality to an individual part.

An audience member mentioned the lack of standards for safety
of parameters, especially for powders, and asked whether qualification
standards exist. Telgkamp said that his group has safety documents in
place for mandatory requirements from suppliers. Gennaro stated that the
suppliers need to provide a safety data sheet since they best understand
the powder and how to use it safely. Teter mentioned that standards for
testing the flammability of powders exist, but it can be difficult to find
the facilities and resources to perform the tests. Another audience mem-
ber asked about the possibility of reusing powder. Telgkamp replied that
there needs to be a verified process and systematic investigation in place.
Ricker and Teter added that water vapor, nitrogen levels, and corrosion
are important considerations for powder reuse.

A participant asked whether standards exist to address defects that
are rare but catastrophic. Paquit answered that sensing may be a short-
term solution to avoid issues that result from defects. Teter mentioned
that he thinks about the critical flaw size and location of common defects
since some areas are more sensitive to defects than other areas within
the part.

Teter asked about the use of model validation for instances when
researchers can predict a result such as a mechanical property but can-
not change any parameters. Majmudar stated that this question leads to
discussions of variability in the process, which could also help researchers
better understand measurement errors and common causes for variability.
Ricker added that many tests are currently required to assess variability
for qualification, and models can help understand variability and build
trust in the systems. Teter emphasized the importance of representing the
underlying physics of the materials and mechanical properties in machine
learning models to increase the meaningfulness of possible predictions.

The panelists elaborated on the use of experimental data and model-
ing for calibration and qualification in response to a question from the
audience. Gennaro stated that his team uses experimental data to help
with calibrations. Teter emphasized that modeling is helpful in the quali-
fication process, particularly with understanding which parameters are
most sensitive to part quality. Modeling can help guide and focus the
experimental efforts.
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Gennaro asked how long it would take to certify the in-situ moni-
toring approaches to generate one part of production if computerized
tomography (CT) scans were involved. An audience member noted that
CT measurements are not used on their own because they are not trace-
able, unlike other measurements used in certification.

An audience member noted that more data are not always better for
certification. Ricker agreed, particularly for data collected early in the
process that may not be as relevant to the final part. Teter stated that data
from a part with a known defect could be compared to data for other
parts to help understand the impact of the defect, but this comparison
depends on how well the sensors measure important parameters. Paquit
added that his team stores a large amount of data to help address future
questions and that it is important to have diversity in the data. Another
participant commented that it is important to learn how to use these data
to support decision making; in the future, hopefully all data will be usable
for production.
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Summary of Challenges from
Subgroup Discussions and
Participant Comments

During the third day of the workshop, participants met in subgroups
to discuss some of the challenges in additive manufacturing (AM). These
groups aligned with the four sessions of the workshop:

1.
2.

3.
4.

Measurements and modeling for process monitoring and control;
Developing models to represent microstructure evolution, alloy
design, and part suitability;

Modeling aspects of process and machine design; and
Accelerating product and process qualification and certification.

Breakout groups were asked to discuss two or three principal topics and
consider the following overarching questions:

What are the greatest technological challenges?

What are the most important areas for research?

What are “nontechnical” challenges to commercialization of AM?
How can industry and academia better interact and collaborate
to address technical and nontechnical challenges?

Are there concrete actions that could help address the challenges
identified?

What topics could be addressed in a follow-on workshop?

Workshop participants were also asked to provide individual responses
to similar questions about top priority research needs for advancing AM,
top “nontechnical” challenges to commercialization of AM, and actions

47

Copyright National Academy of Sciences. All rights reserved.



Data-Driven Modeling for Additive Manufacturing of Metals: Proceedings of a Workshop

48 ADDITIVE MANUFACTURING

that could help address these nontechnical challenges. Descriptions of the
subgroup discussions and individual responses are provided in the follow-
ing subsections.

MEASUREMENTS AND MODELING FOR
PROCESS MONITORING AND CONTROL

Subgroup Members

Jarred Heigel (National Institute of Standards and Technology),
Carolin Korner (Friedrich-Alexander Universitit Erlangen-Niirnberg),
Amit Surana (United Technologies Research Center),

R. Allen Roach (Sandia National Laboratories), Kilian Wasmer (Empa),
Shoufeng Yang (KU Leuven), and Celia Merzbacher (SRI International)

Breakout Discussion

This breakout group discussion was led by Heigel, and conversations
focused on sensor technology, algorithm development and use, knowl-
edge transfer, challenges, and priorities moving forward. The following
three questions were proposed to start the discussion:

1. What is good enough? How much information is needed from the pro-
cess to meet the desired goals? Some subgroup members noted that
clearly identifying what process information is needed will enable
the development of useful sensors.

2. What information must be exchanged between real-time monitoring sen-
sors and process models? Several subgroup members commented
that this is specific for model-based control and is an immediate
need.

3. How can decisions and guidelines be made for processing and saving
measurements? Many subgroup members commented that this
question also addresses issues of data management.

Several subgroup members highlighted the following technical challenges:

e Correlating process phenomena with structures and defects and incor-
porating real data into process models. This could help improve the
understanding of the overall AM process and the underlying
physics (e.g., understanding what may increase the chance of fail-
ures or unsatisfactory parts), which in turn could help improve
the sensor design and the data analysis.
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e Clarifying what needs to be measured to control the outcome. This may
include defining the industrial needs for real-time monitoring.

e Understanding the material, structure, and defect specifications. This
is particularly important in terms of understanding areas of con-
cern within the part regarding defects and what defect density is
acceptable. It is important to be able to define what is and is not
acceptable for specific parts and design criteria.

e Providing better input and output definitions for models and sensors.
This could help to improve communication throughout the sys-
tem. While each sensor represents a different aspect of the pro-
cess, they can provide a more complete picture of the process
when they are combined.

e Assessing whether sensor systems are capable of measuring critical
parameters and providing real-time analysis. It is important to ques-
tion what hardware and analysis are needed if current systems
are not fast enough to enable sufficient process control.

e Enabling the long-term goal of a feed-forward loop based on reliable
models. This is a significant challenge that is also dependent on
the previously mentioned challenges.

Subgroup members discussed the challenge of machine interoperabil-
ity and how to encourage machine manufacturers to be more transparent
with their systems and processes. Currently, the high cost of develop-
ing these systems and the associated intellectual property deters manu-
facturers from making their systems more transparent. However, many
manufacturers are small organizations that may lack the resources and
expertise required to develop real-time monitoring and process control
strategies required by the end user. On the other end of the spectrum,
organizations with monitoring and control expertise often are not as
familiar with the intricacies of the process and lack the ability to com-
municate directly with the machines. Some members of the subgroup
speculated that case studies and cost analysis could help to convince man-
ufacturers that increasing the transparency of their machines and enhanc-
ing collaboration will serve the greater good of the AM community and
ultimately increase manufacturers’ customer base. The semiconductor
industry—which has benefited from collaborations and partnerships—
could be an exemplar of how to encourage transparency and collaboration
among small companies. Finally, many subgroup members suggested
that a follow-on workshop could focus on data collection and improved
decision making.
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DEVELOPING MODELS TO REPRESENT MICROSTRUCTURE
EVOLUTION, ALLOY DESIGN, AND PART SUITABILITY

Subgroup Members

Annett Seide (MTU Aero Engines), Lyle Levine (National Institute of
Standards and Technology), John Turner (Oak Ridge National Laboratory),
Ade Makinde (General Electric Global Research Center), Kyle Johnson (Sandia
National Laboratories), Eric Jigle (Max Planck Institute), Deniece Korzekwa
(Los Alamos National Laboratory), and Christian Leinenbach (Empa)

Breakout Discussion

This breakout group discussion was led by Seide, who noted that
many of the challenges in representing microstructure evolution, alloy
design, and part suitability are encompassed by the larger material science
research effort. However, there are unique areas of ongoing research that
are specific to AM materials and conditions. The subgroup first discussed
the lack of thermophysical data under AM conditions, and several mem-
bers suggested the following short-, intermediate-, and long-term goals:

e Short-term goals: Identify the data that are needed for process
measurement and for modeling input.

* Intermediate-term goals: Obtain data for a limited set of AM
materials.

®  Long-term goals: Take a deep look at the quality of data and explore
first principles and machine learning approaches.

These members emphasized that the most important areas of research for
the lack of thermophysical data are first principles and machine learning
approaches.

The subgroup next discussed microstructure evolution and the chal-
lenge of developing and validating models. In particular, several mem-
bers described high-fidelity models, coupled multiphysics models (e.g.,
to get location-specific microstructure evolution and to look through the
solidification and intrinsic heat treatment processes as well as post-build
processing), and reduced-order models as particularly challenging. Many
subgroup members noted several promising short-, intermediate-, and
long-term research areas:

e Short-term research areas: Conducting sensitivity analysis of cur-
rent model parameters, coupling physical phenomena in models,
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temporal and spatial scale bridging, and three-dimensional micro-
structure characterization information.

Intermediate-term research areas: Modeling phenomena of inter-
est under nonequilibrium conditions and calibration of model
parameters.

Long-term research areas: Predicting metastable phases, predicting
models for nucleation, and predicting interfacial energies.

The third topic discussed was coupled multiphysics and multiscale
capabilities for AM, including the laser-material interaction, the time-
dependent thermal profile (including fluid flow), microstructure evolu-
tion, micromechanics, and macroscale thermomechanics. Many subgroup
members noted several promising short-, intermediate-, and long-term
research areas:

Short-term research areas

— Analysis of coupling between relevant physics. This is chal-
lenging because it requires a fully coupled model.

— Exploration of approaches for modeling laser-scan strate-
gies. These approaches may be done through parallel in-time
approaches.

— Prediction of site-specific properties. This includes proper-
ties throughout the parts and the ability to use site-specific
properties in macroscale models.

Intermediate-term research areas

— Development of reduced-order models informed by both
high-fidelity models and experimental data.

— Development of advanced design optimization tools and
approaches.

— Advancement of site-specific control of microstructure
through process parameters for real parts, including complex
shapes and complex alloys.

Long-term research areas: Integration of site-specific microstructure

control into design optimization.

Several subgroup members also discussed the following nontechnical
challenges across AM:

The lack of stable, long-term research funding;

A lack of willingness to fund testing and measurement;

The use of proprietary alloys;

The lack of a community standard file and standardized formats
for experimental and simulation data;
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e The need for increased collaboration between domain scientists
and computational scientists; and

e The lack of students and staff with necessary expertise such as
computational material science, manufacturing, model-based engi-
neering, computer-aided-design-based topology optimized design,
and software development for modern computer architecture.

To increase collaboration and better address technical and nontechni-
cal challenges, several subgroup members suggested that industry and
academia support efforts that provide foundations for collaboration (e.g.,
AM-Bench). Industry might consider funding defined challenges in which
academia and laboratory teams could compete. Programs could be created
for targeted collaborative industry—academia-laboratory research to tackle
specific application challenges. These subgroup members emphasized the
importance of having adequate, stable funding available over extended
time periods and suggested that the U.S. Department of Energy Hubs!
concept could be applicable for AM. Many subgroup members suggested
specific actions that could help address these challenges, including a call
for proposals in the industry—academia—laboratory research areas and the
expansion of educational programs that are domain specific and multidis-
ciplinary. Some members of this breakout group suggested that a follow-
on workshop could address topics such as challenges and opportunities in
topology and shape optimization with site-specific microstructure control
as well as multidisciplinary educational programs for AM processes.

MODELING ASPECTS OF PROCESS AND MACHINE DESIGN
Subgroup Members

Mustafa Megahed (ESI Group), Wing Kam Liu (Northwestern
University), Jian Cao (Northwestern University), Tnhany EI-Wardany
(United Technologies Research Center), and Winfried Keiper (European

Technology Platform for Advanced Engineering Materials and Technologies)

Breakout Discussion

Megahed led this breakout group, which discussed modeling aspects
of process and machine design. Megahed, Liu, Cao, El-Wardany, and

1 For more information on the U.S. Department of Energy’s Hubs, see https:/ /www.energy.
gov/science-innovation/innovation/hubs, accessed March 11, 2019.
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Keiper proposed the following challenges and research needs for this
topic:

e Identifying the source of process variability, which can be done by
determining the sensitivity of the process to certain parameters,
uncertainty quantification, and process control.

e (alibrating and validating models, even in the absence of experi-
mental data.

e Designing the experiments needed to deliver necessary data.

e Developing a community database for relevant data in standard-
ized forms.

e Advancing models to capture details such as environmental
effects, alloying elements, and doping.? These may utilize artifi-
cial intelligence and machine learning methods.

e Improving the use of data reduction and reduced-order modeling
to increase efficiency.

These subgroup members also highlighted three major nontechnical
challenges:

e Data sharing. The research community would benefit from
increased access to data. Several subgroup members speculated
that the reticence to share data might be a cultural problem since
most researchers are not used to sharing their data. They high-
lighted nuclear physics databases as a possible example to emu-
late, particularly the use of a centralized body to help transform
raw data into evaluated data. Shared databases also need to be
sustainable as well as continually maintained and updated.

e Interpretable machines. Manufacturers have historically been reluc-
tant to share the inner workings of their machines for a variety
of business reasons. However, these subgroup members noted
that having more transparent machine processes would enable
research advancements.

e Interdisciplinary education. These subgroup members explained
that there needs to be a more efficient way of learning about
a wide variety of topics relating to AM, including hardware,
underlying physics, metrology, algorithm development, optimi-
zation, numerical simulation, thermodynamics, statistics, and
data analytics.

2 Alloying elements are defined as metallic or nonmetallic elements that are added in speci-
fied or standard amounts to a base metal to make an alloy (Business Dictionary, 2019), and
doping is the mixing of a small amount of an impurity into a silicon crystal (Brain, 2001).
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The subgroup members also discussed partnerships. Several mem-
bers noted successful models such as America Makes,> Horizon 2020,
CleanSky,” and other data sharing efforts that encourage community data-
bases. Other options could be for industries to enable more internships
and fellowships for students and researchers. A number of subgroup
members also suggested more partnerships among researchers in the
European Union and the United States and among small- and medium-
size enterprises; this could encourage more collaboration, data exchange,
and international research funding.

For a possible follow-on workshop, some of the subgroup members
proposed themes including the definition of joint standards and toler-
ances, digital twin and threads for AM, interdisciplinary education, and
the various intermediate-term challenges and goals that were discussed
throughout the workshop.

ACCELERATING PRODUCT AND PROCESS
QUALIFICATION AND CERTIFICATION

Subgroup Members

David Teter (Los Alamos National Laboratory), Jens Telgkamp (Airbus
Operations GmbH), Vincent Paquit (Oak Ridge National Laboratory),
Paolo Gennaro (GF Precicast Additive SA), Johannes Henrich Schleifenbaum
(Fraunhofer Institute for Laser Technology), Richard Ricker (National Institute
of Standards and Technology), Josh Sugar (Sandia National Laboratories),
and Ben Dutton (Manufacturing Technology Centre)

Breakout Discussion

Teter and Telgkamp led the discussion for this subgroup, which focused
on accelerating product and process qualification and certification. This dis-
cussion was divided into short-term (less than 5 years) and intermediate-
term (5 to 10 years) goals that could enable a long-term vision for AM.

Teter explained that the long-term vision is the ability to design, print,
and qualify a product correctly the first time. This includes as-built qual-
ity, in which people have very limited destructive evaluation for parts

3 For more information on America Makes, see https:/ /www.americamakes.us, accessed
March 11, 2019.

4For more information on Horizon 2020, see https://ec.europa.eu/programmes/
horizon2020/, accessed March 11, 2019.

5 For more information on CleanSky, see https://www.cleansky.eu, accessed March 11,
2019.
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being generated, and built-in quality assurance, in which data are col-
lected as a part is being printed. Modeling and simulation play an impor-
tant role—a multiphysics process—structure—property—performance pre-
diction is needed. Cybersecurity is another concern, particularly in terms
of building resiliency to the threat of fraudulent components over the
next 10 years. Several subgroup members noted that the ability to track
each part is needed, including attaching the license to build and proof
of quality to each part. Lastly, some subgroup members commented on
the need for government-to-government agreements on AM with shared
objectives, data, and frameworks. They suggested that long-term efforts
should focus on the need for AM to be operational and fully accepted by
certification groups.

To advance this long-term vision, the subgroup highlighted the fol-
lowing short- and intermediate-term research goals:

e Short term: Several subgroup members suggested a short-term
focus on AM technology and materials development, such as
making the process less sensitive to variability and defects. Below
are some specific open challenges that these members highlighted.
— Improving the understanding of the influence of feedstock

parameters, taking into consideration the key material prop-
erties and process parameters. These subgroup members
emphasized this as a high priority.

— Developing guidance on sensor technology.

— Improving the openness of control systems.

— Refining the definition of “good” data as well as a common
test part/object for qualification and microstructure. ASTM
F42% may be able to help determine goals, objectives of test
part/object, and number of object definitions needed.

— Collecting defect catalogues for critical flaw size and type,
frequency, distributions, and criticality of locations. Telgkamp
noted that this is particularly important for highlighting
research and development needs.

— Strengthening the understanding of current sensor technol-
ogy, limits, capabilities, stability, and reliability.

e Intermediate term: Several subgroup members suggested an
intermediate-term focus on continuous standardization activities,
such as development and maturation. Below are some specific
open challenges that they identified.

6 For more information on ASTM F42, see https:/ /www.astm.org/ COMMITTEE /F42.htm,
accessed March 11, 2019.
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— Using process monitoring in decision making, such as when
and how to repair a part or when to discard it.

— Developing reduced-order models for decision making.

— Maturing tools for sensor data fusion and reduction.

— Exploring machine learning methods to improve microstruc-
ture and property predictions.

— Increasing data sharing and establishing a common or global
database. These subgroup members noted that this was men-
tioned throughout the workshop.

— Improving machine-to-machine knowledge transfer.

— Developing high-throughput characterization and develop-
ment for new and mature sensors, based on the sensing needs
to be identified.

INDIVIDUAL RESPONSE RESULTS

Participants at the workshop were also asked to provide their
thoughts on the top priority research needs for advancing AM, top “non-
technical” challenges to commercialization of AM, and actions that could
help address these nontechnical challenges. The individual responses
were analyzed by a workshop subgroup and summarized by Celia
Merzbacher (SRI International). She explained that the technical chal-
lenges suggested by the workshop participants centered on needing more
AM materials, improving the understanding of microstructure prediction,
developing standards and benchmark measurements, and improving in-
situ monitoring capability. For nontechnical challenges, she explained that
the responses centered on encouraging data sharing, increasing funding,
improving training and education, enabling machine transparency, and
increasing trust in AM parts. Many participants suggested that these
challenges could be approached by increasing coordination and commu-
nication among stakeholders, perhaps through more convening activities,
collaborations, standards, and funding.
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Workshop Agenda

A Workshop on the Frontiers of Mechanistic Data-Driven Modeling for

Additive Manufacturing
October 24-26, 2018

Neue Materialien Fiirth GmbH
Dr.-Mack-Strafde 81, Technikum 1, 6th Floor
Fiirth, Germany

Day 1: October 24

9:00 a.m.

9:20 a.m.

9:40 a.m.

Welcome from the Co-Chairs

Carolin Korner, Co-Chair, Friedrich-Alexander Universitit
Erlangen-Niirnberg

Wing Kam Liu, Co-Chair, Northwestern University

Opening Comments from the Sponsors
R. Allen Roach, Sandia
Richard Ricker, NIST

Opening Comments from the National Academies

Michelle Schwalbe, Board on Mathematical Sciences and
Analytics

Erik Svedberg, National Materials and Manufacturing Board

61

Copyright National Academy of Sciences. All rights reserved.



Data-Driven Modeling for Additive Manufacturing of Metals: Proceedings of a Workshop

62 ADDITIVE MANUFACTURING

SESSION 1: MEASUREMENTS AND MODELING
FOR PROCESS MONITORING AND CONTROL

10:00 a.m. Introduction to Session 1
Bianca Colosimo, Politecnico di Milano

10:10 a.m.  Measurement Science for Process Monitoring and
Control
Jarred Heigel, National Institute of Standards and Technology

10:40 a.m. Break

11:00 a.m.  Process Simulation as a Complement of Process
Monitoring!
Daniel Reznik, Siemens

11:30 a.m.  Lunch
12:30 p.m. Panel Discussion

e  Brief introductions and statements of research interests
® Open discussion, led by Bianca Colosimo

Panelists:

Bianca Colosimo, Politecnico di Milano

Ben Dutton, Manufacturing Technology Centre

Jarred Heigel, National Institute of Standards and Technology
Daniel Reznik, Siemens

Kilian Wasmer, Empa

Amit Surana, United Technologies Research Center

2:00 p.m. Break

SESSION 2: DEVELOPING MODELS TO
REPRESENT MICROSTRUCTURE EVOLUTION,
ALLOY DESIGN, AND PART SUITABILITY

2:30 p.m. Introduction to Session 2
Lyle Levine, National Institute of Standards and Technology

1 Unable to attend.
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2:35 p.m.

3:05 p.m.

3:30 p.m.

4:00 p.m.

5:30 p.m.
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Measurements for Additive Manufacturing of Metals
Lyle Levine, National Institute of Standards and Technology

Break

Predicting Material State and Performance of Additively
Manufactured Parts
Kyle Johnson, Sandia National Laboratories

Panel Discussion
e Brief introductions and statements of research interests
® Open discussion, led by Lyle Levine

Panelists:

Lyle Levine, National Institute of Standards and Technology
Eric Jiagle, Max Planck Institute

Kyle Johnson, Sandia National Laboratories

Christian Leinenbach, Empa

Deniece Korzekwa, Los Alamos National Laboratory

Annett Seide, MTU Aero Engines

John Turner, Oak Ridge National Laboratory

Conclude Sessions

Day 2: October 25

9:00 a.m.

9:30 a.m.

9:40 a.m.

Recap of Day 1; Major Themes and Overview for the Day
Session 1: Bianca Colosimno
Session 2: Lyle Levine

SESSION 3: MODELING ASPECTS OF
PROCESS AND MACHINE DESIGN

Introduction to Session 3
Tnhany El-Wardany, United Technologies Research Center

Current State of Commercial Powder-Bed Additive
Machines—Improvements Needed to Minimize Build-to-
Build Variability

Ade Makinde, General Electric Global Research Center, with
support from Johannes Henrich Schleifenbaum, Fraunhofer
Institute for Laser Technology, and Shoufeng Yang, KU Leuven

Copyright National Academy of Sciences. All rights reserved.



Data-Driven Modeling for Additive Manufacturing of Metals: Proceedings of a Workshop

64

10:10 a.m.

10:30 a.m.

11:00 a.m.

12:30 p.m.

ADDITIVE MANUFACTURING

Break

Modeling Challenges and Opportunities at the Part Level
Jian Cao, Northwestern University, with support from Ranadip
Acharya, United Technologies Research Center, and Mustafa
Megahed, ESI Group

Panel Discussion
e Brief introductions and statements of research interests
* Open discussion, led by Tahany El-Wardany

DPanelists:

Tnhany ElI-Wardany, United Technologies Research Center

Ranadip Acharya, United Technologies Research Center

Jian Cao, Northwestern University

Ade Makinde, General Electric Global Research Center

Mustafa Megahed, ESI Group

Johannes Henrich Schleifenbaum, Fraunhofer Institute for Laser
Technology

Michael Schmidt, Friedrich-Alexander Universitiit
Erlangen-Niirnberg

Shoufeng Yang, KU Leuven

Lunch

SESSION 4: ACCELERATING PRODUCT AND PROCESS

1:30 p.m.

1:35 p.m.

2:05 p.m.

2:35 p.m.

QUALIFICATION AND CERTIFICATION

Introduction to Session 4
Paolo Gennaro, GF Precicast Additive SA

Process Qualification and Technological Validation, from
Casting to Additive
Paolo Gennaro, GF Precicast Additive SA

Modeling and Simulation
Michel Delanaye,” GeonX

Break

2Unable to attend.
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Panel Discussion
e  Brief introductions and statements of research interests
®  Open discussion, led by Paolo Gennaro

Panelists:

Paolo Gennaro, GF Precicast Additive SA

Vincent Paquit, Oak Ridge National Laboratory

Jens Telgkamp, Airbus Operations GmbH

Michel Delanaye, GeonX

David Teter, Los Alamos National Laboratory

Richard Ricker, National Institute of Standards and Technology

Conclude Presentations and Discussions

Day 3: October 26

9:00 a.m.

9:30 a.m.

12:00 p.m.
1:00 p.m.

2:30 p.m.

3:00 p.m.

Recap of Day 2; Major Themes and Overview for
the Day

Session 3: Tahany EI-Wardany

Session 4: Paolo Gennaro

Breakout Groups

* Measurements and Modeling for Process Monitoring
and Control

¢ Developing Models to Represent Microstructure
Evolution, Alloy Design, and Part Suitability

* Modeling Aspects of Process and Machine Design

e Accelerating Product and Process Qualification and
Certification

Lunch (with Breakout Groups)

Breakout Groups Report Back

Final Comments from Co-Chairs and Sponsors

Carolin Korner, Co-Chair, Friedrich-Alexander Universitiit
Erlangen-Niirnberg

Wing Kam Liu, Co-Chair, Northwestern University

Sponsors’ Representatives

Adjourn Workshop
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Workshop Statement of Task

A National Academies of Sciences, Engineering, and Medicine-
appointed ad hoc committee will plan and organize a 3-day workshop to
explore the frontiers of integrated data-driven modeling for additive man-
ufacturing. This workshop will convene leading experts in online moni-
toring, science of materials and mechanics, optimization and controls, and
qualification and certification from the United States and the European
Union to discuss approaches to and challenges with the following:

* Measuring and modeling process monitoring and control;

* Developing models to represent microstructure evolution, alloy
design, and part suitability;

* Modeling phases of process and machine design; and

¢ Accelerating product and process qualification and certification.
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